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Abstract

In this manuscript, we will examine several methods of interpolation,

with an emphasis on Chebyshev polynomials and the removal of the

Gibbs Phenomenon. Included as an appendix are the author’s Mat-

Lab implementations of Lagrange, Chebyshev, and rational interpola-

tion methods.
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Methods
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Chapter 1

Introduction

Definition 1 (Interpolation) An interpolating approximation to a func-

tion f(x) is an expression PN−1(x), usually an ordinary or trigonometric

polynomial, whose N degrees of freedom are determined by the require-

ment that the interpolant agree with f(x) at each of a set of N interpo-

lation points:

PN−1(xi) = f(xi), i = 1, 2, . . . , N.

A reasonable question that may arise at this point could be “Why

would we want to interpolate?” A reasonable answer would be “Because

we have to.” When one starts working with numerical analysis or com-

puter programming in general, it is soon learned that many numbers

cannot be represented exactly due to the limitations of the computing

languages, i.e., binary code. There just isn’t enough memory to accu-

rately represent 1/3 as a decimal.

So from the very start, we are faced with some amount of error. If we

can keep the error smaller than some predetermined amount, or achieve

as many decimal spaces of accuracy that the computer can handle, we
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will be satisfied. While computer precision varies, in this paper we will

consider machine epsilon to be nearly 15 decimal places of accuracy.

In other words, having the computer work with 15 decimal places of

.3333..., is just as good as a million decimal places in our mind and

the computer’s. Thus, when we start approximating functions with our

interpolation methods, if our error is of the size 10−15, or so small that

the computer will not know any different, we are doing a good job.

The next goal one might select would be to numerically approximate

some function, be it of the nice smooth (boring) variety, or of the more

interesting (badly behaved) discontinuous type. In this manuscript we

will examine several types of functions, and compare several methods

used to approximate them. We will also see exactly how to compare

one method to another in terms of which works “better.” As it turns

out, there is work to be done. We soon see that problems arise in

our interpolating methods, such as the Gibbs phenomenon. It is the

main focus in this manuscript to discuss ways of combatting such a

complication.

Our main tool of choice for approximating functions is interpolation,

which was defined above. As for methods of interpolation for some func-

tion f , the simplest we could examine would be a linear interpolation

method using two interpolating points x0 and x1. This would give us

the approximation of some function f as

f(x) ≈ (x− x1)

(x0 − x1)
f(x0) +

(x− x0)

(x1 − x0)
f(x1).
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Clearly, we could do much better. For quadratic interpolation, by

specifying three points (instead of two as in the linear case) we could

approximate f by a quadratic polynomial, P2(x). With quadratic in-

terpolation, we will select the three interpolation points x0, x1, and x2

where

P2(x0) = f(x0), P2(x1) = f(x1), P2(x2) = f(x2)

giving us

P2(x) ≡ (x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2).

So in general, we could continue the above method, fitting any N +1

points by a polynomial of N−th degree using the Lagrange Interpolating

Formula:

PN(x) =
N∑

i=0

f(xi)Ci(x),

where Ci(x), the “cardinal functions,” are polynomials of N − th degree

which satisfy the conditions

Ci(xj) = δij,

where δij is the Kronecker δ-function, and

Ci(x) =
N∏

j=0,j 6=i

x− xj

xi − xj
.

For now, as a general notion, we define the error of an interpolation
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method to be

Er = |PN(xi)− f(xi)|.

The above is a point-wise error evaluation that tells us how far away our

approximation is from the exact function we are interpolating at each

point xi. Our goal when approximating is to minimize the maximum

value of Er, thus such interpolation procedures are usually referred to

as “minimax” approximations.

We would expect(or at least hope) Er → 0 as N → ∞. That is

to say, as we interpolate with more and more points, we would like our

approximation method to become better and better. However, Runge[1]

shows this assumption to be untrue. Selecting the function

f(x) =
1

1 + x2 , x ∈ [−5, 5] (1.1)

Runge proved that interpolation with evenly spaced points, xi, converges

only within the interval |x| < 3.63 and diverges for larger values of x.

Using Matlab, let us visually examine what Runge proved.

As seen in Figure 1.1, as N increases, PN ’s oscillations grow wilder.

This is a harbinger of things to come. So at this point, we will examine

another possibility for interpolation by examining other possible series

representations for some function f(x) (or when working with approxi-

mating Partial Differential Equation solutions, denoted u(x)).

For example, note the improvement achieved using the unequally
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spaced Chebyshev Gauss-Lobatto points xj,

xj = − cos

(
jπ

N

)
j = 0, 1, . . . , N,

to the Runge function in Figure 1.2. Using just sixteen interpolation

points we have removed the oscillations near the endpoints.

In practice, we assume that we can represent a function/solution by

a global, interpolating partial sum of the form

uN(x) =
N∑

k=0

akφk(x).

The function φ can be chosen for various reasons, such as giving a lower

error for the approximation of u due to its nature.

When taking φ to be the Chebyshev polynomials, which are described

in much greater detail later in this paper, we say that we are using a

“Chebyshev approximation method.” When approximating a solution in

regards to numerical PDEs, we term it the “Chebyshev pseudospectral

(CPS) method.” Given that there are many choices for φ, one would

want to discover which method works best. To answer that problem, we

will now put more detail into what exactly that means.

We want our numerical approximations to have a low error, and to

converge quickly. Thus, to be a touch more specific, we shall define rate

of convergence[2].

Definition 2 (Rate of Convergence) Suppose some sequence {αn}∞n=1
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converges to some number x. If ∃ some K > 0 �

|αn − x| ≤ K

(
1

np

)
,

for large n, then we say that {αn}∞n=1 converges to x with rate of con-

vergence O( 1
np ).

In general, we are concerned with finding the largest value of p where

αn = x + O(1/np).

Now that we have defined the rate of convergence, we will define

several names often used to describe the types of convergence[1].

Definition 3 (Algebraic Index of Convergence) The algebraic in-

dex of convergence k is the largest number for which

lim
n→∞

|an|nk < ∞, n À 1;

where an represents the coefficients of some series.

If the algebraic index is unbounded, that is if the coefficients an are

decreasing faster than (1/n)k for any finite k, then we say that the series

has exponential (spectral) convergence.

A series whose coefficients have exponential convergence can then be

classified as having supergeometric, geometric, or subgeometric conver-

gence.

Definition 4 (Rates of Exponential Convergence) A series with co-

efficients an has the property of supergeometric, geometric, or subgeo-
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metric convergence depending upon

lim
n→∞

log(|an|)
n

=





∞ supergeometric

constant geometric

0 subgeometric.

The Chebyshev series of entire functions have supergeometric con-

vergence(Figure 2.1). For functions with branch points or poles which

are a finite distance off the expansion interval, geometric convergence

is normal(Figure 2.2). We can expect to see subgeometric convergence

for series on infinite or semi-infinite intervals.

Now armed with the ability to determine how our selected method

performs, we move to better associate ourselves with this powerful weapon

we have.
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Chapter 2

Chebyshev Approximation

Definition 5 (Chebyshev Polynomial) The Chebyshev polynomial of

degree n, denoted Tn(x) is defined as

Tn(x) = cos(n arccos x) ∀ x ∈ [−1, 1]

or,

Tn(x) = cos(nθ) x = cos θ ∀ θ ∈ [−π, π].

Definition 6 (Infinite Continuous Chebyshev Series Expansion )

The infinite continuous Chebyshev series expansion is

f(x) ≈
∞∑

n=0

′αnTn(x),

where

αn =
2

π

∫ 1

−1
(1− x2)−1/2f(x)Tn(x)dx.

Again, as our aims are founded in numerical computations, we will
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use a truncation of the above series:

SN(x) =
N∑

n=0

′αnTn(x).

While maybe not quite obvious at first glance, after inspection we

see that a Chebyshev polynomial expansion,

f(z) =
∞∑

n=0

anTn(z),

is actually a Fourier cosine series. For non-periodic functions, we can

expect exponential convergence. Due to the transform of z = cos θ, even

if f(z) is not periodic, f(cos θ) will be periodic. Thus, if we were to vary

θ over all real values, z would just oscillate between −1 and 1. Because

f(cos θ) is periodic, its Fourier series must have exponential convergence,

unless f(z) is singular for z ∈ [−1, 1]. The exponential convergence of

Fourier series implies equally fast convergence of Chebyshev series since

sums are term by term identical.

Also, we shall note that the function cos θ is symmetric about θ = 0.

Because of this, f(cos θ) is also symmetric in θ, even if there is no

symmetry for f with respect to z.

If we desire to approximate on an interval other than [−1, 1], we

can apply a change of variable. Suppose we wanted to approximate for

y ∈ [a, b]. With the change of variable

x ≡ 2y − (b + a)

b− a

11



we have moved the approximation to the interval x ∈ [−1, 1].

What can we expect for the error of this method? The following

theorems [1] should help us find an answer.

Theorem 1 (Chebyshev Truncation Theorem) The error in approx-

imating f(z) by the sum of its first N terms is bounded by the sum of

the absolute values of all the neglected coefficients. If

fn(z) ≡
N∑

n=0

anTn(z),

then

ET (N) ≡ |f(z)− fN(z)| ≤
∞∑

n=N+1

|an| ∀ f(z), N, and z ∈ [−1, 1]

PROOF: We see that from the definition of Chebyshev polynomials,

|Tn(z)| ≤ 1

for all z ∈ [−1, 1] and for all n. Thus,

|an(z)||Tn(z)| ≤ |an(z)|.

And we have

ET (n) ≡ |fn(x)− fN(x)|

≤
∞∑

n=N+1

|an(x)|.

Theorem 2 (Chebyshev Rate of Convergence) The asymptotic rate
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of convergence of a Chebyshev series for z ∈ [−1, 1] is equal to µ, the

quasi-radial coordinate of the ellipse of convergence. This is related to

the location of the convergence limiting singularity at (xo, yo) in the com-

plex plane via

µ = Im{arccos[xo + ıyo]}

= log |zo ± (zo
2 − 1)

1
2 |

= log(α +
√

α2 − 1)

where the sign in the second line is chosen to make the argument of the

logarithm greater than one, so that µ is positive and where

α ≡ 1

2

√
(xo + 1)2 + y2

o +
1

2

√
(xo − 1)2 + y2

o.

Note that our Chebyshev approximation method will not be evalu-

ated at evenly spaced points on our interval. Instead, it is evaluated at

the grid points

xj = − cos

(
jπ

N

)

for j = 0, 1, . . . , n. This is known as the “Gauss-Lobatto” grid. To see

why one would do such a thing, we will look at the following theorems [1].

Theorem 3 (Interpolation by Quadrature) Let PN(x) denote the

polynomial of degree N which interpolates to a function f(x) at the

(N + 1) Gaussian quadrature points associated with a set of orthogonal

13



polynomials φn(x):

PN(x) =
N∑

n=0

anφn(x) i = 0, 1, . . . , N. (2.1)

PN(x) may be expanded without error as the sum of the first (N + 1)

φn(x) because it is merely a polynomial of degree N. The coefficients an

of this expansion (2.1) are given without approximation by the discrete

inner product

an =
(f, φn)G

(φn, φn)G
.

Theorem 4 (Chebyshev Interpolation and Error Bound) Let the

Gauss-Lobatto (Chebyshev extrema) grid xj be given by

xj = − cos

(
jπ

N

)
j = 0, 1, . . . , N.

Let the polynomial PN(x) which interpolates to f(x) at these grid points

be

PN(x) =
N∑

n=0

′′bnTn(x)

where the (′′) means the first and last terms are to be taken with a factor

of (1/2). The coefficients of the interpolating polynomial are given by

bn =
2

N

N∑

j=0

′′f(xj)Tn(xj).

Let αn denote the exact spectral coefficients of f(x), such that

f(x) =
∞∑

n=0

′αnTn(x).

14



Therefore, the coefficients of the interpolating polynomials are related to

those of f(x) by

bn = αn +
∞∑
i=0

(αn+2jN + α−n+2jN).

For all N and all real x ∈ [−1, 1] the error in the interpolating polyno-

mial is bounded by twice the sum of the absolute value of all the neglected

coefficients:

|f(x)− PN(x)| ≤ 2
∞∑

n=N+1

|αn|.

To test the accuracy and to demonstrate the convergence of our ap-

proximation methods in this paper we will also use the following test

functions:

1. f1(x) = |x|

2. f2(x) = exp(cos(x3 + 1))

3. f3(x) =





1 for x ≥ 0

−1 for x < 0.

4. f4(x) =





0 for 0 < x < .25 or .75 < x ≤ 1,

1 for .25 ≤ x ≤ .75,

e−400(x+.5)2 for − 1 ≤ x ≤ 0.

We will now show results achieved implementing Chebyshev approxi-

mation using the software MatLab. First, we will use an entire function

f2 2. The entire function has no discontinuities and is infinitely differen-

tiable. Therefore, we should expect supergeometric convergence(Figure 2.1).
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16



Next, we will use the function from the Runge example (1.1) on the

interval [−1, 1]. We could approximate on any interval, such as [−5, 5],

with a change of variable. This function is smooth, but has poles at

the end of the interval at ±ı, which should make the convergence a bit

slower than we had for the entire function f2.

For f1, there is a discontinuity in the first derivative at the point

x = 0. This causes an increase in error near that point as seen in

Figure 2.3.
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Figure 2.2: Graphs for Chebyshev Approximation of f(x) = 1/(1 + x2) and error
resulting from the method. From top we are using N = 8, N = 16, N = 32, and
N = 64. It is hard to distinguish the graphs of the approximation from the exact
in the figures on the left, but if we look at the error plots, we can see the spectral
accuracy. As N is doubled, say from N = 8 to N = 16, the number of accurate digits
in our approximation is doubling.
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Figure 2.3: Chebyshev approximation of f1 (2) with N = 99 The error is around 10−6

away from x = 0 and about 10−2 at that point, where the first derivative does not
exist.
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Part II

The Gibbs Phenomenon and its

Resolution
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Chapter 3

The Gibbs Phenomenon

As we have shown, the Chebyshev Pseudospectral method is spectrally

accurate for smooth solutions. Also, we saw how the accuracy of the

method is severely degraded by discontinuities in the function’s deriva-

tives. Unfortunately, in many applications discontinuities exist, such as

fluid flows that contain shock or rarefaction waves. What happens when

we apply our CPS method to a discontinuous function?
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Figure 3.1: Left: Chebyshev approximation with N = 16 of sign function. Right:
Error graph.

As is clearly evident in Figure 3.1, there are oscillations in the graph

of our approximation to the discontinuous sign function. The oscilla-

tions grow wilder near the discontinuities. We call these oscillations the
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Gibbs phenomenon.

The first thought may be, “what if we just increase N?” Unfortu-

nately, the Gibbs phenomenon is not so easily defeated. Let us look

at the graphs, Figure 3.2, of this same sign function with higher values

of N . Note that as N increases, the magnitude of the oscillations does

not decrease at the discontinuity, but the width of the effected region is

reduced.
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Figure 3.2: Left: From top, Chebyshev approximation with N = 32 and N = 256 of
sign function. Right: Error graphs. Note the reduction of width of affected region but
no reduction in magnitude of oscillations.

Another consequence of the Gibbs phenomenon, notable in Figure 3.2,

is the lack of convergence at the discontinuity. The overshoot at such a

break is approximately 9 percent of the jump size. We can also expect

a global O(N−1) convergence rate in mean, and a steepness of the ap-

proximation right at the jump being proportional to the length, N , of
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the polynomial expansion [6].

It seems a reasonable question at this point would be, “Can we get

rid of these oscillations in our approximations?” We will see that there

are many possible solutions, but some work better than others.
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Chapter 4

Removal Overview

The name Gibbs phenomenon was first used by Bôcher in 1906, but the

efforts to remove it started over 100 years ago in 1898 when Michelson

and Stratton built their harmonic analyzer. It was a mechanical device

appealing to Hooke’s law that used springs to store the Fourier coeffi-

cients of a given curve. A paper they published showed what would later

become known as the Gibbs phenomenon in their efforts to reconstruct

a square wave function.

It is seemingly unknown how J. Willard Gibbs started working on

such a task, but his first writings on the matter in a letter to the editor

of Nature in December 29, 1898 were not exactly correct. While the

letter described the oscillations, he seemingly implied that increasing N

would decay the oscillations. It was only a few months later that he

published a correction, noting that the oscillations do not decay, but

actually that the overshoot tends to a fixed number.

There are two classes of resolutions [4] to the Gibbs phenomenon: the

first modify expansion coefficients of the approximation in the Fourier
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space, while the second treats the approximation in the physical space.

Alas, except for the Gegenbauer Reconstruction Procedure, both classes

improve accuracy only away from discontinuities.

The Hungarian mathematician Fejér is credited for the first attempt

at resolving the Gibbs phenomenon in 1900. His method was equivalent

to using what is known as a first-order filter. Now, motivated by signal

analysis, mathematicians have developed many techniques known as

filtering. The goal of employing filters is to increase the decay rate of

an approximation’s coefficients.

Definition 7 (Filtered Chebyshev Approximation) The filtered Cheby-

shev approximation is defined as

FN(x) =
N∑

n=0

σ
( n

N

)
anTn(x),

where σ is a spectral filter.

Definition 8 (Spectral Filter) [9] A pth order spectral filter (p > 1)

is a sufficiently smooth function satisfying

(i) σ(0) = 1,

(ii) σ(m) = 0, m = 1, 2, . . . , p− 1,

(iii) σ(0) = 1, m = 0, 1, . . . , p− 1.

How the function behaves away from the discontinuity and the order

of filter used in the approximation determine the convergence rate of

the filtered approximation.
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In Figure 4.1, we have a Chebyshev approximation with N = 99 to

the sign function. Note the oscillations of the Gibbs phenomenon, and

that the error away from the discontinuity approaches 10−2.
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Figure 4.1: Chebyshev approx with N = 99 of sign function

Now, if we make a simple change by inserting a spectral filter of order

p = 4, we will be able to achieve an error of machine epsilon away from

the discontinuity, as in Figure 4.2.
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Figure 4.2: Filtered Chebyshev approximation of order p = 4 to sign function, with
N = 99. Note the increase of accuracy and reduction of oscillations as compared to
Figure 4.1, which used the same N . Clearly the filter is efffective.

The increase of nearly 13 decimal places of accuracy came from simply

adding an exponential filter. That is, transforming the original partial

sum of

fn(z) ≡
N∑

n=0

anTn(z),
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into

FN(z) ≡
N∑

n=0

σ
( n

N

)
anTn(z),

where σ is a spectral filter of order p. In our MatLab code we are

implementing an exponential filter, that is

σ(η) = exp(−α|η|p),

where p is even, and α = lnε for ε = machine epsilon.

If we change the order of the filter used in the approximation, we get

a different behavior at the discontinuity. In Figure 4.3, we see a slight

rounding at the discontinuity when using a filter of order p = 2. We will

see in Figure 4.4 that using a filter of order p = 12 gives us an overshoot

at the discontinuity.
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Figure 4.3: Filtered Chebyshev approximation using filter of order p = 2. Note the
difference in error as compared with Figure 4.2. The filter of order p = 2 gives the
approximation a bit of rounding at the discontinuity.

Below are results achieved approximating the other various test func-

tions.

For the “super test function” f4, we can see some improvements using

the filtered Chebyshev approximation as compared to the unfiltered, but
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Figure 4.4: Filtered Chebyshev approximation using filter of order p = 12. Note the
difference in error as compared with Figure 4.3. The filter of order p = 12 gives the
approximation an overshoot at the discontinuity.
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Figure 4.5: Filtered Chebyshev approximation using filter of order p = 4. Note the
difference in error as compared with Figure 2.3. There is still a spike in error near the
point x = 0, where the first derivative does not exist. The reduction in error does not
seem as impressive though, improving only slightly.
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there are still oscillations, and we have severe rounding at the top of the

sharp spike. Note Figure 4.6.
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Figure 4.6: Left: From top is an unfiltered Chebyshev approximation to f4 with
N = 99, and a filtered Chebyshev approximation using filter of order p = 4. Right:
Error graphs. Note the clear oscillations of the Gibbs phenomenon in the unfiltered
graph. The filtered approximation decreases these oscillations, but we are still left
with a bit of rounding at the discontinuity and the top of the sharp spike is severely
rounded.

There are many other methods for removal of the Gibbs phenomenon,

such as spectral mollification, Gegenbauer Reconstruction Procedure,

and digital total variation filtering.

Spectral mollification involves applying a two parameter family of

filter to the physical space interpolant. It can recover spectral accuracy

outside a neighborhood of the discontinuity, and may or may not incor-

porate edge detection. The method does give a bit of smearing at the

discontinuity.

The Gegenbauer Reconstruction Procedure (GRP) is capable of re-
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covering spectral accuracy up to the discontinuity, but it must know the

exact location of the edges. The method is computationally expensive,

and prone to round-off errors.

Digital total variation filtering was designed to create clear images in

pictures that are affected by random noise. The method begins with a

discrete variational problem, using data on a general discrete domain.

When the GRP is too difficult to implement, DTV filtering is a more

computationally efficient choice for post-processing. Applying this pro-

cess to the Gibbs phenomenon, it has been shown that a DTV filter can

give a sharp resolution at discontinuities and an accelerated convergence

overall, without the knowledge of the discontinuities [9].

At this point, we may ask the question “Is there a method to sharply

resolve the discontinuities, unlike the smearing effect of filters that does

not need the edge detection of a GRP?” This leads us to the Chebyshev

rational approximation.
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Part III

Rational Approximation Methods
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Chapter 5

Rational Approximation

While there are advantages to using algebraic polynomials, such as ease

of evaluation, derivation, and integration, polynomial approximations

tend to create problems in the error bounds due to their oscillations.

Also, polynomial approximations might not be the fastest methods in

terms of convergence. We can see this from Markov’s inequality, which

states that on [−1, 1]

‖ p′n‖∞ ≤ n2 ‖ p‖∞

for any polynomial pn of degree ≤ n. It follows that no function f with

its derivative larger than n2 ‖ f‖∞ at some point can be approximated

very well by a polynomial of degree n. This leads us to our attempts

of approximating functions with a rational approximation. The follow-

ing methods involving rational functions are designed to distribute error

over the interval on which we are approximating. Note there is no con-

vergence theory for rational approximations in this manuscript because

the convergence theory does not exist. We will accept numerical results
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displaying convergence as an indication to how well the method works.

Definition 9 (Rational Function) A rational function r of degree

N has the form

r(x) =
p(x)

q(x)
,

where p(x) and q(x) are polynomials whose degrees sum to N .

We can see that a rational function where q(x) ≡ 1 is simply a polyno-

mial function. Therefore, we expect to have similar results when approx-

imating. It is when we approximate with the degree of the numerator

and denominator close or equal to each other that the approximation

results are more successful than polynomial methods. As we will see,

polynomial approximations are also better suited when approximating

discontinuous functions.

If we were approximating some function on an interval containing

zero with

r(x) =
p(x)

q(x)
=

po + p1x + · · ·+ pnx
n

qo + q1x + · · ·+ qmxm
,

the rational function of degree n + m, we must have qo 6= 0 to en-

sure that r is defined. In practice, we will assume qo = 1, or replace

p(x) by p(x)/qo and q(x) by q(x)/qo. This gives us N + 1 parameters

q1, q2, . . . , qm, po, p1, . . . , pn for approximation.

From [3], we learn that a general approach is to assume a formal

series expansion of f in terms of φk, where φk is any function that
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satisfies the relation

φiφj =
∑

k

Aijkφk.

The rational function Um/Vn is obtained by equating the leading terms

in the series expansion of

Vnf − Um,

to zero. This process leads us to calculations where Chebyshev polyno-

mials lend themselves as a top candidate for φ, because of their relation

that

TiTk =
1

2
(Ti+k + T|i−k|).

Definition 10 (Padé Approximation) A Padé approximating func-

tion is a rational function

Rmk(x) =
Pm(x)

Qk(x)

where

Pm(x) =
n∑

j=0

pjx
j

Qk(x) =
k∑

j=0

qjx
j and qo = 1

with m + k + 1 coefficients pj, qj are chosen so that Rmk(x) agrees with

the approximated function and as many derivatives as possible at the

point x = α.

In practice, we will assume α = 0, which can be achieved by a change

of variable. To determine coefficients aj, bj, expand approximated func-
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tion, f , in terms of its Maclaurin series.

So we would take

f(x) =
∞∑

j=0

cjx
j cj = f (j)(0)/j!

Then

f(x)−Rmk(x) =
∞∑

j=0

cjx
j −

∑m
j=0 pjx

j

∑k
j=0 qjxj

can be written as

f(x)−Rmk(x) =

∑∞
j=0 cjx

j
∑k

j=0 qjx
j −∑m

j=0 pjx
j

∑k
j=0 qjxj

.

For example, suppose we wanted to approximate the function f(x) =

log(1 + x). The Taylor series of f gives

log(1 + x) =
∞∑

k=1

(−1)k+1x
k

k
.

Then we have that

po = 0,

p1 = qo,

p2 = −1

2
q0 + q1,

−1

4
qo +

1

3
q1 − 1

2
q2 = 0.

Solving the above system, we find that

f(x) ≈ R(x) =
x + 1

2x
2

1 + x + 1
6x

2
.
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Graphically, the approximations look like Figure 5.1.

1 1.5 2 2.5 3
0

2

4

6

8

1 1.5 2 2.5 3
10

−4

10
−2

10
0

10
2

Figure 5.1: Left: Graph of f(x) = log(1 + x), its Taylor series approximation and its
rational approximation R(x). The graphs clearly show the divergence of the Taylor
series, while the rational approximation performs much better. Right: Error graph

We took the Taylor approximations only to three terms, because as

the graph shows, it quickly starts diverging. The graph would diverge

even faster the more terms we would add. While the above rational

method is fairly successful with an error around 10−2, it certainly isn’t

giving us our machine epsilon. Thus, we would like to find a better

method. We discover that we obtain more uniformly accurate approxi-

mations when replacing the xk term by the kth-degree Chebyshev poly-

nomial Tk(x).

Definition 11 (Chebyshev Rational Approximation) A Chebyshev

rational approximation [3]is an N -th degree rational function rT (x)

written in the form

rT (x) =

∑n
k=0 pkTk(x)∑m
k=0 qkTk(x)

=
Pn

Qm
,

where N = n + m, qo = 1, and Tk is the k-th Chebyshev polynomial.
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Suppose we are to approximate some function f(x). We will first write

f(x) as a series of Chebyshev polynomials, that is

f(x) =
∞∑

k=0

akTk(x).

We then have

f(x)− rT (x) =
∞∑

k=0

akTk(x)−
∑n

k=0 pkTk(x)∑m
k=0 qkTk(x)

or

f(x)− rT (x) =

∑∞
k=0 akTk(x)

∑m
k=0 qkTk(x)−∑n

k=0 pkTk(x)∑m
k=0 qkTk(x)

.

We will choose the q1, q2, . . . , qm and po, p1, . . . , pn coefficients in such a

way that there are no terms of degree less than or equal to N in the

numerator.

Notice that the approximation as defined has us calculating the prod-

uct of Chebyshev polynomials. Fortunately, we can implement the re-

lationship

Ti(x)Tj(x) =
1

2
[Ti+j(x) + T|i−j|(x)].

Another botheration arises when computing the Chebyshev series for

f(x). The integrals can rarely be evaluated in closed form, thus we

must use a numerical integration technique for each evaluation.

We will now look at results achieved with MatLab code approxi-

mating various functions with the Chebyshev Rational method. In
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Figure 5.2, Figure 5.3, and Figure 5.4 we are approximating the sign

function with fixed numerator degree higher than various denominator

degrees. We will also try approximating with a fixed denominator degree

and various numerator degrees in Figure 5.5, Figure 5.6,and Figure 5.7.
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Figure 5.2: Left: Graph of sign function and its Chebyshev rational approximation
with n = 99 and m = 48. Right: Error graph
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Figure 5.3: Left: Graph of sign function and its Chebyshev rational approximation
with n = 99 and m = 12. Right: Error graph

An inspection of the graphs for the approximations show that there

are still errors at the discontinuity, but the approximation in Figure 5.4

is a much sharper resolution than the Chebyshev approximation in Fig-

ure 4.1 or the filtered approximation in Figure 4.2. If we look at the

error for points away from the discontinuity (Table 5.1), perhaps near

x = .5, we can see the error decaying for increasing N .
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Figure 5.4: Left: Graph of sign function and its Chebyshev rational approximation
with n = 99 and m = 98. Right: Error graph
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Figure 5.5: Left: Graph of sign function and its Chebyshev rational approximation
with n = 11 and m = 98. Right: Error graph
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Figure 5.6: Left: Graph of sign function and its Chebyshev rational approximation
with n = 48 and m = 98. Right: Error graph
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N
M

8 16 32 64 99

8 2.1471e− 005 3.3488e− 009 2.0441e− 011 6.7435e− 013 2.3093e− 014
16 6.2709e− 010 4.2930e− 012 1.6720e− 013 8.1046e− 015 3.1086e− 015
32 3.4412e− 011 1.5499e− 013 1.0991e− 014 1.7764e− 015 2.1094e− 015
64 4.2299e− 013 1.1102e− 015 9.3259e− 015 3.0642e− 014 9.1038e− 015
99 2.4059e− 013 4.6629e− 015 2.6645e− 015 1.1102e− 015 1.6098e− 014

Table 5.1: Error for Chebyshev Rational Approx to f5 near the point x = .5

Also, note that the matrices can become ill-conditioned with increas-

ing M in the denominator. Thus, we will only work with sufficiently

small M .

Let us now see how the Chebyshev rational approximation method

works on the other test functions. There seems to be a small improve-

ment when working with the absolute value function f1 in Figure 5.8

at the point x = 0, and a general smoothing of the error throughout

the interval on which we are interpolating. But, the true test of the

Chebyshev rational approximation is seen when approximating f4. In

Figure 5.9, we see that the Chebyshev rational approximation removes

the Gibbs phenomenon as compared to the Chebyshev approximation

in Figure 5.10. Also, the resolution at the discontinuities is again much

sharper than the filtered approximation in Figure 5.11.

So, with our Chebyshev-Padé approximation we have reached our

desired machine epsilon very close to any breaks there may be in a

discontinuous function. The Gibbs phenomenon has been relegated to

a very small interval, but has not been completely defeated.

We set out to rid the world of the nonuniform pointwise conver-

gence of polynomial approximations to discontinuous functions, other-
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Figure 5.7: Left: Graph of sign function and its Chebyshev rational approximation
with n = 98 and m = 98. Right: Error graph
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Figure 5.8: Left: Graph of f1 and its Chebyshev rational approximation with n = 99
and m = 99. Right: Error graph. Recall the approximations of f1 in Figure 2.3 and
Figure 4.5. The Chebyshev rational approximation has a much smoother error and
smaller disturbance at the point x = 0, where the first derivative does not exist.
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Figure 5.9: Left: Graph of f4 and its Chebyshev rational approximation with N = 128
and M = 64. Right: Error graph
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Figure 5.10: Left: Graph of f4 and its Chebyshev approximation with N = 99. Note
the Gibbs phenomenon at the discontinuities. Right: Error graph
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Figure 5.11: Left: Graph of f4 and its filtered Chebyshev approximation with filter
order p = 4. Note the rounding at the discontinuities. Right: Error graph.
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wise known as the Gibbs phenomenon. Can we say that we are satisfied

with our results? What are some other methods current researchers are

trying? Is the fight against the Gibbs phenomenon over? At this point

we shall examine some other methods currently being worked on to see

if they are doing any better.

In a paper by J.S. Hesthaven and S.M. Kaber [6], the use of Jacobi

polynomials and expansions, as opposed to our choice of Chebyshev, is

investigated. Developing an approximation of the sign function, they are

able to reduce the overshoot at the discontinuity and recover high order

accuracy away from the jump, just as we have done. It does not seem

to have any great benefits that would make it a better choice. However,

their paper is left open with the possibilities of future research in gener-

alizing results of Padé-Jacobi approximations for postprocessing. That

lends us the interesting problem of approximating Partial Differential

Equation solutions, u(x), not particular known function values, with

our Chebyshev approximations.

In another paper by Hesthaven, Kaber, and L. Lurati [7], the use

of Padé-Legendre expansions are used to achieve almost non-oscillatory

behavior without knowledge of the location of discontinuities. Again,

testing on various functions, their numerical results show the reduction

of the Gibbs phenomenon. Future possibilities left open from this paper

include generaliztion to multi-dimensional problems.

We see that there is work left to be done. In the beginning of this

work, we saw the failure of simple polynomial approximations to dis-
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continuous functions. This led us to use rational approximations in

the hope that discontinuity would have less of an impact. We have

demonstrated that rational approximation methods work very well on

discontinuous functions without any knowledge of edges. While we have

mentioned some areas for future research such as applying our method

to a two-dimensional problem, another might include developing some

convergence theory.

After examining the results of other choices of polynomials such as

the Legendre and Jacobi in rational approximations, the Chebyshev

polynomials in our rational approximations seem as good a choice, if not

better. As seen in the appendix, the Chebyshev polynomials have some

lovely properties that lend to their integration and other computations in

general. We have shown similar reductions of the Gibbs phenomenon at

discontinuities without knowledge of their location. And lastly, machine

epsilon - the driving force of our efforts - has been achieved away from

such breaks.
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Part IV

Appendix
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Appendix A

Chebyshev Polynomials

There are various ways to describe the derivation of the Chebyshev

polynomials, we will start with the solution of the Chebyshev differential

equation by contour integrals [10].

The general Chebyshev equation is given as

L(u) = (1− z2)
d2u

dz2 − z
du

dz
+ λ2u = 0,

with Re(λ) ≥ 0. Our goal is to express solutions of the above equation

by contour integrals of the form

u(z) =

∫

C

K(z, ξ)v(ξ)dξ,

where the kernel function K, the function v, and the contour C are to

be determined.

Substituting in the assumed form of the solution into Chebyshev’s
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equation, we have

L(u) =

∫

C

{(1− z2)Kzz − zKz + λ2K}v(ξ)dξ.

We require K(z, ξ) to satisfy the partial differential equation

(1− z2)Kzz − zKz + ξ(ξKξ)ξ = 0,

and take as a solution

K(z, ξ) =
ξ2 − 1

1− 2zξ + ξ2 .

With K(z, ξ) restricted to satisfy the above partial differential equation,

we now have

L(u) =

∫

C

{−ξ(ξKξ)ξ + λ2K}v(ξ)dξ.

Integrating the first term by parts, we can obtain an equation for the

function v(ξ) and a determination of the contour C.

L(u) = ξ{ξKvξ + Kv − ξKξv}]C −
∫

C

{ξ2vξξ + 3ξvξ + (1− λ2)v}Kdξ.

Finally, we impose the condition that v(ξ) satisfy the ordinary differen-

tial equation

ξ2d
2v

dξ2 + 3ξ
dv

dξ
+ (1− λ2)v = 0.

This equation is known as an Euler equation, thus we will choose as a

solution

v(ξ) = ξλ−1.
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For the contour C, we can choose either one of the two circles enclosing

a pole of the kernel K(z, ξ). Such a choice causes the integrated terms

to vanish. The poles are located at

ξ± = z ±
√

z2 − 1.

We have now obtained two independent solutions of Chebyshev’s

equation, which we will denote by

T±
λ (z) =

1

2πi

∫

C±

ξ2 − 1

1 = 2zξ + ξ2ξ
λ−1dξ.

Using Cauchy’s residue theorem, we find

T±
λ (z) = (z ±

√
z2 − 1)λ.

Thus, we will define the so-called Chebyshev function by the relation

Tλ(z) =
1

2
[T+

λ (z) + T−
λ (z)].

If λ = n, an integer, then Tn(z) is the nth Chebyshev polynomial

usually associated with this symbol. Then we have the representation

Tn(z) =
1

2
[(z +

√
z2 − 1)n + (z −

√
z2 − 1)n].

The simplest, and perhaps most common characterization of the
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Chebyshev polynomials Tn(z) is the formula

Tn(cos θ) = cos nθ.

This result follows directly from setting z = cos θ in the equation

Tn(z) =
1

2
[(z +

√
z2 − 1)n + (z −

√
z2 − 1)n],

and applying De Moivre’s theorem. In terms of the original variable z,

we may write

Tn(z) = cos(n cos−1 z).

The Chebyshev polynomials as defined above give us a handy recurrence

relation that allows a fairly simple calculation [8] of Tn.

For n = 0 and n = 1 we simply have

T0(x) = cos 0 = 1

and

T1(x) = cos θ = x.

Using the sum of cosine formula,

cos[(n + 1)θ] + cos[(n− 1)θ] = 2 cos nθ cos θ,

we find that

Tn+1(x) = 2x Tn(x)− Tn−1(x) n = 1, 2, . . .

49



with x = cos θ.

The Chebyshev polynomials have some noteworthy properties that

we will now state.

The polynomial Tn(x) is a polynomial of degree n with leading coef-

ficient 2n−1 for all n > 0. When n is even, the polynomial of degree n is

even. For n odd, the polynomial of degree n is odd. For example:

T3(x) = 2xT2(x)− T1(x) = 4x3 − 3x

and

T4(x) = 2xT3(x)− T2(x) = 8x4 − 8x2 + 1.

The Chebyshev polynomials are also orthogonal on the interval [−1, 1]

with respect to the weight function

w(x) =
1√

1− x2
.

To verify this we must show that the integral of the product of w(x),Tm(x)

and Tn(x) over the interval [−1, 1] is equal to zero when m = n and equal

to some positive value when m 6= n. Thus starting off, we have

∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =

∫ 1

−1

cos(m arccos x) cos(n arccos x)√
1− x2

dx.

Making the substitution given in the definition we have θ = arccos x,

which gives us

dθ = − 1√
1− x2

.

50



Thus our integral now becomes

∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx = −
∫ 0

π

cos(mθ) cos(nθ) dθ =

∫ π

0
cos(mθ) cos(nθ) dθ.

We now have the two cases of either m = n or m 6= n.

Let us first suppose that m 6= n. From the trigonometric formula for

the product of cosines

cos(mθ) cos(nθ) =
1

2
[cos(m + n)θ + cos(m− n)θ],

we can rewrite the integral as

∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =
1

2

∫ π

0
cos((m + n)θ)dθ +

1

2

∫ π

0
cos((m− n)θ)dθ

=

[
1

2(m + n)
sin((m + n)θ) +

1

2(m− n)
sin((m− n)θ)

]π

0

= 0.

Similarly, for m = n we have

∫ 1

−1

[Tm(x)]2√
1− x2

dx =
π

2
, ∀ m ≥ 1.

The polynomial of degree n attains its maximum and minimum values

of ±1, alternately, at the points

xj = cos
jπ

n
.

Because of this, we will chose the points xj as our interpolation points

in Chebyshev approximations.
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If we wish to differentiate Chebyshev polynomials [5], we can begin

with

Tn+1(x) = cos[(n1) arccos x]

1

n + 1

d[Tn+1(x)]

dx
=
− sin[(n + 1) arccos x]

−√1− x2
.

Now, subtracting the corresponding equation for n− 1 we have

1

n + 1

d[Tn+1(x)]

dx
− 1

n− 1

d[Tn−1(x)]

dx
=

sin(n + 1)θ − sin(n− 1)θ

sin θ

or

T ′
n+1(x)

n + 1
− T ′

n−1(x)

n− 1
=

2 cos nθ sin θ

sin θ
= 2Tn(x) n ≥ 2,

and

T ′
2(x) = 4T1

T ′
1(x) = To

T ′
o(x) = 0.

We can use the above differentiation formulas to develop integration

formulas for Chebshev polynomials. Thus, we have

∫
Tn(x)dx =

1

2

[
Tn+1(x)

n + 1
− Tn−1(x)

n− 1

]
+ C n ≥ 2

∫
T1(x)dx =

T2(x)

4
+ C

∫
T0(x)dx = T1(x) + C.

If we want to approximate on the interval [0, 1] instead of [−1, 1] we
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will use what are known as shifted Chebyshev polynomials.

Definition 12 (Shifted Chebyshev Polynomials) The shifted Cheby-

shev polynomials

T ∗
n(x) = Tn(2x− 1)

are used to approximate on the interval [0, 1].

The recurrence relation for shifted polynomials is given by

T ∗
n+1(x) = (4x− 2)T ∗

n(x)− T ∗
n−1(x), T ∗

o = 1.
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Appendix B

MatLab Code

B.1 Lagrange Interpolation Program

%Rob-Roy Mace

%Marshall University

function LagrangeTrial(r)

xi = linspace(-5,5,r); x = linspace(-5,5,100);

fEx = 1./(1 + xi.^2);

z = 1./(1 + x.^2);

n = size(xi,2); k = size(x,2);

for j = 1:k

for i = 1:n

xr = xi; xr(i) = [];

card(i) = prod(x(j) - xr)/prod(xi(i) - xr);

end

P(j) = fEx * card’; end

plot(x,P,’b’,x,z,’g’);

pause

for c = 1:length(x)

err(c) = abs(z(c) - P(c));

end

semilogy(x,err)
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B.2 Chebyshev Interpolation of 1/(1 + x2)

% Rob-Roy Mace

% Marshall University

function ChebSmooth(N) x = linspace(-1,1,200);

for j = 1:N+1

xi(j) = cos((j-1)*pi/N);

end

f = 1./(1 + xi.^2); fex = 1./(1 + x.^2);

a = zeros(N+1,1); for k = 0:N

n = 0:N;

temp = f(n+1).*cos(pi.*k*n./N);

temp(1) = temp(1)*0.5;

temp(N+1) = temp(N+1)*0.5;

a(k+1) = 2.0*sum(temp)./N;

end

for s = 1:length(x)

for p = 1:N+1

tempb(p) = a(p)*cos((p-1)*acos(x(s)));

end

Cheb(s) = sum(tempb)-.5*a(1); end

plot(x,fex,’b’,x,Cheb,’r’,xi,f,’k*’)

pause

for c = 1:length(x)

err(c) = abs(fex(c) - Cheb(c));

end

semilogy(x,err)

B.3 Chebyshev Interpolation of Sign Function

% Rob-Roy Mace
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% Marshall University

function ChebDisct(N) x = linspace(-1,1,200);

for j = 1:N+1

xi(j) = cos((j-1)*pi/N);

end

f = -1.*(xi<0) + 1.0.*(xi>=0);

fex = -1.*(x<0) + 1.0.*(x>=0);

a = zeros(N+1,1); for k = 0:N

n = 0:N;

temp = f(n+1).*cos(pi.*k*n./N);

temp(1) = temp(1)*0.5;

temp(N+1) = temp(N+1)*0.5;

a(k+1) = 2.0*sum(temp)./N;

end

for s = 1:length(x)

for p = 1:N+1

tempb(p) = a(p)*cos((p-1)*acos(x(s)));

end

Cheb(s) = sum(tempb)-.5*a(1); end

plot(x,fex,’b’,x,Cheb,’r’,xi,f,’k*’)

pause

for c = 1:length(x)

err(c) = abs(fex(c) - Cheb(c));

end

semilogy(x,err)

B.4 Filtered Chebyshev Interpolation of Sign Func-

tion

% Rob-Roy Mace

% Marshall University
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% MyFilterChebyTrial

% function MyFilterChebyTrial

x = linspace(-1,1,200); N = 99;

for j = 1:N+1

xi(j) = cos((j-1)*pi/N);

end

f = -1.*(xi<0) + 1.0.*(xi>=0);

fex = -1.*(x<0) + 1.0.*(x>=0);

a = zeros(N+1,1);

for k = 0:N;

n = 0:N;

temp = f(n+1).*cos(pi.*k*n./N);

temp(1) = temp(1)*0.5;

temp(N+1) = temp(N+1)*0.5;

a(k+1) = 2.0*sum(temp)./N;

end

a(1) = 0.5*a(1); a(end) = 0.5*a(end);

Cheb = zeros(1,length(x)); for s = 1:length(x)

for p = 1:N+1

Cheb(s) = Cheb(s) +

exp(-36*((p-1)/(N))^(4))*a(p)*cos((p-1)*acos(x(s)));

end

end

plot(x,fex,’b’,x,Cheb,’r’)

pause

for c = 1:length(x)

err(c) = abs(fex(c) - Cheb(c));
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end

semilogy(x,err)

B.5 Chebyshev Rational Interpolation of Test Func-

tions

%Rob-Roy Mace

%Marshall University

%Chebyshev Rational Approximation Code

%LN denotes degree of numerator

%LM denotes degree of denominator

%Choice determines which function will be approximated

%1: 7th degree polynomial 2: square root

%3: absolute value 4: exp(cos)

%5: sign function

function ChebRatTrial(LN,LM,choice)

TRUE = 1; FALSE = 0;

OK = TRUE;

%LM = 20;

%LN = 55;

BN = LM + LN; AA = zeros(1,BN+LM+1);

NROW = zeros(1,BN+1);

P=zeros(1,LN+1);

Q = zeros(1,LM+1);

A = zeros(BN+1,BN+2); Na = BN +

LM + 1; Np = 200;

x = linspace(-1,1,Np);

for j = 1:(Na+1)

xi(j) = cos((j-1)*pi/(Na+1));

end

if choice == 1
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f = xi.^7 - 2*xi.^6 + xi + 3;

fex = x.^7 - 2*x.^6 + x + 3;

elseif choice == 2

f = sqrt(1-xi.^2);

fex = sqrt(1-x.^2);

elseif choice == 3

f = abs(xi);

fex = abs(x);

elseif choice == 4

f = exp(cos(8*(xi.^3)+1));

fex = exp(cos(8*(x.^3)+1));

elseif choice == 5

f = -1.*(xi<0) + 1.0.*(xi>=0);

fex = -1.*(x<0) + 1.0.*(x>=0);

elseif choice == 6

d = 0.025;

f = ( xi >= 0.25 & xi <= 0.75 ).*1 +

( xi > 0 & xi < 0.25 | xi <= 1.0 & xi > 0.75 ).*0

+ (xi<=0).*exp(-((xi+0.5).^2)/(4*d^2));

fex = ( x >= 0.25 & x <= 0.75 ).*1 +

( x > 0 & x < 0.25 | x <= 1.0 & x > 0.75 ).*0 +

(x<=0).*exp(-((x+0.5).^2)/(4*d^2));

end

ac = zeros(Na+1,1); for k = 0:Na

l = 0:Na;

temp = f(l+1).*cos(pi.*k*l./Na);

temp(1) = temp(1)*0.5;

temp(Na+1) = temp(Na+1)*0.5;

ac(k+1) = 2.0*sum(temp)./Na;

end

for I=0:Na-1

AA(I+1) = ac(I+1);

end

N = BN; M = N+1;

for I = 1 : M
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NROW(I) = I;

end

NN = N-1; Q(1) = 1.0;

for I = 0 : N

for J = 0 : I

if J <= LN

A(I+1,J+1) = 0;

end

end

if I <= LN

A(I+1,I+1) = 1.0;

end

for J = I+1 : LN

A(I+1,J+1) = 0;

end

for J = LN+1 : N

if I ~= 0

PP = I-J+LN;

if PP < 0

PP = -PP;

end

A(I+1,J+1) = -(AA(I+J-LN+1)+AA(PP+1))/2.0;

else

A(I+1,J+1) = -AA(J-LN+1)/2.0;

end

end

A(I+1,N+2) = AA(I+1);

end

A(1,N+2) = A(1,N+2)/2.0; I = LN+2;

while OK == TRUE & I <= N

IMAX = NROW(I);

AMAX = abs(A(IMAX,I));

IMAX = I;

JJ = I+1;

for IP = JJ : N + 1
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JP = NROW(IP);

if abs(A(JP,I)) > AMAX

AMAX = abs(A(JP,I));

IMAX = IP;

end

end

if AMAX <= 1.0e-20

OK = FALSE;

else

if NROW(I) ~= NROW(IMAX)

NCOPY = NROW(I);

NROW(I) = NROW(IMAX);

NROW(IMAX) = NCOPY;

end

I1 = NROW(I);

for J = JJ : M

J1 = NROW(J);

XM = A(J1,I)/A(I1,I);

for K = JJ : M + 1

A(J1,K) = A(J1,K)-XM*A(I1,K);

end

A(J1,I) = 0;

end

end

I = I+1;

end

if OK == TRUE

N1 = NROW(N+1);

if abs(A(N1,N+1)) <= 1.0e-20

OK = FALSE;

else

if LM > 0

Q(LM+1) = A(N1,M+1)/A(N1,N+1);

A(N1,M+1) = Q(LM+1);

end

PP = 1;

for K = LN+2 : N

I = N-K+LN+2;

JJ = I+1;
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N2 = NROW(I);

SM = A(N2,M+1);

for KK = JJ : N + 1

LL = NROW(KK);

SM = SM - A(N2,KK) * A(LL,M+1);

end

A(N2,M+1) = SM / A(N2,I);

Q(LM-PP+1) = A(N2,M+1);

PP = PP+1;

end

for K = 1 : LN + 1

I = LN+1-K+1;

N2 = NROW(I);

SM = A(N2,M+1);

for KK = LN+2 : N + 1

LL = NROW(KK);

SM = SM-A(N2,KK)*A(LL,M+1);

end

A(N2,M+1) = SM ;

P(LN-K+2) = A(N2,M+1);

end

rat = zeros(length(x),1);

for k = 1:length(x)

num = 0;

for j = 0:length(P)-1

num = num + P(j+1)*cos(j*acos(x(k)));

end

dem = 0;

for j = 0:length(Q)-1

dem = dem + Q(j+1)*cos(j*acos(x(k)));

end

rat(k) = num/dem;

end

end end
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set(gcf,’unit’,’inch’,’pos’,[0 0 3 2.25]) plot(x,rat,’b’,x,fex,’g’)

pause for c = 1:length(x)

err(c) = abs(fex(c) - rat(c));

end semilogy(x,err) norm(err,inf)
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