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ABSTRACT 

Image Processing and Spatial Analysis of Satellite Imagery for Geobiophysical 
Modeling of Sources for Increased Sediment Yield in the Greenup Pool of the 

Ohio River 

By Michael L. Orr 

The study area for this research is the Greenup Pool of the Ohio 
River, with the Guyandotte River watershed used as a test case. 
The watershed passes through southwestern West Virginia. The 
objective of this research was to create and validate a model for 
extraction of parameters affecting sediment load from satellite 
imagery and spatial analysis to enrich the data available for the 
Ohio River. Unsupervised classification, accuracy assessment, 
map algebra, and suitability modeling were performed to address 
the research question. In the area selected for this research, 
extant data consisted of two points approximately 61.8 river miles 
apart. In many sediment yield models, adequate data is available 
for velocity, bathymetry, discharge, and sediment load. Results of 
this research show the potential for remotely sensed imagery and 
analysis of statistical and spatial relationships in a geobiophysical 
model to augment investigations of complex systems where 
conventional data are lacking. 

Keywords: Ohio River, Geobiophysical Model, Spatial Analysis, 
Unsupervised Classification, Sedimentation, Erosion, Landsat, 
Image Processing. 
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CHAPTER I 
Introduction 

Overview 

The Greenup pool of the Ohio River exhibits significantly elevated 

sediment loads when compared with neighboring pools. Increased sediment 

causes problems for floodplains by increasing the frequency and severity of 

floods, threatens biodiversity through habitat destruction or creation/fostering of 

adverse conditions, and affects transportation and economic development by 

affecting the frequency of maintenance dredging and the spoiling of recreational 

use of the river. Collection of in situ data for locating probable sources of 

increased sedimentation would be cost-prohibitive and time consuming, 

evidenced by the lack of such data. 

Geographic Context 

The Ohio River originates where the Monongahela and Allegheny rivers 

meet in Pittsburgh, Pennsylvania, and empties approximately 981 miles (1579 

km) at its confluence with the Mississippi River near Cairo, Illinois (Ohio River 

Division-USACE 1994). The busiest section of the Ohio River in terms of barge 

traffic has been the Port of Huntington since it surpassed Pittsburgh in 1953 

(Rhodes 2007). Prior to 2000, the Port of Huntington was defined as the 14 mile 

(22.5 km) section of Ohio River from river miles 303 to 317 (Institute for Water 

Resources-USACE 2004). In 2000, the Port of Huntington was redefined to 

encompass 100 Ohio River miles (160.9 km), from river mile 256.8 to 356.8, 90 

Kanawha River miles (144.8 km), and 9 miles (14.5 km) into the Big Sandy River, 

both measured from their confluence  with the Ohio upstream (IWR-USACE 
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2004; Rhodes 2007). The Greenup pool of the Ohio River envelops the former 

Port of Huntington but is encompassed by the redefined ‘Port of Huntington-Tri 

State’ (Figure 1) (Rhodes 2007; IWR-USACE 2004). 

 
Figure 1. Port of Huntington Evolution 

 

The Greenup Pool of the Ohio River flows from the Robert C. Byrd Locks 

and Dam at river mile 279.2 northwest of Apple Grove, West Virginia, to the 

Greenup Locks and Dam at river mile 341.0 northeast of Lloyd, Kentucky (Figure 
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1; Rhodes 2007). The river mile notation used for the Ohio River during this 

research refers to increasing distance downstream from river origin, which differs 

from most river mile systems, increasing from the mouth to the head (Ohio River 

Division-USACE 2006). The Ohio River Basin covers large portions of 

Pennsylvania, West Virginia, Ohio, Indiana, Illinois, Kentucky, and Tennessee 

and small portions of Virginia, North Carolina, Maryland, and New York (Figure 

2). Within the basin, the Greenup pool is fed by the Middle Ohio and the Big-

Sandy-Guyandotte sub-regions, which are further divided into the Guyandotte, 

Big Sandy, and Middle Ohio-Raccoon basins (Figure 3). Sub-basins are the 

smallest division used during this research. Divisions for sub-basins are in Figure 

3, and Table 1 provides a list of those that empty into the Greenup pool of the 

Ohio River. 

 

Figure 2. The Ohio River Basin. 
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Figure 3. Basins Feeding the Greenup Pool. 

Basin Sub-Basin 
Big Sandy Big Sandy 
Big Sandy  Lower Levisa 
Big Sandy Tug 
Big Sandy Upper Levisa 

Guyandotte Lower Guyandotte 
Guyandotte Upper Guyandotte 

Middle Ohio-Raccoon Little Sandy 
Middle Ohio-Raccoon Little Scioto-Tygarts 
Middle Ohio-Raccoon Raccoon-Symmes 
Middle Ohio-Raccoon Twelvepole 
Table 1. Sub-Basins Feeding the Greenup Pool. 
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Historic Context 

The Ohio River has been a significant transportation route since long 

before Europeans came to America; however, there was one constant and many 

seasonal obstructions present that made continuous river commerce between 

Pittsburgh and the Mississippi River difficult. The falls of the Ohio, a set of rapids 

near Louisville, Kentucky, that dropped approximately 26 feet (7.9 m) over the 

course of two miles, were skirted by the 1830 completion of a canal 

approximately 1.9 miles (3.1 km) long with a navigable depth of 3 feet at low 

water (Ohio River Division-USACE 1979). 

Seasonal variations in river depth made travel of goods unreliable, with 

evidence of depths of 2 feet (0.6 m) near Huntington recorded in the 1890s (Ohio 

River Division-USACE 1979). As a result of years of study and the River and 

Harbor Act of 1910, construction began later that year to canalize the Ohio River 

from Pittsburgh to the Mississippi to a uniform 9 ft (2.74 m) navigation channel 

depth. This was accomplished by the construction of 48 navigable wicket dams 

and two non-navigable dams. The project was finished in 1929 (Ohio River 

Division-USACE 1979). It is clear from Ohio River Navigation Charts (Figures 4 

and 5) that the Ohio had many more exposed sand bars in the early 20th century 

than are evident today (Ohio River Board of Engineers 1929; Ohio River Division-

USACE 2003). Of course, this does not mean that these bars are gone, rather 

current managed pool height is well above these hazards, as sidescan sonar 

information provided by the Huntington District of the US Army Corps of 

Engineers illustrates (Figures 4 and 5). The historic Guyandotte and Twelvepole 



6 
 

bars for example are still present, but are not seen today due to the consistent 

depth of the river afforded by the lock and dam system. Current sailing lines are 

nearly identical to the historic charts, and both coincide with the thalweg, or 

greatest channel depth according to 2006 bathymetry (Brewster 2006; Bridge 

2003). 

Figure 4. Navigation Chart No. 84. 1911-1914, revised 1929 over 2006 Bathymetry. 
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The Gallipolis Locks and Dam was completed in 1937 and after upgrade 

in 1992, it was renamed Robert C. Byrd Locks and Dam (Ohio River Division-

USACE 1979; Library of Congress 2008). Greenup Locks and Dam marked the 

beginning of the Modernization Program, which elongated the main lock chamber 

from 600 to 1200 feet. Construction began in 1954 and the site was operational 

by 1961 (Ohio River Division-USACE 1979). 

 Figure 5. Chart No. 149, 2003 over 2006 Bathymetry. 
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Physical Properties 

Within any hydrologic system, transport of solid material is fed primarily by 

rainfall and groundwater systems, beginning as sheet runoff on steep slopes, and 

eventually organizes with lessened gradient into streams and rivers (Nichols 

1999; Bridge 2003). This is a natural process that occurs anywhere there is 

precipitation. However, where anthropogenic alterations have occurred, the 

natural balance is disrupted and detrimental effects can occur (Meijerink & 

Mannaerts 2000; Bridge 2003; Mather 1986; Easterbrook 1969; Parker 2000; 

Fitzpatrick, Knox, and Whitman 1999). Affects can range from physical changes 

in channel structure to alteration or elimination of habitats, with adverse affects 

on transportation and economic development. 

Erosion begins with the products of chemical and physical weathering of 

parent rock material. The initial step in the erosion process is entrainment, or the 

application of sufficient force to dislodge a particle (Parker 2000). Water is most 

frequently the source of this initial force, whether as raindrops striking the 

ground, sheet wash on steep slopes, or flow within an established channel. 

However, wind, ice, and gravity, or a mixture of all may initiate entrainment as 

well (Nichols 1999). Among forces that oppose entrainment are electrical and 

chemical cohesion and vegetation (Parker 2000). Vegetation is so significant a 

factor that it must be discussed in detail later. 

If entrainment is considered an event, then transport is a continual 

process. Transport continues until the force applied is no longer sufficient to keep 

the particle moving (Parker 1999). Very fine particles, such as silt and clay, are 
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often transported in suspension or suspended load, where the force of flowing 

water is sufficient to keep the particle flowing without settling to the bottom 

(Nichols 2000). Transport of larger particles, such as sand of varying grades, is 

performed by a series of jumps along the bottom, called saltation (Easterbrook 

1969). In extreme flows, larger particles may be subjected to this action, such as 

pebbles and cobbles. More often, these larger particles are moved down stream 

by rolling along the bottom, a process called traction (Easterbrook 1969; Bridge 

2003). Both saltation and traction are processes that move the portion of 

sediments called bed load (Nichols 1999). 

Once the process of transportation has ceased, the event of deposition 

occurs. As mentioned in the preceding paragraph, larger particles require more 

energy than fine particles to remain suspended or motile, therefore sediments 

are sorted, with large particles in high energy areas and increasingly finer 

particles settling as energy decreases (Easterbrook 1969). Common sites for 

deposition include areas where a significant change in slope occurs, dimensions 

(width or depth) of channel change abruptly, or there are obstructions such as 

fallen trees, dams, or other large non-moving objects (Parker 1999). Excessive 

deposition can create changes in channel structure that encourage increasing 

rates of deposition. 

Catchment land surface vegetation affects the hydrologic system in 

numerous ways, including impeding runoff, increasing soil porosity, increasing 

channel friction, and performing evapotranspiration (Leopold, Wolman, and Miller 

1964). Vegetation can greatly impede entrainment by sheltering erodible 
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materials from the full intensity of falling raindrops, and by creating obstacles to 

sheet wash events (Parker 1999). Another expression of impediment of flow is 

surface roughness. Manning’s roughness coefficient, the most commonly used 

measure of surface roughness, offers values for a wide variety of generalized 

surface types (McCuen 2005). Historically, transition from natural or minimally 

affected forested land to row crop agriculture shows a rise in sediment yield, but 

it is gradual and not extreme in its peaks, whereas abrupt change such as clear-

cutting or preparation for urbanization create spikes in sediment yield (Mather 

1986; USDA 1996). While clear cutting and construction cause these spikes, if 

properly managed they can return to near pre-change hydrologic conditions over 

years or decades, while agriculture tends to be a longer term change that 

continues its effects (Fitzpatrick et al. 1999). Mitigation procedures for 

construction or industrial areas include diversion ditches, straw bale sediment 

barriers, and sediment ponds to decrease velocity and allow sediment to settle. 

When trees are removed abruptly by fire or mechanical processes, soil 

and rock that have been loosened or broken down by roots are suddenly 

exposed, and highly susceptible to erosion (Mather 1986). However, when the 

canopy or undergrowth is healthy this loosening of the soil increases 

permeability, promoting the transformation of surface water into ground water, 

decreasing erosion (Parker 1999; Leopold et al. 1964). Water percolates easily 

through zone of aeration made porous by root action, eventually reaching the 

zone of saturation. The upper limit of this zone is known as the water table. In the 

eastern U.S., streams are recharged by surface runoff and groundwater, where 
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the water table intersects valley or stream margins (Easterbrook 1969). 

Vegetation in a channel, like any other material, increases friction, causing a 

decrease in stream velocity, which diminishes the erosive power (Easterbrook 

1969; Parker 1999). Within a catchment, vegetation also removes water from 

surface flows and groundwater, known as interception, and releases water back 

into the cycle through evapotranspiration (Gorte, 2000). 

Within each watershed, there are zones where one of three processes 

dominate (Figure 6). These processes, which have varied names in the literature, 

are called degradation or vertical downcutting, transportation, and aggradation, 

upbuilding, or deposition (Easterbrook 1969). Much of eroded material comes 

from the upland sections of catchments and stream networks, where the slope is 

the highest (Fitzpatrick et al. 1999). This coincides with the previous discussion 

of sheet wash on steep slopes, where vertical downcutting of stream channels 

has highest influence (Easterbrook 1969). As the slope gradient lessens, the 

amount of downcutting decreases, and transportation of sediment, mostly in 

suspension, becomes the dominant process. Addition to the sediment load in this 

zone is chiefly by lateral erosion of the stream channel (Easterbrook 1969; 

Fitzpatrick 1999). As the channel continues it reaches a point where the flow 

does not exert enough force to transport the given load and aggradation or 

deposition occurs (Easterbrook 1969). This change in flow can be caused by 

meeting a stream of lower discharge, or by consistent deposits in an area 

causing the stream to slow down and pool or create large, slowly swirling eddies 

(Bridge 2003). While this model is descriptive of the entire span of a stream, 
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these processes also occur to some degree in very short spatial and temporal 

spans, yielding the widespread morphologic variation of a stream channel. 

Figure 6. Dominant Zones of Degradation, Transportation and Aggradation. 

 

Within an idealized channel, velocity is highest in the middle, slightly 

below the surface (Figure 7). Friction from the banks decreases velocity in plan 

view, while in profile, friction from the bed or bottom affects velocity more than 

friction caused by the air-water interface (Easterbrook 1969; Bridge 2003). Given 

this empirical plan and cross-section, vegetation’s role, scouring and shifting of 

bed load, and large debris in the bed and along the bank walls, it is clear that 

velocity in an actual channel will have wide variation. The highest velocity vector 

will  be very  different  from the  velocity  of the sides  and  bed. Bridge piers  and  
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Figure 7. Velocity Vectors in an Idealized channel (adapted from Easterbrook 1969). 

 

other manmade obstructions can further impede flow, however uniform and 

symmetrical obstructions such as bridge piers may create a Karman vortex 

street, which sheds vortices of opposite rotation from either side of the object and 

can run vertically from the surface to the bed, churning substrate throughout the 

water column (Bridge 2003). During floods, the highest velocity again tends to be 

in the center of the channel, while the quickest lateral decrease of velocity is at 

the bank interface, and velocity of flow over the flood plain is considerably less 

than the center of the channel (Bridge 2003). The relationship between stream 

velocity and particle size and its relation to the previous discussion of erosion, 

transportation and deposition is summarized in Figure 8, (adapted from 

Easterbrook 1969; Parker 2000). 
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Figure 8. Relations among Erosion, Velocity, and Particle Size (adapted from Parker 2000). 

 

Biological Affects 

The affects of sedimentation on biota include habitat loss due to changes 

in channel structure, alteration of stream temperature and composition, and 

impediment of light penetration through the water column (Ellis 1936; Cushing 

and Allan 2001). Loss of habitat for individual species has a direct effect on the 

food web, which can decrease biodiversity in a given area.  

Excessive erosion can deposit particulate matter that is finer than the 

dominant macroinvertebrate community can tolerate. For Example, many species 

prefer or thrive in areas with bed materials of cobbles or pebbles, therefore 

deposition of finer particles such as silts and sands can have direct affects to the 

local food web (Cushing and Allan 2001). As previously stated, this deposition 
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can occur due to increased load from anthropogenic sources or from decreased 

velocity from prior deposition or other obstruction. While all substrate materials 

can support algae, stable surfaces tend to produce larger communities, 

increasing surface roughness and heterogeneity, which is conducive to greater 

biodiversity (Cushing and Allan 2001). 

Increased siltation can directly affect the temperature of streams, as has 

been shown in experiments using both agitated and unagitated water containing 

sediment (Ellis 1936). Ellis’ experiment showed that in agitated water, there was 

no marked difference between the control (distilled water) and unfiltered field 

samples when immersed in a bath of a constant temperature. There was a 

significant lag (17 minutes) in temperature change over time in the unagitated 

unfiltered water compared to the control, with differences as great as 1.8°C 

(3.2°F), while there was only as great as a 0.1°C (0.2°F) difference between an 

unagitated filtered sample and the control. Indirectly, deposition can affect water 

temperature by destruction of riparian vegetation, exposing water to direct 

sunlight (Cushing and Allan 2001). 

Increased sediment can also be implicit in destruction of 

macroinvertebrate and algal communities by insufficient oxygen levels to the 

organism or starvation (Ellis 1936; Cushing and Allan 2001). In another 

experiment by Ellis, fresh-water mussels were observed in water containing 

suspended silt and water that was silt free. Mussels in the silty water remained 

shut (not feeding) 75-95% of the observed time, and when they did open, 

excessive mucus was secreted to remove silt from the mantle cavity. Members of 
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this group that did not survive contained deposits of silt in the mantle cavity and 

gill chambers. Members of the silt free group were closed less than 50% of the 

observed time (Ellis 1936). 

Turbidity, or the opacity of water, caused in part by increased sediment 

load, can be measured in the field by Secchi disk or in samples by nephometric 

turbidity units (NTU) (Campbell 2002). Ellis measured turbidity using a scale 

called the millionth intensity depth (m.i.d.), which is the depth at which light is 

reduced to one millionth of its surface intensity, measured in millimeters. 

Regardless of the unit or method of measure, the effect on plants is simple: 

where there is consistently little to no light penetration, there will be little or no 

material dependent on photosynthesis. There was a bias toward penetration of 

the scarlet-orange wavelengths (λ = 0.660 – 0.585 μm) in the turbid water of 88 

mm m.i.d. (Ellis 1936). This differs from clear water, wherein red light is absorbed 

in the first 2.0 m (6.6 ft) and blue-green wavelengths (λ = 0.48 to 0.60 μm) can 

penetrate beyond 100.0 m (328.1 ft). Blue light (λ = 0.40 to 0.50 μm) can 

penetrate water beyond 275.0 m (902.2 ft), but is highly susceptible to scattering 

(Campbell 2002; NASA 2008). Transmission of any light was minimal, and the 

overall effect of increased turbidity was a nearly complete blockage of all visible 

wavelength penetration (Ellis 1936). 

Anthropogenic Affects 

The largest role of transportation, industry, and economic development in 

increased sedimentation can be stated simply: an increase in impervious 

surfaces (roads, parking lots, roofs, etc.) means an increase in surface runoff 
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with very little friction, meaning a higher sheet wash velocity (Mather 1986; 

Fitzpatrick et al. 1999). An increase in the volume and velocity of surface runoff 

brings an increase in debris and sediment transport, and a decrease in ground 

water infiltration. A decrease in infiltration means that the soil is drier and less 

cohesive, thus more susceptible to sheet erosion (Scheyer and Hipple 2005). 

This decrease would also lower the rate of groundwater recharge of streams, 

making them more susceptible to wider fluctuation in flow, chiefly dependent on 

rain events (Easterbrook 1969). Due to the efficiency of drainage systems in 

urban settings, flood peaks are frequently increased by a factor of three or four 

when compared to the countryside, generating even more erosive power (Mather 

1986). 

The construction phase of these impervious surfaces, while temporary, 

can also be a significant source of sedimentation, estimated anywhere from 2 to 

40,000 times the preconstruction sediment delivery rate (McCuen 2005; USDA 

NRCS Soil Quality Institute 2000). Exposure of bare earth to erosive forces is 

more long term and widespread in industrial activities such as logging and 

mining, thus offering significant sources of sediment (Mather 1986; McCuen 

2005; Scheyer and Hipple 2005; Cushing and Allan 2001; Leopold et al. 1964). 

Dredging for channel depth maintenance is required annually and 

supplemented on an as-needed basis. In the Greenup pool, channel 

maintenance dredging occurs annually in late summer during periods of low 

water, usually mid-August. Dredging does not occur uniformly throughout the 

pool each year. For example, the mouth of the Guyandotte River area has not 
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been dredged since 2000. The area around the Robert C. Byrd locks and dam is 

dredged more frequently, as is the Big Sandy River (USACE Staff, personal 

communication 2008). 

This action has a direct effect on habitats either by physical removal, or by 

increased turbidity and reintroduction of settled materials into suspension 

(USACE 2006). Deposition occurs often at the interface of streams and where 

water is abruptly slowed, such as dams, thus in order to maintain the channels, 

regular dredging must be performed. As an example, excessive sedimentation 

makes the Big Sandy River impassible beyond approximately 7.5 miles. 

Dredging could be performed beyond this point, however the availability of other 

modes of transportation running from the major resources skew the cost-benefit 

analysis toward existing infrastructure, having a direct effect on location of 

intermodal facilities (ORD-USACE 1994). For an example of the impact on 

economic development, the Corps of Engineers found, based on user interviews, 

that local marinas found it too expensive to maintain embayments by way of 

systematic dredging, limiting public use of sections of the river (ORD-USACE 

1994). 

Coal extraction is the largest industry on the Ohio River as expressed in 

tonnage of commodity shipped, and the most productive areas in the nation are 

centered on the Kanawha and Big Sandy rivers, making transport through at 

least some portion of the Greenup pool very likely (ORD-USACE 1994; 2006). In 

2003, coal and coke accounted for 118.5 million tons of commodities shipped on 
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the Ohio River. The next highest tonnage was aggregates (sand, gravel, 

limestone, etc.), followed by petroleum (Table 2; USACE 2006). 

Commodity Million Tons 
Coal & Coke 118.5 
Petroleum 16.3 

Aggregates 41.7 
Grains 13.8 

Chemicals 10.3 
Ores & Minerals 7.4 

Iron & Steel 13.9 
Other 6.8 
Total 228.7 

Table 2. Commodity Traffic on the Ohio River, 2003. 
 

The coal industry is affected by increased sedimentation in the form of 

increased shipping costs to offset dredging operations, time lost by interference 

from dredging operation, and point bar hazards to barges. It is also a major 

cause of increased sedimentation, due to deforestation and bare earth for 

extended periods of time (McCuen 2005; Mather 1986; Cushing and Allan 2001; 

Leopold et al. 1964; Scheyer and Hipple 2005). Logging, which tends to preclude 

most mining activity, has a similar affect on hydrology, but it also adds very 

sinuous and poorly kept roads that act as conduits of sediment directly into 

streams from ridgetops and sideslopes (Cushing and Allan 2001; Orr 2005).  

Shipping on the Ohio River is carried out predominantly by a system of 

barges and tows, although some container ships are used as well. By 

comparison, one barge can carry the equivalent of 15 jumbo hopper cars (1500 

tons), or 58 large semi trucks. One tow can move 15 barges (22,500 tons), 

equivalent to 225 jumbo hoppers or 870 semi trucks for roughly the same amount 

of energy (ORD-USACE 1994; 2006). The current average output of these 

tow/push vessels within the Ohio River Main Stem is 3500 HP, while those on 
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tributaries tend to be lower (USACE 2006). The action of these engines and 

displacement of these trains of vessels (15 barges and a tow/push vessel) cause 

agitation of bed load and substrate along banks due to wake action. The depth of 

water needed to float a ship, or draft, for vessels in the Port of Huntington - 

Tristate ranges from 1 to 11 feet (0.3 – 3.4 m) (IWR-USACE 2004). The minimum 

depth of the navigation channel is 9 feet (2.7 m), therefore, the largest vessels 

can only operate in certain sections of the channel or seasonally, during high 

water conditions. Temporal data involving when deep draft (draft > 9 ft) can 

navigate the Greenup Pool are currently lacking. Decreasing cargo decreases 

the draft of the vessel, thus in certain low water conditions, tonnage is restricted. 

Temporal variations in lockage through the Greenup locks and dam suggest that 

March has the highest monthly average traffic, Thursdays and Saturdays are 

favored weekly, and approximately 10 P.M. sees the highest traffic daily (USACE 

2006). These variations are slight and are not considered likely to produce 

significant difference in sedimentation rates. 

Statement of Problem and Proposed Solution 

 Ohio River Valley Water Sanitation Commission (ORSANCO) collected 

data from July, 2001 to May, 2005 at several points along the Ohio River. Data 

from the Robert C. Byrd and Greenup Locks and Dams show marked differences 

between the two locations in the amount of suspended solids, especially during 

seasonal runoff periods (Figures 9 and 10). While this shows that there is a 

phenomenon occurring between the two lock and dam structures that are 

approximately  61.8 river  miles  apart,  it would  be more useful  to pinpoint  from 
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Figure 9. Bi-monthly Suspended Solids (mg/L) from ORSANCO 7/2001 to 5/2005. 

 
Figure 10. Monthly Averages of Suspended Solids (mg/L) from ORSANCO 7/2001 to 5/2005. 
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Figure 11. Extent of Guyandotte Watershed, Ohio River, and Bounding Locks and Dams. 
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whence these sediments came. As previously mentioned, sediment load data 

sufficient to address this problem is scarce, costly, and time consuming to collect. 

Therefore it is the objective of this research to use satellite imagery, image 

processing, and spatial analysis to create and validate a model to show sources 

for increased sediment yield. This pilot study will assess techniques that can be 

used in future research to further address causes for the discrepancy between 

Robert C. Byrd and Greenup collection points (Figure 11). 
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CHAPTER II 
Research Methods and Techniques 

Overview 

The Guyandotte River watershed passes through southwestern West 

Virginia in a southeast to northwest direction, touching Boone, Cabell, Kanawha, 

Lincoln, Logan, Mingo, Putnam, and Raleigh counties, and encompassing 

Wyoming County (Figure 11). Area of the watershed is 1,076,930 acres (435,818 

ha), or 1,683 square miles (4,358 sq km). It is located in the maturely dissected 

upland of the Appalachian Plateau. Elevation ranges from 3581 ft (1091 m) 

above mean sea level (AMSL) in Wyoming County to 512 ft (156 m) AMSL at the 

confluence of the Guyandotte and Ohio rivers (Figure 12; Wolf 1988). Bedrock 

Geology belongs to the Pennsylvanian period. More specifically, Guyandotte 

River flows through Pottsville group New River formation to Kanawha formation, 

through the Conemaugh group and Allegheny formation and meets the Ohio 

River in Quaternary Alluvium (Figure 13).  Soils are generally deep, well drained, 

and on steep sideslopes to nearly level floodplains having weathered from 

sandstone with some shale and siltstone present (Cole 1989; Cole, Carpenter, 

and Delp 1985; Gorman and Espy 1975; Jones 2007; Van Houten, Childs, Teets, 

Estepp, and Doonan 1981; Wolf 1988 and 1994). Major tributaries of the 

Guyandotte River include Big Ugly, Buffalo, Huff, Indian, Island, and Pinnacle 

creeks, Clear, Slab, and Trace forks, Winding Gulf, and Mud River. 

Towns within the watershed include Pineville, Mullens, Oceana, Man, 

Logan, Chapmanville, Hamlin, Milton, and Barboursville, among others. 

Transportation in the watershed consists of roads, rail, and airfields (Figure 14). 
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 Figure 12. Elevation within the Watershed. 
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 Figure 13. Bedrock Geology within the Watershed. 
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 Figure 14. Transportation within the Watershed. 
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State route 10 runs through the center of the watershed, providing access from 

Herndon to Barboursville and I-64. US routes 119 and 52 cross the watershed 

briefly in the central and southern portions.  Additional access is provided by 

state and county routes. Railroads offer freight transport from the coal fields north 

toward Huntington and the Ohio River. The two main lines are the Chesapeake 

and Ohio and the Norfolk and Western railroads.  Of the five airfields in the 

watershed, three are public access, one (McDonald Field) is abandoned, and 

one (Perry and Hylton, or Mike Ferrell Field) is private. 

Remote Sensing Methods 

Remote Sensing is defined, almost universally, as the collection of data 

about an object or area by sensors that are not in direct contact with the target 

(Lillesand and Kiefer 1987; Jensen 2000, 2005; Sabins 2007; Aronoff 2005; 

Wilkie and Finn 1996; Campbell 2002; Schultz and Engman (eds.) 2000; Purkis 

2004; Lo 1986; Lintz, Jr. and Simonett (eds.) 1976; Rees 1990). While the 

current definition is focused strongly on electromagnetic radiation and its 

interaction with the target, SONAR (sound navigation and ranging) is variably 

included or excluded from the definition (Sabins 2007; Rees 1990). 

The electromagnetic spectrum is a key principle in remote sensing 

systems. As seen in Figure 15, Energy ranges from the high frequency (ν), short 

wavelength (λ) gamma rays (λ < 10 pm) to the low frequency, long wavelength 

radio waves (λ > 10 cm) (Sabins 2007). Radiation used most frequently by 

current sensors is clustered in the visible to thermal infrared regions (λ = 0.4 to 

~15 μm) and portions of the microwave region (λ = 2.5 cm to ~30cm) due to 
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atmospheric absorption and scattering, also referred to as attenuation (Rees 

1990; Campbell 2002; Jensen 2005; Lo 1986). 

 
Figure 15. Electromagnetic Spectrum (Wikipedia.org 2008). 
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In passive remote sensing systems, the sensor collects reflected radiation 

(wavelength, or λ < 3μm), usually generated by the sun, or emitted (λ > 3μm) 

radiation from an object. These include satellite imagery, aerial visible and false-

color infrared photography, and thermal scanners, among others (Campbell 

2002; Rott 2000; Aronoff 2005; Sabins 2007; Jensen 2000, 2005). Active 

systems, or systems that generate electromagnetic or sonic energy that hits the 

target and is measured as it returns to the sensor, include RADAR, LiDAR, and 

SONAR (Campbell 2002; Rott 2000; Aronoff 2005; Sabins 2007; Jensen 2000, 

2005). 

When these returns, or brightness values, are collected digitally, as is 

most frequently the case, each is assigned to a pixel with a unique column and 

row address (Tomlin 1990; Aronoff 2005). The area of ground represented by 

each pixel is equal to the instantaneous field of view and spatial resolution 

attainable by that specific sensor. In order for a sensor to be able to resolve a 

specific object or phenomenon, the feature’s minimum dimension should be 

equal to or greater than the width of two pixels (Aronoff 2005; Jensen 2005; 

Sabins 2007). An example of low spatial resolution is the Geostationary 

Operational Environmental Satellite (GOES) system, with 1 km pixels in the 

visible spectrum, and 4 to 8 km pixels in the thermal infrared regions (Aronoff 

2005). Medium resolution is exemplified by the Landsat Thematic Mapper (TM) 

with 30 m pixels in the visible to near and short wave infrared bands and 90 m 

pixels in the thermal band (Sabins 2007; Jensen 2005). Another example of 
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medium spatial resolution comes from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) aboard NASA’s Terra satellite, 

with 15 m visible to near infrared bands, 30 m short wave infrared bands, and 90 

m thermal infrared bands (Aronoff 2005; Jensen 2005). High spatial resolution is 

shown by the Quickbird Satellite from Digital Globe, with 2.44 m pixels in the blue 

through near infrared bands, and 0.61 m in the panchromatic band (Aronoff 

2005; Jensen 2005). 

In addition to spatial resolution, there are three other qualities that can be 

used to assess the specific utility of a particular collection of imagery or 

information: spectral, radiometric, temporal resolution. Spectral resolution is 

defined as the number and width of bands recorded within imagery (Aronoff 

2005; Inglis-Smith 2006). An example of a multispectral sensor comes from 

ASTER: there are 14 bands, and bandwidth for the near infrared band is 0.1 μm, 

ranging from 0.76 to 0.86 μm (Aronoff 2005). An example of a hyperspectral 

system is the Airborne Visible/Infrared Imaging Spectrometer AVIRIS), with 224 

10 nm bandwidth bands ranging from 0.4 to 2.5 μm (Sabins 2007). Radiometric 

resolution refers to the ability of a sensor to discriminate between different signal 

levels of returned radiation (Aronoff 2005; Wilkie and Finn 1996). Landsat TM 

records information in values from 0 to 255 (8-bit), while Quickbird collects in 11-

bits, or values from 0 to 2047, exhibiting higher radiometric resolution (Jensen 

2005). Finally, temporal resolution is the measure of return time, or the frequency 

of data collection for the same geographic entity. Examples include Landsat 4, 5, 

and 7, with a return time of 16 days, and Advanced Very High Resolution 
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Radiometer (AVHRR), with a return time of 12 hours. AVHRR has higher 

temporal resolution than the Landsat group (Aronoff 2005). 

Land use and land cover are often thought of synonymously, however 

there are distinct differences (Rees 1990, Anderson, Hardy, Roach, and Witmer 

1976; Lillesand and Kiefer 1987). Land use refers to human utilization of the land 

and its resources, for example, mining, timbering, agriculture, and recreation 

(Jensen 2000; Inglis-Smith 2006). Land cover refers to the geobiophysical 

conditions on the ground surface, for example: stands of deciduous trees, open 

land, urban impervious land, residential grasses, etc. (Lillesand and Kiefer 1987; 

Aplin 2004). The classification system developed for the USGS in 1976 was a 

hybrid of the two ideas, which is no doubt a primary reason for the casual 

intermingling of the terms (Anderson et al. 1976; Lillesand and Kiefer 1987). 

The National Land Cover Dataset (NLCD) was first created in 1992, 

consisting of a 21-group classification system of land cover for the conterminous 

United States (Vogelman, Sohl, Campbell, and Shaw 1998; Homer, Huang, 

Yang, Wylie, and Coan 2004). Subsequent changes have been made, including 

NLCD 2001 and an update for 2006 that is unfinished at the time of this research 

(Homer, Dewitz, Fry, Coan, Hossain, Larson, Herold, McKerrow, VanDriel, and 

Wickham 2007; USEPA-MRLC 2007; Vogelman et al. 1998). The highest 

frequency of land cover classes in West Virginia are deciduous forest (76%), 

pasture/hay (8%), low intensity residential (5%), and evergreen forest (3%) 

(Homer et al. 2007; West Virginia University GIS Technical Center 2007). 
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Remote sensing of various parameters of hydrology and water quality is a 

difficult, time consuming and costly process. Water quality can be assessed, but 

due to the ephemeral nature of water data and the dynamic nature of hydrologic 

systems, imagery collected two weeks ago cannot provide information 

necessarily relevant today, whereas terrestrial studies can have more flexibility in 

collection times. Therefore, any in situ data (water samples using Secchi disk or 

NTUs) should be from the same day as any imagery if possible (Jensen 2000). 

Assuming that these criteria are met, in order to make any statements that have 

relevance to more than just a single day or even hour, many of these paired 

datasets must be collected to examine trends and utilize time, or the fourth 

dimension (Schultz and Engman 2000). Recent research has assessed an 

alternative method of using ground penetrating radar to collect discharge and 

velocity measurements without having instruments in the water, however the 

method still requires very expensive equipment (Haeni, Buursink, Costa, 

Melcher, Cheng, and Plant 2000). Other current research exhibits promising 

applications of wide-swath radar altimetry, culminating in the Water and 

Terrestrial Elevation Recovery Hydrosphere Mapper (WATER HM), proposed for 

a 2010-2020 launch time frame (Cazenave, Milly, Douville, Benveniste, Kosuth, 

and Lettenmaier 2003). 

There are other difficulties to be met, such as the spectral characteristics 

of water and sediment. Pure water absorbs near infrared energy in a few 

millimeters, making land-water distinction easy, however remote sensing of any 

subsurface vegetation, such as algal blooms for example, is impossible in this 
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band (Campbell 2002; Wilkie and Finn 1996; Verbyla 1995; Lillesand and Kiefer 

1987). Visible wavelengths can penetrate clear water to varying depths: blue 

(0.40 to 0.50 μm) can penetrate up to 275.0 m (902.2 ft), but is quickly scattered, 

red (λ = 0.65 to 0.70 μm) only penetrates to approximately 2.0 m (6.6 feet), while 

the blue-green region (λ = 0.48 to 0.60 μm) can penetrate upwards of 100.0 m 

(328.1 ft) and is not scattered like blue light (Lillesand and Kiefer 1987; Jensen 

2000; Purkis, Kenter, Oikonomou, and Robinson 2002; NASA 2008). None of the 

water in hydrologic studies could be classified as clear, thus, other parameters 

interfere with collection of data beneath the surface. As sediment load increases, 

the spectral reflectance peak shifts to longer wavelengths, making red and near 

infrared useful (Campbell 2002; Verbyla 1995; Sabins 2007; Jensen 2000). 

Specifically, the region of “orange-scarlet” (λ = 0.58 to 0.69 μm), referenced 

earlier in the experiments of Ellis, can aid in typing or qualification of suspended 

sediments, while returns from the specific near infrared wavelength range of 0.71 

to 0.88 μm can help quantify the amount of suspended sediment (Jensen 2000). 

However, it is important to remember that these values would only be relevant to 

surface water, not the full water column, where significant amounts of sediment 

are transported, and that this would only offer a snapshot, not a temporally 

significant definition of the water body. 
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Data Collection Techniques 

Landsat 7 Enhanced Thematic Mapper (ETM+) is the satellite and sensor 

that collected the central datasets for this research. Launched on April 15, 1999, 

the sensor collects six bands ranging from blue-green (0.45-0.515 μm) to 

shortwave infrared (2.08-2.35 μm) with 30 m spatial resolution. Enhanced 

Thematic Mapper also collects a thermal band (10.4-12.5 μm) with 60 m 

resolution, and a panchromatic band (0.52-0.9 μm) with 15 m resolution for a 

total of eight bands (Aronoff 2005). The grid for locating scenes consists of paths 

which run N-S, and rows, which run E-W. For example, path 17, row 33 would be 

northeast of path 18, row 34. Two scenes were used in this research; specifically 

path 18 rows 33 and 34 (USGS 2008). 

Tabular data used with classified imagery products were collected from 

soil survey books, online sources, and a hydrologic engineering text (Cole 1989; 

Cole, Carpenter, and Delp 1985; Gorman and Espy 1975; Jones 2007; Van 

Houten, Childs, Teets, Estepp, and Doonan 1981; Soil Survey Division Staff, 

NRCS 1993; McCuen 2005; Mitasova, Brown, Hohmann, and Warren n.d.). Soil 

survey books provided the K factor, a variable in the Revised Universal Soil Loss 

Equation (RUSLE). The K factor is an average of soil erosion response to rainfall, 

surface runoff, infiltration and groundwater saturation (Renard, Foster, Weesies, 

McCool, and Yoder 1997; Foster 2004). The RUSLE is designed for use in 

agricultural applications, however the erodibility factor (K) was used for this 

research, as it provides a comparative scale of erosion potential (Jain, Kothyari, 

and Ranga Raju 2004). Another factor germane to this research is the C factor, 
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or runoff coefficient, for use in the rational method of peak discharge estimation 

(McCuen 2005). This is not to be confused with the C factor in the RUSLE, which 

is a measure of the crop management practice, such as disk plowing or fallow 

fields, etc. (Renard et al. 1997; Foster 2004). The runoff coefficient is a relative 

measure of the potential runoff of a given land cover type, where higher values 

equal a higher potential runoff rate (McCuen 2005; Jain et al. 2004; Mitasova et 

al. n.d.). A method for determining urban C factor from QuickBird classified 

imagery and spatial analysis produced results that were comparable to McCuen’s 

values, the values of Jain et al., and the USACE method (Thanapura, Helder, 

Burckhard, Warmath, O’Neill, and Galster 2007).  The roughness coefficient is a 

relative measure of impediment of flow over land or in a channel (McCuen 2005). 

In this research it was used in the former sense to show the effect of land cover 

types on surface runoff. 

Image Processing Techniques 

The area of interest having been defined as the Guyandotte River 

watershed, it was necessary to clip the imagery to the watershed so that only the 

information relevant to the question could be analyzed. Several pre-processing 

steps are necessary before analysis can begin. When downloading imagery from 

the USGS and many other scientific data providers, it is possible to receive data 

in hierarchical data format (.hdf), wherein the imagery is compiled in a multiband 

file with each band available for selection in an RGB format (USGS 2008). This 

format lets the analyst download imagery and immediately begin analysis, and is 

most useful when the area of interest is encompassed by a single scene. ASTER 
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imagery can be delivered in this format, for example, which is easier than 

manually compiling each of the 14 bands. However, it is often necessary to 

analyze an area that spans portions of more than one image, such as in the 

current research (Figure 16). For this case, each band can be delivered as an 

individual .tiff file, and must be added into an “image stack” to be used as a 

multiband RGB image. This is useful when scenes must be mosaicked and/or 

clipped, since you can create the mosaic of two scenes, clip them, and then 

compile them into a multiband image. Mosaicking and color matching are much 

more difficult when performed on a multiband image than on a single band of 

information.  After mosaicking and clipping, the image can be saved into a 

multiband image for subsequent analysis. 

 Figure 16. Extent of Landsat 7 Scenes Used. 
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The scenes were mosaicked using ESRI ArcGIS 9.2 software, and each 

band was saved as a .tiff file. Each of the .tiffs was then clipped to the extents of 

the Upper and Lower Guyandotte sub-basins using the ESRI Spatial Analyst 

Extract by Mask tool. The images were then imported to ER Mapper 7.1 and 

were saved as an image stack, or multiband RGB image. Each of the clipped 

bands were added to an ER Mapper algorithm as a pseudo layer, and named as 

its respective band. This stack was then saved as a multiband .ers file, which 

produces an image that has each band available in an RGB format (The Center 

for Earth Observation, Yale University 2006). At this point, the analysis 

dovetailed, with imagery being used in ER Mapper and the same imagery being 

used in Idrisi Kilimanjaro Edition in order to compare classification schemes of 

the two software packages. 

The multiband .ers file was imported to Idrisi Kilimanjaro, where they were 

automatically created as individual .rst files for each band. If the imagery were 

only to be used in Idrisi, the .tiffs could have been directly imported from ArcGIS, 

however, exploring all avenues of import/export among the software packages 

can help to overcome file format issues when they arise.  Any output created in 

Idrisi was able to be imported to ArcMap directly as the .rst file, which could be 

displayed, but in order to perform any processing, it needed to be saved as an 

ESRI grid. 

Principal Components Analysis (PCA) was performed on the clipped 

scenes to reduce the amount of correlated or redundant data. In the instance of 

Landsat 7 data, there were 6 bands of information that were used, since the 
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thermal band 6 was omitted. The process analyzes the variance among the six 

bands and condenses it into one band that accounts for most of the variance of 

the data (Inglis-Smith 2006; Jensen 2005; Sabins 2007; Aronoff 2005; Geladi 

and Grahn 1996). Each subsequent component accounts for less of the variance 

of the image, such that the first three components usually contain most of the 

useful information in an image. Subsequent components contain phenomena 

such as noise and atmospheric interference (Campbell 2002). Principle 

Components Analysis was performed in Idrisi and ER Mapper to compare 

results. 

Classification Techniques 

Assessment of the National Landcover Dataset (NLCD) showed that all 

classes necessary for this research were present. However, when the analyst 

classifies the imagery, he or she has more control over class decisions, such as 

splitting and merging of classes. If the initial classification contains enough 

classes, decisions can be based not only on the spectral response of materials, 

but also on interpretation of ancillary datasets, such as aerial photography. 

Classification was performed in the Idrisi and ER Mapper software 

packages using unsupervised techniques. Unsupervised Classification groups 

pixels into classes based on brightness values (or digital numbers) across the 

bands of an image.  This differs from supervised classification, which depends on 

information entered by the analyst which offers spectral signatures of relatively 

homogenous features. This information is known as training data. Due to the 
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scope of this research, it was not feasible to collect training data, thus, 

unsupervised classification was the best method available. 

Imagery was first analyzed in Idrisi using the CLUSTER algorithm, with 

broad and fine generalization (Eastman 2003). Both the initial imagery and the 

principle components analysis imagery were classified. The best method for 

discerning the optimal number of classes in this case is trial and error, as defined 

by the analyst. Broad generalization classifications were performed with 10 and 

16 classes on bands 1-5 and 7. Fine generalization was not given a class limit.  

The Iterative Self Organizing Clustering algorithm (Isoclust) in Idrisi was 

also used on principle component and original imagery. Isoclust first analyzes all 

desired bands and then displays the histogram for the image. From this initial 

analysis, the analyst selects the number of desired classes, minimum size of 

classes, and the file name and location for the classified imagery. The algorithm 

then classifies the image according to selected parameters (Eastman 2003). 

Initial analysis of the histogram showed that 16 classes should be the optimal 

choice for both sub-basins and both principle component and original imagery. 

Imagery was also analyzed in ER Mapper using the ISOCLASS module 

using trial and error for class numbers. The parameters to be set in the 

ISOCLASS module are the maximum number of iterations, maximum number of 

classes, the desired percent unchanged, minimum members in a class based on 

percentage, maximum standard deviation of class members from the class 

center, sampling row and column intervals, split separation value, and the 

minimum distance between class means (Figure 17; Earth Resource Mapping 
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Party 1999). Defaults were used for all but the maximum number of classes, 

which was set to 10 and 16 for both sub-basins, for both principle component and 

original imagery. 

  
Figure 17. Unsupervised Classification Parameters in ER Mapper 7.1 

 

After classification, the results required interpretation and reclassification 

by the analyst so that classes would be more nearly representative of conditions 

on the ground. While classification algorithms can be very robust, invariably they 

require human interpretation to clarify spectrally confusing results. Visual 

comparison of the classified image to aerial photography, topographic, and other 

thematic maps was employed to split or merge classes as needed. This hybrid of 

computer and human analysis is necessary to produce meaningful results. 

Products of interpreted classifications were then subjected to accuracy 

assessment using an error or confusion matrix. This function can be performed in 

a number of ways, such as spreadsheet programs (Microsoft Excel or Google 
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Spreadsheets), or it can be performed in image processing software, such as the 

ERRMAT module in Idrisi (Eastman 2003).  The method works on the principles 

of a test image and a truth image. Normally, the truth image would represent field 

reconnaissance or aerial photo interpretation; however the scope of the research 

did not allow for these methods (Franklin and Wulder 2002). Prior to assessment 

using the ERRMAT module, all images had to be clipped in ArcMap to match the 

extents of the truth image, and then imported as ASCII files back into Idrisi. 

Statistics produced by the error matrix include percent correct, the kappa 

statistic, and calculation of errors of omission and commisison. The kappa 

statistic is the adjusted measure of percentage correct when chance agreement 

is considered, estimated by the equation: k = Oୠୱୣ୰୴ୣୢିୣ୶୮ୣୡ୲ୣୢ
ଵିୣ୶୮ୣୡ୲ୣୢ

 (Wilkie and Finn 

1996). Errors of omission and commission are complimentary, meaning one 

class’s error of omission is another’s error of commission. An example of an error 

of omission from this research would be the assignment of an area of pasture on 

the ground to the low intensity residential class in the imagery, thus omitting the 

pixels from the class in which they should have been included (Aronoff 2005). 

The pixels erroneously added to the low intensity residential class would be an 

example of an error of commission with respect to the residential class, since the 

number of pixels in the class is incorrectly inflated. Both indices are important, 

since classification and interpretation could produce an image that has minimal 

errors of omission, and due to excessive commission still be a very inaccurate 

image. 
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Image Data Manipulation and Spatial Analysis Techniques 

Classified image data was integrated into geographic information systems 

for analysis. To accomplish this, imagery was imported from Idrisi to ArcGIS and 

saved as an ESRI GRID. Fields were added to the attribute tables of the rasters 

for the roughness coefficient and the C factor (runoff coefficient) for each land 

cover class (McCuen 2005). Soil polygon shapefiles were downloaded from the 

USDA-NRCS for all of the counties in the watershed except Raleigh, which was 

not available (USDA-NRCS 2008). The shapefiles were clipped to the 

Guyandotte watershed boundaries, the K factor (erodibility factor in RUSLE) 

added to each soil unit, and the vector file was rasterized (Cole 1989; Cole et al. 

1985; Gorman and Espy 1975; Jones 2007; Van Houten et al. 1981; Renard et 

al. 1997). A 30 m digital elevation model (DEM) of West Virginia was clipped to 

the Guyandotte watershed and slope was calculated using percent rise and 

classified into ten classes (West Virginia GIS Tech Center 2007). Rasters were 

then added into a suitability model that used thresholds to highlight probable 

sources for increased sedimentation. The thresholds were based on each 

relative scale in order to highlight factors that were considered favorable to 

increased sedimentation. The resulting Boolean rasters were combined using 

AND operators to complete the analysis (Figure 18; Childs, Kabot, Murad-al-

shaikh 2004; Jain et al. 2004; Price 2006).  



44 
 

Figure 18. Analytical Processes. 
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CHAPTER III 
Results and Discussion 

Overview 
 Previous research produced classified images for the upper and lower 

sub-basins of the Guyandotte watershed with the goal of finding the most 

appropriate method of classification for the research question. Methods ranged 

from aesthetic and visual interpretation to statistical comparison. The most 

important of these factors was based on accuracy assessment, or the 

comparison of the classification to perceived ground conditions. Ideally, this 

comparison is based on ground truthing field visits to a random sample of cover 

types within the classified area, however, the scope of this research necessitated 

modification of this method. Following selection of classified imagery, a 

roughness coefficient and C factor (runoff coefficient) were both applied to each 

class. The K (erodibility) factor was applied to the merged and clipped soil 

shapefile, which was then rasterized. A slope raster was created from the 30 m 

digital elevation model. Finally, a suitability model was created with the rasters to 

identify areas that were most likely to adversely affect the sediment yield.  

Classification Results 
 Principal components images produced by Idrisi and ER Mapper were 

very similar in most respects (Figures 19 and 20). However, one important 

difference was noted in ER Mapper: when the components were composited in 

an RGB image, Component 2 contained information that highlighted hillshade 

effects from the sun angle at the time of collection. Replacing this component 

with another reduced the visual differentiation between land cover classes in light  
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Figure 19. Principle Components 1, 2, and 3 as RGB Image (ER Mapper). 
 

and shadow. This difference could be very useful for classification in 

mountainous terrain, since sun angle will always play some role in confusion of 

classification. Through trial and error, the combination that seemed most useful 

was principle components 1, 3, and 5 (Figures 21 and 22). Through visual 

inspection, this combination seemed to show the least unwanted variation (valley 
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shadows). Idrisi did not exhibit this ability, as all components had a high amount 

of hillshade confusion. 

Figure 20. Principle Components 1, 2, and 3 as RGB Image (Idrisi). 
 

 Unsupervised Classification of the sub-basin images in ER Mapper 

(ISOCLASS) set to 10 classes produced images that showed differentiation 

between water, urban classes, various vegetation, and extensive bare-earth  
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Figure 21. Principle Components 1, 2, and 3 as RGB Image (ER Mapper). 

 

  
Figure 22. Principle Components 1, 3, and 5 as RGB Image (ER Mapper). 
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activities (Figure 23). Some variation, such as incorrect classification of water in 

the south of the Upper Guyandotte sub-basin, or the splitting of forest classes in 

valleys was attributed to valley shadows (Figure 24, yellow). The principle 

components images that were classified by this module de-emphasized valley 

shadows, however the ISOCLASS module grouped standing water together with 

much of the countryside, probably due to transpiration (Figure 25, yellow). 

 

 
Figure 23. ISOCLASS Highlighting Industrial Activity/Mining and Water. 

 

 Unsupervised Classification of imagery in Idrisi (CLUSTER, Fine and 

Broad) with 10 classes produced good results in the Lower Guyandotte sub-

basin, while problems with confusion from shadow, moisture, and urban  or 

industrial areas were rampant in the Upper Guyandotte (Figures 26 and 27). 

CLUSTER with Fine Generalization differentiated well among most classes; 

however water and shadow were still frequently confused (Figure 28). 
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Figure 24. ISOCLASS Highlighting Valley Shadows or Vegetation Differences. 

 
 
 

  
Figure 25. ISOCLASS Principle Components Image Showing Mixed Pixels Due to 

Transpiration. 
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Figure 26. CLUSTER, Broad Generalization. Lower Guyandotte Sub-Basin. 

 

  
Figure 27. CLUSTER, Broad Generalization. Mixed Pixels in Upper Guyandotte Sub-Basin. 
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Figure 28. CLUSTER, Fine Generalization. Mixed Pixels in Lower Guyandotte Sub-Basin. 

 

 Visual assessment of the classification schemes shows that the 

CLUSTER module with Broad generalization set to produce 10 classes proved to 

be the best, with ISOCLASS in ER Mapper being very similar. Due to the 

promising results produced by the CLUSTER and ISOCLASS modules, images 

were also produced by each for bands 1-5 and 7 with 16 classes. These images 

were superior to the 10-class products since they offered the analyst more 

interpretive leeway when compared with higher resolution aerial imagery. 

Differentiation of classes in the urban area in the Teays Valley between 

Barboursville and Huntington was very good when compared to 2 ft (61 cm) pixel 

orthophotos (Figures 29 and 30). 
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Figure 29. CLUSTER, Broad Generalization, 16 Classes. Differentiation of Urban Area. 

 

  
Figure 30. SAMB Barboursville NE, SE and Milton NW, SW DOQQs. 2003 (WVGISTC 2008). 
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 The Iterative Self Organizing Clustering (Isoclust) algorithm returned very 

good results, although confusion among water and shadow was evident (Figure 

31, gold). The Isoclust module using the principle component images 

differentiated urban, mining, water, and transportation from surrounding 

vegetation; however these four classes were combined into one, though there 

seemed to be less confusion from transpiration (Figure 32, yellow). A primary 

focus of this research is to isolate industrial activities from other classes, 

therefore this was an unacceptable shortcoming. 

 

 
Figure 31. Isoclust. Water and Mining Combined in Single Class. 
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Figure 32. Isoclust of Principle Components Image. Class Containing Several Cover Types. 
 
 

 After visual analysis and comparison, the 16 class images produced by 

the CLUSTER module were selected to continue with the research. The final 

images of 16 classes were interpreted and reclassified using aerial photography 

and thematic maps. The final result was imagery of 10 classes with descriptions 

similar to the classification scheme used by the National Landcover Dataset 

(Anderson et al. 1976). Final classes are summarized in Table 3.  
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Class 
(NLCD 

Number) 
Class (NLCD Name) 

11 Open Water 
21 Low Intensity Residential 
22 High Intensity Residential 
23 Commercial/Industrial/Transportation 
32 Quarries/Strip Mines/Gravel Pits 
33 Transitional 
41 Deciduous Forest 
42 Evergreen Forest 
81 Pasture/Hay 
85 Urban/Recreational Grasses 

Table 3. Classes of Final Imagery. 
 

Accuracy Assessment Results 

 The classified images were subjected to accuracy assessment using the 

ERRMAT module in Idrisi, which produces an error matrix. Prior to assessment, 

all images had to be clipped in ArcMap to match the extents of the NLCD, and 

then imported as ASCII files back into Idrisi. After interpretive reclassification into 

category number values that would match the NLCD classification scheme, the 

images were each compared to the NLCD. Each comparison produced a table of 

vital statistics. The Lower Guyandotte CLUSTER (broad, 16 classes) image 

when compared to the NLCD was 38.8% “correct”. If this were from comparison 

with field reconnaissance, this figure would not be very good. At best, the 

classifications produced by this research do not agree well with the NLCD. For 

this comparison, the kappa statistic, ݇, = 0.2434, meaning that this classification 

achieved accuracy 24% better than chance assignment of pixels. Errors of 

omission and commission are also included in the matrix (Tables 4 and 5). Using 

this example, the most successful class identification was of Deciduous Forest 

(41), with an approximate 87% probability that forest on the map will be forest in 
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the field (Table 4). Also, of Deciduous Forest on the landscape, 86% was 

classified correctly (Table 5; Aronoff 2005). 

 

Class Pixels per Class 
(BRCL16) 

Error C per 
Class 

0 
(Null) 1808557 1.0000 

1 6121 1.0000 
11 23859 0.9283 
22 44991 0.9986 
23 4944 0.8206 
32 12179 0.9745 
33 88431 0.9945 
41 1702665 0.1302 
42 48932 0.9944 
81 188466 0.7641 
85 13121 0.9985 

Table 4. Errors of Commission per Class. 
 
 
 

Class Pixels per Class 
(NLCD) 

Error O per 
Class 

-9999 
(Null) 1808557 1.0000 

11 8969 0.8093 
21 25573 1.0000 
22 163 0.6012 
23 11928 0.9256 
32 8120 0.9617 
33 3626 0.8657 
41 1724753 0.1413 
42 19373 0.9858 
43 142815 1.0000 
81 160616 0.7231 
82 26659 1.0000 
85 692 0.9711 
91 249 1.0000 
92 173 1.0000 

Table 5. Errors of Omission per Class. 
  



58 
 

 The most successful and appropriate classifications proved to be those 

produced with CLUSTER (broad, 16 classes) in both sub-basins, though the 

ISOCLASS module (ER Mapper) was similar. For the purposes of this research, 

these images provide the level of differentiation necessary to discern the sources 

of increased sediment load for the study area (Figure 33). 

 
Figure 33. Final Classified Image of Upper and Lower Guyandotte Sub-Basins Combined. 
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Image Data Manipulation and Spatial Analysis Results 

 The C factor derived from various sources was applied to each class of 

the selected classified imagery. A roughness coefficient was added to each class 

as an alternative relative measure of impediment of flow by land use class. The K 

factor was added to the merged and clipped soils shapefile, which was 

subsequently rasterized. In addition, a 30 m resolution digital elevation model 

was used to create a percent-rise slope raster for subsequent analysis. 

 The C factor (runoff coefficient) was added to the attribute table of the 

classified images. Larger C values reflect increased runoff potential, which 

means higher potential for sediment sources. Drawing from a variety of sources, 

reliable median values were obtained for all of the identified classes (Jain et al. 

2004; Thanapura et al. 2007; McCuen 2005). Visual inspection of the values 

validates the idea that industrial and bare earth activities will provide increased 

runoff, which will provide increased erosive power, and increased sedimentation 

(Table 6). Impervious surfaces (commercial/industrial/transportation) had a value 

of 0.85, while heavy industrial (quarries/strip mines/gravel pits) had a value of 

0.75, and light industrial (transitional) had a value of 0.65. Residential areas 

ranged from low intensity, with a value of 0.35, to high intensity, with a value of 

0.50. Forest (deciduous and evergreen) was estimated at 0.12.  The pasture/hay 

class was estimated at 0.31, and the urban/recreational grasses class was 

estimated at 0.20. Water was not estimated by any source, thus it was reasoned 

that open water would approach 1.00. 
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Class 
(NLCD 

Number) 
Class (NLCD Name) Runoff Coefficient 

11 Open Water 1.00 
21 Low Intensity Residential 0.35 
22 High Intensity Residential 0.50 
23 Commercial/Industrial/Transportation 0.85 
32 Quarries/Strip Mines/Gravel Pits 0.75 
33 Transitional 0.65 
41 Deciduous Forest 0.12 
42 Evergreen Forest 0.12 
81 Pasture/Hay 0.31 
85 Urban/Recreational Grasses 0.20 

Table 6. Runoff Coefficient per Class. 
 

 Manning’s roughness coefficient was used as an alternative relative 

measure of runoff potential and indirectly, of potential erosive power. The 

coefficient measures the surface roughness ranges for various land cover types. 

It is suggested to use the mean of each range unless a specific reason is stated 

(McCuen 2005). The lower the value, the lower the surface roughness, making 

passage of water easier and faster. In this research, the coefficient was used for 

all land cover types in the watershed. In hydrologic engineering practices, 

Manning’s coefficient is used for estimation of flow within the channel, however, 

the resolution of available imagery and available channel morphology data did 

not allow differentiation of channel characteristics. Therefore, for the channels 

themselves, or the open water class, the value was estimated at 0.031, or 

Manning’s coefficient for major streams. Due to the resolution of Landsat 

imagery, major streams are the main constituent of open water that would be 

present. The low intensity residential class was interpreted to fall in the dense 

grass range of 0.240. The high intensity residential class was assigned the short 

grass value of 0.150. The commercial/industrial/transportation class was given 
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the value for asphalt, 0.012. The quarries/strip mines/gravel pits class was given 

the recommended value for bare land, 0.010. The usually spatially adjacent 

transitional class was given the value for short grass, or 0.150, since it was 

reasoned that this usually was a class of poorly maintained reclaimed grassy 

land. The deciduous forest class was interpreted to be forest with dense 

underbrush, which received the value of 0.800. Evergreen forest was interpreted 

to have lighter underbrush, which was given a value of 0.400. The pasture/hay 

class was interpreted to resemble Bermuda grass, which was afforded a value of 

0.410. Urban and recreational grasses was estimated to belong to the dense 

grass value of 0.240. All values were taken from McCuen’s Hydrologic Analysis 

and Design textbook and applied through user interpretation of land cover types 

(Table 7). As a result, these numbers are considered somewhat subjective. 

Class 
(NLCD 

Number) 
Class (NLCD Name) 

Manning’s 
Roughness 
Coefficient 

11 Open Water 0.031 
21 Low Intensity Residential 0.240 
22 High Intensity Residential 0.150 
23 Commercial/Industrial/Transportation 0.012 
32 Quarries/Strip Mines/Gravel Pits 0.010 
33 Transitional 0.150 
41 Deciduous Forest 0.800 
42 Evergreen Forest 0.400 
81 Pasture/Hay 0.410 
85 Urban/Recreational Grasses 0.240 

Table 7. Manning’s Roughness Coefficient per Class. 
 

 The K factor was derived from the table titled Physical Properties of the 

Soils in the soil surveys of Boone, Cabell, Kanawha, Lincoln, Putnam, and 

Wyoming County (Cole 1989; Cole et al. 1985; Jones 2007; Van Houten et al. 

1981; Wolf 1988 and 1994). A soil survey was not available for Mingo and Logan 



62 
 

counties, but a shapefile for soils was available, and most of the soils were 

similar to surrounding counties. The soil survey for Fayette and Raleigh counties 

was available, however a shapefile for Raleigh was not, thus it had to be 

excluded (Gorman and Espy 1975). The Raleigh County section of the 

watershed accounted for 63,459 acres (25,681 ha), 99 square miles (256 sq km), 

or approximately 6% of the total watershed. 

 The range for the K factor was 0.10 to 0.43 (Cole 1989; Cole et al. 1985; 

Jones 2007; Van Houten et al. 1981; Wolf 1988 and 1994). Soils for which a K 

factor could not be found (n=11, or 6% of the 181 total) were given a value of 0 

(Appendix A). After the K factor was added, the shapefile was symbolized to 

show and inspect the spatial variation of values (Figure 34). The shapefile was 

then converted to a raster with 30 m pixels to coincide with the 30 m resolution of 

the classified imagery. 

 A 30 m digital elevation model (DEM) was clipped to the watershed and 

analyzed to produce a percent rise, or rise over run, slope raster. A slope of 100 

percent would mean that for every unit traveled horizontally, a unit would also be 

gained vertically, yielding a 45% angle. Therefore, slopes greater than 100% 

were possible. The range of percentage of slope in the Guyandotte watershed 

was 0 to 191.3%. The highest values were in the Mingo and Logan county 

sections, and in the headwaters in Wyoming County (Figure 35). 

Suitability analysis was performed in ArcGIS 9.2 by creating thresholds for 

each of the datasets. Thresholds were based on each relative scale, creating 

Boolean rasters (1 and 0) of suitability for the criteria. These rasters were then 
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combined using an AND operator to show the coincidence of favorable factors for 

an increase in sediment output. 

The runoff coefficient, or C factor, was considered to be favorable to 

increased sedimentation at values greater than or equal to 0.50. This would 

include areas of high intensity residential, commercial/industrial/transportation, 

quarries/strip mines/gravel pits, transitional, and open water (Table 6). These 

results were useful for adding interpretive numeric values to medium resolution 

imagery, however, they may not be as effective when using higher resolutions. 

The conditional map algebra statement used to create a suitability raster was 

stated as: CON (guy_recl >= 0.5, 1) where guy_recl is the name of the raster 

containing C factor data. The output was called c_facs. 

 Manning’s roughness coefficient presented an alternative value for the 

principle of impediment of overland flow. Values lower than 0.200 were 

considered to be favorable to increased sediment yield (Table 7).   This 

coefficient, while similar to the C factor, showed more variation in forest cover 

types, which is considered more nearly correct. This coefficient also had a 

specific value for bare land, which was used for the quarries/strip mines/gravel 

pits class. Despite more accurate values for portions of the research question, 

the selected thresholds highlighted identical land cover classes, making them 

redundant for this analysis, thus no additional suitability raster was necessary. 

The K factor for soil erodibility exhibited a scale of 0.10 to 0.43 (Figure 34; 

Appendix A). Values of 0 were accepted for soils that had no K factor available in 

the literature, and Raleigh County was excluded from this analysis. While many 
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factors affect measurement of erosion, this coefficient was interpreted to show 

that lower values showed higher erosion potential (Cole et al. 1985). A K factor of 

0.24 was selected as the threshold, and values below or equal to this were 

extracted. These values were indicative of the top layer of soils, since surface 

runoff was the focus of research, ranging from the surface to 13 to 48 cm (5 to 19 

in). A separate suitability raster was not created for this layer, rather, the 

suitability was extracted during the final analysis. 

Slope was calculated from a 30 m digital elevation model (DEM) to show 

percent rise throughout the watershed (Figure 35). The steepest slopes were 

found in Mingo and Logan counties, along the Guyandotte River channel in 

Wyoming County, and in the headwaters of the watershed in eastern Wyoming 

County. Slopes were considered steep around 50% rise, which favored much of 

the upper sideslopes of the southern part of the watershed (Figure 36). A 

separate suitability raster was not created for this layer, and as the previous 

raster, the suitability was extracted during the final analysis. 

 All factors were combined using the map algebra module in ArcGIS 

Spatial Analyst. The conditional statement for the suitability model of potential 

erosion was stated as:  

con (slopeguy >= 50 and soil <= 0.24 and c_facs == 1, 1) 

 where slopeguy is the slope raster, soil is the K factor raster, and c_facs is the 

raster representing both the C Factor and Manning’s roughness coefficient. This 

analysis showed that approximately 5890 acres (2384 ha), or 9 square miles (23 

sq km) of the watershed’s 1,076,930 total acres (435,818 ha), or 1,683 square 
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miles (4,358 sq km) were potential sources of excessive sediment yield. This 

accounts for 0.5% of the acreage of the watershed. 

The slope factor excluded much of the Lower Guyandotte sub-basin, and 

much of the bare earth activity extracted from the Landsat imagery. The 

suitability model was recalculated without the slope input:  

con (soil <= 0.24 and c_facs == 1, 1).  

When the slope factor was excluded, the potential source area grew to 37,286 

acres (15089 ha), or 144 square miles (373 sq km). This area accounted for 

3.5% of the total watershed, and included much of the land cover classes that 

were considered probable sources (Figure 37). A subset of the Lower 

Guyandotte sub-basin shows areas of high potential in proximity to a known 

surface mine (Figure 38).  
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  Figure 34. K Factor, Measuring Soil Erodibility. 
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  Figure 35. Slope within Guyandotte Watershed. 
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  Figure 36. Slope Greater than 48% within Guyandotte Watershed. 
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  Figure 37. Comparison of Suitability Models. 
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Figure 38. Subset of Suitability Models over Landsat 7 Color Infrared Image. 
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CHAPTER IV 

Summary 

Conclusions 
 The model successfully showed the potential for remotely sensed imagery 

to aid in investigations of complex variables where conventional data is lacking. 

In many sediment yield models, adequate data is available for velocity, 

bathymetry, discharge, and sediment load. In the area selected for this research, 

the Greenup Pool of the Ohio River, the data consisted of two points 

approximately 61.8 river miles apart. The Guyandotte River watershed was used 

as a test case of the feasibility of this model. 

 While the sensing of direct parameters of water quality is difficult due to 

spatial, spectral, and temporal limitations of current sensors, this research shows 

that relative values can be delivered through indirect means, such as suitability 

modeling, for a reasonably low cost. The imagery used for this study consisted of 

two scenes of Landsat 7 ETM+ from May of 2002, and were available free of 

charge from the USGS. Soil maps and other vector data were available from the 

West Virginia Geographic Information Systems Technical Center at no cost, as 

well. Soil Surveys are available at local libraries, online, or from the United States 

Department of Agriculture Natural Resources Conservation Service. Other 

sources of tabular data were not free of charge, but their cost was minimal. When 

compared with the cost of collecting the data from a sufficient number of points to 

produce a similar data product, it is clear that remote sensing and spatial 

analysis offers a powerful alternative, or at least, a necessary supporting 

argument in analysis of water quality. 
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Future Research 

 There are detriments to this method, as well. For an example, consider 

Figure 38, where the model shows potential erosion hazards in proximity to the 

surface mine. The model did not highlight the mine due to the lack of current 

information in the soil raster. The soil polygons, from whence came the raster, 

were generated from soils books that were published as far back as 1975. Even 

when considering the publication date of the 2007 Lincoln County Soil Survey, 

the field work would have been completed years prior (Jones 2007). Therefore, 

there is a clear need to have updated datasets that generally agree temporally 

for the study area. 

 The use of Landsat 7 imagery is good for a regional approach, and did 

produce decent results, however, it would be desirable to use higher resolution 

imagery, which would produce classifications that would show subtle differences 

in land cover types. With these subtle differences, the spatial accuracy of models 

would increase. Although the digital elevation model was not produced by this 

study, it was produced using Landsat imagery. This was useful for this model due 

to the 30 m resolution of the classified images, however, higher resolution DEMs 

are available. Higher resolution of elevation models would mean more accurate 

stream and runoff calculation, and would make the model more powerful in 

localized models, such as for individual surface mining permit operations. 

 Many parameters that should be present in a robust sediment yield model 

were absent from this model, due mainly to cost of time and resources, but also 

by limitations of processing power. Parameters for canopy closure, 
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meteorological data, and underbrush vegetation would increase the modeling 

power to include raindrop splash erosive force, and increase the efficacy of runoff 

coefficients. 

 The methods applied in this research show potential for future, more 

detailed study of the watershed. The immediate need would be to apply these 

methods to the remaining watersheds that feed the Greenup Pool, so that 

comparison data could be assessed. After this is completed, the addition of 

selected parameters would offer a significant increase in validity of the model. 
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The following table contains Natural Resources Conservation Service (NRCS) soil symbols that 
were located within the Guyandotte Watershed. The K Factor was added from tabular data in 
the soil surveys of Boone, Cabell, Kanawha, Lincoln, Putnam, and Wyoming counties (Cole 
1989; Cole et al. 1985; Jones 2007; Van Houten et al. 1981; Wolf 1988 and 1994). No soil 
shapefile was available for Raleigh County, so it was omitted from analysis and this appendix. 
Logan and Mingo counties did not have a published soil survey available, so K Factors for those 
soils were added from adjacent surveys where possible. A K Factor of 0 had to be accepted for 
several soil types due to lack of data. Names and descriptions of these soils can be obtained 
from the soil surveys of the aforementioned counties. 

NRCS 
Symbol 

MUKEY 
K 

Factor 
AbB  1155533  0.32 
AgA  513150  0.32 
AgB  553311  0.32 
AgC  513152  0.32 
AhC  513637  0.32 
BeD  553364  0.32 
BeE  553379  0.32 
BPF  513488  0.17 
BrG  1155534  0.28 
BSF  1155535  0.17 
Ca  513640  0.32 
CDF  512830  0.24 
CeB  532203  0.32 
CeF  513489  0.32 
Cg  513490  0.32 
CgF  514853  0.37 
Ch  1155536  0.37 
Ck  1155537  0.32 
CoA  553361  0.37 
CoB  513155  0.43 
CoC  513156  0.43 
Cr  1155538  0.32 
CrF  532204  0.32 
CtB  513644  0.37 
Cu  513492  0.32 
CuB  553359  0.43 
CuC  553358  0.43 
DgF  515008  0.37 
DlD  553340  0.43 
DlE  515009  0.43 

NRCS 
Symbol

MUKEY 
K 

Factor 
DoD  513645  0.43 
DPF  513493  0.17 
DrD  515010  0.24 
DrE  515011  0.24 
FkC  1155539  0.28 
FkF  1155540  0.28 
FvE  513494  0.32 
GiD  553349  0.32 
GiE  559311  0.32 
GlC  513157  0.32 
GlD  513647  0.32 
GlE  532208  0.32 
GlF  553350  0.37 
GmE  1155542  0.24 
GpC  513495  0.32 
GpD  553318  0.32 
GpE  513496  0.37 
GpF  553320  0.43 
GrE  553351  0.32 
GRF  512839  0.32 
Gs  553337  0.20 

GsC3  512845  0.32 
GsD3  512846  0.32 
Gt  1412599  0.20 
Gu  553355  0.32 
GuC  515013  0.32 
GuC3  513159  0.32 
GuD  515014  0.32 
GuD3  513161  0.32 
GuE  515015  0.32 

NRCS 
Symbol 

MUKEY 
K 

Factor 
GuE3  513163  0.32 
GuF  515016  0.32 
GuF3  513165  0.32 
GvE  513166  0.17 
GvF  513167  0.17 
Gw  1155543  0.32 
GwE  514857  0.32 
GxD  513657  0.35 
Gy  513658  0.37 
Gz  513659  0.37 
HaA  513168  0.32 
HaB  513169  0.32 
HgE  1155544  0.32 
HMF  1155545  0.15 
Ho  513497  0.28 
HuE  1155546  0.15 
Hy  553367  0.28 
ImE  513498  0.32 
ImF  1155547  0.32 
ItF  513499  0.32 
KaA  513171  0.32 
KaB  532216  0.32 
KcF  1155550  0.32 
KeB  514862  0.32 
KfB  1155548  0.28 
KfF  1155549  0.28 
KmF  513501  0.32 
KnA  513663  0.32 
KnB  513664  0.32 
KrF  532220  0.32 
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NRCS 
Symbol 

MUKEY 
K 

Factor 
KuB  513665  0.32 
LdE  514865  0.28 
LgC  515022  0.43 
LgD  515023  0.43 
LiD  553323  0.28 
LiE  559309  0.28 
LlC  532223  0.28 
LlD  513174  0.28 
LlE  513175  0.28 
LmE  1155552  0.32 
Lo  553370  0.37 
MaB  513671  0.43 
MaC  513672  0.43 
MgB  513502  0.43 
MgC  513180  0.43 
MHF  1155553  0.28 
MlE  553345  0.15 
Mo  513181  0.32 
MoB  513674  0.43 
MoC  513675  0.43 
MPF  1155555  0.10 
Mr  553366  0.32 
Ms  553327  0.37 
MuC  513676  0.43 
Ne  553354  0.37 
Or  553371  0.37 
PbC  513503  0.20 
PbE  515032  0.28 
PBF  1155556  0.17 
PcE  513504  0.20 
PlE  532232  0.15 
PnE  1155557  0.20 
Po  513677  0.24 
PoB  513505  0.24 
PuB  513506  0.24 
PvE  553378  0.20 
RmF  557377  0.28 
SbB  1155559  0.24 
Sc  553328  0.32 
Se  513182  0.32 

NRCS 
Symbol

MUKEY 
K 

Factor 
SeA  553329  0.24 
SeB  1155560  0.24 
SeC  513507  0.32 
Sf  513183  0.32 
SfB  553330  0.24 
ShF  553342  0.24 
SkC  553381  0.28 
SlD  553376  0.28 
SlE  532152  0.28 
Sm  553341  0.24 
Sn  513184  0.20 
SoA  513678  0.24 
SrB  513185  0.20 
SvC  513680  0.24 
SwF  514869  0.32 
TlB  513186  0.43 
Ty  513187  0.43 
Ua  1155561  0.00 
UA  513188  0.00 
Ub  1155562  0.00 
UcB  1155570  0.00 
Ud  513508  0.00 
UeC  513193  0.37 
Uf  1155564  0.00 
UgC  513195  0.37 
UgD  513197  0.37 
UgE  513199  0.37 
UkB  1155566  0.32 
UnB  1155567  0.32 
UoB  513204  0.43 
UpC  513682  0.37 
Ur  513683  0.00 
Us  513684  0.32 
UtB  1155568  0.00 
UuB  553380  0.00 
UvC  513205  0.43 
Uw  1408560  0.00 
VaB  512871  0.37 
VaC  513206  0.37 
VaD  513207  0.37 

NRCS 
Symbol 

MUKEY 
K 

Factor 
VaE  513208  0.37 
VbD  513209  0.32 
VdD3  513210  0.37 
VeB  513211  0.43 
VeC  513212  0.43 
VnD  553335  0.37 
VnE  553336  0.37 
VuD  513687  0.37 
W  1155573  0.00 
Ye  1155572  0.24 
Yg  553348  0.17 
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