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Modeling super-spreading events for SARS

Thembinkosi P. Mkhatshwa

ABSTRACT

One of the intriguing characteristics of the 2003 severe acute respira-
tory syndrome (SARS) epidemics was the occurrence of super spreading
events (SSEs). Super-spreading events for a specific infectious disease
occur when infected individuals infect more than the average number of
secondary cases. The understanding of these SSEs is critical to under-
standing the spread of SARS. In this thesis, we present a modification
of the basic SIR (Susceptible - Infected - Removed) disease model,
an SIPR (Susceptible - Regular Infected - Super-spreader - Removed)
model, which captures the effect of the SSEs.
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Chapter 1

Introduction

The Severe Acute Respiratory Syndrome (SARS) was the first epi-
demic of the 21st century. It emerged in China late 2002 and quickly
spread to 32 countries causing more than 774 deaths and 8098 infec-
tions worldwide [14]. SARS is an example of the devastating epidemics
of infectious diseases which have wiped out a significant percentage of
the human population throughout history. The primary goal of this
thesis is to formulate a mathematical model that captures the role of
super-spreading events in the spread of the 2002-2003 SARS epidemic.

The first chapter is devoted to giving background and vital information
about SARS. Our main goal here is to understand the basic epidemiol-
ogy of this disease and the role of mathematical modeling in modeling
the spread of the SARS epidemic. A review of two basic population
models, the exponential and logistic growth model respectively, is given
in Chapter 2. The next generation method, a method used for calcu-
lating an important parameter in the study of epidemics (the basic
reproduction number) is presented in Chapter 3. An overview of the
SIR (Susceptible - Infected - Removed) and SI1I2R (Susceptible - In-
fected Class 1 - Infected Class 2 - Removed) models, standard models
in the study of infectious diseases, are presented in Chapter 4. Finally,
a compartment SIPR (Susceptible - Regular Infected - Super-spreader
- Removed) model is presented in Chapter 5. This model captures
super-spreading events as a main feature that is believed to have been
responsible for the progression of the SARS epidemic.

We start by looking at an overview of the SARS epidemic as it ap-
plies to this thesis.
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1.1 What is SARS?

Severe Acute Respiratory Syndrome (SARS) is a highly contagious
respiratory disease which is caused by the SARS Coronavirus. It is a
serious form of pneumonia, resulting in acute respiratory distress and
sometimes death.

The SARS epidemic originated in China, in late 2002. Although the
Chinese government tried to control the the outbreak of the SARS
epidemic without the awareness of the World Health Organization
(WHO), it continued to spread. Failure of the Chinese government
to seek international aid to fight the spread of SARS contributed to
the epidemic spreading to most parts of the country. A Chinese doctor
reported the SARS epidemic crisis to the WHO in early April of 2003,
which then resulted in a system being set up to improve reporting and
control in the SARS crisis [14]. The SARS outbreak is believed to have
occurred between November 2002 and June 2003 between November
2002 and July 2003 [2].

1.1.1 Spread to other countries

An American businessman traveling in southern China in the fall of
2002 was the first known foreigner to contract the disease. He did not
show symptoms or become ill until after he had flown from Guangzhou,
China, to Hanoi, Vietnam. It is not known how many people the
businessman might have infected during his travel from China to Viet-
nam [16]. In an age of international travel, global business, and tourism,
there is no longer such a thing as a purely localized contagious dis-
ease. Diseases originating in the most remote inhabited regions can be
spread globally in a matter of hours. The first line of defense is accurate
and timely information. While the unfortunate American businessman
was the carrier who took SARS beyond China’s borders, the “head in
the sand” obstructionist attitude of Beijing officials was the real cul-
prit [16].

From Table 1.1, we see that the SARS epidemic claimed over 700 lives
and infected over 8000 people worldwide between November 2002 and
July 2003 [2]. There were 7780 SARS cases in the continent of Asia
where the first outbreak was reported of which 729 of them died bring-
ing the fatality rate in Asia to 9.4%. Other notable continents where
the SARS epidemic was reported include Europe and Africa.
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Table 1.1: Probable cases of SARS by continent, November 2002 to July 31,
2003 [2]

Continent Cases Deaths Death cases not Fatality(%)
related to SARS

Europe 492 45 0 9.1

Asia 7780 729 60 9.4

Africa 1 1 0 100

Total 8273 775 60 9.6

1.1.2 SARS symptoms and signs

People affected by SARS develop a fever greater than 100.4◦F (38.0◦C),
followed by respiratory symptoms such as cough, shortness of breath or
difficulty breathing. In some cases, the symptoms become increasingly
severe and patients may require oxygen support and mechanical help
to breath. Symptoms found in more than half of the first 138 patients
included (in the order of how they commonly appeared): fever, chills
and shaking, muscle aches, cough, and headache. Less common symp-
toms include (also in order): dizziness, productive cough (sputum),
sore throat, runny nose, nausea and vomiting, and diarrhea [2].

In most cases, symptoms appear within 2 to 3 days of infection [14].
The most prominent symptoms of SARS are high fever and coughing
or shortness of breath. According to the World Health Organization
(WHO), the vast majority of those infected have an incubation period
less than ten days [14]. There may be many factors related to the
person’s immune system or factors in the environment that affect the
symptoms and severity of SARS [14].

1.1.3 Transmission

SARS is caused by a previously unknown type of coronavirus, the same
type that cause common cold. SARS is spread by droplet contact.
When someone with SARS coughs or sneezes, infected droplets are
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spread into the air. Like other coronaviruses, the SARS virus may
live on hands, tissues, and other surfaces for up to six hours in these
droplets and up to three hours after droplets have dried. After studying
the virus, SARS was given a basic reproduction number (R0) of three
by Lipstich, a relatively low number [20]. This value is a measure of the
potential of a disease to spread to susceptible populations when control
measures are not taken. We explain the details of R0 in Chapter 3.

SARS can only travel a few meters, which limits its transmissibility [4].
In order to become infected, a person usually must have either close
contact with an infected person (such as in a household), intense ex-
posure (such as in a small area like an airplane or taxi) or have been
in a high risk area (such as a health care setting).

1.2 The role of mathematical modeling in the spread
of the SARS epidemic

Mathematical models have become important tools in analyzing the
spread and control of infectious diseases. The model formulation pro-
cess clarifies assumptions, variables, and parameters; moreover, models
provide conceptual results such as the basic reproduction number dis-
cussed in Chapter 3. Mathematical models and computer simulations
are useful experimental tools for building and testing theories, assess-
ing quantitative conjectures, answering specific questions, determining
sensitivity to changes in parameter values, and estimating key param-
eters from data [9].

Our study will make use of mathematical models in epidemiology (dis-
cussed in detail in Chapter 4) which involve the use of ordinary differen-
tial equations. The models describe population behavior in continuous
time, t. Ordinary differential equations describe many physical situa-
tions. Their prominence in applied mathematics is due to the fact that
most of the scientific laws are more readily expressed in terms of rates
of change. The SIPR model we develop eventually is a modification of
the SIR model discussed in Section 4.1.

We conclude this section by giving a brief survey of SARS models
developed after the 2002-2003 SARS epidemic:

• Lipsitch developed a model for the spread of Severe Acute Respi-
ratory Syndrome (SARS) and used the model to make predictions
on the impact of public health efforts to reduce disease transmis-
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sion [5]. Such efforts included quarantine of exposed individuals
to separate them (perhaps by confinement to their homes) from
the susceptible population, and isolation of those who had SARS
in strictly supervised hospital areas with no contacts other than
by healthcare personnel. The Lipsitch model is an extension of
the SEIR model, which is an extension of the SIR model. Besides
the populations considered by SIR, the SEIR Model (Susceptible-
Exposeds-Infecteds-Removeds) has an intermediate Exposed (E)
population of individuals who have the disease but are not yet
infectious. The Lipsitch model modifies SEIR to allow for quar-
antine, isolation, and death [11].

• Riley, developed a stochastic metapopulation model with hospi-
talized and presymptom stages to study SARS in Hong Kong.
The focus of the model was to estimate the basic reproduction
number, R0, discussed in Chapter 3, in the absence of super-
spreading events, control measures and nosocomial transmission.
Riley concluded that the number of transmissions fell during the
course of the outbreak as result of control measures and reduced
contact; movement restrictions can be effective; and hospital trans-
mission is significant [17].

• Wang developed a simplified deterministic compartment model
to study the outbreak of SARS in Beijing. Their focus was pa-
rameter estimation and assessment of control measures. They
concluded that applying control measures early is important, in
order to avoid endemic persistence [19].

• Gumel, developed a deterministic model with quarantine, isola-
tion to study the SARS outbreak in Toronto. Their focus was to
assess the efficiency of control measures. They concluded that a
perfect isolation policy alone is sufficient to control SARS, with
or without quarantine; and that resources should be devoted dis-
proportionately to isolation programs [7].

1.3 Super-spreading events in infectious diseases

Super-spreading events for a specific infectious disease occur when in-
fected individuals infect more than the average number of secondary
cases [10]. Super-spreading events pose a serious threat to public health
and their influence on the course of diseases must be studied in or-
der effectively control the spread of a disease characterized by SSEs.
The 2002-2003 outbreak of severe acute respiratory syndrome (SARS)
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brought the notion of super-spreading events to the forefront of epi-
demiological modeling simply because of the high numbers of secondary
cases they caused.

In the following discussion we highlight two models that were developed
to model super-spreading events for the SARS epidemic.

• Masuda, et al, developed a contact network model to study the
outbreak of SARS. Their focus was to model super-spreading
events, spatial effects, and social networks. They concluded that
social network structure impacts spread; highly connected SSEs
are crucial [13].

• Meyers, et al, also developed a network model specifically to
study the outbreak of SARS in Vancouver. Their focus was to
understand heterogeneity in SARS transmission (super-spreading
events, geographic variation in outbreak occurrences). They con-
cluded that network structure, and the location of index cases
within a network, can influence size of outbreaks and chances of
an epidemic occurring [15].

1.4 Aim and Objectives

The principal aim of this thesis is to construct the appropriate mathe-
matical model in the form of a system of ordinary differential equations
that captures the effect of super-spreading events for SARS. We then
analyze the stability of the model. The main objectives of this thesis
are:

• To develop a model for Severe Acute Respiratory Syndrome (SARS)
that captures the effect the super-spreading events (SSEs)

• To analyze the stability of the SARS model which includes finding
equilibria, showing that a unique global solution of the model
exists. We also show that solutions for the constituent ODEs of
the SIPR model stay positive for all time, t ≥ 0.

• To present sample graphs to illustrate the behavior of solutions
in continuous time of the SARS outbreak.

• To describe some benefits and limitations of the model.
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Chapter 2

Basic population models

In this chapter we present a detailed explanation of two basic theoret-
ical population models, the exponential growth model and the logistic
growth model. Each subsection in this chapter includes an explanation
of the model, the assumptions associated with the model, its analyti-
cal solution, an illustration of the behavior of the model and finally a
discussion of its merits and shortcomings.

2.1 The exponential growth model

The exponential growth model, also called the Malthusian model, de-
scribes exponential growth (including exponential decay) based on a
constant rate of population growth or decay. The model is named after
the Reverend Thomas Malthus, who authored An Essay on the Prin-
ciple of Population [12], one of the earliest and most influential books
on population. We discuss the formulation of this model, its analytical
solution, equilibrium solution, and finally its merits and limitations in
the following subsections.

2.1.1 Model formulation

In many natural phenomena, quantities grow or decrease at a rate that
is proportional to their size. Human population growth is no exception
to this phenomena. Precisely, if N = N(t) denotes the human popula-
tion size in a particular location at time t, then it seems reasonable to

expect that the population growth rate,
dN

dt
, is directly proportional to

the population size N, that is,
dN

dt
∝ N . This implies that

dN

dt
= rN,

where r = b − d the difference between the constant birth rate b and
the constant death rate d. The constant r is called the instantaneous
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rate of increase if b > d [6]. The value of r determines whether a popu-
lation increases exponentially (r > 0) as shown in Figure 2.1, remains
constant in size (r = 0) as shown in Figure 2.3 or declines to extinc-
tion (r < 0) as shown in Figure 2.2. The complete exponential growth
model is given by the following equation:

dN

dt
= rN (2.1)

subject to the initial condition condition

N(0) = N0 (2.2)

where N(0) = N0 is the initial population size.

Equation 2.1 is a simple model of population growth. The simplic-
ity of this model is due to the fact that r, the instantaneous rate of
increase, is constant as a result of constant birth and death rates, b
and d, respectively. Further simplification of the model is brought by
the closure (immigration and emigration not taken into consideration)
of the population.

2.1.2 Analytical and equilibrium solutions of the exponential
model

We proceed to find the exact solution of the first order linear ordinary
differential equation, model 2.1 so to express the population size N as
a function of time, t. To accomplish the latter, we use the method of
separation of variables:

dN

dt
= rN (2.3)

dN

N
= rdt

ln(N) = rt+ c1

N(t) = exp(rt+ c1)

= c2 exp(rt)

To obtain the actual value of the constant c2 we apply the initial con-
dition 2.2 in equation 2.3 such that N(0) = N0 which implies that
N(0) = c2 exp(r(0)) = c2 exp(0) so that c2 = N0. Hence the analytical
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Figure 2.1: Population grows exponentially, using r = 0.5 and N = 100

solution of exponential growth model is given by:

N(t) = N0 exp(rt) (2.4)

The equilibrium solution, N = 0, of this model is obtained by setting
dN

dt
= 0 in Equation 2.1 and solving for N when r 6= 0. For a popula-

tion experiencing exponential growth/decay, the equilibrium solution
means that in the long run population size will decrease to zero.

2.1.3 Merits and limitations of the exponential model

The exponential model has the following benefits:

• Exponential growth (or decay) forms the cornerstone of popu-
lation biology [6] in the sense that even though no population
can increase forever without a limit as shown in Figure 2.1, all
populations have the potential for exponential increase. This po-
tential for exponential increase in population size is one of the
key factors that can be used to distinguish living from non-living

9



Figure 2.2: Population declines to extinction, using r = −0.5 and N = 100

Figure 2.3: Population size stays constant for all time, using r = 0 and
N = 100

10



organisms [6]. Exponential growth is observed in small popula-
tions with seemingly unlimited resources. Exponential decay is
observed in large populations with limited resources.

• For r 6= 0, the exponential population model predicts either pop-
ulation growth without bound or inevitable extinction as shown
in Figures 2.1 and 2.2. The difference is based on whether the
growth rate r is positive or negative.

• The model is very simple with only one parameter, the intrinsic
growth/decay rate, r.

The exponential model suffers from the following limitations:

• In reality, no population grows/decays indefinitely; i.e. from a
biological point of view the missing feature of the exponential
model is the idea of carrying capacity. The carrying capacity is
the maximum size of the population that can be supported by the
environment in terms of resources like availability of food. As the
population increases in size the environment’s ability to support
the population decreases. As the population increases per capita
food availability decreases, waste products may accumulate and
birth rates tend to decline while death rates tend to increase. It
seems reasonable to consider a mathematical model which explic-
itly incorporates the idea of carrying capacity.

• In the exponential model, we think of the population being closed
i.e. we ignore immigration and emigration.

• Finally, the intrinsic growth/decay rate is constant. In reality the
intrinsic growth/decay rate is more likely to be time dependent
i.e. it changes over time.

2.2 The logistic growth model

In the following discussion, we discuss in detail the logistic growth
model developed by a Belgian mathematician Pierre Verhulst (1838),
who suggested that the rate of population increase may be limited
by several factors such as availability of food, outbreak of diseases,
etc. This model addresses the unbounded population growth behavior
observed in the exponential model discussed in Section 2.1. We find its
analytical solution, its equilibrium solution, and finally we discuss its
merits and limitations.

11



2.2.1 Model formulation

The logistic model is a modification of the exponential population
model discussed in Section 2.1. As with the exponential population
model, the logistic model includes a rate r. The constant r is called
the instantaneous rate of increase/decrease [6]. The value of r deter-
mines whether a population grows logistically (N < K and r > 0) as
shown in Figure 2.4, remains constant in size (r = 0) or declines to car-
rying capacity (N > K and r < 0) as shown in Figure 2.5 where K is
the carrying capacity of the environment, a constant.

A second parameter, K, represents the carrying capacity of the sys-
tem being studied. Carrying capacity is the population level at which
the birth and death rates of a species precisely match, resulting in a
stable population over time. In simple terms, for any particular species
in a given environment, the carrying capacity is the maximum sustain-
able population. That is, the largest population the environment can
support for extended periods of time.

When the population size is small relative to the carrying capacity, lo-
gistic growth is exponential with growth rate close to the rate r. As the
population approaches the carrying capacity, the logistic growth rate
approaches zero. Likewise, when the population size is large relative to
the carrying capacity, the population size decreases exponentially and
approaches the carrying capacity. The logistic growth/decay rate at
any time depends on the population at that time, the carrying capac-
ity, and the rate r.

Letting N = N(t) represent the population size at any time period
t, the logistic model is:

dN

dt
= r

(
1− N

K

)
N (2.5)

subject to the initial condition

N(0) = N0,

where N(0) = N0 is the initial population size.

Equation 2.5 above is a separable ordinary differential equation which
can be solved analytically using the method of separation of variables.
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2.2.2 Analytical and equilibrium solutions for the logistic
model

We proceed to find the exact solution of the first order non-linear or-
dinary differential equation 2.5 expressing the population size N as a
function of time, t. To accomplish the latter, we use the method of
separation of variables and the concept of partial fractions:

1

N

dN

dt
= r

(
1− N

K

)
1

N

dN(
1− N

K

) = rdt∫ (
1

N
+

1
K

1− N
K

)
dN =

∫
rdt

ln

(
N

1− N
K

)
= rt+ C1

N =
C exp(rt)

1 + C
K

exp(rt)

Next we solve for the constant C by applying the initial condition in
Equation 2.2:

N(0) = N0 =
C

1 + C
K

which implies that

C =
KN0

K −N0

.

Hence the exact solution of the logistic model is given by:

N(t) =
KN0 exp(rt)

K +N0(exp(rt)− 1)
(2.6)

The equilibrium solutions N = 0 and N = K, of this model are ob-

tained by setting
dN

dt
= 0 in Equation 2.5 and solving for N when

r 6= 0. These solutions play a crucial role in predicting the population
growth behavior in continuous time.
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Figure 2.4: Population increases and approaches the carrying capacity
asymptotically, using N0 = 4 and K = 20

2.2.3 Merits and limitations of the logistic model

The logistic model has the following benefits:

• Unlike the exponential model, the logistic model takes into con-
sideration the limited resources of the environment. This is done
by introducing the carrying capacity K in the exponential model
discussed in Section 2.1. Birth/death rates depend on population
size.

• The general form of the logistic model prevents unbounded growth
since the per capita growth rate drops to zero whenN = K. Thus,
the population asymptotically approaches K instead of growing
indefinitely as shown in Figure 2.4. If N > K the population
decreases and approaches the carrying capacity asymptotically as
shown in Figure 2.5.

• The logistic model is suitable for both population growth and
decay in environments with limited resources.

• The logistic model is simple with two parameters, K, the carrying
capacity, and r the intrinsic growth/deacy rate.

14



Figure 2.5: Population decreases and approaches the carrying capacity
asymptotically, using N0 = 45 and K = 20

The logistic model suffers from the following limitations:

• We observe that the logistic model still exhibits similar problems
as those of the exponential model. Precisely, the logistic model
is also autonomous. Also, in reality environmental conditions
influence the carrying capacity. As a consequence it can be time-
varying, i.e. K = K(t) > 0, which is not so in the basic logistic
model discussed in this section.

• Like the exponential model, we think of the population being
closed; i.e. we ignore immigration and emigration.

• Finally, the intrinsic growth/decay rate is constant. In reality the
intrinsic growth/decay rate is more likely to be time dependent,
i.e. it changes overtime.
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Chapter 3

The basic reproduction
number, R0

An important parameter when modeling diseases is the basic repro-
ductive number, denoted as R0. It is defined as the “average number
of secondary infections caused by a single infectious individual during
their entire infectious lifetime” in a fully susceptible population [18].
It’s a measure of how quickly a disease spreads in its initial phase and
can predict whether a disease will become endemic (prevalent) or will
die out [18].

The basic reproductive number is an important threshold parameter
because it tells us wether a population is at risk from a given disease or
not [9]. When R0 > 1, the occurrence of the disease will increase and
when R0 < 1 the disease spreads slower than people recover. When
R0 = 1, the disease occurrence will be constant. R0 is affected by the
infection and recovery rates. For example, the basic reproduction num-
ber for a measles epidemic in Niamey, Niger was found to be between
12 and 18 [3]. Table 3.1 shows reproduction numbers for well known
diseases.

3.1 The Next Generation Method

The next generation method is a general method of deriving R0 in sit-
uations in which the population is divided into discrete, disjoint com-
partments discussed extensively in Chapter 4 [18].

In the next generation method, R0 is defined as the largest eigenvalue
of the next generation matrix. The formulation of this matrix involves
determining two classes, infected and non-infected, from the model.
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Table 3.1: The value of R0 for some well-known diseases [9]
Disease R0

AIDS 2 to 5

Smallpox 3 to 5

Measles 16 to 18

Malaria > 100

Assume that there are p compartments of which q are infected. We
define the vector x = xi, i = 1, 2, ..., p, where xi denotes the number of
individuals in the ith compartment. Let Fi(x) be the rate of appear-
ance of new infections in compartment i and let Vi(x) = V −i (x)−V +

i (x),
where V +

i (x) is the rate of transfer of individuals into compartment i
by all other means and V −i (x) is the rate of transfer of individuals out
of the ith compartment. The difference Fi(x) − Vi(x) , gives the rate
of change of xi. Fi only includes infections that are newly arising, but
does not include terms which describe the transfer of infectious indi-
viduals from one infected compartment to another.

The next generation matrix FV −1 is formed from partial derivatives

of Fi and Vi. V
−1 is the inverse of matrix V . We have F =

[
∂Fi(x0)

∂xj

]
and V =

[
∂Vi(x0)

∂xj

]
where i, j = 1, 2, ..., q and where x0 is the disease

free equilibrium (when everyone remains susceptible which is to say
that there are no infections at all). The entries of FV −1 give the rate
at which infected individuals in xj produce new infections in xi, times
the average length of time an individual spends in a single visit to
compartment j. R0 is given by the largest eigenvalue of the matrix
FV −1 [18] [3].
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Chapter 4

Compartmental models in
epidemiology

In order to model the progress of an epidemic in a large population
comprising of many different individuals with different characteristics,
such a population diversity must be reduced to a few key character-
istics which are relevant to the infection under consideration [1]. For
example, for most common childhood diseases that confer long-lasting
immunity it makes sense to divide the population into those who are
susceptible to the disease, those who are infected and those who have
recovered and are immune. These subdivisions of the population are
called compartments.

A compartmental model is one for which the individuals in a popu-
lation are classified into compartments depending on their status with
regard to the infection under study. A person cannot be in more than
one compartment at any given time during the course of the disease.
However, a person can move from one compartment to another. The
compartments are usually classified by a string of letters that provides
information about the model structure. We consider two such compart-
ment models in this chapter namely the SIR and SI1I2R compartment
models.

4.1 The standard SIR epidemic model

The SIR model is a classical model used to study diseases including
SARS [14]. In an SIR model, the population is divided into three
compartments namely:

• Susceptible individuals, S(t)
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• Infected individuals, I(t)

• Removed individuals, R(t)

Schematically, we can think of the model as:

S I R
β γ

where β is the transmission rate and γ is the recovery rate. We describe
the variables S, I, and R in detail as follows:

• S = S(t), denotes the number of susceptible individuals at any
given time, t. Susceptible people are those who are not infected
but they can contract the disease if they they come in contact with
infected people. Under normal circumstances, we would expect
the number of susceptible people to decrease in continuous time
during a disease outbreak.

• I = I(t), denotes the number of infected individuals who also have
the potential to infect others at any time, t. At the initial stages
of the outbreak, we would expect the number of infected people to
increase (if R0 discussed in Chapter 3 is greater than one). This
is because many people would be susceptible and probably less
informed about the disease in the early stages of the outbreak.
I will also decrease as S gets small.

• R = R(t), denotes the number of individuals leaving the infected
class I who become permanently immune (typically because of
immunological response, but “immunity” may also include per-
manent quarantine or even death [10].

The only way an individual leaves the susceptible group is by becoming
infected. The only way a person leaves the infected group is by being
moved to a quarantine camp, isolation (home) or death. If a person
recovers from the disease, he does not become susceptible again but
rather remains in the removed compartment forever.

4.1.1 SIR model assumptions

The following assumptions are made for the SIR model:

19



• The population size N , is large enough and fixed. It is also closed
i.e. there is neither emigration nor immigration taking place.

• The population consists of susceptible, infected, and removed in-
dividuals at all times with population size, N, defined by N =
N(t) = S(t) + I(t) +R(t).

• We assume that the population is subject to homogeneous mixing,
which is to say the individuals (susceptible and infected) of the
population under study make contacts at random.

• Contacts between either two susceptible people or two infected
people are considered as ‘waste’ since they do not result in a new
infection (even though not all contacts between S and I result in
a new infection) and hence do not contribute toward the spread
of the disease.

• A susceptible joins the infected compartment if he acquires an
infection by being in contact with an infected person. In the SIR
model, the latter statement is represented by the term, SI.

• Infected people are produced by the infection of susceptible peo-
ple, S, by infected people, I, with constant transmission rate β.

• An infected person joins the removed compartment through iso-
lation, quarantine or death at a constant rate proportional to the
size of the infected population I.

• Infected people who recover on any given day leave the infected
compartment with constant recovery rate γ and join the removed
compartment. For example, if the average duration of the in-
fection period is three days, then on average, one third of the

currently infected population recovers each day, i.e. γ =
1

3
.

• β and γ are average rates for the population.

• We do not take birth and death rates into consideration.
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4.1.2 The governing equations

We formulate a system of three ordinary differential equations which
best describe the SIR model:

dS

dt
= −βSI

dI

dt
= βSI − γI (4.1)

dR

dt
= γI

β denotes the transmission rate, between susceptible people and in-
fected people, which is expected to result in a new infection; and γ is
the recovery rate.

Adding the above three equations we have that

S ′(t) + I ′(t) +R′(t) = 0. (4.2)

This, after integration, gives

S(t) + I(t) +R(t) = N ∀t ≥ 0, (4.3)

where N , the integration constant, defines our fixed population size
assumed earlier in Section 4.1.1.

4.1.3 Initial conditions

At time t = t0, (i.e. at the outbreak of the epidemic) we have a rela-
tively small group of infected individuals, I = I0 > 0, in the infected
group of the population. They are allowed to move and interact freely
with the individuals in the susceptible group as a result of the popula-
tion being subjected to homogenous mixing. Also, at time t = t0, there
are no individuals in the removed group (i.e. R(t0) = 0) and everybody
is susceptible excluding the the small group of infected people, I0. We
therefore formulate initial conditions for the SIR model as follows:

S(t0) = N − I0 = S0

I(t0) = I0

R(t0) = 0,
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where S0 > 0 and I0 > 0. When S0 and I0 are added, N is obtained.
Therefore our complete SIR model is

dS

dt
= −βSI

dI

dt
= βSI − γI (4.4)

dR

dt
= γI

subject to the following initial conditions

S(t0) = S0, I(t0) = I0, and R(t0) = 0.

4.1.4 The SIR model analysis

In the following subsections, we not only show that a global solution to
the SIR model exist but also that it is unique. We further show that
the number of people in each compartment is nonnegative and it stays
finite for all time t > 0. We also present solution graphs, calculate
the basic reproduction number, R0, using the next generation method
discussed in Section 3.1 and further analyze the equilibrium points of
the model. Finally we highlight some of the benefits and limitations of
the SIR model.

Existence and uniqueness of a global solution

The system of equations given in Section 4.1.2, which best describes
the SIR model, can be written in the form:

y′ = f(t, y), y(t0) = y0 where y =

 S(t)
I(t)
R(t)

. The function f(t, y) is

continuous everywhere on R3 and its partial derivatives are continu-
ous. The function f(t, y) is bounded (since all solutions are bounded).
Hence Peano’s existence theorem in conjunction with Theorem 8.1 (on
page 441) in Philip Hartman’s book [8] guarantees the existence of a
unique global solution for the SIR model.

Positivity and boundedness of solutions

The SIR model in Section 4.1 describes a human population, and,
therefore, it is very important to prove that all quantities (susceptible,
infected and removed) will be positive for all time, t > 0. In other
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words, we want to prove that all solutions of system (given by Equa-
tion 4.4 with nonnegative initial data) will remain positive for all times
t > 0.

Theorem 4.1.1. Let the initial data be S(0) = S0 > 0,
I(0) = I0 > 0 and R(0) = 0. Then the components of the solu-
tion S(t), I(t) and R(t) of Equation 4.4 are positive for all time, t > 0.

Proof. In this proof we try to show that if we start with nonnegative
initial conditions (as indicated by our initial conditions given in Sec-
tion 4.1.3) of the SIR model given by equation 4.4, we also end up with
nonnegative solutions.

To see this, we assume that S(t) = 0 for some time t > t0,

I(t) ≥ 0, R(t) ≥ 0 and show that
dS

dt
≥ 0. Clearly in view of the SIR

model given by Equation 4.4,
dS

dt
= −βSI = 0 when S(t) = 0 which

shows that the component of the solution S(t) will be nonnegative for
all time t > 0.

To show that the component of the solution I(t) will be nonnegative
for all time, t > 0 we assume that I(t) = 0 for some time t > t0, S(t) ≥
0, R(t) ≥ 0 and show that

dI

dt
≥ 0. Looking at the system of equations

in the SIR model given by Equation 4.4,
dI

dt
= βSI − γI = 0 when

I(t) = 0 which shows that the component of the solution I(t) will be
nonnegative for all time t > 0.

Finally, to show that the component of the solution R(t) stays pos-
itive for all time we assume that R(t) = 0 for some time t > t0, S(t) ≥
0, I(t) ≥ 0 and show that

dR

dt
≥ 0. Looking at the SIR model given

by Equation 4.4,
dR

dt
= γI ≥ 0 when I(t) ≥ 0 since the constant re-

covery rate γ is positive which shows that the solution R(t) will be
nonnegative for all time t > 0 which completes the proof.

The boundedness of the components of the solution S(t), I(t) and R(t)
follows from the fact that N = S(t)+I(t)+R(t) and that S(t), I(t) and
R(t) ≥ 0 for all time t > 0. Therefore we have that each component of
the solution is at most equal to N . That is S(t), I(t), R(t) ≤ N ∀t ≥ 0.
It was shown in Section 4.1.3 that each component of the solution is
nonnegative at the outbreak of the disease (t = 0). This shows that
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Figure 4.1: SIR solutions behavior in continuous time of disease out-
break, using β = 0.1 and γ = 0.7

each component of the solution S(t), I(t) and R(t) is bounded between
zero and the total population size, N .

Equilibrium solutions and their stability analysis

In this section we analyze the SIR model shown in Equation 4.4 by
finding its equilibria. Steady states (equilibrium solutions) of the
system in 4.4 satisfy the following system of equations:

−βSI = 0

βSI − γI = 0 (4.5)

γI = 0

It is easy to check that 4.4 has the disease free equilibrium E = (N, 0, 0)
and , Q = (S∗, 0, R∗) for any S∗ (based on initial condition) and R∗ =
N − S∗. We can see from Figure 4.1 that when the transmission rate
is small, not every body gets sick. However, if the transmission rate is
high, almost everybody gets sick in the population as it can seen from
Figures 4.2 and 4.3.
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Figure 4.2: SIR solutions behavior in continuous time of disease out-
break, using β = 0.4 and γ = 0.4
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Figure 4.3: SIR solutions behavior in continuous time of disease out-
break, using β = 0.2 and γ = 0.3
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R0 for SIR using The Next Generation method

The SIR model has only one class of the infected population, I. We de-
scribe the rate of change of the infected population, I, by the following
equation:

dI

dt
= βSI − γI (4.6)

New infections are produced by the infection of susceptible people, S,
by infected people, I, with transmission rate, β. We further assume
that infected people recover from the infection with rate γ. For the
SIR model shown in Equation 4.6 above, we find that

F = (βS) and V = (γ), where F and V were defined in Section 3.1,
and where there is only one infected compartment.

Since the determinant of V is not equal to 0, we can determine the
inverse of V , V −1:

V −1 =

(
1

γ

)
,

FV −1 =

(
βS

γ

)
, and

det(FV −1 − λI0) = det

(
βS

γ
− λ
)

=
βS

γ
− λ.

Setting det(FV −1 − λI0) equal to 0, and solving for λ we obtain one
eigenvalue:

λ =

(
βS

γ

)
. Since λ is the only eigenvalue obtained, it is the largest

eigenvalue of FV −1. We conclude by the next generation method de-

scribed in Section 3.1 that λ =

(
βS

γ

)
is the basic reproduction number

of the SIR model where S = S0 = N − I0, the population size. That is

R0 =
βS

γ
.

4.1.5 Benefits and limitations of the SIR model

The SIR model is a good, simple, model for many infectious diseases
including measles, SARS, foot and mouth, influenza, H1N1, mumps
and rubella [2]. The SIR model is dynamic in the following way:
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• The population size, N, is fixed making the model relatively sim-
ple to use. A model with fixed population size is good for model-
ing short-term outbreaks.

• The SIR model is dynamic in the sense that a majority of the
whole population start susceptible at the outbreak of a disease,
some or all them may acquire the infection (move into the in-
fectious compartment) and finally die or recover (move into the
removed compartment). Thus each member of the population
typically progresses from susceptible to infectious and finally to
the removed compartment.

The SIR model suffers from the following limitations:

• We assume that the transmission and recovery rates (β and γ) are
fixed. However, in the practical sense these rates are more likely
to vary with time. For example, if there is an outbreak of smallpox
in a particular community there would be more transmission of
the disease among students at school than there probably would
when school is not in session.

• Many diseases, such as measles or chickenpox, are primarily dis-
ease of children. By further subdividing the population into
differing age-classes researchers have been able to capture age-
structured transmission in more detail [9].

• For childhood infections, such as those diseases stated above,
there is greater mixing (the contact rate is larger) during school
terms. Such seasonal dependence leads to regular epidemics or
more complex dynamics, as the disease oscillates between the
high-contact and low-contact solutions [9].

• For some diseases, other organisms are involved in the transmis-
sion, e.g. the mosquito is essential for transmission of malaria,
and, together, rats and fleas are responsible for the majority of
bubonic plague cases [9]. For such diseases we need to couple an
SIR model for humans with an SIR model for the other organisms.

• Finally, we ignore immigration and emigration which has a great
influence in the outbreak of an epidemic, as was the case in the
outbreak of the 2002 - 2003 SARS epidemic and the recent H1N1

flu.
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4.2 The SI1I2R model

The SI1I2R model was developed by John T. Kemper [10]. This model
incorporates the existence of super-spreaders for a disease without im-
munity. In the SI1I2R model, the population is divided into four com-
partments namely:

• Susceptible individuals, S(t)

• First class of infected individuals, I1(t)

• Second class of infected individuals, I2(t)

• Removed (immune) individuals, R(t)

Schematically, we can think of the model as:

S

I1

I2

R

βr1

(1− β)r2

γ

γ

where β in this model is a fraction of all infections who result in an
I1 infective and 1−β is a fraction of all infections who result in an I2 in-
fective. The constants r1 and r2 are two different transmission rates
and γ is the recovery rate. We explain the variables S, I1, I2 and R in
the discussion that follows:

• S = S(t), denotes the number of susceptible people at any given
time, t. Susceptible people are those who are not infected but
they can contract the disease if they they come in contact with
infected people (people from class I1 or I2).
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• I = I1(t) and I2(t), denotes two classes of infected people differing
only in their transmission rates, r1 and r2 respectively [10]. Higher
(than normal) transmission rates indicate the presence of super-
spreading events in the SI1I2R model.

• R = R(t), this is a class of people leaving the infected classes
(I1 and I2) become permanently immune (typically because of
immunological response, but “immunity” may also include per-
manent quarantine or even death) [10].

The only way an individual leaves the susceptible group is by becoming
infected and hence either join I1 class or I2 class. The only way a person
leaves the infected groups is through permanent immunity which also
includes permanent quarantine or even death.

4.2.1 The SI1I2R model assumptions

The following assumptions were made for the SI1I2R model:

• The population size N , is large enough and fixed. It is also closed
i.e. there is neither emigration nor immigration taking place.

• There are two classes of infected people, I1 and I2, differing only
in their transmission rates, r1 and r2 respectively.

• We assume that the population is subject to homogeneous mixing
which is to say the individuals (susceptible and infected) of the
population under scrutiny make contacts at random.

• The population consists of susceptible, infected, and recovered
people at all times with population size, N, defined N = N(t) =
S(t) + I1(t) + I2(t) +R(t).

• Contacts between either two susceptible people or two infected
people are considered as ‘waste’ since they do not result in a new
infection and hence do not contribute to the spread of the disease.

• A susceptible joins the infected compartment if he acquires an
infection through being in contact with an infected person from
class I1 or class I2.

• Also, an infected person joins the removed compartment through
permanent immunity defined in Section 4.2 [10].

• A fraction, β, of all infections result in an I1 infective, all others
being I2 infectives [10].
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• Infection terminates in permanent immunity (or some other kind
of removal) [10].

• γ is the removal rate from I1 and I2 [10].

• We do not take birth and death rates into consideration.

4.2.2 The governing equations

Based on the previous description of Section 4.2.1, the SI1I2R model
was formulated by the following system of equations:

dS

dt
= −(r1I1 + r2I2)S

dI1
dt

= β(r1I1 + r2I2)S − γI1 (4.7)

dI2
dt

= (1− β)(r1I1 + r2I2)S − γI2
dR

dt
= γ(I1 + I2)

with initial conditions S(0) = S0 > 0, I1(0) ≥ 0, I2(0) ≥ 0,
I1(0)+I2(0) = N−S0 , andR(0) = 0, where β ∈ (0, 1), and γ, r1, and r2 are
positive [10].

The constant β is the fraction of all infections who result in an I1 infec-
tive, all others being I2 infectives [10]. There are two classes of infected
people, I1 and I2, differing only in their transmission rates, r1 and r2
respectively. γ is the removal rate from I1 and I2 to R [10].

4.2.3 SI1I2R model analysis

In the following subsections, we not only show that a global solution of
the SI1I2R model exist but also that it is unique. We further show that
the number of people in each compartment is nonnegative and it stays
finite for all time t > 0. We then compute and analyze the equilibrium
solutions for the SI1I2R model. We also present solution graphs and
calculate the basic reproduction number, R0 for the SI1I2R model us-
ing the next generation method discussed in Section 3.1. Finally we
highlight some of the benefits and limitations of the SI1I2R model.

Existence and uniqueness of a global solution

The system of equations given in Section 4.2.2 which best describe the
SI1I2R model can be written in the form:
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y′ = f(t, y), y(t0) = y0 where y =


S(t)
I1(t)
I2(t)
R(t)

. The function f(t, y) is

continuous everywhere on R4. The function f(t, y) is continuous every-
where on R4 and its partial derivatives are continuous. The function
f(t, y) is bounded (since all solutions are bounded). Hence Peano’s
existence theorem in conjunction with Theorem 8.1 (on page 441) in
Philip Hartman’s book [8] guarantees the existence of a unique global
solution for the SI1I2R model.

Positivity and boundedness of solutions

The SI1I2R model discussed in Section 4.2 describes a human popu-
lation, and, therefore, it is very important to prove that all quantities
(susceptible, regularly infected, super-spreading events, and removed)
will be positive for all time. In other words, we want to prove that all
components of the solution of system 4.2 with nonnegative initial data
will remain positive for all times t > 0.

Theorem 4.2.1. Let the initial data be S(0) = S0 > 0, I1(0) ≥ 0,
I2 ≥ 0 and R(0) = 0. Then the components of the solution S(t), I1(t),
I2(t), and R(t) of system 4.2.2 are positive for all time, t > 0.

Proof. In this proof we show that if we start with nonnegative initial
conditions of the SI1I2R model, given by the equations in Section 4.2.2,
we also end up with nonnegative solutions.

To see this, we assume that S(t) = 0 for some time t > t0,

I1(t) ≥ 0, I2(t) ≥ 0, R(t) ≥ 0 and show that
dS

dt
≥ 0. Clearly in view

of the system in Section 4.2.2,
dS

dt
= 0 when S(t) = 0 which shows

that the component of the solution S(t) will be nonnegative for all
time t > 0.

To prove that the component of the solution I1(t) will be nonnegative
for all time t > 0, we assume that I1(t) = 0 for some time t > t0, S(t) ≥
0, I2(t) ≥ 0, R(t) ≥ 0 and show that

dI1
dt
≥ 0. Looking at the SI1I2R

system of equations discussed in Section 4.2.2,
dI1
dt

= βr2I2S ≥ 0 when

I1(t) = 0 which shows that the solution I1(t) will be nonnegative for
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all time t > 0.

To prove that the component of the solution I2(t) will be nonnegative
for all time t > 0, we assume I2(t) = 0 for some time t > t0, S(t) ≥
0, I1(t) ≥ 0, R(t) ≥ 0 and show that

dI2
dt
≥ 0. Looking at the SI1I2R

system of equations discussed in Section 4.2.2,
dI2
dt

= (1− β)r1I1S ≥ 0

when I2(t) = 0 which shows that the solution I2(t) will be nonnegative
for all time t > 0.

Finally, to prove that the component of the solution R(t) will be
nonnegative for all time t > 0, we assume that R(t) = 0 for some

time t > t0, S(t) ≥ 0, I1(t) ≥ 0, I2 ≥ 0 and show that
dR

dt
≥ 0.

Looking at the SI1I2R system of equations discussed in Section 4.2.2,
dR

dt
= γ(I1 + I2) ≥ 0 when R(t) = 0 which shows that the solution R(t)

will be nonnegative for all time t > 0 which completes the proof.

The boundedness of the components of the solution S(t), I1(t), I2(t)
and R(t) follows from the fact that N = S(t) + I1(t) + I2(t) + R(t) and
that S(t), I1(t), I2(t), R(t) ≥ 0 for all time t > 0. Therefore we have
that each component of the solution is at most equal to N . That is
S(t), I1(t), I2(t), R(t) ≤ N . It was shown in Section 4.2.1 that
each component of the solution is nonnegative at the outbreak of the
disease (t = t0). This shows that each of the components of the solu-
tion S(t), I1(t), I2(t) and R(t) is bounded between zero and the total
population size, N .

Equilibrium solutions and their stability analysis

In this Section we analyze the SIPR model shown in Equation 4.7 by
finding the equilibria. Steady states (equilibrium solutions) of Equa-
tion 4.7 satisfy the following system of equations:

−(r1I1 + r2I2)S = 0

β(r1I1 + r2I2)S − γI1 = 0 (4.8)

(1− β)(r1I1 + r2I2)S − γI2 = 0

γI1 + γI2 = 0

It is easy to check that Equation 4.8 above has the disease free equi-
librium E = (N, 0, 0, 0) and Q = (S∗, 0, 0, R∗) for any S∗ (based on
the initial condition) and R∗ = N − S∗. We can see from Figure 4.4
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Figure 4.4: SI1I2R solutions behavior in continuous time for a generic
epidemic disease outbreak, using β = 0.2, r1 = 0.1, r2 = 0.3 and γ = 0.3
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Figure 4.5: SI1I2R solutions behavior in continuous time for a generic
epidemic disease outbreak, using β = 0.3, r1 = 0.275, r2 = 0.3 and γ = 0.3
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that when the transmission rates are small, not everybody gets sick.
However, if the transmission rate is high, almost everybody gets sick
in the population as it can seen from Figure 4.5.

R0 for SI1I2R using The Next Generation method

We describe the rate of change of the first class of infected people, I1,
and the second class of infected people, I2, by the following equations:

dI1
dt

= β(r1I1 + r2I2)S − γI1 (4.9)

dI2
dt

= (1− β)(r1I1 + r2I2)S − γI2

New cases are produced by the infection of susceptible people, S, by an
infected person who is either from the first class of infected individuals
or the second class of individuals with contact rates βr1 and (1−β)r2 re-
spectively. We further assume that people from both infected classes
(I1 or I2) recover from the infection with with the same rate γ. For the
SI1I2R model shown in Equation 4.9 above, we find that

F =

(
βr1S βr2S

(1− β)r1S (1− β)r2S

)
and V =

(
γ 0
0 γ

)
Since the determinant of V is not equal to 0, we can determine V −1:

V −1 =


1

γ
0

0
1

γ

,

FV −1 =


βr1S

γ

βr2S

γ
(1− β)r1S

γ

(1− β)r2S

γ

, and

det(FV −1 − λI2) = det


βr1S

γ

βr2S

γ
(1− β)r1S

γ

(1− β)r2S

γ

.

Setting det(FV −1 − λI2) equal to 0, and solving for λ we
obtain two eigenvalues:

λ1 = 0 and λ2 =
(1− β)r2S

γ
+
βr1S

γ
where S = S(0) = S0. Clearly

λ2 is the largest eigenvalue of FV −1 and so we conclude, by the next
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generation method described in Section 3.1, that λ2 is the basic repro-
duction number of the SI1I2R model. We note that

R0 = λ2 =
(1− β)r2S

γ
+
βr1S

γ
is composed of the

ris

γ
multiplied by

their respective probabilities β, (1− β) and then added together.

Benefits and limitations of the SI1I2R model

Like the SIR model, the SI1I2R is a good, simple, model for many
infectious diseases including SARS, measles, foot and mouth, influenza,
H1N1, mumps and rubella [10]. The SI1I2R model is dynamic in the
following ways:

• As implied by the variable function of t, the SI1I2R model is
dynamic in that the numbers in each compartment may fluctuate
over time.

• When an epidemic occurs, the number of susceptible individu-
als fall rapidly as more of them get infected and thus enter the
infectious compartments (I1 and I2) and eventually the removed
compartment R.

• The SI1I2R is also dynamic in the sense that a much higher pro-
portion of individuals are susceptible at the outbreak of an epi-
demic. They may acquire the infection (move into I1 or I2) and
finally die, go to a quarantine camp, or recover (move into the
removed compartment R). Thus each member of the population
typically progresses from susceptible to infectious (I1 or I2) and
finally to the removed compartment, R.

• The SI1I2R model has two compartments of infectious people
(I1 and I2) to facilitate a better understanding of the spread of
any epidemic disease.

Despite all the the benefits of the the SI1I2R, it still suffers from the
following limitations.

• We ignore immigration and emigration; which sometimes has a
great influence in the outbreak of an epidemic, as was the case in
the outbreak of the 2009 H1N1 flu.

• The SI1I2R model is an autonomous system. In mathematics, a
system of autonomous differential equations is a system of ordi-
nary differential equations which does not depend on the inde-
pendent variable.
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Chapter 5

The SIPR epidemic model

This chapter is devoted to the formulation and analysis of an SIPR
model that captures one of the several main features which enhanced
the progression and transmission of the SARS epidemic. In particular,
this model captures super-spreading events, infected individuals who
in turn had an extra ordinary number of secondary cases. In the SIPR
model we divide the population size N , into four groups namely:

• Susceptible individuals, S(t)

• Regular infected individuals, I(t)

• Super-spreading events, P (t)

• Removed individuals, R(t)

Schematically, we can think of the model as:

S

I

P

R

bβ

(1− b)β

1
x

1
k
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where β is the transmission rate and b the probability that a new infec-
tion will be a regular infected person. On the other hand, 1− b is the
probability that a new infection will be a super-spreading event. The
constant x denotes the average number of days spent by a regularly
infected person outside isolation. The constant k denotes the average
number of days spent by a super-spreading event outside isolation. We
explain the variables S, I, P , and R in detail in the following piece of
writing:

• S = S(t), denotes the number of susceptible people at any given
time, t. Susceptible people are those who are not infected but
they can contract the disease if they they come in contact with
infected people (from either I or P ). Under normal circumstances,
we would expect the number of susceptible people to decrease in
continuous time during a disease outbreak.

• I = I(t), denotes the number of regularly infected people (infected
people who are not super-spreading events) who also have the
potential to infect others at any time, t. At the initial stages of
the outbreak, we would expect the number of infected people to
increase (if R0 discussed in Chapter 3 is greater than one). This
is because many people would be susceptible and probably less
informed about the disease in the early stages of the outbreak. As
the people get informed and control measures are imposed such
as isolation, quarantine, and medication is available, the number
of infected people is expected to decrease. That is, if the latter
control measures are effective enough.

• P = P (t), denotes the number of super-spreading events at any
given time, t. This is a group of infected people that would nor-
mally generate a larger number of secondary cases than a regularly
infected person would. More super spreaders would mean that the
disease would spread quickly. The class of super-spreading events
forms a small proportion of the infected class.

• R = R(t), denotes the number of people (regular infected and
super-spreading events) who have been removed, recovered or died
at any given time, t during a disease outbreak. Precisely, the
removed people are those who are kept in isolation such as in
quarantine camps, and maybe at home. Recovered people are
those who receive treatment and hence become immune to the
disease. They are then kept in isolation (asked to stay at home).
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It is worth mentioning that the class, I = I(t) now has a slightly dif-
ferent meaning than the one defined in Sections 4.1 and 4.1.1. This
is because it no longer refers to the entire class of infected people but
a specific class of infected people, called regularly infected people i.e.
infected people who are not super-spreading events.

The only way an individual leaves the susceptible group is by becom-
ing infected and hence moves either into the regularly infected com-
partment or the super-spreading event compartment. The only way
a person leaves either the regularly infected class or super-spreading
events compartment is by being moved to a quarantine camp, isolation
(home) or death. If a person recovers from the disease, he does not
become susceptible again but rather remains in the removed compart-
ment forever.

5.1 The SIPR model assumptions

The following assumptions are made for the SIPR model:

• The population size N , is large enough and fixed. It is also closed,
i.e. there is neither emigration nor immigration taking place.

• We assume that the population is subject to homogeneous mixing
which is to say the individuals (susceptible, regularly infected, and
the super-spreading events) of the population under scrutiny will
assort and make contacts at random.

• The populations consists of susceptible, regular infected, super-
spreaders, and recovered people at all times such that the popu-
lation size N = N(t) = S(t) + I(t) + P (t) +R(t). Also, a person
cannot be in more than one compartment at the same time.

• Contacts between either two regular infected people, two super-
spreading events or between a regular infected person and a super
spreader are considered as ‘waste’ since they do not contribute
towards the spread of the disease.

• We do not take birth and death rates into consideration in view
of the short duration of the outbreak.

• Super-spreading events spend more time outside quarantine than
regularly infected people.
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• A susceptible person joins either the regularly infected compart-
ment or the super-spreading event compartment if he acquires an
infection through being in contact with a person who is in any of
the infected compartments (regularly infected or super-spreading
events).

• Also, an infected person (regular or super-spreader) joins the re-
moved compartment through isolation, quarantine or death.

• Each time there is an interaction between the infected compart-
ments (I or P ) and the susceptible population S, there is a prob-
ability b that the new infection will be regularly infected (I) and a
probability (1−b) that the new infection will be a super spreading
event (P ).

• Infected people (regularly infected or super-spreading events) are
produced by the infection of susceptible people, S, by either regu-
larly infected people, I, or super-spreading events, P , with trans-
mission rate β.

• Regularly infected people who recover on any given day leave the

regularly infected compartment with recovery rate
1

x
and join the

removed compartment. The constant x denotes the average num-
ber of days spent by a regularly infected person outside isolation.

• Super-spreading events who recover on any given day leave the

super-spreading events compartment with recovery rate
1

k
and

join the removed compartment. The constant k denotes the av-
erage number of days spent by a super-spreading event outside
isolation.

5.2 Governing equations of the SIPR model

Based on the previous descriptions and assumptions we formulate a
system of four ordinary differential equations which best describe the
SIPR model:
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dS

dt
= −β(I + P )S

dI

dt
= bβ(I + P )S − 1

x
I (5.1)

dP

dt
= (1− b)β(I + P )S − 1

k
P

dR

dt
=

1

x
I +

1

k
P

where b is the probability of having contacts between super-spreading
events and regular infected peoples at any given day, x is a constant
with units of time in days which is a measure of the average number of
days spent by a regularly infected person outside isolation, and k is a
constant with units of time in days which is a measure of the average
number of days spent by a person who is a super-spreading event out-
side isolation.

Adding these four equations we have that

S ′ + P ′ + I ′ +R′ = 0 (5.2)

This upon integration gives

S + P + I +R = N, (5.3)

where N , the integration constant, is the fixed population size.

5.3 Initial conditions

Assuming that at time, t = t0, of the outbreak of the SARS epidemic
there were no super-spreading events, we formulate the initial condi-
tion P (t0) = 0. Also, at the outbreak of the SARS epidemic there
was a relatively small number of regularly infected people, I = I0 > 0.
They are allowed to move and interact freely with the individuals in
the susceptible group as a result of the population being subjected to
homogenous mixing.

At the outbreak of the SARS epidemic, there were no people in the
removed compartment, i.e. R(t0) = 0). Thus everybody is suscepti-
ble, excluding the the small group of regularly infected people, I0. We
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therefore formulate initial conditions for the SIPR model as follows:

S(t0) = N − I0 = S0

I(t0) = I0

P (t0) = 0

R(t0) = 0

where S0 > 0 and I0 > 0. When S0 and I0 are added, N is obtained.
Therefore our complete SIPR model is

dS

dt
= −βSI − βPS

dI

dt
= bβSI + bβPS − 1

x
I

dP

dt
= (1− b)βPS + (1− b)βSI − 1

k
P

dR

dt
=

1

x
I +

1

k
P

subject to the following initial conditions

S(t0) = N − I0 = S0, I(t0) = I0, P (t0) = 0, and R(t0) = 0

5.4 Relationships between the variables

• We assume that I > P and k > x ⇒ SI > SP . This means
that since we have more regularly infected people than super-
spreading events at the outbreak of the disease, we expect in the
long run to have more contacts between between the susceptible
population and the regularly infected people than we would with
the susceptible people with the super-spreading events [5].

• We also assume that b > 0.5 ⇒ b > 1 − b which implies that
βSI > (1−b)βSI. This means that each time there is an interac-
tion between an infected person (either I or P ) and a susceptible
person, there is a high likelihood that the resulting infected will
be join the regularly infected population. The “20/80” rule states
that 20% of cases cause 80% of transmission.

5.5 SIPR model analysis

In the following subsections, we not only show that a global solution
to the SIPR model exists but also that it is unique. We further show
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that the number of people in each compartment is nonnegative and
it stays finite for all time t > 0. We then compute and analyze the
equilibrium solutions of the SIPR model. We also present solution
graphs and calculate the basic reproduction number, R0, using the
next generation method discussed in Section 3.1. Finally we highlight
some of the benefits and limitations of the SIPR model.

5.5.1 Existence and uniqueness of a global solution

The system of equations given in Section 5.1 which best describe the
SIPR model can be written in the form:

y′ = f(t, y), y(t0) = y0 where y =


S(t)
I(t)
P (t)
R(t)

. The function f(t, y) is

continuous everywhere on R4 and its partial derivatives are continu-
ous. The function f(t, y) is bounded (since all solutions are bounded).
Hence Peano’s existence theorem in conjunction with Theorem 8.1 (on
page 441) in Philip Hartman’s book [8] guarantees the existence of a
unique global solution for the SIPR model.

5.5.2 Positivity and boundedness of solutions

The SIPR model discussed in Section 5.1 describes a human popula-
tion, and, therefore, it is very important to prove that all quantities
(susceptible, regularly infected, super-spreading events, and removed)
will be positive for all time. In other words, we want to prove that all
components of the solution of system 5.1 with nonnegative initial data
will remain positive for all times t > 0.

Theorem 5.5.1. Let the initial data be S(0) = S0 > 0,
I(0) = I0 > 0, P (0) = P0 = 0 and R(0) = 0. Then the components of
the solution S(t), I(t), P (t), and R(t) of the SIPR model are positive
for all time, t > 0.

Proof. In this proof we show that if we start with nonnegative initial
conditions (given in Section 5.3) of the SIPR model given by Equa-
tion 5.1, we also end up with nonnegative solutions.

To see this, we assume that S(t) = 0 for some time t > t0,

I(t) ≥ 0, P (t) ≥ 0, R(t) ≥ 0 and show that
dS

dt
≥ 0. Clearly in view
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of the SIPR model,
dS

dt
= 0 when S(t) = 0 which shows that the solu-

tion S(t) will be nonnegative for all time t > 0.

To prove that the component of the solution I(t) will be positive for
all time t > 0, we assume that I(t) = 0 for some time t > t0, S(t) ≥
0, P (t) ≥ 0, R(t) ≥ 0 and show that

dI

dt
≥ 0. Looking at the SIPR

system of equations,
dI

dt
= bβPS ≥ 0 when I(t) = 0 which shows that

the component of the solution I(t) will be nonnegative for all time t > 0.

To prove that the component of the solution P (t) will be positive for all
time t > 0, we assume P (t) = 0 for some time t > t0, S(t) ≥ 0, I(t) ≥
0, R(t) ≥ 0 and show that

dP

dt
≥ 0. Looking at the SIPR system of

equations,
dP

dt
= (1− b)βIS ≥ 0 when P (t) = 0 which shows that the

component of the solution P (t) will be nonnegative for all time t > 0.

Finally, to prove that the component of the solution R(t) will be
positive for all time t > 0, we assume that R(t) = 0 for some time

t > t0, S(t) ≥ 0, I(t) ≥ 0, P (t) ≥ 0 and show that
dR

dt
≥ 0. Looking at

the SIPR system of equations,
dR

dt
=

1

x
I +

1

k
P ≥ 0 which shows that

the component of the solution R(t) will be nonnegative for all time
t > 0 which completes the proof.

The boundedness of the components of the solution S(t), I(t), P(t) and
R(t) follows from the fact that N = S(t) + I(t) + P (t) + R(t) and
that S(t), I(t), P (t), R(t) ≥ 0 for all time t > 0. Therefore we have
that each component of the solution is at most equal to N . That
is S(t), I(t), P (t), R(t) ≤ N . It was shown in Equation 5.1 that
each component of the solution is nonnegative at the outbreak of the
disease (t = t0). This shows that each of the components of the solu-
tion S(t), I(t), P (t) and R(t) is bounded between zero and the total
population size, N .

5.5.3 SIPR Equilibrium points and their stability analysis

In this section we analyze the SIPR model shown in Equation 5.1 by
finding the equilibria. Steady states (equilibrium solutions) of Equa-
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Figure 5.1: SIPR solutions behavior in continuous time of SARS out-
break, using β = 0.1, b = 0.8, x = 4 and k = 9

tion 5.1 satisfy the following system of equations:

−βSI − βPS = 0

bβSI + bβPS − 1

x
I = 0 (5.4)

(1− b)βPS + (1− b)βSI − 1

k
P = 0

1

x
I +

1

k
P = 0

It is easy to check that Equation 5.4 has the disease free equilibrium
E = (N, 0, 0, 0) and Q = (S∗, 0, 0, R∗) for any S∗ (based on the initial
condition) and R∗ = N − S∗. We can see from Figure 5.1 that when
the transmission rate is small, not every body gets sick. However, if the
transmission rate is high, almost everybody gets sick in the population
as it can seen from Figures 5.2 and 5.3.

5.5.4 R0 for SIPR using The Next Generation method

We describe the rate of change of the regularly infected individuals, I,
and the super-spreading events, P , populations by the following
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Figure 5.2: SIPR solutions behavior in continuous time of SARS out-
break, using β = 0.1, b = 0.8, x = 2 and k = 3
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Figure 5.3: SIPR solutions behavior in continuous time of SARS out-
break, using β = 0.3, b = 0.8, x = 4 and k = 9
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equations:

dI

dt
= bβSI + bβPS − 1

x
I (5.5)

dP

dt
= (1− b)βPS + (1− b)βSI − 1

k
P

New cases are produced by the infection of susceptible people, S, by
an infected person who is either regularly infected or a super-spreading
event with contact rates bβ and (1− b)β respectively. We further
assume that regularly infected people recover from the infection with

rate
1

x
and super-spreading events recover from the infection with

rate
1

k
. For the SIPR model shown in Equation 5.5 above, we find

that

F =

(
bβS bβS

(1− b)βS (1− b)βS

)
and V =

(
1
x

0
0 1

k

)
Since determinant of V is not equal to 0 we can determine V −1:

V −1 =

(
x 0
0 k

)
,

FV −1 =

(
bxβS bkβS

(1− b)xβS (1− b)kβS

)
, and

det(FV −1 − λI2) = det

(
xbβS − λ kbβS
x(1− b)βS k(1− b)βS − λ

)
.

setting det(FV −1 − λI2) equal to 0, and solving for λ we
obtain two eigenvalues:

λ1 = 0 and λ2 =
(1− b)βS

1
k

+
bβS

1
x

where S = S(0) = S0. We note

that λ2 is the largest eigenvalue of FV −1 and so we conclude by
the next generation method described in Section 3.1 that λ2 is the basic
reproduction number of the SIPR model. We note that

R0 = λ2 =
(1− b)βS

1
k

+
bβS

1
x

is the R0 for I and P (as SIR models),

multiplied by their respective probabilities b, (1− b) then added
together.
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5.6 Benefits and limitations of the SIPR model

The SIPR model has the following valuable benefits:

• Like the SIR model, the SIPR is a good, simple, model for many
infectious diseases including SARS, measles, foot and mouth, in-
fluenza, H1N1, mumps and rubella. It is simple in the sense that
it has few parameters and hence easy to study.

• It captures the aspect of SSE behavior (i.e. SSE stays longer out
of quarantine).

• The system of equations in the SIPR model is autonomous which
makes it easier to study the model mathematically.

Despite all the the benefits of the the SIPR, it still suffers from the
following limitations.

• It does not capture all aspects of the disease. It assumes the
same transmission rate for both infected compartments and only
certain combinations of parameters truly show SSE.

• The generalization of the SIR (base) model, i.e. no birth/death
rates, makes the model only reasonable for short term diseases.
The rates are assumed to be constant (time independent), popu-
lation averages, and permanent immunity is also assumed.

• We ignore immigration and emigration which had a great influ-
ence in the outbreak of the SARS epidemic. The 2002-2003 SARS
was spread mainly through air travel.

5.7 Possible future directions of work for the SIPR
model

One may wish improve the SIPR model by considering the following
aspects:

• Test the SIPR model against real data and make necessary ad-
justments if need be. One possible source for the data could be
the Center for Disease Control (CDC) in Georgia.

• Make changes to the model in order to extend the model to other
diseases.

• Convert the model to non-autonomous system. This includes con-
sidering a time transmission and recovery rates that are are time
dependent instead of the fixed ones used in our model.
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• Do a detailed study of the SIPR steady state solutions (equilib-
rium solutions) therefore determining whether they are locally
stable or not.

• Consider a population that is not closed, one which takes immi-
gration as well as emigration into consideration in the modeling
of the SARS epidemic.
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