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FINDING POSITIVE SOLUTIONS OF BOUNDARY

VALUE DYNAMIC EQUATIONS ON TIME SCALE.

Otunuga Olusegun Michael

ABSTRACT

This thesis is on the study of dynamic equations on time scale. Most

often, the derivatives and anti-derivatives of functions are taken on the

domain of real numbers, which cannot be used to solve some models like

insect populations that are continuous while in season and then follow

a difference scheme with variable step-size. They die out in winter,

while the eggs are incubating or dormant; and then they hatch in a new

season, giving rise to a non overlapping population. The general idea of

my thesis is to find the conditions for having a positive solution of any

boundary value problem for a dynamic equation where the domain of

the unknown function is a so called time scale, an arbitrary nonempty

closed subset of the reals.
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1. Introduction

This paper focuses on determining eigenvalues λ, for which there ex-

ist positive solutions with respect to a cone, of the nonlinear eigenvalue

dynamic equation

y∆∆ + λf(t, yσ) = 0, t ∈ T

with boundary conditions

α11y(t1) + α12y
∆(t1) = 0

α21y(σ(t2)) + α22y
∆(σ(t2)) = 0.

In this equation, we consider the case where the solution is defined

on any closed subset of real numbers (called a time scale) denoted by

T, initiated by Stephan Hilger in order to create a theory that unifies

discrete and continuous analysis in calculus. This is fully defined in

Section 5.

For the special case where the time scale is the real numbers, the

equation takes the form

y
′′

+ λf(t, y) = 0, t ∈ [t1, t2],

subject to the two-point boundary conditions

α11y(t1) + α12y
′
(t1) = 0,

α21y(t2) + α22y
′
(t2) = 0.
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Also, we consider the 3rd-order eigenvalue problem

y∆∆∆ − λf(t, yσ) = 0, t ∈ T,

with boundary conditions

y(t1) = β1,

y(σ(t2)) = β2,

y(σ2(t3)) = β3

on a general time scale T.

In the case where the time scale is real numbers, the equation is of

the form

y
′′′

= λf(t, y) t ∈ [t1, t3],

subject to the three-point boundary conditions

y(t1) = β1,

y
′
(t2) = β2,

y
′′
(t3) = β3.

Boundary value problems for higher order differential equations play

a role in both theory and applications. The existence of positive so-

lutions for two-point eigenvalue problems, has been studied by many

researchers by using the Guo-Krasnosel’skii fixed point theorem. We

refer readers to [11, 12, 13] for some recent results. However, few pa-

pers can be found in the literature for third order three-point boundary
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value problems (BVPs), most papers deal with existence of positive so-

lutions when the nonlinear term f is nonnegative [1]. In this paper,

we deal with the existence of a positive solution for the 2nd and 3rd

order BVPs on the general time scale, when the nonlinear term f is

nonnegative, by first defining their respective Green’s function. This

Green’s function is then used to derive the Green’s function for the 2nth

order BVP. The Green’s function is also used to derive the condition

for which a positive solution of the 2nth order eigenvalue differential

equation can be derived.

The rest of this paper is organised as follows. In Section 2, we com-

pute the Green’s function for the two-point boundary value problem

on R and also find the condition under which a positive solution will

exist for the two-point problem. In Section 3, we derive the Green’s

functions for even order BVPs, compute the bounds which are finally

used to proof the existence of positive solution(s) for 2nth order BVPs.

In Section 4, we find the conditions in which positive solution(s) will

exist for the three-point problem. Sections 5 and 6 offer some back-

ground on time scales and we derive similar existence results for even

order problems and third order problem. Conclusions and future work

are discussed in the last section.
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2. Second Order Boundary Value Problem on R

2.1. Solution to the Second Order Differential Equation

For this section, we are going to consider the second order boundary

value eigenvalue problem on the time scale T = R.

Consider the second order eigenvalue BVP

(1) y
′′
(t) + λf(t, y(t)) = 0, t ∈ [t1, t2]

with boundary conditions

(2)

 α11y(t1) + α12y
′
(t1) = 0

α21y(t2) + α22y
′
(t2) = 0

where f : [t1, t2] × R+ → R+ is continuous, and α11, α21, α12, α22 are

real constants.

We will assume the following condition: A1 : f : [t1, t2] × R+ →

R+ is continuous.

We define the nonnegative numbers f0, f
0, f∞, and f∞ by

f0 = lim
y→0+

min
t∈[t1,t2]

f(t, y)

y

f 0 = lim
y→0+

max
t∈[t1,t2]

f(t, y)

y

f∞ = lim
y→∞

min
t∈[t1,t2]

f(t, y)

y

f∞ = lim
y→∞

max
t∈[t1,t2]

f(t, y)

y
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and assume that they all exist in the extended reals.

Now we are going to find the solution of the second order prob-

lem. We shall show that the solution y(t) is of the form y(t) =∫ t2
t1
G(t, s)g(s) ds where G(t, s) is defined below.

Writing y
′′
(t) = −g(t, y(t)) where g(t, y(t)) = λf(t, y(t)) and solving

the differential equation (1) using Laplace transform, we have

L(y
′′
(t)) = −L(g(t)) which implies s2L(y(t))−sy(0)−y′(0) = −L(g(t)).

That is L(y(t)) = 1
s
y(0) + 1

s2
y
′
(0)− 1

s2
L(g(t)).

Taking the inverse Laplace of both side, we have

y(t) = y(0) + ty
′
(0)−

∫ t

t1

(t− s)g(s) ds, and

y
′
(t) = y

′
(0)−

∫ t

t1

g(s) ds.

Using the boundary conditions, we have

α11y(t1) + α12y
′
(t1) = α11(y(0) + t1y

′
(0)) + α12y

′
(0) = 0,

which implies,

α11y(0) + (α11t1 + α12)y
′
(0) = 0.

Likewise,

α21y(t2) + α22y
′
(t2) = 0

implies

α21

(
y(0) + t2y

′
(0)−

∫ t2

t1

(t2 − s)g(s) ds

)
+α22

(
y
′
(0)−

∫ t2

t1

g(s) ds

)
= 0,
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which implies that

α21y(0) + (α21t2 + α22)y
′
(0) =

∫ t2

t1

(α21(t2 − s) + α22)g(s) ds.

Solving for y(0) and y
′
(0), we have

y(0) =
−β1A

D

y
′
(0) =

α11A

D

where

(3)


βi = β(ti) = αi1ti + αi2, i = 1, 2

A =
∫ t2
t1

(β2 − α21s)g(s)ds

D = α11β2 − α21β1,

So,

y(t) =
−β1A

D
+
α11

D
At−

∫ t

t1

(t− s)g(s) ds

=

∫ t2

t1

−β1

D
(β2 − α21s)g(s) ds+

∫ t2

t1

α11

D
t(β2 − α21s)g(s) ds

−
∫ t

t1

(t− s)g(s) ds

=
1

D

∫ t2

t1

(β2 − α21s)(α11t− β1)g(s) ds−
∫ t

t1

(t− s)g(s) ds.

Therefore,

y(t) =

∫ t2

t1

G(t, s)g(s) ds

where

(4) G(t, s) =

 1
D

(β1 − α11s)(α21t− β2) if t1 ≤ s ≤ t ≤ t2;

1
D

(β2 − α21s)(α11t− β1) if t1 ≤ t ≤ s ≤ t2.
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Throughout this section, we will require the following conditions:

A2 : α11 > 0, α21 > 0;

A3 : m1 ≤ t1 ≤ t2 ≤ m2, where mi =
β(ti)

αi1
=

βi
αi1

, i = 1, 2

Note: β1

α11
≤ t1 implies that β1−α11t1 ≤ 0 which implies that α12 ≤ 0

and β2

α21
≥ t2 implies that β2−α21t1 ≤ 0 which implies that α22 ≥ 0.

Now, we establish some preliminary results that will be used later.

2.2. Properties of the Function G(t,s)

We give some Lemmas on the above function G(t,s) .

Lemma 2.1. G(t, s) > 0 for (t, s) ∈ [t1, t2]× [t1, t2].

Proof. For t1 ≤ s ≤ t ≤ t2 using conditions A1 and A2, we have

β1

α11

≤ s ≤ t ≤ β2

α21

so that D = α11β2 − α21β1 > 0 and

G(t, s) =
1

D
(α21t− β2)(β1 − α11s) > 0.

Also, for t1 ≤ t ≤ s ≤ t2, we have β1

α11
≤ t ≤ s ≤ β2

α21
so that G(t, s) > 0.

Therefore, G(t, s) > 0 for (t, s) ∈ [t1, t2]× [t1, t2]. �

Lemma 2.2. The function G(t, s) satisfies the homogeneous differen-

tial equation −y′′ = 0 and the boundary conditions (2) for fixed s.

Proof. Since G(t, s) is a polynomial of degree one, then it satisfies

d2

t2
G(t, s) = 0 for all (t, s) ∈ [t1, t2]× [t1, t2].

Note that differentiation is with respect to t.

For t1 ≤ t ≤ s ≤ t2,
d
dt
G(t, s) = 1

D
α11(β2 − α21s) so that

α11G(t1, s) + α12G
′
(t1, s) = 0.
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Also for t1 ≤ s ≤ t ≤ t2, G
′
(t, s) = 1

D
α21(β1 − α11s) so that

α21G(t2, s) + α22G
′
(t2, s) = 0.

�

Lemma 2.3. For any fixed s ∈ [t1, t2], the function G(t, s) is continu-

ous for every t ∈ [t1, t2].

Proof. Clearly, G(t, s) is continuous everywhere on [t1, t2]× [t1, t2] since

it is continuous at the point t = s. Hence, the proof is complete. �

Lemma 2.4. d
dt
G(t, s) has a jump discontinuity with a jump of factor

−1 at the point t = s.

Proof. Here, we show that the limit of d
dt
G(t, s) as t approaches s from

above differ from its limit as t approaches s from below by −1.

G
′
(s+, s)−G′(s−, s) = lim

t→s+
G
′
(t, s)− lim

t→s−
G
′
(t, s)

=
1

D
(α21β1 − α21α11s− α11β2 + α11α21s)

=
1

D
(α21β1 − α11β2) = −1.

�

Lemma 2.5. Define

(5) γ = min

{
G(t1, s)

G(s, s)
,
G(t2, s)

G(s, s)

}
,

then 0 < γ < 1.
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Proof. Since G(t, s) > 0 for all (t, s) ∈ [t1, t2]× [t1, t2], γ > 0.

Case (i) If s = t1, γ = min
{

1, G(t2,t1)
G(t1,t1)

}
, which implies

γ =
G(t2, t1)

G(t1, t1)
=
α21t2 − β2

α11t1 − β1

< 1.

Case (ii) If s = t2 , then γ = min
{

1, G(t1,t2)
G(t2,t2

}
which implies

γ =
G(t1, t2)

G(t2, t2)
< 1.

Hence, the proof is complete. �

Theorem 2.6. Assume that conditions A1 − A3 holds then,

γG(s, s) ≤ G(t, s) ≤ G(s, s)

where

0 < γ = min{G(t1, s)

G(s, s)
,
G(t2, s)

G(s, s)
} < 1.

Proof. Case (i) For t1 ≤ s ≤ t ≤ t2, G
′
(t, s) = α21

D
(β1 − α11s) < 0,

which implies that G(t, s) is a decreasing function of t so that G(t, s) ≤

G(s, s) and also for t ≤ t2,
G(t,s)
G(s,s)

≥ G(t2,s)
G(s,s)

≥ γ which implies

γG(s, s) ≤ G(t, s).

Case (ii) For t1 ≤ t ≤ s ≤ t2, G
′
(t, s) = 1

D
α11(β2 − α21s) > 0

implies that G(t, s) is an increasing function of t so that

G(t, s) ≤ G(s, s)

and also for t ≥ t1,
G(t, s)

G(s, s)
≥ G(t1, s)

G(s, s)
≥ γ
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and so we have

γG(s, s) ≤ G(t, s).

Therefore, γG(s, s) ≤ G(t, s) ≤ G(s, s) for t1 ≤ t, s ≤ t2. �

2.3. Definition of Green’s Function

Consider the linear homogeneous differential equation

(6)
n∑
i=0

aiy
(i) = 0, t ∈ [t1, tn]

subject to the homogeneous boundary conditions

(7) αi1y(ti) + αi2y
′
(ti) + · · ·+ αiny

n−1(ti) = 0, i = 1, 2..., n.

For each fixed s ∈ [t1, t2], a function H(t,s) with the property that

(i) H(t,s) satisfies the differential equation

(ii) H(t,s) satisfies the homogeneous boundary conditions

(iii) H(i)(t, s), i = 0,1,2,. . ., n-2 is a continuous function of t on [t1, tn]

(iv) H(n−1)(s+, s)−H(n−1)(s−, s) = 1
an(s)

at t = s

is called the Green’s function of (6) satisfying (7).

So, from this definition, we can conclude from Lemmas 2.2, 2.3 and 2.4

that the function G(t, s) is the Green’s function for the equation

−y′′(t) = 0, t ∈ [t1, t2]

with boundary conditions

α11y(t1) + α12y
′
(t1) = 0

α21y(t2) + α22y
′
(t2) = 0.
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2.4. Existence of Positive Solutions

In this section,we find the range of λ for which there exist a positive

solution for (1) satisfying (2).

Definition 2.7. Let X be a Banach space. A non empty closed convex

set κ is called a cone of X, if it satisfies the following conditions:

(i) α1u+ α2v ∈ κ,∀ u, v ∈ κ and α1, α2 ≥ 0,

(ii) u ∈ κ and −u ∈ κ, implies u = 0.

Let y(t) be the solution of the BVP (1) satisfying (2), given by

(8) y(t) = λ

∫ t2

t1

G(t, s)f(s, y(s)) ds.

Define

X = {u|u ∈ C[t1, t2]},

with norm

‖u‖ = max
t∈[t1,t2]

|u(t)|.

Then, (X, ‖.‖) is a Banach space. Define a set κ by

(9) κ = {u ∈ X : u(t) ≥ 0 on [t1, t2] and min
t∈[t1,t2]

u(t) ≥ γ‖u‖}

where γ is defined in (5).

In the next Lemma, we show that κ defined above is a cone.

Lemma 2.8. The set κ is a cone in X, where κ is defined in (9).

Proof. Let {un} ∈ κ ,n ∈ N, be such that ‖un − u0‖ → 0 as n →

∞, where u0 ∈ X. Then un(t) ≥ 0 on [t1, t2], and min{un(t)} ≥
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γ‖un‖,∀ n ∈ N. Thus, given ε > 0, there exist N ∈ N such that

−ε < un(t)− u0(t) < ε, t ∈ [t1, t2], n ≥ N and so 0 ≤ un(t) ≤ u0(t) + ε

, t ∈ [t1, t2], n ≥ N. Hence u0(t) ≥ 0 on [t1, t2], then lim
n→∞

min{un(t)} ≥

γ lim
n→∞

‖un‖ and min
t∈[t1,t2]

{un(t)} ≥ γ‖u0‖, t ∈ [t1, t2], implies u0 ∈ κ and

so κ is closed.

Now let u,v ∈ κ and α1, α2 ≥ 0. Then α1u(t) + α2v(t) ≥ 0, t ∈ [t1, t2],

and

min
t∈[t1,t2]

{α1u(t) + α2v(t)} ≥ α1 min
t∈[t1,t2]

{u(t)}+ α2 min
t∈[t1,t2]

{v(t)}

≥ α1γ‖u‖+ α2γ‖v‖

≥ γ‖α1u+ α2v‖.

Therefore, α1u+ α2v ∈ κ. Hence the proof is complete. �

Define the operator T : κ→ X by

(10) (Ty)(t) = λ

∫ t2

t1

G(t, s)f(s, y(s))ds, for all t ∈ [t1, t2].

If y ∈ κ is a fixed point of T , then y satisfies (8); hence y is a positive

solution of the BVP (1) - (2). We seek a fixed point of the operator T

in the cone κ.

Now, we show that the operator defined in (10) preserves the cone.

Lemma 2.9. The operator T, as defined in (10), preserves κ. That is,

T : κ→ κ.

Proof. Let y ∈ κ. Since G(t, s) > 0 for all t ∈ [t1, t2], we have

(Ty)(t) ≥ 0 for all t ∈ [t1, t2]. Then from Lemma 2.6,
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(Ty)(t) = λ

∫ t2

t1

G(t, s)f(s, y(s)) ds

≥ λ

∫ t2

t1

γG(s, s)f(s, y(s)) ds

≥ λγ

∫ t2

t1

max
t∈[t1,t2]

G(t, s)f(s, y(s)) ds,

≥ γλ max
t∈[t1,t2]

∫ t2

t1

G(t, s)f(s, y(s)) ds,

= γ‖Ty‖.

Therefore,

min
t∈[t1,t2]

(Ty)(t) ≥ γ‖Ty‖.

So, (Ty)(t) ∈ κ. Hence T : κ→ κ. �

Now we need to show that the operator T is completely continuous

on the cone κ.

Lemma 2.10. The operator T is completely continuous, where T is

define in (10).

Proof. Let y ∈ κ and ε > 0 be given. By the continuity of f , there exists

δ > 0 such that for any u ∈ [0,∞) with |y(t) − u| < δ , t ∈ [t1, t2],

then |f(t, y(t)) − f(t, u)| < ε. Let w ∈ κ with ‖y − w‖ < δ , then

|w(t)− y(t)| < δ, for all t ∈ [t1, t2]. So we have,

|(Ty)(t)− (Tw)(t)| = λ

∫ t2

t1

G(t, s)|f(s, y(s))− f(s, w(s))| ds

≤ ελ

∫ t2

t1

G(t, s) ds
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Thus, ‖(Ty)(t)−(Tw)(t)‖ ≤ ελ
∫ t2
t1
G(t, s) ds and T is continuous. Now,

let {yn} be a bounded sequence in κ. Since f is continuous, there exists

N > 0 such that |f(t, y(t))| ≤ N for all n where t ∈ [t1, t2]. For each

n,

|(Tyn)(t)| = |λ
∫ t2

t1

G(t, s)f(s, yn(s))ds|

≤ λ

∫ t2

t1

|G(s, s)||f(s, yn(s))|ds

≤ Nλ

∫ t2

t1

G(s, s)ds.

By choosing successive subsequences, there exists a subsequence {Tynj
}

which converges uniformly on [t1, t2]. Hence T is completely continuous.

�

To establish the eigenvalue intervals where a fixed point exists, we

will employ the following Fixed Point Theorem due to Guo and Kras-

nosel’skii.

Theorem 2.11 (Guo-Krasnosel’skii Fixed Point Theorem). Let X be

a Banach space, κ ⊆ X be a cone, and suppose that Ω1,Ω2 are open

subsets of X with 0 ∈ Ω1 ⊂ Ω2 and Ω1 ⊂ Ω2. Suppose further that

T : κ∩ (Ω2\Ω1)→ κ is completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ κ ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ κ ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ κ ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ κ ∩ ∂Ω2,

holds. Then T has a fixed point in κ ∩ (Ω2\Ω1).

We are going to present our first existence result.



21

Theorem 2.12. Assume that conditions (A1)-(A3) are satisfied. Then,

for each λ satisfying

(11)
1

[γ2
∫ t2
t1
G(s, s) ds]f∞

< λ <
1

[
∫ t2
t1
G(s, s) ds]f 0

,

there exist at least one positive solution of the BVP (1)-(2) in κ, where

f∞ and f 0 are as define in Section 2.1.

Proof. Let λ be given as in (11). Now, let ε > 0 be chosen such that

1

[γ2
∫ t2

t1
G(s,s) ds](f∞−ε)

≤ λ ≤ 1

[
∫ t2

t1
G(s,s) ds](f0+ε)

.

Let T be the cone preserving, completely continuous operator defined

in (10). By definition of f 0, there exists H1 > 0 such that

max
t∈[t1,t2]

f(t, y)

y
≤ (f 0 + ε), for 0 < y ≤ H1.

It follows that, f(t, y) ≤ (f 0 + ε)y, for 0 < y ≤ H1. Choose y1 ∈ κ

with ‖y1‖ = H1. Then, we have from the boundedness of G(t, s) and

the nature of λ, that

(Ty1)(t) = λ

∫ t2

t1

G(t, s)f(s, y1(s)) ds

≤ λ

∫ t2

t1

G(s, s)f(s, y1(s)) ds

≤ λ

∫ t2

t1

G(s, s)(f o + ε)y1(s) ds

≤ λ

∫ t2

t1

G(s, s)(f o + ε)‖y1‖ ds

≤ ‖y1‖.



22

Consequently, ‖Ty1‖ ≤ ‖y1‖. So, if we define

Ω1 = {u ∈ X : ‖u‖ < H1},

then,

(12) ‖Ty‖ ≤ ‖y‖, for y ∈ κ ∩ ∂Ω1.

By definition of f∞, there exists H2 > 0 such that

min
t∈[t1,t2]

f(t, y)

y
≥ (f∞ − ε), for y ≥ H2.

It follows that

f(t, y) ≥ (f∞ − ε)y, for y ≥ H2.

Let

H2 = max{2H1,
1

γ
H2},

and let

Ω2 = {u ∈ X : ‖u‖ < H2}.

Now, choose y2 ∈ κ ∩ ∂Ω2 with ‖y2‖ = H2, so that

min
t∈[t1,t2]

y2(t) ≥ γ‖y2‖ ≥ H2.

Then,

(Ty2)(t) = λ

∫ t2

t1

G(t, s)f(s, y2(s)) ds

≥ λ

∫ t2

t1

γG(s, s)f(s, y2(s)) ds

≥ λγ

∫ t2

t1

G(s, s)(f∞ − ε)y2(s) ds
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≥ γ2λ

∫ t2

t1

G(s, s)(f∞ − ε)‖y2‖ ds

≥ ‖y2‖.

Thus,

(13) ‖Ty‖ ≥ ‖y‖, for y ∈ κ ∩ ∂Ω2

Applying Theorem 2.11(i), from (12) and (13) we have that T has a

fixed point y(t) ∈ κ∩ (Ω2\Ω1). This fixed point is the positive solution

of the BVP (1)-(2) for the given λ. �

Another existence result applying Theorem 2.11(ii) is as follow:

Theorem 2.13. Assume that conditions (A1)-(A3) are satisfied. Then,

for each λ satisfying

(14)
1

[γ2
∫ t2
t1
G(s, s) ds]f0

< λ <
1

[
∫ t2
t1
G(s, s) ds]f∞

there exist at least one positive solution of the BVP (1)-(2) in κ .

Proof. Let λ be given as in (14). Now, let ε > 0 be chosen such that

1

[γ2
∫ t2

t1
G(s,s) ds](f0−ε)

≤ λ ≤ 1

[
∫ t2

t1
G(s,s) ds]u(f∞+ε)

.

Let T be the cone preserving, completely continuous operator defined

in (10). By definition of f0, there exists J1 > 0 such that

min
t∈[t1,t2]

f(t,y)
y
≥ (f0 − ε), for 0 < y ≤ J1.
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It follows that, f(t, y) ≥ (f0 − ε)y, for 0 < y ≤ J1. Choose y ∈ κ with

‖y‖ = J1. Then, we have from the boundedness of G(t,s) that

(Ty)(t) = λ

∫ t2

t1

G(t, s)f(s, y(s))ds

≥ λ

∫ t2

t1

γG(s, s)f(s, y(s))ds

≥ γλ

∫ t2

t1

G(s, s)(fo − ε)y(s)ds

≥ γ2λ

∫ t2

t1

G(s, s)(fo − ε)‖y‖ds

≥ ‖y‖.

Consequently, ‖Ty‖ ≥ ‖y‖. So, if we define

Ω1 = {u ∈ X : ‖u‖ < J1},

then

(15) ‖Ty‖ ≥ ‖y‖, for y ∈ κ ∩ ∂Ω1.

It remains for us to consider f∞. By the definition of f∞, there exists

an J2 > 0 such that

max
t∈[t1,t2]

f(t,y)
y
≤ (f∞ + ε), for y ≥ J2.

It follows that

f(t, y) ≤ (f∞ + ε)y,

for y ≥ J2.

There are two cases to consider.

Case (i). The function f is bounded. Suppose L >0 is such that

f(t, y) ≤ L, for all 0 < y <∞.
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Let

J2 = max{2J1, Lλ

∫ t2

t1

G(s, s) ds},

Then, for y2 ∈ κ with ‖y2‖ = J2, we have

(Ty2)(t) = λ

∫ t2

t1

G(t, s)f(s, y2(s)) ds

≤ λ

∫ t2

t1

G(s, s)f(s, y2(s)) ds

≤ λL

∫ t2

t1

G(s, s) ds

≤ ‖y2‖.

Thus ‖Ty‖ ≤ ‖y‖. So, if we define

Ω2 = {u ∈ X : ‖u‖ < J2},

then

(16) ‖Ty‖ ≤ ‖y‖, for y ∈ κ ∩ ∂Ω2.

Case (ii). The function f is unbounded. Let J2 > max{2J1, J2} be

such that f(t, y) ≤ f(t, J2), for 0 < y ≤ J2. Let y2 ∈ κ with ‖y2‖ = J2.

Then,

(Ty2)(t) = λ

∫ t2

t1

G(t, s)f(s, y2(s)) ds

≤ λ

∫ t2

t1

G(s, s)f(s, y2(s)) ds

≤ λ

∫ t2

t1

G(s, s)f(s, J2) ds

which implies
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(Ty2)(t) ≤ λ

∫ t2

t1

G(s, s)(f∞ + ε)J2 ds

≤ J2 = ‖y2‖.

Thus , ‖Ty‖ ≤ ‖y‖. For this case, if we define

Ω2 = {u ∈ X : ‖u‖ < J2},

Then

(17) ‖Ty‖ ≤ ‖y‖, for y ∈ κ ∩ ∂Ω2.

Thus, in either of the cases, Theorem 2.11 in light of (15),(16) and (17)

yields that T has fixed point y(t) ∈ κ ∩ (Ω2\Ω1). This fixed point is

the solution of the BVP (1)-(2) for the given λ. �

2.5. Example

Let’s consider the example

y
′′
(t) + λ

y(1 + 200y)

1 + y
= 0, t ∈ [0, 1]

with boundary conditions

y(0)− y′(0) = 0

2y(1) + 3y
′
(1) = 0

The green’s function is given by

G(t, s) =

 1
7
(−1− s)(−5 + 2t) if 0 ≤ s ≤ t;

1
7
(5− 2s)(1 + t) if 0 ≤ t ≤ s.
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We found that γ = 1
2
, f∞ = 200, and f 0 = 1. So, employing (11), there

is a positive solution for all λ in the range ( 3
125
, 6

5
).
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3. Green’s Function and Bounds for the 2n(th) Order

Boundary Value Differential Equation

Our interest in this section is finding positive solutions to all differ-

ential equation of the form

(18) (−1)
n
2 y(n) + λf(t, y(t)) = 0

for even n, with boundary conditions

(19)

 α11y
(2k)(t1) + α12y

(2k+1)(t1) = 0

α21y
(2k)(t2) + α22y

(2k+1)(t2) = 0, k = 0, 1, 2, . . . n
2
− 1.

Before we can do this, we need to be able to generate the Green’s

function of the homogeneous boundary value problem which we do in

the following subsection.

3.1. Finding the Green’s Function for the 2n(th) Order DE

In this section, we will derive Green’s function for 2nth order homo-

geneous differential equation (21) satisfying (22).

Theorem 3.1. Suppose that G2(t, s) is the Green’s function satisfying

−y′′(t) = 0

with boundary conditions

α11y(t1) + α12y
′
(t1) = 0

α21y(t2) + α22y
′
(t2) = 0
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Then ,

(20) Gn(t, s) =

∫ t2

t1

G2(t, w)Gn−2(w, s) dw n ∈ {2k + 2 : k ∈ N}

is the Green’s function for

(21) (−1)
n
2 yn(t) = 0, n ∈ {2k + 2 : k ∈ N},

with boundary conditions

(22)

 α11y
(2k)(t1) + α12y

(2k + 1)(t1) = 0

α21y
(2k)(t2) + α22y

(2k + 1)(t2) = 0, k = 0, 1, 2, . . . n
2
− 1.

Proof. Suppose G2(t, s) is the Green’s function satisfying −y′′(t) = 0,

then

−y′′(t) = g ⇒ y(t) =

∫ t2

t1

G2(t, s)g(s) ds

so that

y
′′′′

(t) = g ⇒ (y
′′
)
′′

= g

which implies y
′′
(t) = −

∫ t2

t1

G2(t, s)g(s) ds = −H(t).

Then, y(t) =

∫ t2

t1

G2(t, w)H(w) dw

=

∫ t2

t1

G2(t, w)

{∫ t2

t1

G2(w, s)g(s) ds

}
dw

=

∫ t2

t1

{∫ t2

t1

G2(t, w)G2(w, s)g(s) ds

}
dw

=

∫ t2

t1

{∫ t2

t1

G2(t, w)G2(w, s) dw

}
g(s) ds

=

∫ t2

t1

G4(t, s)g(s) ds
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where

G4(t, s) =

∫ t2

t1

G2(t, w)G2(w, s) dw.

From definition of G2(t, s), G4(t, s) =
∫ t2
t1
G2(t, w)G2(w, s) dw implies

G
′′
4(t, s) = −G2(t, s) which in turn implies that y

′′
satisfies the bound-

ary conditions (2).

That is,

α11y
′′
(t1) + α12y

′′′
(t1) = 0,

α21y
′′
(t2) + α22y

′′′
(t2) = 0.

Likewise, G4(t, s) satisfies boundary conditions (2) so that y(t) satisfies

the BC

α11y(t1) + α12y
′
(t1) = 0

α21y(t2) + α22y
′
(t2) = 0

α11y
′′
(t1) + α12y

′′′
(t1) = 0

α21y
′′
(t2) + α22y

′′′
(t2) = 0.

So, G4(t, s) is the Green’s function for the equation

y
′′′′

(t) = 0,

satisfying the BCs

α11y(t1) + α12y
′
(t1) = 0

α21y(t2) + α22y
′
(t2) = 0
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α11y
′′
(t1) + α12y

′′′
(t1) = 0

α21y
′′
(t2) + α22y

′′′
(t2) = 0.

For n=6, we have −y(6)(t) = g(t) or, equivalently, −(y(′′))(′′′′)(t) =

g(t)

which implies − y′′(t) =

∫ t2

t1

G4(t, s)g(s) ds = H(t)

so that y(t) =

∫ t2

t1

G2(t, w)H(w) dw

=

∫ t2

t1

G2(t, w)

{∫ t2

t1

G4(w, s)g(s) ds

}
dw

=

∫ t2

t1

{∫ t2

t1

G2(t, w)G4(w, s)g(s) dw

}
ds

=

∫ t2

t1

G6(t, s)g(s) ds,

where

(23) G6(t, s) =

∫ t2

t1

G2(t, w)G4(w, s)g(s) dw.

By definition of G2(w, s) , (23) implies

G
′′

6(t, s) = −G4(t, s)

which means that y
′′

satisfies the boundary conditions above. That is,

we have
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(24)



α11y
′′
(t1) + α12y

′′′
(t1) = 0

α21y
′′
(t2) + α22y

′′′
(t2) = 0

α11y
′′′′

(t1) + α12y
′′′′′

(t1) = 0

α21y
′′′′

(t2) + α22y
′′′′′

(t2) = 0

Also, G
′′
6(t, s) satisfies the boundary conditions (2) so that y(t) satisfies

the BC

α11y(t1) + α12y
′
(t1) = 0

α21y(t2) + α22y
′
(t2) = 0

α11y
′′
(t1) + α12y

′′′
(t1) = 0

α21y
′′
(t2) + α22y

′′′
(t2) = 0

α11y
′′′′

(t1) + α12y
′′′′′

(t1) = 0

α21y
′′′′

(t2) + α22y
′′′′′

(t2) = 0.

Continuing in this way, we find out that

Gn(t, s) =

∫ t2

t1

G2(t, w)Gn−2(w, s) dw n ∈ {2k + 2; k ∈ N}

is the Green’s function for

(−1)
n
2 yn(t) = 0, n ∈ {2k + 2; k ∈ N}

with boundary conditions

α11y
(2k)(t1) + α12y

(2k+1)(t1) = 0

α21y
(2k)(t2) + α22y

(2k+1)(t2) = 0, k = 0, 1, 2, . . . n
2
− 1. �
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3.2. Bounds for the Green’s Function

Here, we find bound for the Green’s function for 2nth order problem.

Theorem 3.2. Assuming conditions (A1)-(A3),then

γ
n
2Gn(s, s) ≤ Gn(t, s) ≤ Gn(s, s) for n ∈ {2k; k ∈ N}

Proof. From previous theorem, γG2(s, s) ≤ G2(t, s) ≤ G2(s, s) ∀ (t, s) ∈

[t1, t2].

So,

G4(t, s) =

∫ t2

t1

G2(t, x)G2(x, s) dx

≤
∫ t2

t1

G2(s, x)G2(x, s) dx = G4(s, s).

Therefore,

G4(t, s) ≤ G4(s, s).

Also

G4(t, s) =

∫ t2

t1

G2(t, x)G2(x, s) dx

≥
∫ t2

t1

γG2(s, x)G2(x, s) dx and since 0 < γ < 1, we have

≥
∫ t2

t1

γG2(s, x)γG2(x, s) dx = γ2G4(s, s).

Therefore,

G4(t, s) ≥ γ2G4(s, s),

so that

γ2G4(s, s) ≤ G4(t, s) ≤ G4(s, s).
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Similarly,

G6(t, s) =

∫ t2

t1

G2(t, x)G4(x, s) dx

≤
∫ t2

t1

G2(s, x)G4(x, s) dx = G6(s, s).

Therefore,

G6(t, s) ≤ G6(s, s).

Also,

G6(t, s) =

∫ t2

t1

G2(t, x)G4(x, s) dx

≥
∫ t2

t1

γG2(s, x)γ2G4(s, s) dx and since G4(t, s) ≤ G4(s, s), we have

≥
∫ t2

t1

γG2(s, x)γ2G4(x, s) dx = γ3G6(s, s).

Therefore G6(t, s) ≥ γ3G6(s, s) so that

γ3G6(s, s) ≤ G6(t, s) ≤ G6(s, s).

Continuing in this, we have that

γ
n
2Gn(s, s) ≤ Gn(t, s) ≤ Gn(s, s) for n ∈ {2k + 2; k ∈ N}

�

The following theorem gives us the eigenvalue interval for which there

exists positive solution(s) for even order problems.

Theorem 3.3. For n ∈ {2k; k ∈ N}, assuming that conditions (A1)-

(A3) is satisfied, then for each λ satisfying
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(25)
1

[γn
∫ t2
t1
Gn(s, s)ds]f0

< λ <
1

[
∫ t2
t1
Gn(s, s)ds]f∞

,

there exist at least one positive solution of the BVP

(26) (−1)
n
2 yn(t) = λf(t, y(t)).

with boundary conditions

α11y
(2k)(t1) + α12y

(2k+1)(t1) = 0

α21y
(2k)(t2) + α22y

(2k+1)(t2) = 0, k = 0, 1, 2, . . .
n

2
− 1.

Proof. The proof follows by using Theorem 2.11 and changing γ to be

γ
n
2 in (11) and (14). Doing this, we have

1

[γn
∫ t2
t1
Gn(s, s) ds]fo

< λ <
1

[
∫ t2
t1
Gn(s, s) ds]f∞

.

�

3.3. Example

Using equation (21), we can easily generate the Green’s function for
the case where n = 4, 6, 8, 10, and so on. Below is one of such computed
Green’s function using mathematica.
For the case where n=4,

G4(t, s) =



− (β1−α11s)(s−t)(−β2+α21t)(3β1(−2β2+α21(s+t))+α11(3β2(s+t)−2α21(s2+st+t2)))
6D2

+
(β1−α11s)(β1−α11t)((β2−α21t)

3+(−β2+α21t2)3)
3α21D2

+
(β2−α21s)(β2−α21t)((−β1+α11s)

3+(β1−α11t1)3)
3α11D2 if t1 ≤ s ≤ t ≤ t2;

(β2−α21s)(s−t)(β1−α11t)(−3β1(−2β2+α21(s+t))+α11(−3β2(s+t)+2α21(s2+st+t2)))
6D2

+
(β1−α11s)(β1−α11t)((β2−α21s)

3+(−β2+α21t2)3)
3α21D2

+
(β2−α21s)(β2−α21t)((−β1+α11t)

3+(β1−α11t1)3)
3α11D2 if t1 ≤ t ≤ s ≤ t2.
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is the Green’s function for

−y(4) = 0

with boundary conditions

(27)



α11y(t1) + α12y
′
(t1) = 0

α21y(t2) + α22y
′
(t2) = 0

α11y
′′
(t1) + α12y

′′′
(t1) = 0

α21y
′′
(t2) + α22y

′′′
(t2) = 0.

Considering the equation

y(4)(t) + λ
y(1 + 200y)

1 + y
= 0, t ∈ [0, 1],

with boundary conditions

y(0)− y′(0) = 0

2y(1) + 3y
′
(1) = 0

y′′(0)− y′′′(0) = 0

2y
′′
(1) + 3y

′′′
(1) = 0

the Green’s function is

G4(t, s) =



1
147 (8 + (−1− s)3)(5− 2s)(5− 2t)

+ 1
294 (−1− s)(−1− t)(125 + (−5 + 2t)3)

+ 1
294 (−1− s)(5− 2t)(s− t)(
−15(s + t) + 4(s2 + st + t2) + 3(−10 + 2(s + t))

)
if t1 ≤ s ≤ t ≤ t2;

1
147 (5− 2s)(8 + (−1− t)3)(5− 2t)

+ 1
294 (−1− s)(125 + (−5 + 2s)3)(−1− t)

− 1
294 (5− 2s)(−1− t)(s− t)(
−15(s + t) + 4(s2 + st + t2)− 3(10− 2(s + t))

)
if t1 ≤ t ≤ s ≤ t2.

We found that γ = 1
2 , f∞ = 200, and f0 = 1. Employing (11), we get the

eigenvalue interval 0.0748886 < λ < 630
673 , for which there exists a positive

solution.
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4. Third-Order Boundary Value Problem on R with Green’s

Function and Bound

For this section, we are going to consider the third order eigenvalue prob-

lem on R. We are going to consider nonhomogeneous boundary conditions.

In this section, we assume f(t, y(t)) to be as defined in Section 2.

4.1. Solving the Third Order Equation

Consider the boundary value problem

(28) y
′′′

(t) = λf(t, y(t)), t ∈ [t1, t3]

with boundary conditions

(29)


y(t1) = ρ1

y
′
(t2) = ρ2

y
′′
(t3) = ρ3

Defining g(t) ≡ λf(t, y(t)) and taking the Laplace transform of 28, we

have

L(y
′′′

(t)) = L(g) which implies

s3L(y)− s2y(0)− sy′(0)− y′′(0) = L(g).

This implies that

L(y) =
1
s
y(0) +

1
s2
y
′
(0) +

1
s3
y
′′
(0) +

1
s3
L(g).

Taking the inverse Laplace gives
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y(t) = y(0) + ty
′
(0) +

1
2
t2y
′′
(0) + L−1{ 1

s3
L(g)}

= y(0) + ty
′
(0) +

1
2
t2y
′′
(0) +

1
2

∫ t

t1

(t− s)2g(s) ds.

Then,

y
′
(t) = y

′
(0) + ty

′′
(0) +

∫ t

t1

(t− s)g(s) ds, and

y
′′
(t) = y

′′
(0) +

∫ t

t1

g(s) ds

Using the boundary conditions, we have that

y(0) = ρ1 − t1ρ2 −
1
2

(t21 − 2t1t2)ρ3 +
1
2

∫ t3

t1

(t21 − 2t1t2)g(s) ds

+
∫ t2

t1

t1(t2 − s)g(s) ds,

y
′
(0) = ρ2 − t2ρ3 +

∫ t3

t1

t2g(s) ds−
∫ t2

t1

(t2 − s)g(s) ds,

y
′′
(0) = ρ3 −

∫ t3

t1

g(s) ds,

so that

y(t) = y(0) + ty
′
(0) +

1
2
t2y
′′
(0) +

1
2

∫ t

t1

(t− s)2g(s) ds

= ρ1 + (t− t1)ρ2 +
1
2

(t2 − 2tt2 − t21 + 2t1t2)ρ3

−1
2

∫ t3

t1

(t2 − 2tt2 − t21 + 2t1t2)g(s) ds

+
∫ t2

t1

(t2 − s)(t1 − t)g(s) ds+
1
2

∫ t

t1

(t− s)2g(s) ds



39

That is,

y(t) = ρ1 + (t− t1)ρ2 +
1
2
(
(t− t2)2 − (t2 − t1)2

)
ρ3

−1
2

∫ t3

t1

((t− t2)2 − (t2 − t1)2)g(s) ds

−
∫ t2

t1

(t2 − s)(t− t1)g(s) ds+
1
2

∫ t

t1

(t− s)2g(s) ds.

Defining

(30) z(t) ≡ ρ1 + (t− t1)ρ2 +
1
2

((t− t2)2 − (t2 − t1)2)ρ3,

we have

y(t) = z(t)− 1
2

∫ t3

t1

(
(t− t2)2 − (t2 − t1)2

)
g(s) ds

−
∫ t2

t1

(t2 − s)(t− t1)g(s) ds+
1
2

∫ t

t1

(t− s)2g(s) ds,

where z(t) is the solution of the homogeneous boundary value differential

equation

y
′′′

(t) = 0,

with boundary conditions 
y(t1) = ρ1

y
′
(t2) = ρ2

y
′′
(t3) = ρ3.

Also,
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(31)

G(t, s) =



1
2(s− t1)2 if t1 ≤ s ≤ t ≤ t2 < t3;

1
2

[
(s− t1)2 − (s− t)2

]
if t1 ≤ t ≤ s ≤ t2 < t3;

1
2

[
(t2 − t1)2 − (t2 − t)2

]
if t1 ≤ t ≤ t2 ≤ s ≤ t3;

1
2

[
(t2 − t1)2 − (t− t2)2 + (t− s)2

]
if t1 < t2 ≤ s ≤ t ≤ t3;

1
2

[
(t2 − t1)2 − (t− t2)2

]
if t1 < t2 ≤ t ≤ s ≤ t3;

1
2(s− t1)2 if t1 ≤ s ≤ t2 ≤ t ≤ t3.

is the Green’s function for the equation

(32) y
′′′

(t) = 0,

with boundary conditions

(33)


y(t1) = 0

y
′
(t2) = 0

y
′′
(t3) = 0.

From above, z(t) as defined in (30) has zeroes t
′

and t
′′

where

(34)


t
′

= (ρ3t2−b2)+
√
A

ρ3
,

t
′′

= (ρ3t2−b2)−
√
A

ρ3
, and

A = [ρ3(t1 − t2) + ρ2]2 − 2ρ1ρ3.

We assume the following conditions on t1, t2, t3 and ρ1, ρ2, ρ3 through-

out this section:

B1 : t2 >
t1+t3

2 , t3 < t
′′
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B2 : ρ1 > 0, ρ3 < 0, ρ3(t2 − t1) < ρ2 < ρ3(t2 − t3).

Note: B1 is derived from the fact that G(t3, s) must be nonnegative on the

interval t1 < t2 ≤ t ≤ s ≤ t3 and we choose t3 < t
′′

so that (t1, t3) ⊂ (t
′
, t
′′
).

B2 is derived such that t1 < t2 − ρ2
ρ3
< t3 where t2 − ρ2

ρ3
is the maximum

point of z(t). Also, we make ρ3 < 0 because we want z(t) to be concave

down and ρ1 > 0 since we want a positive solution for y(t).

4.2. Bounds for the Green’s Function

In this section, we find the bounds for the Green’s function (31).

Theorem 4.1. Given that condition B1 holds, G(t, s) > 0 for (t,s) ∈

(t1, t3]× (t1, t3].

Proof. For t1 ≤ s ≤ t ≤ t2 < t3 , G(t, s) > 0 since s 6= t1.

For t1 < t < s ≤ t2 < t3 , since t1 < t < s, we have s − t1 > s − t > 0 and

so G(t, s) = 1
2

[
(s− t1)2 − (s− t)2

]
> 0. Also, if t = s, then

G(t, s) = 1
2(s− t1)2 > 0. Therefore G(t, s) > 0.

For t1 < t < t2 ≤ s ≤ t3, since t1 < t < t2, we have t2 − t1 > t − t1 and so

G(t, s) = 1
2

[
(t2 − t1)2 − (t2 − t)2

]
> 0. Also, if t = t2, then

G(t, s) = 1
2(t2 − t1)2 > 0. Therefore G(t, s) > 0.

For t1 < t2 ≤ s ≤ t ≤ t3, since t2 > t1+t3
2 , we have

t2−t1 > t3−t2 > t−t2. So, G(t, s) = 1
2

[
(t2 − t1)2 − (t− t2)2 + (t− s)2

]
> 0.

For t1 < t2 ≤ t ≤ s ≤ t3, G(t, s) > 0 since t2 > t1+t3
2 .

Lastly, for t1 < s ≤ t2 ≤ t < t3 , G(t, s) > 0 since s 6= t1. �

In the next theorem, we find the bounds for the Green’s function 31. This

bound is later used to find the range of λ values for which (28) satisfying

(29) has a positive solution.
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Theorem 4.2. For a fixed s, G(t, s) ≤ 1
2(s − t1)2 for all (t,s) ∈ (t1, t3] ×

(t1, t3].

G(t, s) ≥ 1
2((t2 − t1)2 − (t3 − t2)2) for all (t,s) ∈ [t2, t3]× [t2, t3].

Proof. For t1 ≤ t < s < t2 < t3, G
′
(t, s) = s− t > 0

which implies that G(t, s) is an increasing function of t. So, G(t, s) < G(s, s)

for t < s.

For t1 ≤ t ≤ t2 ≤ s ≤ t3, G
′
(t, s) = t2 − t ≥ 0 which implies that G(t, s) is a

nondecreasing function of t. So, G(t, s) ≤ G(t2, s) = 1
2(t2− t1)2 ≤ 1

2(s− t1)2

for t ≤ t2 ≤ s.

Likewise, for t1 < t2 ≤ s ≤ t ≤ t3, G
′
(t, s) = t2−s ≤ 0, so G(t, s) is a nonin-

creasing function of t so that G(t, s) ≤ G(s, s) = 1
2

[
(t2 − t1)2 − (s− t2)2

]
≤

1
2(t2 − t1)2 ≤ 1

2(s− t1)2.

For t1 < t2 ≤ t ≤ s ≤ t3, t < t3 so that −(t − t2)2 > −(t3 − t2)2 which

implies G(t, s) = 1
2

(
(t2 − t1)2 − (t− t2)2

)
≥ 1

2

(
(t2 − t1)2 − (t3 − t2)2

)
.

Likewise on t1 < t2 ≤ s ≤ t ≤ t3 , from above,

G(t, s) =
1
2
(
(t2 − t1)2 − (t− t2)2 + (t− s)2

)
≥ 1

2
(
(t2 − t1)2 − (t− t2)2

)
≥ 1

2
(
(t2 − t1)2 − (t3 − t2)2

)
�

4.3. Existence of Positive Solution(s)

In this subsection, we find the range of λ for which (28) satisfying (29)

has positive solution. Let y(t) be the solution of the BVP (28)- (29), given

by

(35) y(t) = z(t) + λ

∫ t3

t1

G(t, s)f(s, y(s)) ds
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Defining

v(t) ≡ y(t)− z(t),

equation (35) can be re-written as

(36) v(t) = λ

∫ t3

t1

G(t, s)f(s, v(s)) ds,

which is the solution of the homogeneous boundary value differential equa-

tion

(37) v
′′′

(t) = λf(t, v(t)), t ∈ [t1, t3],

with boundary conditions

(38)


v(t1) = 0

v
′
(t2) = 0

v
′′
(t3) = 0.

Also G(t, s) is the Green’s function for the differential equation

v
′′′

(t) = 0, t ∈ [t1, t3]

with boundary conditions 
v(t1) = 0

v
′
(t2) = 0

v
′′
(t3) = 0.

Define a set, X , by

X = {u|u ∈ C[t1, t3]}

with norm

‖u‖ = max
t∈[t1,t3]

|u(t)|,
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Then (X, ‖.‖) is a Banach space.
Let

(39) m = min

{
min

t2≤s≤t

{
(t2 − t1)

2 − (t3 − t2)
2 + (t3 − s)2

(t2 − t1)2 + (t2 − s)2

}
,
(t2 − t1)

2 − (t3 − t2)
2

(t2 − t1)2

}
.

We first show that 0 < m < 1. Since for t1 < t2 ≤ s ≤ t ≤ t3, we have

G
′
(t, s) = t2 − s ≤ 0, so G(t, s) is a decreasing function of t and G(t3, s) <

G(t2, s). Also, for t1 < t2 ≤ t ≤ s ≤ t3, we have G
′
(t, s) = t2 − t ≤ 0, so

G(t, s) is a decreasing function of t and G(t3, s) < G(t2, s).

Define a set κ by

κ = {u ∈ X : u(t) ≥ 0 on [t1, t2] and min
t∈[t2,t3]

u(t) ≥ m‖u‖}.

Then by Lemma 2.8, κ is a cone. Using condition B2,

z(t) > 0 for t ∈ (t
′
, t
′′
),

where t
′

and t
′′

are as define in (34).

From the fact that z(t
′
) = 0 and z(t1) = ρ1 > 0, we conclude that t

′
< t1

since z(t) is concave down. Also, since t3 < t
′′

then (t1, t3) ⊆ (t
′
, t
′′
). So, we

conclude that

z(t) ≥ 0 for t ∈ [t1, t3].

Define the operator T : κ→ X by

(40) (Tv)(t) = λ

∫ t3

t1

G(t, s)f(s, v(s))ds, ∀ t ∈ [t1, t3]

From Lemma 2.9, T preserves κ. If v ∈ κ is a fixed point of T , then v

satisfies (37) and hence v is a positive solution of the BVP (37) - (38). We

seek a fixed point of the operator ,T , in the cone κ.

From Lemma 2.9, the operator T as defined in (40) preserves κ.

Now, we find the range of λ that gives a positive solution for (36)
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Theorem 4.3. Assume that conditions (B1),(B2) is satisfied. Then, for

each λ satisfying

(41)
1

[m
∫ t3
t2

1
2((t2 − t1)2 − (t3 − t2)2) ds]f∞

< λ <
1

[
∫ t3
t1

1
2(s− t1)2 ds]f0

,

there exist at least one positive solution of the BVP (37)-(38) in κ where m

is defined in (39).

Proof. Let λ be given as in (41). Now, let ε > 0 be chosen such that

1

[m
∫ t3

t2
1
2

((t2−t1)2−(t3−t2)2) ds](f∞−ε)
≤ λ ≤ 1

[
∫ t3

t1
G(s,s) ds](f0+ε)

.

Let T be the cone preserving, completely continuous operator defined in

(40). By definition of f0, there exist H1 > 0 such that

max
t∈[t1,t3]

f(t, v)
v
≤ (f0 + ε), for 0 < v ≤ H1.

It follows that, f(t, v) ≤ (f0 + ε)v, for 0 < v ≤ H1. So choosing v1 ∈ κ with

‖v1‖ = H1. Then, we have from the boundedness of G(t, s) that

(Tv1)(t) = λ

∫ t3

t1

G(t, s)f(s, v1(s)) ds

≤ λ

∫ t3

t1

1
2

(s− t1)2f(s, v1(s)) ds

≤ λ

∫ t3

t1

1
2

(s− t1)2(f0 + ε)v1(s) ds

≤ λ

∫ t3

t1

1
2

(s− t1)2(f0 + ε)‖v1‖ ds

≤ ‖v1‖.

Consequently, ‖Tv‖ ≤ ‖v‖. So, if we define

Ω1 = {u ∈ X : ‖u‖ < H1},
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Then

(42) ‖Tv‖ ≤ ‖v‖, for v ∈ κ ∩ ∂Ω1.

By definition of f∞, there exists an H2 > 0 such that

min
t∈[t1,t3]

f(t,v)
v ≥ (f∞ − ε), for v ≥ H2.

It follows that f(t, v) ≥ (f∞ − ε)v, for v ≥ H2.

Let

H2 = max{2H1,
1
m
H2},

and let

Ω2 = {u ∈ X : ‖u‖ < H2}.

Now choose v2 ∈ κ ∩ ∂Ω2 with ‖v2‖ = H2, so that

min
t∈[t1,t2]

v2(t) ≥ m‖v2‖ ≥ H2.

Consider,

T (v2)(t) = λ

∫ t3

t1

G(t, s)f(s, v2(s)) ds

≥ λ

∫ t3

t2

1
2

((t2 − t1)2 − (t3 − t2)2)f(s, v2(s)) ds

≥ λ

∫ t3

t2

1
2

((t2 − t1)2 − (t3 − t2)2)(f∞ − ε)v2(s) ds

≥ mλ

∫ t3

t2

1
2

((t2 − t1)2 − (t3 − t2)2)(f∞ − ε)‖v2‖ ds

≥ ‖v2‖.

Thus,

(43) ‖Tv‖ ≥ ‖v‖, for v ∈ κ ∩ ∂Ω2
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Applying Theorem 2.11 to (42) and (43) yields a fixed point for Tv(t) ∈

κ∩ (Ω2\Ω1). This fixed point is the positive solution of the BVP (37)- (38)

for the given λ. �

Next, we prove the other range for λ for which a positive solution exists.

Theorem 4.4. Assume that conditions (B1)-(B2) is satisfied. Then, for

each λ satisfying

(44)
1

[m
∫ t3
t2

1
2((t2 − t1)2 − (t− t2)2) ds]f0

< λ <
1

[
∫ t3
t1

1
2(s− t1)2 ds]f∞

there exist at least one positive solution of the BVP (37)-(38) in κ .

Proof. Let λ be given as in (44). Now, let ε > 0 be chosen such that

1

[m
∫ t3
t2

1
2((t2 − t1)2 − (t3 − t2)2) ds](f0 − ε)

≤ λ ≤ 1

[
∫ t3
t1

1
2(s− t1)2 ds]u(f∞ + ε)

.

Let T be the cone preserving, completely continuous operator defined in

(2.9). By definition of f0, there exist J1 > 0 such that

min
t∈[t1,t3]

f(t, v)
v
≥ (f0 − ε), for 0 < v ≤ J1.
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It follows that, f(t, v) ≥ (f0 − ε)v, for 0 < v ≤ J1. So choosing v1 ∈ κ with

‖v1‖ = J1. we have from the boundedness of G(t,s) that

(Tv1)(t) = λ

∫ t3

t1

G(t, s)f(s, v1(s)) ds

≥ λ

∫ t3

t2

G(t, s)f(s, v1(s)) ds

≥ λ

∫ t3

t2

1
2

((t2 − t1)2 − (t3 − t2)2)f(s, v1(s)) ds

≥ λ

∫ t3

t2

1
2

((t2 − t1)2 − (t3 − t2)2)(fo − ε)v1(s) ds

≥ mλ

∫ t3

t2

1
2

((t2 − t1)2 − (t3 − t2)2)(fo − ε)‖v1‖ ds

≥ ‖v1‖.

Consequently, ‖Tv‖ ≥ ‖v‖. So, if we define

Ω1 = {u ∈ X : ‖u‖ < J1},

Then

(45) ‖Tv‖ ≥ ‖v‖, for v ∈ κ ∩ ∂Ω1.

It remains for us to consider f∞. By the definition of f∞, there exists an

J2 > 0 such that

max
t∈[t1,t3]

f(t, v)
v
≤ (f∞ + ε), for v ≥ J2.

It follows that

f(t, v) ≤ (f∞ + ε)v, for v ≥ J2.

There are two cases.

Case (i): The function f is bounded. Suppose L >0 is such that f(t, v) ≤

L, for all 0 < v <∞.
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Let

J2 = max{2J1, λL

∫ t3

t1

1
2

(s− t1)2ds},

Then for v2 ∈ κ with ‖v2‖ = J2,

(Tv2)(t) = λ

∫ t3

t1

G(t, s)f(s, v2(s)) ds

≤ λ

∫ t3

t1

1
2

(s− t1)2f(s, v2(s)) ds

≤ λL

∫ t3

t1

1
2

(s− t1)2 ds

≤ J2 = ‖v2‖.

Thus, ‖Tv‖ ≤ ‖v‖. So, if we define

Ω2 = {u ∈ X : ‖u‖ < J2},

then

(46) ‖Tv‖ ≤ ‖v‖, for v ∈ κ ∩ ∂Ω2.

Case (ii): The function f is unbounded. Let J2 > max{2J1, J2} be such

that f(t, v) ≤ f(t, J2), for 0 < v ≤ J2. Let v2 ∈ κ with ‖v2‖ = J2. Then

(Tv2)(t) = λ

∫ t3

t1

G(t, s)f(s, v2(s)) ds

≤ λ

∫ t3

t1

1
2

(s− t1)2f(s, v2(s)) ds

≤ λ

∫ t3

t1

1
2

(s− t1)2f(s, J2) ds

≤ λ

∫ t3

t1

1
2

(s− t1)2(f∞ + ε)J2 ds

≤ J2 = ‖v2‖.

Thus , ‖Tv‖ ≤ ‖v‖. For this case, if we define

Ω2 = {u ∈ X : ‖u‖ < J2},
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then

(47) ‖Tv‖ ≤ ‖v‖, for v ∈ κ ∩ ∂Ω2.

In either of the cases, an application of part (ii) of Theorem 2.11 to (45),

(46) and (47) yields a fixed point for Tv(t) ∈ κ ∩ (Ω2\Ω1). This fixed point

is the solution of the BVP (37)-(38) for the given λ. �

4.4. Green’s Function and Bound for the 3n(th) Order BVP

Our interest in this section is to find positive solutions to all differential

equations of the form

(48) y(n) + λf(t, y(t)) = 0

subject to some boundary conditions

(49)


y(3k)(t1) = ρ1

y(3k+1)(t2) = ρ2

y(3k+2)(t3) = ρ3, k = 0, 1, 2, . . . , n2 − 1.

Before we can do this, we need to be able to generate the Green’s function

of the homogeneous boundary value problem. The following theorem offers

us a method.

Theorem 4.5. Suppose that G3(t, s) is the Green’s function of

y
′′′

(t) = 0

satisfying the boundary conditions
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(50)


y(t1) = 0

y
′
(t2) = 0

y
′′
(t3) = 0

then ,

(51) Gn(t, s) =
∫ t3

t1

G3(t, w)Gn−3(w, s) dw n ∈ {3k + 3 : k ∈ N}

is the Green’s function for

(52) yn(t) = 0, n ∈ {3k + 3 : k ∈ N},

with boundary conditions

(53)


y(3k)(t1) = 0

y(3k+1)(t2) = 0

y(3k+2)(t3) = 0, k = 0, 1, 2, . . . , n2 − 1.

Proof. Suppose G3(t, s) is the Green’s function of y
′′′

(t) = 0, satisfying the

boundary conditions y(t1) = 0, y
′
(t2) = 0, y

′′
(t3) = 0 then, the solution of

y
′′′

(t) = g

satisfying the above BCs is

y(t) =
∫ t3

t1

G3(t, s)g(s) ds.

So, if y(6)(t) = g, that is, (y(3))(3) = g, then,
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y(3)(t) =
∫ t3

t1

G3(t, s)g(s) ds ≡ H(t)

which implies

y(t) =
∫ t3

t1

G3(t, w)H(w) dw

=
∫ t3

t1

G3(t, w)
{∫ t3

t1

G3(w, s)g(s) ds
}
dw

=
∫ t3

t1

∫ t3

t1

G3(t, w)G3(w, s)g(s) ds dw

=
∫ t3

t1

{∫ t3

t1

G3(t, w)G3(w, s) dw
}
g(s) ds

=
∫ t3

t1

G6(t, s)g(s) ds,

where

G6(t, s) =
∫ t3

t1

G3(t, w)G3(w, s) dw.

By definition of G3(t, s),

G6(t, s) =
∫ t3

t1

G3(t, w)G3(w, s) dw

implies that

G
′′′
6 (t, s) = G3(t, s)

which implies that y
′′′

satisfies the boundary conditions for the equation

(50), that is,


(y
′′′

)(t1) = 0

(y
′′′

)′(t2) = 0

(y
′′′

)′′(t3) = 0.
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Likewise, G6(t, s) satisfies the boundary conditions (50) so that y(t) satisfies

the boundary conditions 
y(t1) = 0

y
′
(t2) = 0

y
′′
(t3) = 0.

So, G6(t, s) is the Green’s function for the equation

y(6)(t) = 0,

with boundary conditions

(54)



y(t1) = 0

y
′
(t2) = 0

y
′′
(t3) = 0y

′′′
(t1) = 0

y(4)(t2) = 0

y(5)(t3) = 0.

Similarly,

y(9)(t) = g(t)

implies that

(y(3))(6)(t) = g(t)

which gives us

y(3)(t) =
∫ t3

t1

G6(t, s)g(s) ds = H(t)

so that
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y(t) =
∫ t3

t1

G3(t, w)H(w) dw

=
∫ t3

t1

G3(t, w)
{∫ t3

t1

G6(w, s)g(s) ds
}
dw

=
∫ t3

t1

{∫ t3

t1

G3(t, w)G6(w, s)g(s) dw
}
ds

=
∫ t3

t1

G9(t, s)g(s)ds,

where

G9(t, s) =
∫ t3

t1

G3(t, w)G6(w, s)g(s) dw.

By definition of G3(w, s)

G
′′′
9 (t, s) = G6(t, s)

which means that y
′′′

satisfies the boundary conditions (54), that is

y(3)(t1) = 0

y(4)(t2) = 0

y(5)(t3) = 0

y(6)(t1) = 0

y(7)(t2) = 0

y(8)(t3) = 0.

Also, G9(t, s) satisfies the boundary conditions (38) and y(t) satisfies the

boundary conditions
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y(t1) = 0

y
′
(t2) = 0

y(2)(t3) = 0

y(3)(t1) = 0

y(4)(t2) = 0

y(5)(t3) = 0

y(6)(t1) = 0

y(7)(t2) = 0

y(8)(t3) = 0.

Continuing in this way, we find that

Gn(t, s) =
∫ t3

t1

G3(t, w)Gn−3(w, s)dw, n ∈ {3k + 3; k ∈ N},

is the Green’s function for

yn(t) = 0, n ∈ {3k + 3; k ∈ N},

with boundary conditions


y(3k)(t1) = 0

y(3k+1)(t2) = 0

y(3k+2)(t3) = 0, k = 0, 1, 2, . . . n2 − 1.

�

4.5. Bounds for the Green’s Function

In this section, we find the bounds for Green’s function, Gn(t, s).
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Theorem 4.6. Assuming conditions (B1),(B2),then for n ∈ {3k; k ∈ N},(
t3 − t1

2

)n
3
−1 (

(t2 − t1)2 − (t3 − t2)2
)n

3 ≤ Gn(t, s) for all (t, s) ∈ [t2, t3]×[t2, t3].

Gn(t, s) ≤ 3
(

1
6

)n
3

(t3 − t1)n−3(s− t1)2 for all (t, s) ∈ [t1, t3]× [t1, t3].

Proof. From Theorem (4.2),

G3(t, s) ≤ 1
2

(s− t1)2 for all (t, s) ∈ [t1, t3]× [t1, t3], and

G3(t, s) ≥ 1
2

((t2 − t1)2 − (t3 − t2)2) for all (t, s) ∈ [t2, t3]× [t2, t3].

So,

G6(t, s) =
∫ t3

t1

G3(t, x)G3(x, s) dx

≤
∫ t3

t1

1
2

(x− t1)2 1
2

(s− t1)2 dx =
1
3

(
1
2

)2

(s− t1)2(t3 − t1)3.

Therefore,

G6(t, s) ≤ 1
3

(
1
2

)2

(s− t1)2(t3 − t1)3.

Also for all (t, s) ∈ [t2, t3]× [t2, t3],

G6(t, s) =
∫ t3

t1

G3(t, x)G3(x, s) dx

≥
∫ t3

t1

(
1
2
{

(t2 − t1)2 − (t3 − t2)2
})2

dx

≥
(

1
2
{

(t2 − t1)2 − (t3 − t2)2
})2

(t3 − t1).

Therefore,

G6(t, s) ≥
(

1
2

((t2 − t1)2 − (t3 − t2)2)
)2

(t3 − t1).

Similarly,
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G9(t, s) =
∫ t3

t1

G3(t, x)G6(x, s) dx

≤
∫ t3

t1

1
2

(x− t1)2 1
3

(
1
2

)2

(s− t1)2(t3 − t1)3 dx

=
(

1
3

)2(1
2

)3

(s− t1)2(t3 − t1)6.

Also,

G9(t, s) =
∫ t3

t1

G3(t, x)G6(x, s) dx

≥
∫ t3

t1

1
2

((t2 − t1)2 − (t3 − t2)2)
[

1
2
{

(t2 − t1)2 − (t3 − t2)2
}]2

(t3 − t1) dx

=
(

1
2

((t2 − t1)2 − (t3 − t2)2)
)3

(t3 − t1)2.

Therefore,

G9(t, s) ≥
(

1
2

((t2 − t1)2 − (t3 − t2)2)
)3

(t3 − t1)2.

Continuing in this sense, we have that

Gn(t, s) ≤
(

1
3

)n−3
3
(

1
2

)n
3

(t3−t1)n−3(s−t1)2 for all (t, s) ∈ [t1, t3]×[t1, t3],

Gn(t, s) ≥
(

1
2

((t2 − t1)2 − (t3 − t2)2)
)n

3

(t3−t1)
n−3

3 for all (t, s) ∈ [t2, t3]×[t2, t3],

�

By defining the two functions

Fn(s, s) =
(

1
3

)n−3
3
(

1
2

)n
3

(t3 − t1)n−3(s− t1)2,

En(s, s) =
(

1
2

((t2 − t1)2 − (t3 − t2)2)
)n

3

(t3 − t1)
n−3

3 ,
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going by (41) and (44), we can state the following theorems:

Theorem 4.7. Assume that conditions (B1),(B2) are satisfied. Then, for

each λ satisfying

1

[m
∫ t3
t2
En(s, s) ds]f∞

< λ <
1

[
∫ t3
t1
Fn(s, s) ds]f0

,

there exist at least one positive solution of the BVP (48)-(49) in κ .

Proof. The proof is similar to that of Theorem 4.3. �

Theorem 4.8. Assume that conditions (B1),(B2) are satisfied. Then, for

each λ satisfying

1

[m
∫ t3
t2
En(s, s) ds]f0

< λ <
1

[
∫ t3
t1
Fn(s, s) ds]f∞

there exist at least one positive solution of the BVP (48)-(49) in κ .

Proof. The proof is similar to that of Theorem 4.4. �

4.6. Example

Consider the third order boundary value problem

y
′′′

(t) + λy(200− 199.5e−7y) = 0, t ∈ [0, 1],

with boundary conditions,
y(1) = 1

y′(2.6) = 0

y′′(4) = −1
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The Green’s function is given by

G(t, s) =



1
2(s− 1)2 if 1 ≤ s ≤ t ≤ 2.6 < 4;

1
2(−1 + 2s− t)(−1 + t) if 1 ≤ t ≤ s ≤ 2.6 < 4;

1
2(4.2− t)(t− 1) if 1 ≤ t ≤ 2.6 ≤ s ≤ 4;

1
2(−4.2 + s2 + 5.2t− 2st) if 1 < 2.6 ≤ s ≤ t ≤ 4;

1
2(4.2− t)(−1.+ t) if 1 < 2.6 ≤ t ≤ s ≤ 4;

1
2(s− 1)2 if 1 ≤ s ≤ 2.6 ≤ t ≤ 4.

For this particular example,

z(t) = 1 +
1
2

(2.56− (t− 2.6)2),

m = 0.132743, f∞ = 200, f0 = 1
2 .

Using (41), positive solution exists for all λ in the interval (0.0896828,0.222222).
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5. Second Order Boundary Value Problems on a Time Scale

In this section, we will find positive solutions for the two boundary value

problem discussed in Section 2 and Section 3, on a general time scales. First,

we will discuss what a time scale is.

5.1. Time Scales

The calculus of time scales was introduced by Stefan Hilger in his Ph.D.

thesis (Universität Würzburz,1988) in order to unify the discrete and con-

tinuous analysis. The definitions and the theorems in this subsection are

from [2].

A time scale is an arbitrary non-empty closed subset of the real numbers. It

is usually denoted by T. Thus R,Z,N,N0 are some examples of time scales.

But Q,R−Q {irrationals} ,C and (0, 1) ,i.e., the rational numbers, the ir-

rational numbers, the complex numbers, and the open interval between 0

and 1, are not time scales. We move through the time scale using forward

and backward jump operators. The gaps in the time scale are measured by

a function µ, defined in terms of forward jump operator, σ.

Definition 5.1. Forward jump operator Let T be a time scale. For t ∈ T

we define the forward jump operator σ : T→ T, by

σ(t) := inf {s ∈ T : s > t}

Backward jump operator : An operator ρ : T→ T is given by

ρ(t) := sup {s ∈ T : s < t}

Note 1: If σ(t) > t, we say that t is right − scattered, while if ρ(t) < t we

say that t is left−scattered. The points which are both right-scattered and

left-scattered are called isolated.
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Note 2 : If t < supT and σ(t) = t, then t is called right-dense.

Note 3 : If t > infT and ρ(t) = t, then t is called left-dense.

The forward jump operator defined on t, σ(t), is not always equal to t. The

difference between σ(t) and t is called graininess.

Graininess Function: The Graininess of a time scale ,T, µ :→ [0,∞) is

defined by

µ(t) = σ(t)− t for all t ∈ T.

Note 4: If T has a left-scattered maximum m, then Tk = T−{m} . Otherwise

Tk = T. That is,

Tk =


T− (ρ(sup T), supT] if supT <∞

T if sup T =∞.

Note 5: Let f : T→ R be a function, then we define the function, fσ : T→

R, by fσ(t) = f(σ(t)) for all t ∈ T i.e., fσ = f ◦ σ.

Using σ we define the delta derivative of a function f in a natural way.

Definition 5.2. Differentiation: Assume f : Tk → < is a function and let

t ∈ Tk. Then we define f4(t) to be the number(provided it exists) with the

property that given any ε > 0 there exists a neighborhood U = (t−δ, t+δ)∩T

of t for some δ > 0 such that

|[f(σ(t))− f(s)]− f4(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U

where f4(t) is called delta derivative of f at t.

Using the limit definition,

Assume f : T→ R is continuous and let t ∈ Tk. Then we define

f4(t) = lim
s→t

f(σ(t))− f(s)
σ(t)− s

,

provided the limits exist.

We will introduce the delta derivative f4 for a function f defined on T. It



62

is expressed as

(i) f4 = f ′ (is the usual derivative) if T = R and

(ii) f4 = 4f (is the forward difference operator) if T = Z.

Theorem 5.3. Assume f : T → R is a function and let t ∈ Tk. Then we

have the following.

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t, then f is differentiable at t with

f4(t) =
f(σ(t))− f(t)

µ(t)

(iii) If t is right- dense, then f is differentiable at t iff the limit

lim
s→ t

f(t)− f(s)
t− s

exists as a finite number. In this case

f4(t) = lim
s→ t

f(t)− f(s)
t− s

.

(iv) If f is differentiable at t,then

f(σ(t)) = f(t) + µ(t)f4(t).

Now we introduce the most powerful fundamentals of derivatives: the

sum rule, product rule, quotient rule and the transformation of the sigma

function in terms of original function and its derivative.

Theorem 5.4. Assume f , g: T→ R are differentiable at t ∈ Tk. Then:

(i) The sum f + g : T→ R is differentiable at t with

(f + g)4(t) = f4(t) + g4(t).
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(ii) For any constant α, αf : T→ R is differentiable at t with

(αf)4(t) = αf4(t).

(iii) The product fg : T→ R is differentiable at t with

(fg)4(t) = f4(t)g(t) + f(σ(t))g4(t)

= f(t)g4(t) + f4(t)g(σ(t)).

(iv) If f(t)f(σ(t)) 6= 0, then 1
f is differentiable at t with

{
1
f

}4
(t) =

−f4(t)
f(t)f(σ(t))

(v) If g(t)g(σ(t)) 6= 0 then f
g is differentiable at t and{

f

g

}
(t) =

f4(t)g(t)− f(t)g4(t)
g(t)g(σ(t))

In addition to the differentiability we need couple of more conditions for

integrability of the function.

Definition 5.5. A function f : T→ R is called regulated, provided its right-

sided limits exists(finite) at all right-dense points in T and its left-sided limits

exists(finite) at all left-dense points in T. The set of such function is denoted

by R.

A function f : T→ R is called rd− continuous provided it is continuous at

right-dense points in T and its left-sided limits exist at left-dense points in

T. It is denoted by

Crd = Crd(T) = Crd(T,R).

A continuous function f : T → R is called pre-differentiable in the region

of differentiation D, provided D ⊂ Tk, Tk − D is countable and contains

no right-scattered elements of T, and f is differentiable at each each t ∈
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D. Assume f : T → T is regulated function. Any function F is called a

pre− antiderivative of f if F4(t) = f(t).

Theorem 5.6. Existence of Pre-Antiderivative Let f be regulated. Then

there exists a function F which is pre-differentiable with region of differen-

tiation D such that F4(t) = f(t) holds for all t ∈ D.

The indefinite integral of a regulated function f is given by∫
f(t)4t = F (t) + C

where C is an arbitrary constant and F is a pre-antiderivative of f . We

define the Cauchy integral by:∫ s

r
f(t)4t = F (s)− F (r)

for all r, s ∈ T.

A function F : T→ R is called an antiderivative of f : T→ R provided

F4(t) = f(t) holds for all t ∈ Tk.

TABLE : Time scale derivative and Antiderivative for T = R or T =

Z

Time T symbol R Z

Backward jump operator ρ(t) t t− 1

Forward jump operator σ(t) t t+ 1

Graininess µ(t) 0 1

Derivative f4(t) f ′(t) 4f(t)

Integral
∫ b
a f(t)4t

∫ b
a f(t)dt

b−1∑
t=a

f(t)(if a < b)

Rd-continuous f continuous f any f
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Theorem 5.7. If f ∈ Crd and t ∈ Tk, then∫ σ(t)

t
f(τ)4τ = µ(t)f(t).

Some fundamental laws of integration are summarized in the following

theorem including two laws of integration by parts.

Theorem 5.8. If a, b, c ∈ T, α ∈ R, and f, g ∈ Crd, then

(i)
∫ b
a (f(t) + g(t))4t =

∫ b
a f(t)4t+

∫ b
a g(t)4t;

(ii)
∫ b
a (αf)(t)4t = α

∫ b
a f(t)4t;

(iii)
∫ b
a f(t)4t = −

∫ a
b f(t)4t;

(iv)
∫ b
a f(t)4t =

∫ c
a f(t)4t+

∫ b
c f(t)4t

(v)
∫ b
a f(σ(t))g(t)4t = (fg)(b)− (fg)(a)−

∫ b
a f
4(t)g(t)4t;

(vi)
∫ b
a f(t)g4(t)4t = (fg)(b)− (fg)(a)−

∫ b
a f
4(t)g(σ(t))4t;

(vii)
∫ a
a f(t)4t = 0

(viii) If |f(t)| ≤ g(t) on [a, b), then |
∫ b
a f(t)4t| ≤

∫ b
a g(t)4t;

(ix) If f(t) ≥ 0 for all a ≤ t ≤ b, then
∫ b
a f(t)4t ≥ 0.

The interesting part of time scale calculus is that the integration can also

be performed if the domain of the function is a subset of the integers. Thus

integration of any function depends upon the domain of the function.

Theorem 5.9. Let a, b, c ∈ T and f ∈ Crd

(i) If T = R, ∫ b

a
f(t)4t =

∫ b

a
f(t)dt

where the integral on the right is the usual Riemann integral from calculus.
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(ii) If [a,b] consists of only isolated points, then

∫ b

a
f(t)4t =



∑
t∈[a,b)

µ(t)f(t) if a < b

0 if a=b

−
∑

t∈[b,a)

µ(t)f(t) if a > b

(iii) if T = Z, then

∫ b

a
f(t)4t =



b−1∑
t=a

f(t) if a < b

0 if a=b

−
a−1∑
t=b

f(t) if a > b

Now we move to the dynamic equation with the delta derivative.

Definition 5.10. For h > 0, we define the Hilger complex numbers , the

Hilger real axis, the Hilger alternating axis, and the Hilger imaginary circle

as

Ch :=
{
z ∈ C : z 6= −1

h

}
,

Rh :=
{
z ∈ Ch : z ∈ R and z > −1

h

}
,

Rh :=
{
z ∈ Ch : z ∈ R and z < −1

h

}
,

Ih :=
{
z ∈ Ch :

∣∣∣∣z +
1
h

∣∣∣∣ =
1
h

}
,

respectively. For h = 0, let C0 := C, R0 := R, I0 := iR and A0 := ∅.

The generalized exponential function is denoted by ep(t, t0). The expo-

nential function is defined as follows;

(55) ep(t, t0) =
∫ t

t0

ξµ(τ)(p(τ))∆τ
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where the cylinder transformation ξh : Ch → Zh , h > 0 is defined as

ξh(z) =
1
h

log(1 + zh)

where log is the principal logarithm function. For h = 0, we define ξ0(z) = z

for all z ∈ C.

It is used to solve the differential equation equations. The basic properties

of exponential function can be summarized as follows:

If p, q ∈ R, then e0(t, s) = 1 and ep(t, t) = 1, 1
ep(t,s) = e	p(s, t),

ep(t, s)eq(t, s) = ep⊕q(t, s) and ep(t,s)
eq(t,s) = ep	q(t, s).

Definition 5.11. We say that the function p : T→ R is regressive provided

1 + µ(t)p(t) 6= 0

for all t ∈ Tk.

The set of all regressive and rd-continuous function f : T→ R is denoted

by R or R(T) or R(T,R).

Definition 5.12. Suppose f : T× R2 → R. Then the equation

(56) y4 = f(t, y, yσ)

is called a first order dynamic equation, sometimes called a differential equa-

tion. If

f(t, y, yσ) = f1(t)y + f2(t) or f(t, y, yσ) = f1(t)yσ + f2(t)

for the rd continuous functions f1 and f2, then (56) is called a linear equa-

tion. A function y : T→ R is called a solution of (56) if

y4(t) = f(t, y(t), y(σ(t))) is satisfied for for all t ∈ Tk.
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The general solution of (56) is defined to be the set of all solutions of (56).

Now we move to the definition of regressive function which is different for

first and second order differential equations.

The general form of second order linear dynamic equation is written as:

(57) y44 + p(t)y4 + q(t)y = f(t)

where p, q, f ∈ Crd. Let us consider an operator L2 : C2
rd → Crd by

L2y(t) = y44(t) + p(t)y4(t) + q(t)y(t) for t ∈ Tk.

Thus the general form of second order equation can be written as

L2y = f.

where L2y = 0 is called homogenous dynamic equation.

Theorem 5.13. The operator L2 : C2
rd → Crd is a linear operator, i.e,

L2(αy1 + βy2) = αL2(y1) + βL2(y2) for all α, β ∈ R and y1, y2 ∈ C2
rd.

The second order linear dynamic equation y44 + p(t)y4 + q(t)y = f(t)

is called regressive provided p, q, f ∈ Crd such that

1− µ(t)p(t) + µ2(t)q(t) 6= 0 for all t ∈ Tk.

Theorem 5.14. Existence and Uniqueness:

Assume that the second order linear dynamic equation

y44 + p(t)y4 + q(t)y = f(t)

is regressive. If t0 ∈ Tk, then the initial value problem

L2y = f(t), y(t0) = y0, y
4(t0) = y40 ,



69

where y0 and y40 are given constants, has a unique solution, and this solution

is defined on the whole time scale T.

5.2. Solution to the Second Order Differential Equation

In this section, we will consider the second order boundary value problem

on the general time scale T. We define β(ti) as

β(ti) = αi1ti + αi2, i = 1, 2.

Consider the boundary value problem

(58) y∆∆(t) + λf(t, y(σ(t))) = 0, t ∈ [t1, σ(t2)]T,

with boundary conditions

(59)

 α11y(t1) + α12y
∆(t1) = 0

α21y(σ(t2)) + α22y
∆(σ(t2)) = 0

where we assume f : [t1, σ(t2)]× R+ → R+ is rd continuous.

The general solution to this differential equation is

y(t) = yc(t) + yp(t)

where yc(t) is the complementary solution to the homogeneous equation

y∆∆(t) = 0 and yp(t) is a particular solution of (58).

The fundamental solution of

(60) y∆∆(t) = 0

is made up of

y1(t) = e0(t, t1) = 1,

y2(t) = v(t)y1(t) = v(t)
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such that

y∆
2 (t) = v∆(t) and y∆∆

2 (t) = 0 = v∆∆(t).

Putting v∆(t) = 1, we have

v(t) = y2(t) =
∫ t

t1

∆s = t− t1.

So, the complementary solution yc(t) is

yc(t) = A+B(t− t1),

where A and B are real constants.

The particular solution yp(t) of the equation

y∆∆
p (t) = −g

is of the form

yp(t) = α(t)y1(t) + β(t)y2(t)

= α(t) + β(t)(t− t1)

where α(t) and β(t) are functions of t to be found. The first derivative of

y(t) is given as

y∆
p (t) = α∆ + β∆(σ(t)− t1) + β(t).

Assuming

(61) α∆ + β∆(σ(t)− t1) = 0,

then

y∆
p (t) = β(t)

and

y∆∆
p (t) = β∆(t) = −g(t).
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From this, we have

β(t) = −
∫ t

t1

g(s) ∆s.

From (61), α∆ + β∆(σ(t) − t1) = 0 implies α∆(t) = g(t)(σ(t) − t1) and

therefore,

α(t) =
∫ t

t1

(σ(s)− t1)g(s) ∆s.

So,

yp(t) =
∫ t

t1

(σ(s)− t1)g(s) ∆s+
∫ t

t1

(t1 − t)g(s) ∆s

so that the general solution becomes

y(t) = A+ (t− t1)B +
∫ t

t1

(σ(s)− t1)g(s) ∆s+
∫ t

t1

(t1 − t)g(s) ∆s

= A+ (t− t1)B +
∫ t

t1

(σ(s)− t)g(s) ∆s,

and

y∆(t) = B −
∫ t

t1

g(s) ∆s,

where A and B are constants.

Using the boundary conditions, (59),

A = −1
d

∫ σ(t2)

t1

α12(β(σ(t2))− α21σ(s))g(s) ∆s

B =
1
d

∫ t2

t1

α11(β(σ(t2))− α21σ(s))g(s) ∆s

where

d = α11β(σ(t2))− α21β(t1)

we have

y(t) =
1
d

∫ t2

t1

(β2 − α21σ(s))(α11t− β1)g(s) ∆s−
∫ t

t1

(t− σ(s))g(s) ∆s,
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where β1, β2 are defined in (3). The Green’s function for y∆∆ = 0 satisfying

(59) is

(62) G(t, s) =


1
d(β(σ(t2))− α21t)(α11σ(s)− β1) if t1 ≤ s ≤ σ(s) ≤ t;
1
d(β(σ(t2))− α21σ(s))(α11t− β1) if t1 ≤ t ≤ s ≤ σ(s).

We will assume the following condition throughout this section:

A4 : m(t1) ≤ t1 ≤ σ(t2) ≤ m(σ(t2)), where m(ti) =
β(ti)
αi1

, i = 1, 2

Throughout this section, we assume conditions A2 and A4.

5.3. Bounds for the Green’s Function

In this subsection, we find the bounds for the Green’s function (62).

Theorem 5.15. Assuming conditions A2 and A4, G(t, s) ≤ G(σ(s), s) for

(t, s) ∈ [t1, σ(t2)]× [t1, t2]

G(t, s) ≥ γG(σ(s), s) for (t, s) ∈ [σ(t2)
4 , 3σ(t2)

4 ]× [t1, t2].

where

γ = min
{
α11σ(t2)− 4β1

4α11σ(t2)− 4β1
,

α21σ(t2) + 4α22

4β(σ(t2))− 4α21σ(t1)

}
Proof. On the interval t ≤ s ≤ σ(s),

G(t, s) =
1
d

(β(σ(t2))− α21σ(s))(α11t− β1)

≤ 1
d

(β(σ(t2))− α21σ(s))(α11σ(s)− β1)

= G(σ(s), s).
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also on σ(s) ≤ t,

G(t, s) =
1
d

(β(σ(t2))− α21t)(α11σ(s)− β1)

≤ 1
d

(β(σ(t2))− α21σ(s))(α11σ(s)− β1)

= G(σ(s), s)

So, G(t, s) ≤ G(σ(s), s) for (t, s) ∈ [t1, σ(t2)] × [t1, t2]. Also for (t, s) ∈

[σ(t2)
4 , 3σ(t2)

4 ]× [t1, t2], and t ≤ s,

G(t, s) =
1
d

(β(σ(t2))− α21σ(s))(α11t− β1)

≥ 1
d

(β(σ(t2))− α21σ(s))
(
α11σ(t2)

4
− β1

)
=

1
d

(β(σ(t2))− α21σ(s))(α11σ(s)− β1)
(
α11σ(t2)− 4β1

4α11σ(s)− 4β1

)
≥ γG(σ(s), s).

Likewise, on σ(s) ≤ t,

G(t, s) =
1
d

(β(σ(t2))− α21t)(α11σ(s)− β1)

≥ 1
d

(
β(σ(t2))− 3α21σ(t2)

4

)
(α11σ(s)− β1)

=
1
d

(
α21σ(t2) + α22 −

3α21σ(t2)
4

)
(α11σ(s)− β1)

=
1
d

(
α21σ(t2) + 4α22

4

)
(α11σ(s)− β1)

=
1
d

(β(σ(t2))− α21σ(s))(α11σ(s)− β1)
{

α21σ(t2) + 4α22

4β(σ(t2))− 4α21σ(s)

}
≥ G(σ(s), s)

{
α21σ(t2) + 4α22

4β(σ(t2))− 4α21σ(t1)

}
≥ γG(σ(s), s).
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We will need the following condition:

(B) f0 = lim
x→0+

f(x)
x and f∞ = lim

x→∞
f(x)
x both exist on the extended real

line.

5.4. Existence of Positive Solution

In this section, we will be discussing conditions in which there exist a

positive solution for the boundary value problem. We assume σ(t2) is right-

dense so that G(t,s) ≥ 0 for t ∈ [t1, σ(t2)], s ∈ [t1, σ(t2)].

Assume that [t1, σ(t2)] is such that

ξ = min{t ∈ T : t ≥ σ(t2)
4
}, ω = max{t ∈ T : t ≤ 3σ(t2)

4
},

both exist and satisfy

σ(t2)
4
≤ ξ < ω ≤ 3σ(t2)

4
.

And if σ(ω) = t2, also assume σ(ω) < σ(t2). Next, let τ ∈ [ξ, ω] be defined

by

(63)
∫ ω

ξ
G(τ, s)∆s = max

t∈[ξ,ω]T

∫ ω

ξ
G(t, s) ∆s

For any interval S, we will denote S
⋂

T by ST.

Finally, we define

(64) l = min
s∈[t1,σ2(t2)]

G(σ(ω), s)
G(σ(s), s)

and set

(65) r = min{γ, l}.
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On the set

X = {x : [t1, σ2(t2)]→ R} define the cone κ ⊂ X by

(66) κ = {x ∈ X : x(t) ≥ 0 on [t1, σ2(t2)]T, and x(t) ≥ r‖x‖ for t ∈ [ξ, σ(ω)]T}.

Define an integral operator T : κ→ X by

(67) (Tu)(t) = λ

∫ σ(t2)

t1

G(t, s)f(u(σ(s))) ∆s, u ∈ κ,

for t ∈ [t1, σ(t2)]T. From the nonnegativity of G(t, s) and from assumption

(B), if u ∈ κ , then Tu(t) ≥ 0 on [t1, σ(t2)].

We now show that T : κ→ κ and that T is completely continuous since for

u ∈ κ.

From (67) and Theorem 5.15, for t ∈ [t1, σ(t2)],

Tu(t) = λ

∫ σ(t2)

t1

G(t, s)f(u(σ(s))) ∆s

≤ λγ

∫ σ(t2)

t1

G(σ(s), s)f(u(σ(s))) ∆s

and so,

(68) ‖Tu‖ ≤ λγ
∫ σ(t2)

t1

G(σ(s), s)f(u(σ(s))) ∆s.

Also, from Theorem 5.15 ,
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min
t∈[ξ,ω]

Tu(t) = λ

∫ σ(t2)

t1

G(t, s)f(u(σ(s))) ∆s

≥ λ

∫ σ(t2)

t1

γG(σ(s), s)f(u(σ(s))) ∆s

≥ γ‖Tu‖ from (66)

≥ r‖Tu‖ from (65)

and also

Tu(σ(ω)) = λ

∫ σ(t2)

t1

G(σ(ω), s)f(u(σ(s))) ∆s

≥ λ

∫ σ(t2)

t1

lG(σ(s), s)f(u(σ(s))) ∆s from (64)

≥ r

∫ σ(t2)

t1

lG(σ(s), s)f(u(σ(s))) ∆s from (65)

≥ r‖Tu‖.

Thus, Tu ∈ κ, and we conclude that T : κ → κ. which shows that T is

completely continuous.

Theorem 5.16. Assume that conditions A2, A4, and B is satisfied. Then,

for each λ satisfying

(69)
1

[r
∫ ω
ξ G(τ, s) ∆s]f∞

< λ <
1

[
∫ σ(t2)
t1

G(σ(s), s) ∆s]f0

,

there exists at least one positive solution of the BVP (58)-(59) in κ .

Proof. Let λ be as in (69) and choose ε such that

1
[r
∫ ω
ξ G(τ, s) ∆s](f∞ − ε)

< λ <
1

[
∫ σ(t2)
t1

G(σ(s), s) ∆s](f0 + ε)
.
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We seek a fixed point of T which belongs to κ.

According to the definition of f0, there exist H1 > 0 such that

f(x) ≤ (f0 + ε)x for 0 < x ≤ H1.

Let

Ω1 = {x ∈ X : ‖x‖ < H1},

and choose u ∈ κ with ‖u‖ = H1. Then from Theorem 5.15 and assuming

right-density of σ(t2), for t ∈ [t1, σ2(t2)]T,

Tu(t) = λ

∫ σ(t2)

t1

G(t, s)f(u(σ(s))) ∆s

≤ λ

∫ σ(t2)

t1

G(σ(s), s)(f0 + ε)u(σ(s)) ∆s

≤ λ

∫ σ(t2)

t1

G(σ(s), s)(f0 + ε)‖u‖∆s

≤ ‖u‖.

Thus, ‖Tu‖ ≤ ‖u‖, and in particular,

(70) ‖Tu‖ ≤ ‖u‖ for u ∈ κ ∩ ∂Ω1.

Considering next f∞, there exist J1 > 0 such that f(x) ≥ (f∞ − ε)x for

x ≥ J1. Let J2 = max{2H1,
1
rJ1} and let

Ω2 = {x ∈ X : ‖x‖ < J2}.
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If u ∈ κ with ‖u‖ = J2, then min
t∈[ξ,ω]T

u(t) ≥ r‖u‖ ≥ J1 and

Tu(t) = λ

∫ σ(t2)

t1

G(t, s)f(u(σ(s))) ∆s

≥ λ

∫ ω

ξ
G(t, s)f(u(σ(s))) ∆s

≥ λ

∫ ω

ξ
G(t, s)(f∞ − ε)u(σ(s)) ∆s

≥ rλ

∫ ω

ξ
G(t, s)(f∞ − ε)‖u‖∆s

≥ ‖u‖.

Thus, ‖Tu‖ ≤ ‖u‖ and, in particular,

(71) ‖Tu‖ ≤ ‖u‖ for u ∈ κ ∩ ∂Ω2.

An application of Theorem 2.11 to (70) and (71) yields that T has a fixed

point u ∈ κ∩ (Ω2 \Ω1). Such a fixed point is a desired solution for the given

λ. �

We will show another range of λ for positive solution.

Theorem 5.17. Assume that conditions A2, A4, and B are satisfied. Then,

for each λ satisfying

(72)
1

[r
∫ ω
ξ G(z, s) ∆s]f0

< λ <
1

[
∫ σ(t2)
t1

G(σ(s), s) ∆s]f∞
,

there exists at least one positive solution of the BVP (58)-(59) in κ .

Proof. From definition of f0, there exist an H1 > 0 such that f(x) ≥ (f0−ε)x

for 0 < x ≤ H1. Let

Ω1 = {x ∈ X : ‖x‖ < H1}.
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Then, for u ∈ κ with ‖u‖ = H1, we have

Tu(t) = λ

∫ σ(t2)

t1

G(t, s)f(u(σ(s))) ∆s

≥ λ

∫ ω

ξ
G(t, s)f(u(σ(s))) ∆s

≥ λ

∫ ω

ξ
G(t, s)(f0 − ε)u(σ(s)) ∆s

≥ rλ

∫ ω

ξ
G(t, s)(f0 − ε)‖u‖∆s

≥ ‖u‖.

Thus, ‖Tu‖ ≥ ‖u‖ and in particular,

(73) ‖Tu‖ ≥ ‖u‖ for u ∈ κ ∩ ∂Ω1.

As we turn to f∞, there exists a J1 > 0 such that f(x) ≤ (f∞+ ε)x for all

x ≥ J1. We consider two cases: (a) f is bounded and (b) f is unbounded.

For case (a), suppose N > 0 is such that f(x) ≤ N for all 0 < x <∞. Let

(74) H2 = max{2H1, Nλ

∫ σ(t2)

t1

G(σ(s), s)∆s},

and define

Ω2 = {x ∈ X : ‖x‖ < H2}.

Then, for u ∈ κ with ‖u‖ = H2,

Tu(t) = λ

∫ σ(t2)

t1

G(t, s)f(u(σ(s))) ∆s

≤ λN

∫ σ(t2)

t1

G(t, s) ∆s

≤ ‖u‖, from (74)

and so

(75) ‖Tu‖ ≤ ‖u‖ for u ∈ κ ∩ ∂Ω2.
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For case (b), let H2 > max{2H1, J1} be such that f(x) ≤ f(H2) for

0 < x ≤ H2.

Defining

Ω2 = {x ∈ X : ‖x‖ < H2},

we choose u ∈ κ with ‖u‖ = H2. We have

Tu(t) = λ

∫ σ(t2)

t1

G(t, s)f(u(σ(s))) ∆s

≤ λ

∫ σ(t2)

t1

G(σ(s), s)f(H2) ∆s

≤ λ

∫ σ(t2)

t1

G(σ(s), s)(f∞ + ε)H2 ∆s

≤ λ

∫ σ(t2)

t1

G(σ(s), s)(f∞ + ε)‖u‖∆s

≤ ‖u‖.

Again

(76) ‖Tu‖ ≤ ‖u‖ for u ∈ κ ∩ ∂Ω2.

An application of Theorem 2.11 to (73) ,(75) and (76) yields that T has

a fixed point u ∈ κ ∩ (Ω2\Ω1). Such a fixed point is a desired solution for

the given λ. �

5.5. Green’s Function for 2nth Order BVP on Time Scale

The proof we will state in this section is similar to that of Theorem 3.1

which gives the Green’s function of −y′′(t) = 0 satisfying (2).

Theorem 5.18. Suppose that G2(t, s) is the Green’s function satisfying

−y∆∆(t) = 0
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with boundary conditions

α11y(t1) + α12y
∆(t1) = 0

α21y(t2) + α22y
∆(t2) = 0

then ,

(77) Gn(t, s) =
∫ t2

t1

G2(t, w)Gn−2(w, s) ∆w n ∈ {2k + 2 : k ∈ N}

is the Green’s function for

(78) (−1)
n
2 y∆(n)

(t) = 0, n ∈ {2k + 2 : k ∈ N},

with boundary conditions

(79)

 α11y
(2k)(t1) + α12y

∆(2k+1)
(t1) = 0

α21y
∆(2k)(σ(t2)) + α22y

∆(2k+1)
(σ(t2)) = 0, k = 0, 1, 2, . . . n2 − 1

Proof. The proof is similar to Theorem 3.1. �

Theorem 5.19. Assuming conditions (A2) and (A4),then for n ∈ {2k; k ∈

N},

γ
n
2Gn(σ(s), s) ≤ Gn(t, s) for (t, s) ∈ [

σ(t2)
4

,
3σ(t2)

4
]× [t1, t2],

and

Gn(t, s) ≤ Gn(σ(s), s) for (t, s) ∈ [t1, σ(t2)]× [t1, t2].

Proof. The proof is similar to Theorem 3.2. �

5.6. Example

In this section, we will solve some dynamic equations and find the range

of λ for which a positive solution can be obtained.
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We consider the general boundary value problem,

y∆∆(t) + λf(t, y(σ(t))) = 0, t ∈ T

with boundary conditions

α11y(t1) + α12y
∆(t1) = 0

α21y(σ(t2)) + α22y
∆(σ(t2)) = 0

The Green’s function is

G(t, s) =


1
d(β(σ(t2))− α21t)(α11σ(s)− β1) if t1 ≤ s ≤ σ(s) ≤ t;
1
d(β(σ(t2))− α21σ(s))(α11t− β1) if t1 ≤ t ≤ s ≤ σ(s).

Case (1):

If T = [t1, t2] ∈ R, then

σ(t) = t.

Considering again the conditions, let t1 = 0, t2 = 1, α11 = 1, α12 = −1,

α21 = 2, α22 = 3, f(t, y) = y + 1, then

This turns out to be the same example as in Section 2.

Let’s solve the same differential equation with different time scales.

Case (2):

If T = N0, then

σ(t) = t+ 1.

and the equation becomes

y(σ2(t))− 2y(σ(t)) + y(t) + λf(y(t)) = 0

with boundary conditions

a11y(t1) + a12(y(σ(t1))− y(t1)) = 0
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a21y(σ(t2)) + a12(y(σ2(t2))− y(σ(t2))) = 0

Considering the previous condition, t1 = 0, t2 = 1, α11 = 1, α12 = −1,

α21 = 2, α22 = 3, f(t, y) = y + 1, then

G(t, s) =


1
9(−2− s)(−7 + 2t) if t1 ≤ s ≤ σ(s) ≤ t;
1
9(5− 2s)(1 + t) if t1 ≤ t ≤ s ≤ σ(s).

We have that ξ = 1
2 , ω = 3

4 , l = 2
5 , γ = 1

2 , therefore r = 2
5 .

f0 =∞, f∞ = 1.

∫ σ(t2)

t1

G(σ(t2), s)∆s =
σ(t2)−1∑
t=t1

G(σ(t2), s) =
σ(t2)−1∑
t=t1

G(t2 + 1, s) =
19
9

∫ ω

ξ
G(τ, s)∆s = max

t∈[ξ,ω]

∫ ω

ξ
G(t, s) ∆s = max

t∈[ξ,ω]

ω−1∑
t=τ

G(t, s) =
2
3

According to Theorem 5.17, there exist a positive solution for all λ in the

interval (0, 9
19).
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6. Third Order Boundary Value Problem on Time Scale

In this section, we are going to consider the third order boundary value

eigenvalue problem on a general time scale

6.1. Solution to the Eigenvalue Boundary Value Problem on T

In this section, we will try to solve the third order BVP on a time scale.

Consider the boundary value problem

(80) y∆∆∆(t)− λf(t, y(σ(t))) = 0, t ∈ T

with boundary conditions,

(81)


y(t1) = ρ1

y∆(σ(t2)) = ρ2

y∆∆(σ2(t3)) = ρ3

For simplicity, define g(t) = λf(t, y(σ(t)))

The general solution to this differential equation is

y(t) = yc(t) + y(t)p(t)

where yc(t) is the complementary solution to the homogeneous equation

y∆∆∆(t) = 0 and yp(t) is the particular solution of (80) satisfying (81).

The equation

y∆∆∆(t) = 0

has three equal auxiliary solutions, so the solutions are

y1(t) = e0(t, t1) = 1,

y2(t) = v(t)y1(t) = v(t) = t− t1

y3(t) = w(t)y1(t)
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such that y∆
3 (t) = w∆(t) , y∆∆

3 (t) = w∆∆(t), y∆∆∆
3 (t) = w∆∆∆(t) = 0

Setting w∆∆(t) = 1, we have that w∆ = t− t1 and

w(t) =
∫ t

t1

(s− t1) ∆s

so that

y3(t) = w(t) =
∫ t

t1

(s− t1) ∆s.

So,

yc(t) = Ay1 +By2 + Cy3,

= A+B(t− t1) + C

∫ t

t1

(s− t1) ∆s

where A, B and C are real constants, and

yp(t) = α(t)y1(t) + ρ(t)y2(t) + γ(t)y3(t)

= α(t) + ρ(t)(t− t1) + γ(t)
∫ t

t1

(s− t1) ∆s

so that

y∆(t) = α∆(t) + ρ∆(t)(σ(t)− t1) + ρ(t) + γ∆(t)
∫ σ(t)

t1

(s− t1) ∆s+ γ(t)(t− t1).

Setting

(82) α∆(t) + ρ∆(t)(σ(t)− t1) + γ∆(t)
∫ σ(t)

t1

(s− t1) ∆s = 0,

we have

y∆(t) = ρ(t) + γ(t)(t− t1), and

y∆∆(t) = ρ∆(t) + γ∆(t)(σ(t)− t1) + γ(t).
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If

(83) ρ∆(t) + γ∆(t)(σ(t)− t1) = 0,

we have

y∆∆(t) = γ(t) yielding

y∆∆∆(t) = γ∆(t) = g(t)

which implies

γ(t) =
∫ t

t1

g(s) ∆s.

From (83),

(84) ρ(t) =
∫ t

t1

(t1 − σ(s))g(s) ∆s.

From (82),(83) and (84), we have

(85) α(t) =
∫ t

t1

(t1 − σ(s))2g(s) ∆s+
∫ t

t1

∫ σ(w)

t1

(t1 − s)g(w) ∆s∆w

so that

y(t) = yc(t) + yp(t)

= A+ (t− t1)B + C

∫ t

t1

(s− t1) ∆s+
∫ t

t1

(t1 − σ(s))2g(s) ∆s

+
∫ t

t1

∫ σ(w)

t1

(t1 − s)g(w) ∆s∆w + (t− t1)
∫ t

t1

(t1 − σ(s))g(s) ∆s

+
∫ t

t1

g(s) ∆s
∫ t

t1

(s− t1) ∆s.
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Using the boundary conditions, we have

A = ρ1

B = ρ2 −
∫ σ(t2)

t1

(σ(t2)− σ(s))g(s) ∆s− (σ(t2)− t1)ρ3 +
∫ σ2(t3)

t1

(σ(t2)− t1)g(s) ∆s, and

C = ρ3 −
∫ σ2(t3)

t1

g(s) ∆s,

so that

y(t) = ρ1 + (t− t1)ρ2 + ρ3

(∫ t

t1

(s− t1) ∆s− (t− t1)(t2 − t1)
)

+
∫ t

t1

(
(t1 − σ(s))(t− σ(s)) +

∫ t

t1

(w − t1)∆w −
∫ σ(s)

t1

(w − t1)∆w

)
g(s)∆s

−
∫ σ(t2)

t1

(t− t1)(σ(t2)− σ(s))g(s)∆s

+
∫ σ2(t3)

t1

(
(t− t1)(σ(t2)− t1)−

∫ t

t1

(w − t1)∆w
)
g(s)∆s

where

z(t) = ρ1 + (t− t1)ρ2 + ρ3

(∫ t

t1

(s− t1) ∆s− (t− t1)(t2 − t1)
)

is the solution to the homogeneous equation

y∆∆∆(t) = 0

with boundary conditions
y(t1) = ρ1

y(σ(t2)) = ρ2

y(σ2(t3)) = ρ3.
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Also,

(86)

G(t, s) =



∫ σ(s)
t1

(σ(s)− w) ∆w if t1 ≤ σ(s) ≤ t ≤ σ(t2) < σ2(t3);∫ t
t1

(σ(s)− w) ∆w if t1 ≤ t ≤ σ(s) ≤ σ(t2) < σ2(t3);∫ t
t1

(σ(t2)− w) ∆w if t1 ≤ t ≤ σ(t2) ≤ σ(s) ≤ σ2(t3);

(t− t1)(σ(t2)− t1)

+
∫ σ(s)
t1

(σ(s)− t+ t1 − w) ∆w if t1 < σ(t2) ≤ σ(s) ≤ t ≤ σ2(t3);∫ t
t1

(σ(t2)− w) ∆w if t1 < σ(t2) ≤ t ≤ σ(s) ≤ σ2(t3);∫ σ(s)
t1

(σ(s)− w) ∆w if t1 ≤ σ(s) ≤ σ(t2) ≤ t ≤ σ2(t3).

is the Green’s function satisfying

y∆∆∆(t) = 0

with boundary conditions

y(t1) = 0

y(σ(t2)) = 0

y(σ2(t3)) = 0.

Condition:

C1 :
∫ σ2(t3)
t1

(σ(t2)− w)∆w > 0

6.2. Existence of Positive Solution

The following Lemma and Theorems will be stated without proof.

Lemma 6.1. Assuming condition C1 holds, the Green’s function

G(t, s) > 0 for (t, s) ∈ (t1, σ2(t3)]× (t1, σ2(t3)].

Proof. The proof is similar to Theorem 4.1. �
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Theorem 6.2. G(t, s) ≤ G(σ(s), s) for (t, s) ∈ [t1, σ2(t3)]× [t1, σ2(t3)]

and G(t, s) ≥
∫ σ2(t3)
t1

(σ(t2)−w)∆w for (t, σ(s)) ∈ [σ(t2), σ2(t3)]×[σ(t2), σ2(t3)]

Proof. The proof is similar to Theorem 4.2. �

We will now show the interval for λ for which there exist a positive solu-

tion. All the symbols used here are as define in Section 4.

Define

r = min
σ(t2)≤σ(s)≤t

(t3 − t1)(σ(t2)− t1) +
∫ σ(s)
t1

(σ(s)− t3 + t1 − w)∆w

(t2 − t1)(σ(t2)− t1) +
∫ σ(s)
t1

(σ(s)− t2 + t1 − w)∆w
,

∫ σ2(t3)
t1

(σ(t2)− w) ∆w∫ σ(t2)
t1

(σ(t2)− w) ∆w

 .

Now, we state without proof the range of the values of λ for which there

exist a positive solution.

Theorem 6.3. For each λ satisfying

(87)
1

[r
∫ σ2(t3)
σ(t2)

(∫ σ2(t3)
t1

(σ(t2)− w)∆w
)

∆s]f∞
< λ <

1

[
∫ σ2(t3)
t1

∫ σ(s)
t1

(σ(s)− w)∆w∆s]f0

,

there exists at least one positive solution of the BVP (80) satisfying (81) in

κ .

Proof. The proof is similar to Theorem 4.3 and 4.4. �

Theorem 6.4. For each λ satisfying

(88)
1

[r
∫ σ2(t3)
σ(t2)

(∫ σ2(t3)
t1

(σ(t2)− w)∆w
)

∆s]f0

< λ <
1

[
∫ σ2(t3)
t1

∫ σ(s)
t1

(σ(s)− w) ∆s]f∞
,

there exist at least one positive solution of the BVP (80) satisfying (81) in

κ .

Proof. The proof is similar to Theorem 4.3 and 4.4. �
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Next, we find the Green’s function of the 3nth order BVP defined below

on time scale.

Theorem 6.5. Suppose that G3(t, s) is the Green’s function satisfying

y∆∆∆(t) = 0

with boundary conditions

y(t1) = 0

y∆(t2) = 0

y∆∆(t3) = 0

then ,

(89) Gn(t, s) =
∫ t3

t1

G3(t, w)Gn−3(w, s) ∆w n ∈ {3k + 3 : k ∈ N}

is the Green’s function for

(90) y∆(n)(t) = 0, n ∈ {3k + 3 : k ∈ N},

with boundary conditions

(91)


y∆(3k)(t1) = 0

y∆(3k+1)(t2) = 0

y∆(3k+2)(t3) = 0, k = 0, 1, 2, . . . n2 − 1.

Proof. The proof is similar to Theorem 4.5. �

6.3. Example

In this section, we will find the solutions and interval for λ for which the

third order boundary value problem has a positive solution.

Case 1 : T = [t1, t3]
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In this case, σ(t) = t so that the differential equation

y∆∆∆(t)− λ(y + 1) = 0, t ∈ T

with boundary conditions
y(t1) = ρ1

y∆(σ(t2)) = ρ2

y∆∆(σ2(t3)) = ρ3

becomes that of Section 1.

Case 2 : T = N0

For this,

σ(t) = t+ 1,

such that the equation becomes

y(σ3(t))− 3y(σ2(t)) + 3y(σ(t))− y(t)− λ(y(t) + 1) = 0, t ∈ T

with boundary conditions
y(t1) = ρ1

y(σ2(t2))− y(σ(t2)) = ρ2

y(σ4(t3))− 2y(σ3(t3)) + y(σ2(t3)) = ρ3.
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Let t1 = 1, t2 = 2.6, t3 = 4, ρ1 = 1, ρ2 = 0, ρ3 = −1. Then the Green’s

function is given as

G(t, s) =



1
2s(s+ 1) if t1 ≤ σ(s) ≤ t ≤ σ(t2) < σ2(t3);

1
2(2s− t+ 2)(t− 1) if t1 ≤ t ≤ σ(s) ≤ σ(t2) < σ2(t3);

1
2(1− t)(t− 7.2) if t1 ≤ t ≤ σ(t2) ≤ σ(s) ≤ σ2(t3);

−2.6 + 0.5s2 + s(1.5− 1.t) + 2.6t if t1 < σ(t2) ≤ σ(s) ≤ t ≤ σ2(t3);

1
2(1− t)(t− 7.2) if t1 < σ(t2) ≤ t ≤ σ(s) ≤ σ2(t3);

1
2s(s+ 1) if t1 ≤ σ(s) ≤ σ(t2) ≤ t ≤ σ2(t3).

So,

∫ σ2(t3)

σ(t2)

(∫ σ2(t3)

t1

(σ(t2)− w)∆w

)
∆s =

σ2(t3)−1∑
s=σ(t2)

σ2(t3)−1∑
w=t1

(σ(t2)− w) = 6

∫ σ2(t3)

t1

(∫ σ(s)

t1

(σ(s)− w)∆w

)
∆s =

σ2(t3)−1∑
s=t1

σ(s)−1∑
w=t1

(σ(s)− w) = 35

and r = 0.692943, f0 = ∞, f∞ = 1. We have that there exist a positive

solution of y(t) for all λ in the interval
(
0, 1

35

)
.
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7. Conclusion

In this work, the use of Guo-Krasnosel’skii fixed point theorem for solving

for positive solution of the second and third order BVP dynamical equations

on time scale is established. Theorem 3.1 and 4.5 helps in extending our

work to solve the 2n(th) and 3n(th) order BVP dynamical equation respec-

tively. Many results concerning differential equations carry over quite easily

to corresponding results for difference equations, while other results seem

to be completely different from their continuous counterparts. The study

of dynamic equations on time scales reveals such discrepancies, and helps

avoid proving results twice, once for differential equations and once again

for difference equations. The general idea is to prove a result for a dynamic

equation where the domain of the unknown function is a so-called time scale

(also known as a time-set). In this way, results apply not only to the set

of real numbers or set of integers but to more general time scales such as a

Cantor set.



94

References

[1] Anderson, D.R. and Davis, J.M. Multiple Solutions and Eigenvalues for Third Order

Right Focal Boundary Value Problems. J Math. Appl, (2002), pp. 135-157. 1

[2] Bohner, Martin and Peterson, Allen. (2001) Dynamic Equations on Time Scales.

Birkhauser, Boston. 5.1

[3] Bohner, Martin and Peterson, Allen. (2003) Advances in Dynamic Equations on Time

Scales. Birkhauser, Boston.

[4] Chyan C. J., Davis J. M., Henderson J., and Yin W. K. C. Eigenvalue Comparisons

for Differential Equations on a measure chain. Electron. J. Differential Equations,

35(1998),1-7.

[5] Chyan C. J. and Henderson J. Eigenvalue Problems for Nonlinear Differential Equa-

tions on a Measure Chain. J. Math. Anal. Appl., 245(2000),547-559.

[6] Chyan C. J. and Henderson J. Twin Solutions of Boundary Value Problems for Dif-

ferential Equations on Measure Chains. J. Comput. Appl. Math., 2001. Special Issue

on Dynamic Equations on Time Scales”, edited by R. P. Agarwal, M. Bohner, and

D. O’Regan. To appear.

[7] Chyan C. J., Henderson J., and Lo C. J.. Positive Solutions in an Annulus for Nonlin-

ear Differential Equations on a Measure Chain. Tamkang J. Math., 30(3)(1999),231-

240.

[8] Clark S. and Hinton D. B. Hinton. A Lyapunov Inequality for Linear Hamiltonian

Systems. Math. Inequal. Appl., 1(2)(1998),201-209.

[9] Clark S and Hinton D.B. Discrete Lyapunov inequalities. Dynam. Systems Appl., 8(3-

4)(1999),369-380. Special Issue on Discrete and Continuous Hamiltonian Systems”,

edited by R. P. Agarwal and M. Bohner.

[10] Coddington E. A. and Levinson N. Theory of Ordinary Differential Equations.

McGraw-Hill Book Company, Inc., New York, 1955.

[11] Davis, J.M. Henderson, J, Prasad, K.R. and Yin, W.Eigen Intervals for Non-Linear

Right Focal Problems. Appl. Anal. 74(2000), 215-231. 1

[12] Eloe, P.W. Henderson, J Positive Solutions and Nonlinear (k, n-k) Conjugate Eigen-

value Problem. Diff. Eqns.dyn.Sys. 6(1998), 309-317. 1

[13] Erbe L.H.and Wang H. On the Existence of Positive Solutions of Ordinary Differential

Equations. Proc.Amer.Math. Soc. 120(1994),743-748. 1



95

[14] de Figueiredo D.G., Lions P. L., and Nussbaum R. D. A Prior Estimates and Ex-

istence of Positive Solutions of Semilinear elliptic equations. J. Math.Pures Appl,

61(1992), 41-63.

[15] Henderson J. and Kaufmann E. R., Multiple Positive Solutions for Focal Boundary

Value Problems. Comm. Appl. Anal. 1(1997), 53-60.

[16] Henderson J and Wang H., Positive Solutions for Nonlinear Eigenvalue. J. Math.

Anal. Appl. 208(1997), 252-259.

[17] Hilger, S. Analysis on Measure Chains-A Unified Approach to Continuous and Dis-

crete Calculus. Results Math. 18(1990)

[18] Karna, Basant and Lawrence, Bonita, Existence of Positive Solutions for Multi-point

Boundary Value Problems. Electron. J. Qual. Theory Differ. Equ. 2007, No. 26, 11

pp.

[19] Krasnosel’skii Positive Solutions of Operator Equation. P. Noordhoff Ltd, Groningen,

The Netherlands.(1964).

[20] Kuiper H.J Positive Solutions of Nonlinear Elliptic Eigenvalue Problems. Rend. Circ.

Mat. Palermo . 20(1971), 113-138.

[21] Lian W. C, Wong F. H. and Yeh C. C. On the Existence of Positive Solutions of

Nonlinear Second Order Differential Equations. Proc. Amer. Math. Soc. 124(1996),

1117-1126.

[22] Prasad, K.R. and Rao, Kameswara. Solvability of a Nonlinear Third Order General

Three-point Eigenvalue Problem. Mathematics subject classification. (1991), pp.7-15.

[23] http://www.mathphysics.com/pde/green/g15.html


	Marshall University
	Marshall Digital Scholar
	2009

	Finding Positive Solutions of Boundary Value Dynamic Equations on Time Scale
	Olusegun Michael Otunuga
	Recommended Citation


	1. Introduction
	2. Second Order Boundary Value Problem on R
	2.1. Solution to the Second Order Differential Equation
	2.2. Properties of the Function G(t,s)
	2.3. Definition of Green's Function
	2.4. Existence of Positive Solutions
	2.5. Example

	3. Green's Function and Bounds for the 2n(th) Order Boundary Value Differential Equation
	3.1. Finding the Green's Function for the 2n(th) Order DE
	3.2. Bounds for the Green's Function
	3.3. Example

	4. Third-Order Boundary Value Problem on R with Green's Function and Bound
	4.1. Solving the Third Order Equation
	4.2. Bounds for the Green's Function
	4.3. Existence of Positive Solution(s)
	4.4. Green's Function and Bound for the 3n(th) Order BVP
	4.5. Bounds for the Green's Function
	4.6. Example

	5. Second Order Boundary Value Problems on a Time Scale
	5.1. Time Scales
	5.2. Solution to the Second Order Differential Equation
	5.3. Bounds for the Green's Function
	5.4. Existence of Positive Solution
	5.5. Green's Function for 2nth Order BVP on Time Scale
	5.6. Example

	6.  Third Order Boundary Value Problem on Time Scale
	6.1. Solution to the Eigenvalue Boundary Value Problem on T
	6.2. Existence of Positive Solution 
	6.3. Example

	7. Conclusion
	References

