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Abstract 
 

Recent research indicates that protein kinase C (PKC) plays an important role in smooth 

muscle contraction.  Because PKC activation and specificity of substrate phosphorylation 

is believed to be associated with the relocalization of the enzyme to specific cell sites, we 

first investigated the subcellular translocation of PKCα in A7r5 smooth muscle cells by 

confocal microscopy through use of standard immunohistologic staining and PKCα -

enhanced green fluorescent protein (PKCα -EGFP) fusion protein expression.  PKCα was 

diffusely distributed throughout the cytosol in the unstimulated A7r5 cell.  Upon 

stimulation with phorbol 12, 13 dibutyrate (PDBu), PKCα was translocated primarily to 

either the perinuclear region of the cell or to subplasmalemmal sites depending on the 

concentration of the stimulating agent.  Specifically, PKCα was translocated to the 

perinuclear area in response to high PDBu concentrations (10-5 M to10-6 M) and relocated 

to the plasma membrane at lower PDBu concentrations (10-7 M to10-8 M). Translocation 

of PKCα to the perinucleus but not the plasmalemma was blocked by the use of 

colchicine to disrupt cell microtubules.  By comparison, cytochalasin B disruption of 

actin microfilaments had no significant effect on PKCα translocation to either the 

plasmalemma or the perinucleus. The results indicate that the target site of PKCα 

translocation may vary with activating stimulus strength in A7r5 cells and that the 

translocation of the isoform to the perinuclear region of the cell is dependent on an intact 

microtubular cytoskeleton.  This suggests that multiple pathways are available for the 

redistribution of PKCα that may employ different mechanisms to regulate the movement 

and/or docking of the isoform at specific target sites. 
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We next compared the spatial and temporal pattern of PKCα translocation in response to 

different stimulating agents in live A7r5 smooth muscle cell preparations utilizing cells 

transfected with PKCα-EGFP.  PDBu (10-8 M) induced a slow but robust and irreversible 

relocation of the PKCα -EGFP fusion protein from the cytosol to the plasmalemma.  By 

comparison, thapsigargin (10-5 M) and A23187 (2 X 10-5 M) induced a rapidly transient 

translocation to the cell membrane, which was completed within 4 minutes.  In contrast to 

these agents, angiotensin II (Ang II, 10-6 M) caused only partial relocalization of 

cytosolic PKCα-EGFP to brightly fluorescing patches at the cell periphery. Moreover, the 

translocation of the kinase to peripheral patches was completed within seconds and the 

fusion protein returned to the cytosol within 2 minutes.  The PKC inhibitor staurosporine 

blocked cellular contraction to PDBu but not to A23187 and had no effect on PKCα-

EGFP translocation.  By comparison, the calcium chelators EDTA and BAPTA-AM 

blocked the contraction to A23187, attenuated the contraction to PDBu, and abolished the 

translocation of PKCα-EGFP by both agents.  The results show that A7r5 cells retain the 

ability to respond to several types of contractile agents and the spatial and temporal 

characteristics of individual PKC isoform translocation may differ markedly, depending 

on the stimulating agent. 

 

The mechanism of vascular smooth muscle contraction is not well understood.  Early 

research from our laboratory has suggested that stimulation of contraction in A7r5 

smooth muscle cells with phorbol ester (PDBu) results in remodeling of the actin 

component of the cytoskeleton.  Because the elevation of intracellular calcium ([Ca2+]i) is 
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thought to be the initiating event of smooth muscle cell contraction to the majority of 

physiological agonists, we examined the effect of increasing [Ca2+]i by A23187 and 

thapsigargin on α- and β-actin remodeling.  Contraction of A7r5 cells induced by A23187 

and thapsigargin was earlier in onset and more quickly completed than PDBu-induced 

contractions. During the interval of contraction induced by A23187 and thapsigargin, β-

actin cables shortened without evidence of disassembly.  In marked contrast, elevation of 

intracellular calcium resulted in the partial or complete dissolution of α-actin cables and 

blocked further α-actin remodeling in response to PDBu. The α-actin associated cross-

linking protein α-actinin showed a similar pattern of dissolution in response to high 

calcium, while the distribution of anchor protein talin was unchanged. Finally, incubation 

of the cells in the calcium-free medium prevented α-actin dissolution by 

A23187/thapsigargin and blocked PDBu-mediated α-actin remodeling. The results 

suggest that extracellular calcium is necessary for α-actin remodeling and that the 

elevation of [Ca2+]i beyond a threshold level initiates disassembly of α-actin cable 

structure in a highly selective fashion. We have further observed that of six kinase 

inhibitors investigated only ML-7, a myosin light chain kinase (MLCK) inhibitor, 

blocked the dissolution of α-actin cables induced by increased [Ca2+]i. This finding may 

be suggesting a novel role of MLCK in destabilizing α-actin structure in the [Ca2+]i 

activated smooth muscle cell. 

 v



Table of Contents 

 
 
Acceptance Page ...............................................................................  i 
 
Acknowledgment ...............................................................................  ii 
 
Abstract  ...............................................................................  iii 
 
Table of Contents ...............................................................................  vi 
 
List of Figures  ...............................................................................  ix 
             
List of Tables  ...............................................................................                 xi 
            
 
 
 
Chapter                                        Page 
 
I Literature Review �����������������  1 
            

Smooth Muscle Contraction ��������������  1 
 
Intracellular Calcium �����������������  3 
 
Cytoskeleton: Actin �����������������  5 
 
                       Intermediate Filaments �����������  9 
 
                       Microtubules ��������������  10 
 
Kinase in Smooth Muscle Contraction: 
 
Myosin Light Chain Kinase (MLCK) �����������  11 
 
Calcium/Calmodulin-Dependent  
Protein Kinase II (Cam Kinase II) �����������  13 
 
Mitogen-Activated Protein (MAP) Kinase  ��������..  14  
 
Focal Adhesion Kinase (FAK) �����������..  15 
 
Small Heat Shock Protein (HSP27) �����������..  16 

  

 vi



PKC Family ��������������������  17 
 
 Regulation of PKC Activity by Cofactors  ��������  21 
 
 PKC Binding Protein �����������������  22 
 
 PKC Expression and Translation �����������  26 
 
 A7R5 Cell Line �����������������  27 

 
II Methods ��������������������  29 
 
 Cell Culture ��������������������  29 
 
 PKCα-EGFP Plasmid Constructs �����������  29 
 
 Cell Transfection �����������������  32 
 
 Immunostaining of A7r5 cells �����������  32 
 
 Confocal Microscopy  ��������������  33 
 
 Cell Treatments �����������������  34 
 
 Verification of Effective PKCα-EGFP Transfection �����  37 
 
 Immunoprecipitation of PKCα and EGFP ��������  37 
 
 PKCα Activity Assays ��������������  38 
  
 Intracellular Calcium Determination �����������  40 
 
III Results  ��������������������  42 
 
 Study of Concentration-Dependent  

Phorbol Induced PKCα Translocation �������.  42 
 
PKCα Translocation in Response 
to Different Contractile Agents ����������.  61 

  
 Calcium-Dependent Actin Remodeling  

in Contracting A7r5 Cells ������������.�..  78 
 
IV Discussion ��������������������  104 
 
 PKCα Translocation �����������������  104 

 vii



 
Actin remodeling �����������������  113 
 

V Literature Cited �����������������  120 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 viii



List of Figures 
 
 
 
Figure 1 Biochemical regulation of smooth muscle contraction 
 
Figure 2  Structural separation of PKC isozymes 
 
Figure 3 Construct of PKCα-EGFP fusion protein   
 
Figure 4 Protocol for assay of PKC activity  
 
Figure 5 Western blot assay of PKCα-EGFP fusion protein 
 
Figure 6 Enzyme activity assay of PKCα-EGFP fusion protein 
 
Figure 7 Dural stain of EGFP and PKCα 
 
Figure 8 Effect of different concentration of PDBu on PKCα translocation 
 
Figure 9 Effect of different concentration of active and inactive PDBu on PKCα 

translocation 
 
Figure 10 Microtubular disruption by colchicine 
 
Figure 11 Effect of colchicine on PKCα translocation (stained) 
 
Figure 12 Effect of colchicine on PKCα translocation (EGFP) 
 
Figure 13 Dural stain of β-tubulin and PKCα 
 
Figure 14 Effect of cytochalasin B on PKCα translocation  
 
Figure 15 Dural stain of p62 and BiP/GRP78 with PKCα 
 
Figure 16 Time course of PKCα translocation by PDBu 
 
Figure 17 Time course of PKCα translocation by A23187 
 
Figure 18 Time course of PKCα translocation by thapsigargin 
 
Figure 19 Time course of PKCα translocation by angiotensin II 
 
Figure 20 Time course of PKCα translocation by potassium 
 
Figure 21 Effect of calcium chelator on PKCα translocation 

 ix



 
Figure 22 Effect of staurosporine on PKCα translocation 
 
Figure 23 Time course of PKCα translocation with colchicine and cytochalasin B 
 
Figure 24 Time course of PKCα translocation in calcium-free medium 
 
Figure 25 Effect of A23187 and thapsigargin on intracellular calcium level 
 
Figure 26 Contractile response to PDBu, A23187 and thapsigargin 
 
Figure 27 Actin disruption in contracting A7r5 cells 
 
Figure 28 β-Actin remodeling during the interval of contraction 
 
Figure 29 Phalloidin stain of actin 
 
Figure 30 α-Actin remodeling during A23187 and thapsigargin stimulation 
 
Figure 31  High magnification imaging of α-actin in A23187- and thapsigargin-

treated A7r5 cells 
 
Figure 32 Effect of A23187 and thapsigargin on α-actinin 
 
Figure 33 Effect of A23187 and thapsigargin on talin 
 
Figure 34 Effect of PDBu on high calcium-induced α-actin remodeling 
 
Figure 35 Effect of high calcium on PDBu-induced α-actin remodeling 
 
Figure 36 Effect of calcium-free media on β-actin structure 
 
Figure 37 Effect of calcium-free media on α-actin structure 
 
Figure 38 Effect of ML-7 on calcium-induced actin remodeling 
 
Figure 39 Proposed model of smooth muscle contraction  
 
 
 
 
 
 
 
 
 

 x



 
 
List of Tables 
 
 
Table 1 Kinase inhibitors 
 
Table 2 Effect of thapsigargin on intracellular calcium concentration 
 
Table 3 Effect of A23187 on intracellular Ca45 concentration  
 
Table 4 Effect of Kinase inhibitors on A23187-induced α-actin remodeling 
 
  
 

 xi



 I   Literature Review 
 
 

Smooth Muscle Contraction:  Smooth muscle is found to be mainly present in the 

cylindrical or hollow organs of six different systems: gastrointestinal, ocular, 

reproductive, respiratory, urinary and vascular. Therefore, the functions of the organs 

containing smooth muscle are storage and transport, and smooth muscle is often 

considered a tissue of conductance and capacitance. This does not indicate that smooth 

muscle is an inert tissue, serving only as a conduit for various fluids. In the 

cardiovascular system, the active nature of smooth muscle is best observed. After 

contraction of the heart and propulsion of blood through the vasculature, it is the resting 

tone of the vessels that is the major determinant of the fluid dynamics of the system. The 

functions carried out by the smooth muscle in all systems are based on its excitable 

nature and ability to contract. 

 

Major unanswered questions concerning smooth muscle contractile properties include 

concerned with the mechanism by which it develops force and the complete signal 

pathway. Most of the information available on how cells develop force was derived from 

the study of striated muscle that is characterized by an ordered arrangement of regularly 

spaced sarcomeres that move closer together upon contractile stimulation. Early research 

revealed the sarcomeres in striated muscle to be mainly comprised of actin and myosin. 

The basic principles of sliding filament theory, which evolved from structural and 

biochemical studies of the sarcomere, indicate that the initial increases in intracellular 

calcium after muscle stimulation results in calcium binding to troponin. This binding 

causes a shift of tropomyosin from its resting position in the grooves within the actin 

helices, thereby removing inhibition of interaction between actin and myosin. The 

interaction of actin and myosin activates the ATPase in the myosin head, and stable 

crossbridges between the sarcomeric actin and myosin filaments are formed. Following 
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this, the hydrolysis of ATP and the conformational change of myosin induced by 

hydrolysis of ATP provide the force necessary to pull the actin and myosin past each 

other. These biochemical events combined with the opposing interdigitation of the actin 

and myosin filaments produce a shortening of each individual contractile unit sarcomere 

and force development.  

 

 
 

 
Figure 1.  
Activation scheme of smooth muscle contraction. G, heterotrimeric GTP-binding protein; 
R, receptor; L, ligand; IP3, inositol 1,4,5-trisphosphate; SR, sarcoplasmic reticulum; 
CaM, calmodulin; MLCK, myosin light-chain kinase; MLCP, myosin light-chain 
phosphatase. 
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Smooth muscle has no morphologically recognizable sarcomere. Despite the gross 

morphological differences between striated and smooth muscle, most of the initial work 

concerning the biochemistry and biophysics of smooth muscle contraction was analyzed 

and presented within the existing parameters that had been determined for striated muscle 

contraction. The most widely accepted mechanism is that the contraction of smooth 

muscle is induced by the elevation of  [Ca2+]i which, in turn, activates myosin light chain 

kinase to initiate the actin/myosin interaction and contraction (Fig. 1).  A number of 

extracellular signals, including neural, humoral, ionic, and mechanical forces, result in an 

increase in intracellular calcium from 120-270 nM to 500-700 nM and the high 

intracellular calcium induces binding of free calcium to calmodulin (CaM) to form Ca2+
4-

CaM complex.  Formation of this complex induces a conformational change in CaM with 

exposure of a site of interaction with the target protein myosin light chain kinase 

(MLCK), resulting in formation of the complex Ca2+
4-CaM-MLCK, which is the active 

from of kinase.  The active MLCK phosphorylates the serine 19 in each of the two 20-kD 

myosin light chains (LC20), triggering the cross-bridge cycling of actin-myosin and 

development of force with the hydrolysis of ATP.  After an excitation, relaxation and 

calcium homeostasis are achieved by calcium reuptake into intracellular stores and the 

extrusion into extracellular space. 

 

Intracellular Calcium    The main site of calcium storage inside smooth muscle cell is 

the sarcoplasmic reticulum (SR), and this organelle plays a major role in maintaining low 

intracellular [Ca2+]. Although the volume of SR appears to vary between smooth muscles, 

the SR forms an extensive intracellular network, which is capable of calcium uptake, 
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storage, and specialized release. SR volume is estimated to be 1.5-7.5% of smooth 

muscle cell volume. SR is typically more abundant in tonic (for example, aorta) than 

phasic (such as portal vein) smooth muscle. Most of the surface of SR in smooth muscles 

is closely associated with the plasma membrane (Devine et al., 1972), so release of 

calcium can greatly affect the concentration of calcium near the inner surface of the 

plasma membrane as well as the calcium concentration in the cytosol.  The SR is 

surrounded by a membrane that is not freely permeable to calcium. Active calcium-

ATPases, which are known as SERCA pumps, exist in the SR membrane and generate 

and maintain about a 10,000-fold calcium gradient between the SR lumen and the 

cytoplasm. Three genes encode SERCA pumps, and two subgroups of SERCA2 

(SERCA2a and SERCA2b) have been identified. SERCA pumps utilize the energy from 

ATP hydrolysis to move calcium from the cytoplasm to the lumen of the SR. After 

calcium is pumped into the SR, it is buffered by calcium binding proteins, such as 

calreticulin and calsequestrin.  Studies of the function of SERCA pumps have been 

strongly aided by specific SERCA pump inhibitors, such as thapsigargin. When SERCA 

pumps are inhibited by thapsigargin, a major source of calcium regulation is lost and 

calcium leaks into the cytoplasm.  Because cells are unable to maintain typically low 

cytoplasmic concentrations, intracellular calcium concentrations increase.  This effect 

will induce further increase of intracellular calcium concentration or extend periods of 

contraction. Evidence from a variety of cell types suggests that mitochondria also play an 

important role in calcium homeostasis 

 
Stimulation of smooth muscle by agonists that bind to certain types of G-protein-coupled  
 
membrane receptors results in the activation of phospholipase C and production of IP3 by 
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hydrolysis of phosphatidylinositol.  IP3 induces calcium release from the SR by 

activating one type of calcium release channel, which is called the IP3 receptor. Three 

genes encode IP3 receptors and each channel is made up of four subunits of about 300 

kDa that form a homotetrameric or heterotetrameric structures. An increase of calcium 

concentration from basal level to 300nM will further increase the potency of IP3 in 

activating calcium channels, and cause more calcium release. However, higher calcium 

concentrations reduce the effectiveness of IP3 and result in negative feedback for release 

of calcium.  Another major source of calcium channel-associated SR release of calcium 

involves the ryanodine receptor. Cytoplasmic calcium can activate ryanodine receptors, 

and, as a result, this release pathway is referred as the calcium �induced calcium release 

channel.  It is possible that the release of calcium from IP3 receptors stimulates the 

release of calcium from ryanodine receptors. 

 

The Cytoskeleton   The smooth muscle cytoskeleton is composed of three principal 

types of protein filaments (actin filaments, intermediate filaments and microtubules), 

which form protein filament networks extending throughout the cytoplasm. The 

cytoskeleton is a dynamic structure that is continually reorganized as cells move, change 

shape, or contract. 

 

Actin The major smooth muscle cytoskeleton protein, actin, is involved in vesicle 

trafficking, cell division, cell motility and muscle contraction (Barkalow and Hartwig, 

1995).  Actin exists as monomeric, G-actin, or as filamentous, F-actin. The G-actin 

polymerizes to form F-actin filaments which are thin, flexible fibers approximately 7 nm 

is diameter and up to several mm in length. The formation of F-actin from G-actin is a 

two-step process.  In vitro, the first step, the rate-limiting step for filament assembly, is 

nucleation: formation of actin dimers and trimers (Cooper et al., 1983; Frieden, 1983; 

Tobacman et al., 1983). The nucleation of actin filaments in vivo is poorly understood, 

 5



but research indicates that the Arp2/3 complex plays a possible key role in nucleation. 

After nucleation, rapid elongation of actin filaments occurs (Korn, 1982). Since all actin 

monomers are oriented in the same direction, actin filaments have a distinct polarity with 

the two ends (plus and minus ends) being distinguishable from one another. These two 

ends of an actin filament grow at different rates. The G-actin is added to the plus end five 

to ten times faster than to the minus end. Therefore the plus end is kinetically favored for 

assembly. This polarity of actin filaments is important in establishing a unique direction 

of myosin movement relative to actin. 

 

There is a very high degree of conservation of actin sequence within cell types with a 95 

percent amino acid sequence homology (Pollard and Cooper, 1986). In vertebrate 

animals, six distinct actin isoforms have been identified: α-skeletal, α-cardiac, α-

vascular, γ-enteric, γ-cytoplasmic and β-cytoplasmic.  Each is encoded by a distinct gene 

(Vandekerckhove and Weber, 1978; Reddy et al., 1990).  The isoforms found in smooth 

muscle are α-actin, β-actin, and γ-actin (Herman, 1993), they only differ in their N-

termini (Vandekerckhove and Weber, 1981). These isoforms are categorized into muscle 

actin (α-actin and γ-actin) and cytoplasmic actin (β and γ-actin). Of the cytoplasmic 

actins, β-actin is the most predominant, comprising up to thirty percent of the total 

cellular actin complement (North et al., 1994a). There appears to be a cellular 

compartmentalization of these isoforms. Antibodies directed against the α and γ-actin but 

not β-actin colocalized with the myosin containing contractile region (North et al., 

1994b). It was suggested that this compartmentalization was a reflection of function by 

Small (1986) who hypothesized that contraction was generated through the actin:myosin 

containing portion of the cell. 

 

The idea that there is a relationship between contraction and cytoskeleton remodeling was 

first proposed in the early 1990s. Based on studies of single smooth muscle cells, it was 
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shown that the length-tension relationship changed depending on the initial length at 

which the cells were activated.  It was first suggested by Harris and Warshaw (1991) that 

there was a disassociation of cell length and contractile element length.  Subsequent 

studies showed that velocity of shortening decreased as the tissue was activated at 

increasing lengths, leading Gunst and coworkers (1993) to conclude that their results 

were consistent with an the hypothesis of Harris and Warshaw (1990), who proposed that 

the decrease in velocity of shortening in single cell contractions is due to an internal load 

that increases as the cell shortens.  Gunst suggested that the internal load could represent 

resistance to shortening resulting from the compression of the cytoskeleton.  It was 

further speculated by Gunst et al. (1993) that the inverse relationship between tissue 

length at activation and velocity of shortening could reflect the reorganization of the 

cytoskeleton in response to activation at different muscle lengths.  They suggested that 

reorganization would serve to maximize contractile function at each tissue length and 

could involve the activation-induced attachment of the contractile component of the 

cytoskeleton to stabilizing cell structures.  This research group proposed later that the 

depression of force seen during the oscillation in length of canine tracheal smooth muscle 

was due to the resetting of contractile element length as a result of muscle stretch (Shen 

et al., 1997).   

 

Our laboratory first demonstrated that inhibition of actin polymerization by cytochalasin 

caused a selective blockade of the slow tension increase in rat aortic smooth muscle 

(Wright and Hurn, 1994).  Rather than a fixed resetting of the cytoskeleton to optimize 

length-tension at activation, Wright and Hurn (1994) suggested that slow tension 

development by smooth muscle required a capability for dynamic remodeling of a portion 

of the actin cytoskeleton during the interval of contraction.  Their conclusion has been 

supported by recent studies of Mehta and Gunst (1999), who showed that inhibition of 

actin polymerization by latrunculin-A depressed force development without affecting 
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myosin light chain phosphorylation, further suggesting that actin polymerization 

contributes directly to force development.  Wright and Battistella-Patterson (1998) have 

shown that inhibition of actin polymerization blocks calcium-dependent stress relaxation 

in vascular smooth muscle, suggesting that remodeling of the actin cytoskeleton may also 

serve to decrease cellular tension following abrupt stretch.  Taken together, it is clear that 

effects of inhibition of actin polymerization on the contractile and stress relaxant 

properties of smooth muscle cannot be attributed to a simple loss in cytoskeletal 

structure.  However, Wright�s conclusions are consistent with an inhibition of dynamic 

actin cytoskeletal remodeling which could serve to continuously modulate the optimal 

positioning of actin and myosin filaments during the interval of force development and 

cell constriction (Battistella-Patterson et al., 1997; Fultz et al., 2000).  Nevertheless, the 

cytochalasin-based studies have been the subject of controversy. 

 

Cytochalasins are a class of fungal metabolites first derived from cultures of 

Helminthosporium dematioideum and Metarrhizium anisopliae in the late 1960�s (Carter, 

1967). Cytochalasins were shown to cause microfilaments to lose their filamentous nature 

(Schroeder, 1970; Wessells, 1971).  These microfilaments were later shown to be the 

actin filaments (Spudich, 1972; Spudich and Lin, 1972). Cytochalasin B inhibits actin 

polymerization by binding to the plus end of actin filaments, thereby inhibiting the 

addition of actin monomers to existing filaments (Cooper, 1987).  It was unknown 

whether the inhibitory effect of cytochalasins on smooth muscle contraction was through 

the effect of cytochalasin on the polymerizing actin cytoskeleton or due to an unknown or 

nonspecific effect of the drug (Wessells, 1971). For example, there is some evidence 

indicating the effect of cytochalasin on smooth muscle contraction could be through the 

blockade of calcium influx (Dresel and Ogbaghebriel, 1988), the blockade of glucose 

uptake (Dresel and Knickle, 1987), the inhibition of myosin light chain phosphorylation 

or the inhibition of myosin ATPase activity. However, Obara and Yabu (1994) have 
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shown that treatment of smooth muscle tissues with cytochalasin at a concentration that 

induced a maximal inhibition of the contraction, had no effect on cell calcium current, 

myosin light chain phosphorylation or myosin ATPase activity in response to high 

potassium contraction. It was reported by Tseng et al (1997) that there was an absence of 

an effect of cytochalasin on glucose transport at the concentration necessary to produce 

maximal inhibition. Because the stable actin structure of striated muscle is not affected by 

cytochalasin, it may suggest that the fast phase of smooth muscle contraction, which is 

also unaffected by cytochalasin (Wright and Hurn, 1994), is produced by a mechanism 

comparable to sliding filament-based systems. At this time, however, the role of dynamic 

actin cytoskeleton remodeling as a potential factor in the development of slow phase 

smooth muscle contraction has yet to be clearly elucidated. 

 

Recent studies of the contractile response of A7r5 smooth cells to phorbol ester, which 

activates slow tension development, indicate significant actin remodeling, with the 

remodeling of α and β-actin being distinctly different (Fultz et al., 2000).  Both isoforms 

were incorporated into stress cables in the unstimulated cell.  During the interval of 

contraction, β-actin cables were stable and observed to shorten without evidence of 

disassembly.  In contrast, α-actin cables were clearly observed to disassemble and reform 

into a system of peripheral column-like structures with associated clusters of randomly 

oriented fibers.  Although subject to controversy, there is evidence that the phorbol ester-

induced contraction of smooth muscle may occur in the absence of an elevation in [Ca2+]i 

(Nakajima et al., 1993) or a concomitant increase in myosin light chain phosphorylation 

(Singer and Baker, 1987).  

 

Intermediate Filaments   Intermediate filaments have a diameter of 10 nm. Their main 

function is to provide mechanical strength to cells. Intermediate filaments have been 

proposed to play an indirect role in the contractile process through the positioning of 
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dense bodies in the cell.  It has been suggested that dense bodies constitute cellular 

anchorage points in smooth muscle that are analogues to the Z-line in striated muscles 

(Bond and Somlyo, 1982; Kargacin et al., 1989). Actin filaments anchored at dense 

bodies have been presumed to transmit tension to the cell surface via connections to 

subplasmalemmal dense plaques (Pease and Molinari, 1960).  These dense bodies have 

been shown to contain α-actinin (Fay et al., 1983), filamin (Small et al., 1986), talin 

(Volberg et al, 1986), vinculin (Geiger et al., 1985; Volberg et al., 1986), plectin (Wiche 

et al., 1983) and actin.  

 

Microtubules   There is no evidence to indicate the involvement of microtubules in 

smooth muscle contraction. Microtubules have been shown to be involved in a variety of 

cellular functions including: formation of the mitotic spindle, axonal and dendritic 

extension in neurons, maintenance of intracellular organization and shape, transport of 

compounds and organelles (Avila, 1991), and cell motility (Bershadsky and Vasiliev, 

1993). Microtubules are rigid hollow rods approximately 25 nm in diameter and are 

formed by the reversible polymerization of tubulin. Like actin filaments, the microtubules 

have a distinct polarity with a greater addition rate of tubulin at the plus end than at the 

minus end. There are three types of tubulin that comprise the microtubule, α,β and γ. The 

α and β-tubulin form dimers and these dimers can attach to the growing microtubule. γ-

Tubulin is found at the centrosome, the microtubule organizing center (MTOC), and site 

for polymerization (Oakley and Oakley, 1989; Zheng et al., 1991).  This degree of 

organization ensures that microtubular polymerization can only occur in a direction away 

from the MTOC (Brinkley, 1985). The transport function of microtubules is 

accomplished by microtubule-associated motor proteins: kinesin and dynein. Both of 

these proteins consist of a heavy chain and of a light chain.  The heavy chain binds to the 

microtubule and generates force through hydrolysis of ATP, while the light chain is 

responsible for binding a specific �cargo�. A major difference between the two motor 

 10



proteins is based on the polarity of transport along the microtubules: kinesin is a plus-end 

oriented motor protein, moving away from the MTOC, and dynein is a minus end-

directed motor, moving toward the MTOC. This type of system allows for specific and 

directed bi-directional transport of compounds and organelles. Colchicine, which causes 

depolymerization of the microtubules into free tubulin, is known to cause a disruption of 

the cellular morphology, producing �fractures� within the cytoplasm (Godman, 1955).  

 

Kinases Thought to be Involved in Smooth Muscle Contraction   Although the exact 

nature of the signaling pathways that regulate smooth muscle contraction are not certain, 

recent use of pharmacological and molecular approaches indicates that several specific 

families of kinase are involved in determining the contractile response to different 

agonists. Those that have been repeatedly demonstrated to be important are discussed 

below. 

 

Myosin Light Chain Kinase (MLCK)  MLCK is a calcium/calmodulin-dependent 

protein kinase that phosphorylates a serine residue in the N-terminus of the regulatory 

light chain (RLC) of myosin II (Stull et al., 1986; Gallagher et al., 1997). The RLC of 

myosin II is its only identified physiological substrate, so the enzyme is recognized as a 

dedicated kinase. Phosphorylation of the RLC of myosin II by calcium/calmodulin-

dependent MLCK plays diverse roles in cellular functions including, potentiated skeletal 

and cardiac muscle contraction (Sweeney et al., 1993), initiation of smooth muscle 

contraction (Kamm & Stull, 1985; Hartshorne, 1987; Somlyo & Somlyo, 1994; Gallagher 

et al., 1997), platelet aggregation and contraction, endothelial cell retraction, fibroblast 

contraction, secretion, receptor capping and nerve growth cone motility (Hartshorne, 

1987; Gallagher et al.,1997). 
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In vertebrates there are two genes for MLCK (Stull et al., 1986; Gallagher et al., 1997). 

One form is expressed in striated muscles and has distinct catalytic and structural 

properties that are distinct from the other form. The other form, originally purified from 

smooth muscle tissues, was described as smooth muscle MLCK. However, emerging 

biochemical and molecular evidence shows that this form is also found in non-muscle 

cells (Gallagher et al., 1997). The size of this enzyme ranges from 130 to 150 kDa 

depending upon the animal species. Because of its ubiquitous distribution, it is now 

commonly referred to as conventional MLCK.  Biochemical and molecular research 

indicates that MLCK contains a catalytic core that is structurally related to other 

serine/threonine protein kinases (Stull et al., 1986; Gallagher et al., 1997).  The 

regulatory segment involved in autoinhibition and calmodulin binding extends from the 

C-terminus of the catalytic core and folds back onto the large lobe of the catalytic core in 

the absence of calcium/calmodulin, thereby inhibiting intrasterically RLC binding and 

phosphotransferase activity (Kemp & Pearson, 1991; Knighton et al., 1992).  The MLCK 

contains three immunoglobulin-like and one fibronectin-like motifs and the C-terminal of 

the catalytic core/regulatory segments (Olsen & Eckstein, 1990; Gallagher et al., 1991; 

Potier et al., 1995). Immunoglobulin-like and fibronectin-like motifs, consisting of about 

100 residues, are also found in giant muscle proteins such as titin. The third 

immunoglobulin-like motif at the C-terminus has seven strands of an antiparallel β-

pleated sheet that form a barrel (Holden et al., 1992). 

 

Calmodulin with calcium has a high affinity for MLCK with an averaged Kd or Kcam 

value of 1nM (Stull et al., 1986). There are two lobes of calmodulin which can be 

separated by limited trypsin cleavage.  Biochemical studies of the isolated fragments 

show that each is an effectively independent structure capable of activating target 

enzymes including MLCK (Newton et al.,1985; Persechini et al.,1994; Persechini et al., 

1996). A mixture of the two lobes results in a greater extent of activation than does either 
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lobe alone. Calcium first binds to the high affinity sites in the C-terminal lobe of 

calmodulin.  As the calcium concentration increases, calcium binds to the two lower 

affinity sites in the N-terminal lobe of calmodulin. This results in the subsequent binding 

of the second calcium/calmodulin lobe, displacement of the regulatory segment and 

exposure of the catalytic cleft for RLC binding.  MLCK obviously binds to myosin via a 

substrate-enzyme interaction.  Biochemical studies show it has a higher affinity for non-

phosphorylated myosin (substrate) than for the phosphorylated form (Sellers & Pato, 

1984).  

 

Biochemical studies have also shown that MLCK binds to F-actin, but the apparent 

binding affinity, with or without tropomyosin, is low relative to what would be expected 

from binding to detergent washed myofilaments or skinned fibres (Sellers & Pato, 1984). 

At relatively high concentrations in vitro, MLCK bundles F-actin filaments (Hayakawa et 

al., 1994) and is able to inhibit the interaction of phosphorylated myosin with F-actin 

(Sato et al., 1995).  Binding studies to detergent-washed gizzard myofilaments showed 

that the full-length MLCK and ∆C-MLCK (deletion of the C-terminal Ig-like motif 

alone) bound but the ∆N- (deletion of the N-terminal half-alone) and ∆NC (deletion of 

both the N-terminal half and C-terminal IG-like motif) forms did not. MLCK bound with 

an apparent higher affinity to detergent-washed myofilaments and to purified smooth 

muscle thin filaments than to smooth muscle F-actin or skeletal muscle myofibrils. 

Because the apparent binding affinity is greater for purified thin filaments than smooth 

muscle F-actin, there may be another protein that facilitates or anchors MLCK to the 

actin-containing filaments. 

 

Calcium /Calmodulin -Dependent Protein Kinase II (CaMK II) When calcium binds 

to calmodulin to form a calcium/calmodulin complex, the complex will activate a number 

of cellular enzymes. One such enzyme is Calcium /Calmodulin -dependent protein kinase 
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II (CaMK II). CaMK II is large multimer (~ 600 kDa) protein with 8-10 individual kinase 

subunits of about 54-60 kDa each. CaMK II is composed of four subunits (α, β, δ and γ).  

The CaMK II present in cultured rat aortic VSM cells is comprised mainly of the δ2-

subunit variant (Schworer et al., 1993).  This kinase undergoes autophosphorylation in 

the presence of Calcium/CaM on a specific conserved threonine residue (Thr 286 in the 

α-subunit) which results in Calcium/CaM-independent (or �autonomous�) kinase activity 

(Hanson et al., 1992). A total of 70-80% of the Calcium/CaM-dependent kinase activity 

may become autonomous in vitro under optimal autophosphorylation conditions (Hanson 

et al., 1989). Autophosphorylation on Thr286 has also been reported to result in a 1000-

fold increase in the affinity of the kinase subunits for calmodulin (Meyer et al., 1992). 

Inactive CaMK II has a low affinity for calmodulin.  The autophosphorylation of CaMK 

II is predicted to be a cooperative process requiring at least two activated subunits per 

holoenzyme. Intact cells have phosphatase activities that are capable of reversing 

autophosphorylation. The possible effect of CaMKII on smooth muscle contraction is by 

phosphorylation of myosin light chain kinase.  When MLCK is phosphorylated by CaMK 

II in vivo, the affinity of MLCK for calmodulin is decreased and the calcium/calmodulin 

threshold for activation of MLCK is raised (Stull et al., 1990). In addition, if the CaMKII 

specific inhibitor, KN-62, is used in these preparations, the phosphorylation of myosin 

light chain by MLCK is potentiated, indicating that there is an inhibitory effect of 

CaMKII phosphorylation on MLCK activity (Tansey et al., 1992). 

 

Mitogen-Activated Protein (MAP) Kinase   MAP kinases are unique protein kinases 

activated in response to many extracellular stimuli.  They have been shown to be 

involved in multiple functions of cells. The MAP kinase family members may be 

classified by two different standards. First, they may be classified according to the 

sequence that results in activation when it is phosphorylated. The MAP kinases require 

dual phosphorylation of threonine and tyrosine and include TEY, TPY and TGY 
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sequences.  The second classification scheme is based on the nature of the upstream dual 

specificity kinases (MAP kinase kinases) that phosphorylate and activate the MAP 

kinases. Regulation of MAP kinase inactivation by specific MAP kinase phosphatases is 

stimulus- and cell type-specific. 

 

One TEY member, ERK1/2, is believed to play an important role in mediating 

phosphorylation of contractile proteins in the maintenance of sustained smooth muscle 

tone. In porcine carotid arteries stimulated by a mechanical load or by vasoactive 

agonists, ERK1/2 activity was found to increase by 5- to10-fold (Adam et al., 1995).  

Immunofluorescence studies in ferret aorta cells showed that phenylephrine-induced 

translocation of cytosolic PKC to the surface membrane was associated with transient 

redistribution of ERK1/2 to the surface membrane before cell contraction. Coincident 

with cell contraction, ERK1/2 undergoes a second redistribution away from the 

plasmalemma and towards contractile filaments.  High molecular weight caldesmon (h-

caldesmon) has been proposed to be the ERK1/2 substrate.  The thin filament proteins 

caldesmon and calponin are known to inhibit actomyosin ATPase in vitro and prevent 

actin sliding. Inhibition of actomyosin ATPase is relieved by phosphorylation of 

caldesmon. 

 

Focal Adhesion Kinase (FAK) Focal adhesion kinase (FAK) is a cytoplasmic tyrosine 

kinase with a molecular weight of 120-kDa.  FAK is activated by autophosphorylation of 

Tyr397 in response to different ligand engagement with integrins (Schlaepfer et al., 1994; 

1997). It has been reported that the time course of the increase in FAK tyrosine 

phosphorylation in response to contractile stimulation closely follows tension 

development in tracheal smooth muscle. The role of FAK in the contractile activation of 

tracheal muscle has been studied by utilizing an antisense oligonucleotide to FAK to 

selectively deplete FAK protein (Tang et al., 2001). The depletion of FAK protein 
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resulted in an inhibitory effect on the development of force, intracellular calcium levels, 

and myosin light-chain phosphorylation in response to contractile stimulation with 

acetylcholine. After permeabilization with α-toxin and stimulation by increasing 

intracellular calcium, the FAK-depleted tissues developed active tension that was 

comparable to control tissues. This indicated that the primary cause for the suppression of 

contractile activation in the FAK-depleted tissues is possibly the disruption of calcium 

signaling. These studies are consistent with electrophysiological studies in vascular 

muscle cells that also suggest a critical role for FAK in the regulation of calcium 

channels. It has also been suggested that FAK might be part of a complex of proteins that 

mediate calcium-insensitive signaling pathways which regulate the contractile apparatus 

and cytoskeletal dynamics in smooth muscle (Tang et al., 1999).  

 

Small Heat Shock Protein (HSP27)  There are several families of proteins that are 

likely to be effectors of actin remodeling, including capping proteins, severing proteins 

such as gelsolin (Gusev et al., 1994; Butt et al., 2001;), and cross-linking proteins such as 

filamin and α-actinin. Small heat shock proteins might also be important effectors of 

actin remodeling or cross-bridge function. HSP27 is a multimer that occurs in various 

sizes ranging from dimers to 700-kDa oligimers, with the large (>500 kDa) multimers 

predominating. Multimers form from interaction of unphosphorylated dimers. 

Phosphorylation of Ser 83 promotes dissociation of multimers (Benndorf et al., 1994), 

and further phosphorylation of Ser15 may regulate interaction of dimers with actin 

filaments (Lambert et al., 1999).  HSP27 has significant effects on actin cytoskeletal 

polymerization or depolymerization which are regulated by phosphorylation and 

dephosphorylation of HSP27. Purified unphosphorylated mouse and chicken HSP27 

homologs inhibit actin polymerization in vitro (Benndorf et al., 1994; Miron et al., 1991) 

while phosphorylation reverses the inhibition. This is supported by studies of cultured 

cells in which the phosphorylation of HSP27 was shown to be necessary for growth 
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factor stimulating F-actin formation (Lavoie et al., 1993a; and 1993b), the stabilization of 

focal adhesions (Schneider et al., 1998), and the promotion of cell migration (Rousseau et 

al., 1997).  Research of signaling pathways regulating HSP 27 activity in fibroblast and 

other nonmuscle cells showed that phosphorylation of HSP27 by MAP kinase-activated 

protein (MAPKAP) kinase 2 (MK2) is necessary for formation of F-actin. 

Phosphorylation of HSP27 by MK2 increases the rate and extent of actin polymerization 

in vitro (Butt et al., 2001). This suggests that, in vivo, the extent of actin polymerization 

can be increased by phosphorylation of HSP27 by MK2.  MK2 is regulated by p38 MAP 

kinases. The p38 MAP kinases are activated by upstream activators MKK3, MKK4 and 

MKK6.  The pathway between the MKKs and surface receptors is not well defined. 

RhoA is also reported to be an upstream activator of HSP27 in smooth muscle.  HSP27 is 

constitutively expressed in smooth muscles at relatively high concentrations (2-8µg 

HSP27/mg total protein) (Miron et al., 1988; Hedges et al., 1999;).  HSP27 has been 

shown to colocalize with contractile proteins in freshly dispersed intestinal smooth 

muscle cells stimulated with ceramide, and has been coprecipitated with actin, 

tropomyosin, and caldesmon, suggesting some molecular association with the contractile 

elements (Ibitayo et al., 1999). �Stress�stimuli also can activate signal transduction 

pathways that induce HSP27 phosphorylation in smooth muscle 

 

The Protein Kinase C (PKC) Family   Several hypotheses advanced to explain the 

contractile function of smooth muscle based on the results of in vitro research, have 

proposed mechanisms involving protein phosphorylation by protein kinase C.  PKC was 

discovered in 1977 by Nishizuka and co-workers. This discovery represented a major 

breakthrough in signal transduction research. PKC has been known as the cellular 

receptor for diacylglycerol (DAG), and is therefore a key player in phospholipase C-  
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Figure 2. 
Schematic representation of structural features of protein kinase C (PKC) isozymes. PKC 
polypeptides are depicted as linear chains with an amino terminal regulatory domain and 
a carboxyl terminal catalytic domain. Comparison of deduced amino acid sequences 
reveals five variable (V1-V5) and four constant (C1-C4) regions. Locations of 
pseudosubstrate (PS)-and ATP-binding sites are indicated. Cysteine-rich zinc finger 
sequences are located in C1 domains: two in each of cPKC and nPKC isozymes, and one 
in the aPKC isozymes. The nPKC and aPKC isozymes lack a C2 domain and exhibit 
calcium-independent activity. 

 

 

coupled signal transduction.  PKC is also a high-affinity receptor for the phorbol ester, 

which is a tumor promoter involved in multistage carcinogenesis. The activation- 

associated translocation, the identification of substrate, and the characterization of its 

functional role in the cell all form active areas of research. 
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The PKC family is a group of serine-threonine kinases implicated in various biological 

functions including signal transduction, cell proliferation and differentiation, and smooth 

muscle contraction.  The PKC family is separated into four subgroups (Fig. 2) based on 

their structure and activation requirements (Keenan and Kelleher, 1998; Newton et al., 

1998).  The conventional PKC (cPKCs): α, βI, βII, and γ are activated by calcium, 

diacylglycerol (DAG) or phorbol ester, and phosphatidylserine (PS). There are additional 

activators for cPKC, such as cis-unsaturated fatty acids and lysophosphatidylcholine 

(lysoPC). PKC δ, ε, η, and θ are known as novel PKCs (nPKC). Compared with 

conventional PKCs, novel PKCs lack a conserved region of homology known as the C2 

domain, which allows them to function in a calcium-independent manner. Atypical PKCs 

(aPKC), PKC ζ and ι/λ, have only one cysteine-rich zinc finger motif located in their C1 

domain compared with the other cPKC and nPKC isozymes, which have two. The aPKCs 

do not require DAG or calcium for activation, but are dependent on PS, the only cofactor 

required by all three groups.  PKCµ (or PKD), a new serine-threonine kinase with 

homology to PKC, may form a distinct PKC subgroup (Newton et al., 1998).  

 

Each PKC isozyme is the product of a separate gene with the exception of PKC βI and 

βII, which are alternativly spliced variants of the same gene. All of the PKC isozymes are 

single chain polypeptides, comprised of an N-terminal regulatory domain (approximately 

20-40 kDa) and a C-terminal catalytic domain  (approximately 45 kDa).  Cloning of the 

first isozymes revealed four conserved domains: C1-C4 (Coussens, 1986).  The function 

of each of these domains has been established by extensive biochemical and mutational 

research.  The regulatory domain participates in protein-protein interactions that regulate 

PKC activity and localization.  The catalytic region is the kinase domain and includes 

motifs involved in ATP and substrate binding.  The regulatory and catalytic domains are 

connected by a hinge region that is highly sensitive to proteolytic cleavage by cellular 

proteases. 
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The C1 domain contains a pseudosubstrate sequence that resembles the sequence around 

phosphorylatable serine or threonine residues in the PKC substrate. The pseudosubstrate 

sequence may bind to the active site in the catalytic domain and inactivate the PKC. 

Conversely, antibodies to the pseudosubstrate sequence completely activate PKC.  In the 

absence of cofactors, the introduction of a mutation in the pseudosubstrate sequence of 

PKCα resulted in a substantial increase in effector-independent kinase activity compared 

with normal controls.  The C1 domain also contains two cysteine-rich zinc finger 

sequences that form the diacylglycerol or phorbol ester binding site.  Early experiments 

using a [3H] PDBu radioligand revealed that PKC isozymes bind phorbol esters with 

high affinity in the presence of phosphatidylserine and that DAG and phorbol esters bind 

to the same site.  The first implication that cysteine-rich domains act as phorbol ester 

binding sites originated from experiments performed in Nishizuka�s laboratory (Ono et 

al., 1989), in which either deletion of those motifs in PKCγ or mutation of conserved 

cysteines resulted in a loss of phorbol ester binding.  Each cysteine-rich domain in PKC 

folds into a globular structure.  Phorbol esters bind in a groove formed by pulling apart 

two β-sheets. 

 

The C2 domain contains the calcium-binging site.  PKCs without a C2 domain (novel or 

atypical PKCs) or PKCs with a mutation in the C2 domain do not require calcium for 

kinase activity or phorbol binding.  A great number of proteins containing C2 domains 

have been identified to date.  Most of them are related to signal transduction mechanisms 

or membrane trafficking. Structural analysis has revealed that all C2 domains fold 

similarly into a structure consisting of two four-stranded antiparallel β-sheets connected 

by variable loops at the end of each strand, with the calcium binding site located at one 

end of the domain. The calcium domain acts as a membrane-docking module, where the 

calcium ions and basic residues contribute to electrostatic membrane binding.  The 
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catalytic domain of PKC isozymes includes the C3 and C4 domains. The C3 domain 

possesses the binding site for ATP, the C4 domain possesses the binding site for 

substrates. It is thought that PKC is maintained in the inactive state by the 

pseudosubstrate occupation of this site. Detailed structural information is not available 

for the PKC kinase domain; however, it is known that the regulatory catalytic domain is 

separated by a hinge region (V3). [Proteolytically generated kinase domain protein kinase 

M (PKM)] 

 

Regulation of PKC Activity by Cofactors   Experiments using mixed micelles or lipid 

bilayers have determined that acidic phospholipids are efficient cofactors for PKC 

activation, with PKC having a remarkable selectivity for phosphatidylserine. DAG causes 

a dramatic increase in the affinity of cPKCs and nPKCs for phosphatidylserine.  

According to the accepted model of PKC activation by lipids, the binding of DAG (or 

phorbol esters) in the presence of the phospholipid cofactors induces a conformational 

change in PKC that results in the removal of the pseudosubstrate from its binding site and 

in the activation of the enzyme. It is believed that the cysteine-rich and C2 domains are 

not the only regions involved in phospholipid binding.  The pseudosubstrate domain, 

once removed from its binding site, may also contribute to membrane binding through its 

basic residues. Membrane association is reflected as a shift in the subcellular localization 

or �translocation� of cytosolic PKC to membrane compartments in cellular systems, a 

process that is also tightly controlled by protein-protein interactions.  The association to 

membranes and activation of kinase activity are differentially regulated by the cation, and 

the concentration of calcium required for membrane binding is substantially lower than 

that required for activation. The model postulated by Newton (Keranen and Newton, 

1997) suggests that low concentrations of the cation promote weak membrane 

interactions, which are accompanied by conformational changes that are insufficient to 

promote the activation of the enzyme. Higher calcium concentrations, however, produce 
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a conformational change in PKC that results in the release of the pseudosubstrate from its 

binding site in the catalytic domain, leading to enzyme activation. 

 

PKC Binding Proteins   Research from the past 10 years has made it clear that in 

addition to binding to lipids, PKC can also interact with proteins via protein-protein 

interactions. It was believed that these interactions play an important role in the 

localization and function of PKC isozymes. PKC in an active conformation will bind to 

receptors for activated C kinase (RACKs) or substrates that interact with C kinase 

(STICKs).  Inactive PKCs will interact with a kinase anchoring proteins (AKAPs) and 

14-3-3. Hence, PKC binding proteins may or may not be PKC substrates. Such proteins 

serve many functions including localizing inactive (AKAPs) or active (RACKs) PKC 

isozymes to specific intracellular sites or serving as substrates (STICKs), shuttling 

proteins (RACK1), PKC activators, or PKC inhibitors.   

 

RACKs were first characterized as Triton-X-100 insoluble proteins that bind PKC 

isozymes only in the presence of PKC activators. Because a PS bridge should not be 

sufficient for binding of PKC to these RACKs, it was proposed that the association 

involved direct protein-protein interaction. Moreover, PKC binding to RACKs should not 

be inhibited by a substrate peptide, indicating that anchorage does not reflect binding of 

the catalytic site on PKC to a phosphorylation site on these proteins. The PKC-RACK 

interaction is mediated, at least in part, by the C2 region in cPKCs and the C2-like region 

(within the V1 region) in nPKCs (Mochly-Rosen et al., 1992; Johnson et al., 1996; 

Csukai et al., 1997; Hundle et al., 1997; Yedovitzky et al., 1997; Zhang et al., 1997; Ron 

et al., 1999). Two RACKs have now been identified by using overlay assays: RACK1, a 

36 KDa protein, which specifically interacts with PKCβII (Ron et al., 1994; 1995) and 

RACK2 (β�-COP), which specifically interacts with PKCε. Neither RACK1 nor RACK2 

is a PKC substrate, but both increase PKC phosphorylation of substrates (Ron et al., 
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1994; Csukai et al., 1997), suggesting that the PKC-RACK complex may be the active 

form of the enzyme in vivo.  It was reported that RACK1 exhibits a translocation 

response to PKC activation. RACK1 translocates to the same site as activated PKCβII 

and specifically associates with this isozyme upon activation. These findings suggest a 

potential role for RACK1 as a PKC shuttling protein.  A εPKC-selective RACK, 

RACK2, has also been identified by expression cloning using a fragment of εPKC that 

contains the RACK binding site.  It selectively binds εPKC colocalized only with 

activated εPKC (and not other isozymes) to cross-striated structures, the perinucleus, and 

cell-cell contacts in cardiac myocytes.  Prekeris et al. (1996) found that εPKC, and not 

other PKC isozymes, binds to filamentous actin (F-actin) in vitro and in synaptosomes. 

Because only the activated form of εPKC binds, F-actin appears to have the 

characteristics of a εRACK. Blobe and collaborators (1996) have found that, in vivo and 

in three different cell lines, F-actin results in stimulation of βIIPKC but not βIPKC. 

Binding to F-actin results in the stimulation of βIIPKC which displays altered substrate 

specificity when bound to F-actin. These data suggest that F-actin may also have 

βIIRACK characteristics. Whether both ε and βIIPKC bind to F-actin in the same cells 

and whether their binding is competitive remain to be determined. 

 

STICKs require phosphatidylserine for interaction with PKC and they are PKC 

substrates. Phosphorylation of STICKs regulates their association to PKC. STICKs are 

involved in a variety of functions. For example, adducin, which is identified as a STICK, 

is a cytoskeletal protein involved in the interaction between actin and spectrin (Fowler et 

al., 1998). Clone 72, which is another STICK and a major PKC binding protein in REF52 

fibroblasts, is involved in cytoskeleton remodeling and cell growth (Chaplin et al., 1996). 

Another STICK is the serum deprivation response protein (Sdr) that binds and localizes 

PKCα within the microdomain of caveolae (Mineo et al., 1998). 
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Scaffolding proteins can enable signaling proteins to cluster.  This allows a tight control 

of cellular pathways and cross talk between different cascades. Scaffolding proteins 

include caveolin (Mineo et al., 1998; Oka et al., 1997), AKAPs (Klauck et al., 1996), 

p62/ZIP (Puls et al., 1997), INAD (Xu et al., 1998), and 14-3-3 (Xiao et al., 1995; Meller 

et al., 1996).  Each of these proteins has the ability to cluster PKC to specific intracellular 

sites. PKC scaffolding proteins bind to PKC in its inactive conformation. 

 

Syndecan-4, another PKC interacting protein, is a transmembrane matrix binding 

proteoglycan. The cytoplasmic tail of syndecan-4 interacts with the kinase domain of 

PKCα, resulting in the localization of PKCα to focal contacts and in the activation of the 

isozymes (Oh et al., 1997A; and 1997B). Syndecan-4 can also be phosphorylated in 

response to PKC activation (Horowitz et al., 1998). The phosphorylation status of 

syndecan-4 does not affect its binding to PKCα, although it regulates its activity 

(Horowitz et al., 1998). 

 

Cytoskeletal proteins interact, in part, with PKC in an isozyme-selective pattern. 

Examples of this isozyme specificity are PKCζ which associates with tubulin via the 

pseudosubstrate region (Garcia-Rocha et al., 1997), and PKCε which specifically binds 

F-actin via an actin-binding site within the C1 region (Prekeris et al., 1998). F-actin 

activates PKCε in the absence of phospholipids (Prekeris et al., 1998). PKCβII (but not 

PKCβI) also interacts with the F-actin cytoskeleton upon activation. PKCβII selectively 

phosphorylates actin, although actin is a poor substrate. The interaction of PKCβII with 

actin results in a significant increase in autophosphorylation and in an alteration in 

substrate specificity.  It is thought that the interaction between PKCβII and actin protects 

PKC from degradation and down-regulation (Blobe et al., 1996). 
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By using an overlay technique and screening of an expression library, Jaken and 

collaborators (Hyatt et al., 1994) have identified several additional PKC binding proteins. 

These proteins are all substrates of PKC and bind PS directly.  A PS bridge between the 

binding proteins and PKC has been suggested to mediate this binding. These PKC 

binding proteins include talin and vinculin, myristoylated alanine-rich C-kinase substrate, 

a β-adducin homolog, AKAP 79, clone 72, and a related gene product, gravin/AKAP250. 

The finding that PS alone is sufficient for binding of PKC to these binding proteins 

suggests that full activation of PKC is not required. Furthermore, they found that αPKC, 

for example, localizes to focal contact structures, where talin and vinculin are found in 

nonstimulated fibroblasts and in cultured renal cells.  Activation by phorbol esters results 

in αPKC translocation away from these proteins, as shown by cell fractionation. 

 

There is a proposed model for PKC binding to its anchoring proteins (Daria and Gorgen, 

1998). In this model inactive PKC is depicted as a folded rod with the pseudosubstrate 

autoinhibitory sequence at the amino terminus associated with the substrate site in the 

catalytic domain (House and Kemp, 1987). Those proteins that anchor inactive C-kinase 

are referred to as receptors for inactive C-kinase isozymes, or RICKs. In the presence of 

PKC activators, the rod unfolds and the RACK binding site becomes exposed, resulting 

in binding of PKC to its RACK. RACK- bound PKC is shown with the substrate binding 

site exposed and the RICK binding site unavailable for binding.  Although there are no 

direct experiments indicating an ability of RICKs and RACKs to associate with PKC, 

concomitantly, immunofluoresence data and the inhibition of binding to at least some 

putative RICKs in the presence of phorbol ester suggest exclusive binding of the enzyme 

either to RICKs or to RACKs (Yao et al., 1997). This scheme also reflects the findings 

that although there is a PS bridge between RACK and PKC there is also direct protein-

protein interaction (Mochly-Rosen et al., 1991). 
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PKC Expression and Translocation Different cell types express their own unique 

complement of PKC isoforms (Dekker and Parker, 1994).  Within a cell type, PKC may 

be involved in the regulation of a variety of different cell functions.  PKC isoforms 

identified in vascular smooth muscle (α, β, ε, δ, ζ) (Andrea et al., 1992) are thought to 

play key roles in such functions as cell proliferation and differentiation (Montesano and 

Orci, 1985) and contractile activity (Rasmussen et al., 1987).  The expression of multiple 

isoforms regulating diverse functions within a single cell type suggests that individual 

isoforms phosphorylate specific substrate(s) and that overlap of PKC isoform activity 

may be limited under physiological conditions (Mochly-Rosen 1995; Mochly-Rosen et 

al., 1991).  This, in turn, would necessitate strict PKC isoform compartmentalization 

and/or regulatory control of enzyme activation.   The spatial separation of individual 

isoforms in the stimulated cell is an important mechanism determining substrate 

specificity. Hence, the regulation of PKC activation and its translocation to isoform-

specific sites are presently areas of intense research interest. 

 

Prior to stimulation of the cell, the inactive form of PKC is thought to be diffusely 

distributed throughout the cytosol or to be localized to specific regions or structures of 

the cell.  Following cell stimulation, PKC isoforms may translocate from inactive pools 

to their active cell loci.  Hence, the intracellular translocation of PKC may represent a 

major mode of control of isoform function: the targeting of specific isoforms to discrete 

cell loci would determine access to substrate.  It was originally thought that upon cell 

stimulation, conventional, novel and atypical subgroups of PKC isoforms underwent 

obligatory translocation to the cell membrane thereby allowing access to lipid co-factors 

required for enzyme activation.  More recent evidence, however, indicates that PKC 

isoforms may translocate to a variety of subcellular structures including membrane 

vesicles, perinuclear/nuclear structures, and the cytoskeleton.  Colocalization studies have 

indicated extensive association of different PKC isoforms with components of the actin 
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microfilament (Murti et al., 1992; Allen and Adarem, 1995), microtubules (Lehtich and 

Forrest, 1994), and intermediate filaments (Omary et al., 1992; Owen et al., 1996) of the 

cytoskeleton in different cell types.  Recent interest has focused on the role of PKC as a 

regulator of cytoskeletal function.  Activation of PKC results in the phosphorylation of an 

array of cytoskeletal proteins (Keenan et al., 1998) and is thought to regulate changes in 

cytoskeletal structure and organization (Hoshi et al., 1987; Inagaki et al., 1988; Chou et 

al., 1990; Murphy et al., 1993). 

 

Several laboratories have reported that the isoform PKCα is translocated from the cytosol 

to the plasmalemma in isolated vascular smooth muscle cells (Khalil et al., 1994; Jensen 

et al., 1996; Haller et al., 1998) and in intact vascular smooth muscle strips (Haller et al., 

1990).  Haller and coworkers (Haller et al., 1996) have shown that PKCα is translocated 

from the cytosol to the nucleus in endothelial cells in response to stimulation by a variety 

of hormones and growth factors.  They have further demonstrated (Haller et al., 1998) 

that passaged vascular smooth muscle grown on fibronectin exhibited PKCα 

accumulation at both the nucleus and at membrane focal adhesions.  Taken together, 

these results suggest that the translocation signaling movements of a specific isoform are 

not fixed but may vary significantly with the cell type, cell environment, the stimulus 

employed, and other factors, possibly including the differentiation state of the cells 

studied.  Plasticity of PKC translocation signaling between cell compartments would be 

expected to greatly expand the potential range of target substrates and cell functions of 

individual isoforms. 

 

A7r5 Cell Line   The A7r5 cell line is an embryonic smooth muscle cell line with adult-

like characteristics (Kimes and Brandt, 1976). The A7r5 clonal cell line was originally 

derived from an embryonic rat aorta.  A7r5 cells show expression and promoter activity 

of several highly restricted smooth muscle markers: smooth muscle α-actin, smooth 
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muscle calponin, smooth muscle myosin heavy chain, tropoelastin, and SM 22 alpha 

mRNA which is found exclusively in smooth muscle and is considered one of the earliest 

makers of differentiated smooth muscle (Firulli et al., 1998).  A7r5 cells are characterized 

by an inability to proliferate in serum-free medium, the absence of PDGF-B mRNA and  

the ability to contract in culture. Thus, it is concluded that A7r5 cells represent a 

transcriptionally differentiated smooth muscle.  A7r5 cells also showed high transfection 

efficiency compared with other smooth muscle cell lines.  All these characteristics of 

A7r5 cells make it an excellent in vitro model system for smooth muscle research. Their 

comparatively slow growth, however, may represent an obstacle for the derivation of 

stably transfected cell lines (Firulli et al., 1998). 
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II  Methods 
 
 
Cell Culture 
 
A7r5 cells, derived from the embryonic rat aorta and exhibiting an adult smooth muscle 

phenotype, were obtained from American Type Culture Collection (Manasass, VA) and 

cultured in Dulbeccos modified Eagles medium (DMEM) that was supplemented with 

10% fetal bovine serum, 100 units/ml penicillin G, and 100 µg/ml streptomycin.  

Cultures were maintained in a humidified atmosphere of 5% CO2 in air at 37°C.  The 

medium was changed every 2 days and cells were passaged at least once a week by 

addition of trypsin/EDTA solution in HBSS. 

 

PKCα-EGFP Plasmid Constructs 

A PKCα-EGFP expression plasmid was constructed by inserting PKCα cDNA into 

pEGFP-C2 vector (Fig. 3).   

PKCα cDNA Digestion: PKCα cDNA in the SRD vector obtained from Dr. Ohno (1987; 

Department of Molecular Biology, Yokohama City University School of Medicine, 

Yokahama, Japan) was removed using an EcoRI restriction enzyme.  To digest PKCα 

cDNA, 1.0 µl 10X buffer, 8.5 µl of the PKCα plasmid and 0.5 µl EcoRI were mixed in a 

reaction centrifuge tube.  EGFP vector was also digested with the EcoRI: 1.0 µl 10X 

buffer, 8.5 µl of the EGFP plasmid, and 0.5 µl EcoRI. The two samples were incubated at 

37°C for 1 hour for reaction and inactivated at 65°C for 20 minutes.  The sample was run 

on the gels and appropriate band cut out for purification of the PKCα and for ligation of 

EGFP cDNA. 
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Figure 3. 
Construction of the PKCα-EGFP fusion protein.  The full length PKCα cDNA 
without the stop codon was inserted into the EcoRI site of the pEGFP-C2 vector 
downstream of EGFP.  The EGFP was ligated to the V1 domain at the N-
terminus of PKCα cDNA. 
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PKCα and EGFP Ligation: The PKCα cDNA was ligated into the pEGFP-C2 vector 

(Clontech, Palo Alto, CA) downstream of EGFP at the EcoRI site.  Five µl PKCα DNA 

(~ 150µg) and 3µl EGFP DNA (~ 100µg) were mixed with 1µl 10X buffer and 1µl T4 

ligase.  This solution was incubated at 16 °C overnight. The sample was then heated at 

70 °C for 10 minutes to inactive the ligase reaction. The sample was added to 200µl XL-1 

blue competent bacteria (Stratagene: La Jolla, CA) in a microcentrifuge tube, incubated 

on ice for 30 minutes, mixed with 800µl LB media (10g/L Bacto peptone, 5g/L yeast 

extract, 85.5mM NaCl, pH 7.4) and incubated at 37 °C for 1 hour. The transformed 

bacteria (200µl) were spread on agar plates which containing kanamycin (50 µg/ml) 

antibiotic, and incubated at 37 °C overnight.  Purification of the PKCα-EGFP DNA was 

done by Wizard miniprep columns ( Promega, WI) following the manufacturer�s 

instructions. 

DNA Sequencing: Correct orientation of PKCα-EGFP fusion protein cDNA was 

determined by restriction digestion and DNA sequencing.  A total of eight samples were 

initially tested here by BamH1 restriction enzyme cleavage.  Based on the BamH1 

cleavage site, the correct constructs were expected to yield two fragments of 2.1Kbp and 

5.5Kbp. A possible reversed orientation was expected to produce fragments at 0.8Kbp 

and 6.8Kbp.  The correct constructs, identified from restriction enzyme digestion, were 

further subjected to DNA sequencing to confirm that the inserted DNA was ligated in the 

exact reading frame. Nucleotide sequences were determined by the dideoxy chain 

termination method (Sanger et al., 1977) using a Sequenase 2.0 sequencing kit 

(Amersham; Arlington Hts, IL), following the manufacturer�s instructions.  The resulting 

plasmid, PKCα-EGFP, contained PKCα fused in frame downstream of EGFP. 
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Cell Transfection 

Cells were seeded at a density of 4 x 106 cells/100 mm culture dish and transfected with 

12 to 18 µg of plasmid using lipofectamine (Life Technologies; Gaithersburg. MD), 

according to the manufacturer�s standard protocol. During the course of the project, two 

different plasmids were used to transfect A7r5 cells: PKCα-EGFP and a β-actin-EGFP 

expression plasmid (Clontech, Palo Alto, CA).  First, 12 to 18 µg of plasmid were diluted 

in 600 µl serum-free and antibiotic-free DMEM medium (solution A) while 30 µl 

lipofectin were diluted in 600 µl serum-free and antibiotic-free DMEM medium (solution 

B).  Both solutions were incubated at room temperature for 30 minutes, and then 

combined and incubated at room temperature for an additional 30 to 45 minutes after 

which 4800 µl serum-and antibiotic-free medium were added to the mixed solution.  

Cells were rinsed with 6 ml serum-and antibiotic-free medium and then overlaid with the 

DNA-lipofectin solution. They were then incubated in a humidified atmosphere of 5% 

CO2 in air at 37°C for 10 hours, after which they were returned to complete medium 

containing 10% serum.  Fluorescence indicating expression of fusion protein, was 

typically detected within 2 days.  Experiments were performed within 3 or 4 days after 

transfection.  

 

Immunostaining of A7r5 Cells 

A7r5 cells were fixed and permeabilized by the addition of ice-cold acetone for 1.0 

minute.  They were then washed with phosphate-buffered saline (PBS) containing 0.5% 

TWEEN-20 (PBS-T; pH 7.5) and incubated for 10 minutes in blocking solution (5% 

nonfat dry milk in PBS-T).  For PKCα staining, the fixed cells were incubated with a 
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1:1000 dilution of monoclonal anti-PKCα antibody (UBI, Lake Placid, NY) for 30 

minutes at room temperature, washed in PBS-T, and then incubated with Alexa 488-

labeled anti-mouse secondary antibody (Molecular Probes, Eugene, OR) for 30 minutes. 

For PKCα/microtubule or PKCα EGFP/microtubule colocalization experiments, PKCα 

was visualized with an Alexa 594-labeled secondary antibody (Molecular Probes, 

Eugene, OR).  A FITC-labeled anti-β-tubulin primary antibody (Sigma, St. Louis, MO) 

was utilized for visualization of microtubules.  For α-actin staining, cells were incubated 

in a 1:1000 dilution of monoclonal anti-α-smooth muscle actin clone 1A4 FITC-labeled 

antibody (Sigma Chemical Co., St. Louis, MO) for 30 minutes at room temperature.  For 

F-actin staining, the fixed cells were incubated with 2.5µM TRITC-labeled phalloidin 

(Sigma Chemical Co., St. Louis, MO) for 30 minutes at room temperature.  For alpha-

actinin and talin staining, the fixed cells were incubated with a 1:1000 dilution of 

monoclonal anti-α-actinin (Sigma Chemical Co., St. Louis, MO) and anti-talin antibody 

(UBI, Lake Placid, NY) for 30 minutes at room temperature, washed in PBS and then 

incubated with Alexa 488-labeled anti-mouse secondary antibody (Molecular Probes, 

Eugene, OR) for 30 minutes. Nonspecific binding was determined by incubating cells 

with secondary antibody in the absence of primary antibody or by mixing the primary 

antibody with an excess of purified PKCα protein prior to incubation with cells. 

 

Confocal Microspcopy 

For fixed cells, the coverslips were mounted on a Nikon Diaphot microscope and 

confocal microscopy was performed with a BioRad Model 1024 scanning system at 488  

nm krypton/argon excitation using a 515 nm long pass barrier filter. This included 
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experiments with PKCα-EGFP transfected cells, PKCα, α-actin, talin, and α-actinin 

antibody stained cells and phalloidin stained cells.  For colocalization studies, confocal 

microscopy was performed at 633 nm krypton/argon excitation using a 665 nm red glass 

filter with cells immunostained for PKCα or at 488 nm krypton/argon excitation using a 

515 nm long pass barrier filter in studies with PKCα-EGFP transfected cells or cells 

stained for β-tubulin.  Final micrograph images were built by projecting serial Z-plane 

image acquisitions and were analyzed using Lasersharp and Confocal Assistant Software 

(BioRad, Hercules, CA).   

Prior to observation, live A7r5 cells were plated onto 25 mm circle glass coverslips one 

day before the experiments.  Dynamic change of PKCα-EGFP transfected cells or β-

actin-EGFP transfected cells was observed by utilizing the BioRad Model 1024 scanning 

system at 488 nm krypton/argon excitation using a 515 nm long pass barrier filter.  

Each experiment was performed a minimum of three times with at least 30 cells from 

fixed preparations and 4 to 6 cells from live preparations evaluated per experiment.  

Results were confirmed by at least two observers and phenomenon were judged 

significant if observed in 70% or more cells. 

 

Cell Treatments: 

A. Concentration-Dependent Phorbol-Induced PKCα Translocation:   

Translocation of PKCα was induced by the addition of phorbol 12, 13 dibutyrate (PDBu) 

to the incubation medium at final concentrations ranging from 10-5M to 10-9M.  Unless 

stated otherwise, images were obtained at 10 minutes after cell activation with PDBu. 

The microtubular cytoskeleton was disrupted by the addition of colchicine (40 µg/ml) 
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and The actin cytoskeleton was disrupted by addition of cytochalasin B (1 µg/ml) to the  

medium 20 minutes prior to PDB (10-6M to 10-8M) stimulation.  

B.  Multi-Agonists-Induced PKCα Translocation:   

In studies of live cell preparations, cells were stimulated by phorbol 12, 13 dibutyrate 

(PDBu, 10-8 M), thapsigargin (10-5M), A23187 ( 10-5M), angiotensin II (10-6M) or 

potassium ( 10-2M) addition to the incubation media.  The PKC inhibitor staurosporine 

(10-8 M) or a calcium chelator cocktail (EGTA, 10-3M; BAPTA-AM, 10-5M) was added 

to the medium 15 minutes prior to additions of contractile agents.  Colchicine (40 µg/ml) 

and cytochalasin B (1 µg/ml) were added to the medium 20 minutes prior to PDBu 

stimulation.  In experiments using calcium-free medium, cells were washed (2X) with 

calcium-free medium and then incubated in calcium-free medium for an hour before 

addition of PDBu and A23187. 

C. Actin Remodeling Experiments:   

Actin cytoskeletal reorganization was studied in A7r5 cells contracted by additions of 2 x 

10-5M A23187 and 2 x 10-6M thapsigargin (Sigma Chemical Co., St. Louis, MO).  In 

experiments examining the effect of these agents on phorbol ester-induced cytoskeletal 

remodeling, cells were activated by additions of 10-8M phorbol 12, 13 dibutyrate (PDBu) 

at either 30 minutes before or 20 minutes following the additions of A23187 and 

thapsigargin to the medium.  In order to determine the effect of calcium-free conditions 

on remodeling, cells were washed twice with and then incubated in Ca2+-free DMEM 

(Gibco BRL Products, Life Technologies, Rockville, MD) for 1 hour before the addition 

of agonists.  In a final series of experiments, we examined the effects of 6 different 

protein kinase inhibitors (Table 1) on A23187/thapsigargin-induced α-actin 
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depolymerization.  Each kinase inhibitor was added at 10X its published IC50 

concentration 30 minutes prior to the addition of the agonists. Each experiment was 

conducted a minimum of three times with the results verified by two observers.  Unless 

stated otherwise, conclusions were based on the observation that at least 80% of the cells 

exhibited the phenomenon. 

 

 

 

 

Table 1.  Six different kinase inhibitors were studied in actin remodeling experiments. 

Inhibitor Target Kinase 

Staurosporine General kinase 

Bisindolymaleimide I PKC 

H-89 PKA 

ML-7 MLCK 

KN-93 CaMK II 

Genistein Tyrosine Kinase 
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Verification of Effective PKCα-EGFP Transfection 

After being washed twice with phosphate-buffered saline solution (PBS), A7r5 cells were 

collected at 3 days post-transfection by scraping with a rubber spatula followed by 

centrifugation.  The harvested cells were suspended in 150 µl of lysis buffer (10 mM 

Tris, pH 7.4; 1 mM EDTA, 1 µg/ml leupeptin, 1 µg/ml pepstatin, 50 µg/ml aprotinin, 0.5 

mM phenylmethylsulfonyl fluoride (PMSF), and 1% glycerol).  Protein concentration 

was determined by the BCA (Pierce) protein assay.  Equal amounts of protein samples 

were electrophoretically separated on 10% SDS-PAGE.  The resolved bands were 

electrophoretically transferred to a nitrocellulose membrane (Amersham, Piscataway, 

NJ).  The membrane was incubated with blocking solution (5% nonfat dry milk in PBS) 

for 2 hours, repeatedly rinsed with PBS, and then further incubated in a 1:1000 dilution 

of either monoclonal anti-PKCα (UBI, Lake Placid, NY) or anti-EGFP (Clontech, Palo 

Alto, CA).  The blot was washed 3 times in PBS/0.5% Tween and then incubated one 

hour incubation with rabbit anti-mouse horseradish peroxidase-conjugated secondary 

(Sigma Chemical Co., St. Louis, MO).  Reactive bands were visualized by the ELC-

enhanced chemoluminescence method (Amersham). 

 

Immunoprecipitation of PKCα and EGFP 

As an initial step in the kinase activity determinations the PKCα-EGFP and PKCα 

proteins were immunoprecipitated for assay.  Control A7r5 cells and A7r5 cells 

transfected with PKCα-EGFP were harvested from 100 mm culture dishes into 2 ml of 

ice-cold lysis buffer [250 mM NaCl, 25 mM Tris-HC1 (pH 7.5), 5 mM EDTA, 1% Triton 

100, 2 µg/ml aprotinin, 1 mM phenylmethysulfonyl fluoride (PMSF)] and homogenized 
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by repeated pipetting.  After centrifugation at 14000 g for 10 minutes, the supernatant 

was divided into two aliquots for the addition of anti-PKCα monoclonal antibody or anti-

EGFP monoclonal antibody.  The samples were incubated at 4°C for an additional hour 

in a rotary mixer after which protein A was added.  The samples were incubated for an 

additional hour at 4 °C.  The samples were then centrifuged and the pellets were washed 

3 times by resuspension in 2 ml of rinse buffer (lysis buffer without Triton 100).  The 

washed pellet was suspended in 50 µl PBS for the kinase activity assay.   

 

PKCα Activity Assays 

PKCα activity was measured using the Pep Tag Assay for non-radioactive detection of 

protein kinase C (Promega, Madison, WI) according to the manufacturer�s instructions 

(Fig. 4).  This assay utilizes a brightly fluorescent peptide substrate that is very specific 

for PKC.   The amino acid sequence of the PKC-specific substrate, Pep Tag C1 peptide, 

is P-L-S-R-T-L-S-V-A-A-K.  Phosphorylation of C1 Peptide by PKC changes the 

peptide�s net charge from +1 to �1, and this change in the net charge of the substrate 

allows the phosphorylated and nonphosphorylated substrate to be separated on an agarose 

gel at neutral pH.  Phosphorylated substrate moves toward the positive electrode while 

the nonphosphorylated substrate migrates toward the negative electrode.  Briefly, 10 µl of 

sample were mixed with reaction buffer (100 mM HEPES, 6.5 mM CaCl2, 5 mM DTT, 

50 mM Mg Cl2, 5 mM ATP, pH 7.4), activator solution (1 mg/ml phosphatidyl serine) 

and Pep Tag Cl peptide.  The solution was incubated at 30°C for 30 minutes.  The 

reaction was stopped by placing the sample in a 95°C heating block for 10 minutes.  The 

samples were electrophoresed on a 0.8% agarose gel at 100V for 20 minutes.  The gel  

 38



C1 Peptide substrate
     (+1 net charge) 

 

 

 

Non-phosphorylated
    (+1 net charge) 

Separate phosphorylated and non-phosphorylated
C1 by agarose gel electrophoresis 

=P 

Incubate with PKC-
containing sample

 
 
 
 
 
 
 
 
 
 Phosphorylated

 (-1 net charge) 
 
 
 
 
 
 
 

cathode
Non-phosphorylated
    (+1 net charge) 

Phosphorylated
 (-1 net charge)

P 

 
 
 +1
 
 
 0

=  
 
 

-1 

anode 
 
 
 
Figure 4. 
Mechanism and procedure of the Pep Tag non-radioactive protein kinase assay.  Two µg 
of Pep Tag C1 peptide were incubated as described in the standard PKC assay with PKC 
sample in a final volume of 25 µl for 30 minutes at room temperature.  The reactions 
were stopped by incubation at 95°C for 10 minutes, and the samples were 
electrophoresed on a 0.8% agarose gel at 100V for 20 minutes. Phosphorylated peptide 
migrated toward the anode (+), while nonphosphorylated peptide migrated toward the 
cathode (-). 
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was photographed under UV light and the signal intensity was quantitated with a 

Molecular Dynamic densitometer.  The activity of PKCα was normalized for the protein 

content of each immunoprecipitation sample and expressed as units/µg protein. 

 

Intracellular Calcium Determination 

Loading of Cells with Fura-2:   

A7r5 cells were placed in a six well culture plate containing 25 mm diameter glass 

coverslips and allowed to grow for 1 to 2 days until they reached 70 to 80% confluency.  

The coverslips containing A7r5 cells were removed asceptically from the six well culture 

plates, rinsed with HBSS (GIBCO-BRL, NY) and then placed in a Narishige 

Microincubation Chamber (Narishige International USA, Inc., NY). The cells were then 

incubated in 1 ml HBSS containing 5 µM Fura-2AM (Molecular Probes, Inc., Eugene 

OR) and 0.05% w/v Pluronic F-127, a non-ionic detergent that helps to disperse Fura-

2AM and thus facilitate dye loading into the cells (Molecular Probes, Inc., Eugene, OR) 

at 370C for 30 minutes. The cells were then washed three times with HBSS and incubated 

in HBSS for 10 min at 370C so as to completely hydrolyse the Fura-2AM.  Prior to 

imaging the solution was replaced with a 1 ml fresh HBSS.                                                                               

Digital Video Fluorescence Imaging:   

The Narishige microincubation chamber containing Fura-2 loaded A7R5 cells on the 

coverslip in HBSS was placed on the stage of a Nikon Diaphot TMD inverted 

fluorescence microscope (Nikon Corporation, Tokyo, Japan) maintained at 37°C and 

equipped for ratio fluorescence microscopy.  The cells were successively excited at  

340 nm and 380 nm, and the fluorescence emitted at 510 nm was intensified by a 
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DAGE-MTI GenIISys image intensifier (DAGE-MTI, Inc., Michigan City, Indiana) 

and finally captured by a DAGE-MTI CCD72 video camera (DAGE-MTI, Inc., Michigan 

City, Indiana). The video signals from the CCD72 camera were digitized at 8 bits per 

pixel. The fluorescence images were acquired every 15 sec with each set representing an 

average of 16 video frames.  The ratio images were calculated in real time by pixel to 

pixel division of fluorescence images obtained by 340 nm excitation to that by 380 nm 

excitation. Metfluor Imaging System, version 4.1.7, software (Universal Imaging 

Corporation, Westchester, PA) was used for image acquisition and analysis. The [Ca2+]i  

was calculated according to equation of Grynkiewicz et al. (1985) as follows:  

 

                                       [Ca2+]i = KD β (R - Rmin) / (R - Rmax) 

 

where R is ratio of Fura-2 fluorescence emission due to excitation at 340 nm divided by 

380 nm excitation, Rmax is the ratio when Fura-2 is saturated with Ca2+ ions (achieved by 

using 5 µM ionomycin), Rmin is the ratio when Fura-2 is in the acid form (achieved by 

chelating intracellular calcium ions with 20 mM EGTA), β is the ratio of fluorescence of 

free Fura-2 in acid form divided by fluorescence of Fura-2 saturated with Ca2+ ions with 

380 nm excitation and KD is the dissociation constant for the binding of Fura-2 to Ca2+ 

ions (a value of 224 nM was used). The in situ calibration of [Ca2+]i was performed at the 

end of the experiment by using 5 µM ionomycin followed by 20 mM EGTA.  Finally, 50 

mM MnCl2 was used to completely quench the fluorescence and thus to obtain 

background image emission. All images were corrected for the background emission.   
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III   Results 
 
 
Study of Concentration-Dependent Phorbol Induced PKCα Translocation 
 
 
Characterization of PKCα-EGFP Fusion Protein 

In order to determine if the PKCα-EGFP fusion protein was effectively expressed and 

retained PKCα enzymatic properties, Western Blot and kinase activity assays were 

performed on PKCα-EGFP expressing A7r5 cells.  Western Blot analysis indicated PKCα 

and PKCα-EGFP exhibited bands at approximately 80 kDa and 110 kDa, respectively 

(Fig. 5).  Visualization of cells with anti-EGFP antibody yielded a single band at 

approximately 30 kD in cells transfected with EGFP vector and a single band at about 

110 kD in cells transfected with PKCα-EGFP indicating little or no detectable breakdown 

of PKCα-EGFP.  Furthermore, significant levels of kinase activity were observed in 

samples obtained both by immunoprecipitation of PKCα or EGFP (Fig. 6), indicating that 

PKCα-EGFP retained enzymatic activity.  Finally, colocalization studies of PKCα and 

EGFP indicated identical cellular distribution of endogenous PKCα and PKCα-EGFP 

both in control and stimulated cells (Fig. 7). 

 

Translocation of PKCα in Response to Different Concentrations of PDBu 

Results from experiments utilizing either standard immunostaining methods (Fig. 8) or 

A7r5 cells expressing the PKCα-EGFP fusion protein (Fig. 9) were consistent in 

indicating concentration-dependent effects of PDBu on PKCα translocation.  

Immunostaining indicated that PKCα was diffusely distributed throughout the cell prior 
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to stimulation (Fig. 8A).  Addition of PDBu to the medium at final concentrations of 10-5 

M and 10-6M resulted in intense immunostaining in the perinuclear/nuclear region with 

minor or no fluorescence seen at the cell membrane (Fig. 8 B, C).  By comparison, PDBu 

at final concentrations of 10-7M and 10-8M caused significant accumulations of PKCα at 

the cell membrane with only slight staining noted at the perinucleus (Fig. 8 D, E).  PDBu 

at 10-9M did not result in PKCα translocation in A7r5 cells (Fig. 8 F).  Similar to the 

results from immunostaining experiments, A7r5 cells expressing PKCα-EGFP also 

showed a diffuse distribution of fluorescence in unstimulated cells although discrete areas 

of intense fluorescence at the membrane were often noted in these control cells (Fig. 9).  

Addition of 10-6M PDBu resulted in an obvious translocation of the fusion protein to the 

perinucleus, whereas 10-8M PDBu caused translocation to the cell membrane (Fig. 9).   

 

Control experiments (data not shown) in which cells were incubated with secondary 

antibody in the absence of primary antibody demonstrated that PKCα translocation was 

not influenced by nonspecific staining or autofluorescence.  In addition, the addition of a 

2X molar excess of purified PKCα enzyme with the primary antibody used in the present 

experiments resulted in the almost total blockade of immunostaining, further indicating 

the specificity of PKCα staining in the A7r5 cell preparation.  Finally, it was shown that 

the addition of the inactive phorbol ester, 4α-phorbol 12, 13-didecanoate (4α-PDD) had 

no detectable effect on PKCα intracellular distribution (Fig.9), indicating that the 

translocation phenomenon observed was associated with PKC activation. 

 

Role of the Cytoskeleton in PKCα Translocation in A7r5 Cells 
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Figure 10 shows the effect of colchicine treatment on the structure of the microtubule 

cytoskeleton of A7r5 cells.  The typical A7r5 cell exhibited a pattern of dense central 

microtubular structure connected by distinct filaments to an extensive subplasmalemmal 

microtubular structure (Fig. 10A).  The central microtubular structure and connecting 

filaments were disrupted within 10 minutes (Fig. 10 B, C) and the entire microtubular 

cytoskeleton was abrogated within 20 minutes after the addition of colchicine to the 

medium (Fig.10 D). 

 

Disruption of the microtubules with colchicine had no significant effect on the 

distribution of PKCα in unstimulated cells (Figs. 11 A�, 12A�).  However, disruption of 

the microtubules by a 20 minutes treatment of colchicine consistently resulted in the 

blockade of PKCα translocation to the perinuclear region of cells stimulated by the 

addition of 10-6M PDB (Figs. 11 B�, 12 B�).  By comparison, treatment with colchicine 

did not affect the peripheral translocation of PKCα induced by 10-8 M PDB in A7r5 cells 

(Figs. 11 C�, 12 C�).   

 

Dual immunostaining for β-tubulin and PKCα indicated little or no direct association of 

PKCα with the microtubular system in unstimulated cells (Fig. 13B).  Similarly, there 

was no evidence of colocalization of PKCα and microtubular structure in A7r5 cells 

stimulated by additions of 10-6 M PDB (Fig. 13 D) or 10-8M PDB (Fig. 13 F) to initiate 

perinuclear and peripheral translocation, respectively. 
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A7r5 cells stained with TRITC-labeled phalloidin showed a system of densely packed 

actin stress fibers arranged in parallel and extending across the whole cell body. 

Treatment with cytochalasin B caused disruption of actin fibers, primarily at the central 

region of the cells (data not shown).  Cytochalasin B had no effect on the distribution of 

PKCα in unstimulated cells (Fig. 14 A�) and, unlike colchicine, cytochalasin B had no 

effect on the translocation response to either 10-6M PDBu (Fig. 14 B�) or 10-8M PDBu 

(Fig. 14 C�). 

 

Colocalization of PKCα with p62 and BiP/GRP 78 in Response to 10-6M PDBu 

In order to determine whether PKCα was associated with the nuclear envelope or 

endoplasmic reticulum in response to 10-6M PDBu stimulation, colocalization studies of 

PKCα with nucleoporin p62 and the ER marker BiP/GRP78 were performed.  Data 

indicated some degree of colocalization of PKCα with p62 and BiP/GRP78 in 

unstimulated cells which appears to be increased in 10-6M PDBu stimulated cells (Fig. 

15). 
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Immunoblot analysis of the PKCα-EGFP fusion protein from A7r5 cells.  Lane 
1, rabbit brain positive control for PKCα; lane 2, control A7r5 cells; lane 3, 
A7r5 cells transfected with PKCα-EGFP; lane 4, A7r5 cells transfected with 
EGFP; lane 5, A7r5 cells transfected with PKCα-EGFP.  Bands detected with 
anti-PKCα monoclonal antibody (lanes 1-3) indicated immunoreactivity only 
at 80 kDa in control A7r5 cells and at both 80 kDa and 110 kDa in cells 
transfected with PKCα-EGFP.  Detection by anti-EGFP monoclonal antibody 
(lanes 4, 5) indicted immunoreactivity at approximately 29 kDa in cells 
transfected with EGFP (lane 4) and only at 110 kDa in cells transfected with 
PKCα-EGFP (lane 5) indicating insignificant degradation of the PKCα-EGFP.  
The figure shown is a typical of results from three individual experiments. 
 

Figure 5. 
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Figure 6. 
PKCα kinase activity of the PKCα-EGFP fusion protein obtained from A7r5 cells.  Anti-
PKCα and anti-PKCα-EGFP monoclonal antibodies were utilized to immunoprecipitate PKCα 
and the PKCα-EGFP, respectively from A7r5 cell samples.  PKCα kinase activity was then 
measured using the Pep Tag assay method.  Precipitated samples were mixed with PKC 
activity reaction solution, electrophoresed on a 0.8% agarose gel, and photographed on a 
transilluminator under UV light.  Phosphorylated peptide can be seen to migrate toward the (+) 
(an arrow indicates the phosphorylated peptide), while nonphosphorylated peptide migrates to 
the cathode (-).  Positive control was purified PKCα protein while negative control contained 
distilled water.  Results reflect the average of three individual experiments. 
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Figure 7. 
Confocal micrographs showing dual imaging for PKCα and EGFP in A7r5 cells stimulated 
at 10-8 M and 10-6 M concentrations of phorbol 12, 13 dibutyrate (PDB).  PKCα was 
visualized using an Alexa 594-labeled secondary antibody.  Images were collected in 
separate channels to prevent overlap of fluorophores.  Yellow color in panels at the right of 
the figure indicates areas of colocalization of EGFP and PKCα.  Because there was no 
evidence of significant degradation of PKCα-EGFP, the results indicate that the fusion 
protein is translocated in response to cell stimulation in a fashion identical to native PKCα.  
Magnification was 600X.  The micrographs reflect the results from 3 experiments in which a 
total of 88 cells were evaluated.  
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Figure 8. 
Confocal micrographs showing the concentration-dependent perinuclear and 
plasmalemma translocation of PKCα in A7r5 at 10 minutes after exposure to vehicle (A) 
or PDBu concentrations of 10-5M (B), 10-6M (C), 10-7M (D), 10-8M (E), and 10-9M (F).  
PKCα was visualized by standard immunostaining methods using unlabeled anti-PKCα 
primary antibody followed by Alexa 488-labeled anti-mouse IgG secondary antibody.  
Magnification was 600X.  The micrographs reflect the results from 5 experiments in 
which a total of 456 cells were evaluated.  It was estimated that at least 90% of cells 
exhibited the indicated phenomenon.  
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Figure 9. 
Confocal micrographs showing the distribution of PKCα-EGFP fusion protein in 
unstimulated control A7r5 cells and in cells stimulated by the addition of 10-6M or 10-8M 
PDBu.  Results are identical to those obtained with standard immunostaining in indicating 
that cells stimulated with 10-6M and 10-8M PDBu translocate PKCα primarily to the 
perinucleus and plasmalemma, respectively. Inactive phorbol 4αPDD had no effect on 
distribution of PKCα. Magnification was 600X.  The micrographs reflect the results from 3 
experiments in which a total of 212 cells were evaluated.  It was estimated that at least 90% 
of cells exhibited the indicated phenomenon. 
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Figure 10. 1010.10.10. 
Normal A7r5 cell microtubular structure (A) and the effects of the microtubule 
disrupting drug colchicine on these structures at 5 minutes (B), 10 minutes (C), 
and 20 minutes (D) exposures.  Microtubules were visualized using a FITC-
labeled-β-tubulin antibody.  Magnification was 600X.  The micrographs reflect 
the results from 3 experiments in which a total of 410 cells were evaluated.  
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Figure 11. 
The effect of treatment with colchicine to disrupt microtubules on the distribution of 
PKCα in unstimulated and PDBu-stimulated A7r5 cells.  Control cells received vehicle 
(A) or additions of PDBu at 10-6M (B) or 10-8M (C).  Treated cells were exposed to 
colchicine (40 µg/ml, 20 min) prior to receiving vehicle (A�), 10-6M PDBu (B�) or 10-8M 
PDBu (C�).  PKCα was stained with unlabeled anti-PKCα primary antibody (UBI) 
followed by Alexa 488-labeled anti-mouse IgG secondary antibody (Molecular Probes).  
Magnification was 600X.  The micrographs reflect the results from 4 experiments in 
which a total of 428 cells were evaluated.  It was estimated that an average of 87 ± 6% of 
cells exhibited colchicine blockade of perinuclear translocation at 10-6M PDBu. 
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Figure 12. 
The effect of treatment with colchicine to disrupt microtubules on the distribution of 
PKCα -EGFP fusion protein in unstimulated and PDBu-stimulated A7r5 cells.  Untreated 
cells received vehicle (A) or additions of PDBu at 10-6M (B) or 10-8M (C).  Treated cells 
were exposed to colchicine (40 µg/ml, 20 min) prior to receiving vehicle (A�), 10-6M 
PDBu (B� or 10-8M PDBu (C�).  The results were consistent with those from experiments 
using standard immunostaining methods in indicating that disruption of microtubules 
blocked the perinuclear accumulation of PKCα-EGFP induced by 10-6M PDBu but had no 
significant effect on 10-8M PDBu-stimulation of PKCα-EGFP translocation to the 
plasmalemma.  Magnification was 600X.  The micrographs reflect the results from 4 
experiments in which a total of 350 cells were evaluated.  It was estimated that 86 ± 3% of 
cells examined exhibited the loss in perinuclear translocation. 
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Figure 13. 
Dual immunostaining for β-tubulin and PKC α in unstimulated (A, A�) A7r5 cells and 30s 
after the addition of 10-6M PDBu (C, C�) or 10-8M PDBu (E, E�).  Microtubules were 
stained with FITC-labeled anti-β-tubulin antibody while PKCα was visualized with Alexa 
594-labeled secondary antibody.  Images were collected in separate channels at laser power 
settings below 10% to eliminate bleedover of fluorphores.  Rightside panels indicate areas 
of overlap in fluorescence (yellow).  The micrographs are representative of images 
collected in six individual experiments in which a total of 102 cells were evaluated. 
Magnification was 600X.  
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Figure 14. 
The effect of treatment with cytochalasin B to disrupt actin stress fibers on the 
distribution of PKCα in unstimulated and PDBu-stimulated A7r5 cells.  Control cells 
received vehicle (A) or additions of PDBu at 10-6M (B) or 10-8M (C).  Treated cells 
were exposed to cytochalasin B (1µg/ml, 15 min.) prior to receiving vehicle (A�), 10-6 
PDBu (B�) or 10-8M PDBu (C�).  PKCα was stained with unlabeled anti-PKCα 
primary antibody followed by Alexa 488-labeled anti-mouse IgG secondary antibody.  
The original magnification was 600X.  Micrographs reflect the results from 3 
experiments in which a total of 298 cells were evaluated. 
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Figure 15. 
Dual immunostaining of PKCα with nucleoporin p62 and PKCα with BiP/GRP78 in 
unstimulated A7r5 cells and cells treated with 10-6M PDBu for 15 minutes. PKCα was 
visualized by standard immunostaining methods using unlabeled anti-PKCα primary 
antibody followed by Alexa 488-labeled anti-mouse IgG secondary antibody (green); p62 
and BiP/GRP78 were visualized with Alexa 594-labeled secondary antibody (red). Images 
were collected in separate channels to prevent overlap of fluorophores.  Yellow color 
indicates areas of colocalization of p62 or BiP/GRP78 and PKCα.  Magnification was 
400X.  The micrographs reflect the results from 3 experiments in which a total of 78 cells 
were evaluated.  
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PKCα Translocation in Response to Different Contractile Agents 
 

Translocation of PKCα-EGFP 

Figures 16 through 20 compare the effects of PDBu, A23187, thapsigargin, Ang II and 

potassium on PKCα translocation in A7r5 cells expressing PKCα-EGFP.  PDBu, 

A23187, and thapsigargin were effective contractile agonists, consistently causing 

approximately 85% of cells to visibly contract.  Ang II and potassium, however, did not 

cause detectable constriction of A7r5 cells.   

 

PKCα was diffusely distributed throughout the cell body in unstimulated cells (Figs. 16-

20).  The addition of PDBu to the medium resulted in a slow but robust relocation of 

PKCα to the plasma membrane leaving the cytosolic region of the cell devoid of 

fluorescence (Fig. 16). Translocation became clearly evident by 8 minutes and was 

usually complete within 10 to 20 minutes after addition of PDBu.  Thereafter, PKCα 

remained localized along the cell periphery for at least 120 minutes. 

 

The calcium ionophore A23187 (Fig. 17) and thapsigargin (Fig. 18) which elevates 

intracellular calcium through a blockade of endoplasmic reticulum calcium-ATPase 

activity, had similar effects on PKCα translocation.  Each caused a robust but transient 

translocation of the PKCα to the cell membrane.  Relocalization along the cell periphery 

was detectable within 1 minute and was completed within 4 minutes after addition of 

either agent to the medium.  Subsequently, PKCα was observed to slowly redistribute 

back into the cytosolic region of the cell over an interval of 10 to 25 minutes. 
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By comparison with other agents studied, Ang II caused only a partial translocation of 

cellular PKCα  which was extremely rapid in development, transient and highly site 

specific at the cell periphery.  Ang II induced PKCα translocation to discrete areas of the 

cell periphery which began to be clearly visible as intensely fluorescing circular patches 

as early as 10 seconds after the addition of the drug to the medium (Fig. 19).  This 

translocation response was further distinguished by the rapidly transient nature of PKCα 

localization at these sites.  The depletion of PKCα from peripheral patches was often 

observed within 1 minute, with the distribution of the enzyme returning to that of the 

unstimulated cell by 5 minutes after Ang II addition. 

 

Both the spatial and temporal patterns of the potassium-induced PKCα-EGFP 

translocation were different from the other agents studied.  About 10 minutes after 

potassium stimulation, PKCα was observed to move slowly from the cytosol to the cell 

membrane, a process which continued to completion over an interval of approximately 20 

minutes. At completion, most of the PKCα was localized at the cell membrane.  

However, detectable amounts were observed as granular structure scattered throughtout 

the cell body (Fig. 20). 

 

Blockade of PKCα Translocation 

A combination of calcium chelators has been previously demonstrated to block PKCγ 

translocation in response to A23187 but not to the phorbol ester 12-0-tetradecanoyl 

phorbol 13-acetate in COS-7 cells (Sakai et al., 1997).  In order to determine if PKCα 

translocation exhibited similar calcium requirements in A7r5 smooth muscle cells, the 
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effects of a mixture of EGTA (2 X 10-3M) and BAPTA-AM (10-5M) were examined in 

A23187- and PDBu-stimulated cells (Fig. 21).  Addition of calcium chelators to the 

medium completely blocked both PKCα translocation and the contraction of A23187-

treated cells.  Similarly, calcium chelators blocked the translocation of PKCα in response 

to PDBu and caused a partial inhibition of contraction (Fig. 21).   

 

Staurosporine at high concentrations is an inhibitor of a broad spectrum of protein 

kinases, but was expected to be selective for PKC activity at the concentration (10-8M) 

employed in the present experiments.  Staurosporine had no effect on PKCα translocation 

but blocked the contraction of PDBu-stimulated cells (Fig. 22).  Staurosporine had no 

effect on either PKCα translocation nor the contraction of cells treated with A23187. 

 

Disruption of the microtubules by colchicine (40 µg/ml) had no effect on 10-8M PDBu-

induced PKCα translocation to the cell membrane or cell contraction.  By comparison, 

disruption of actin filaments by treatment of cytochalasin B (1 µg/ml) showed no effect 

on 10-8M PDBu-induced PKCα translocation to cell membrane, however it partly blocked 

the 10-8M PDBu-induced cell contraction (Fig.23).  Neither colchicine nor cytochalasin B 

had a detectable effect on A23187-induced PKCα translocation to the cell membrane or 

cell contraction (data not shown). 

 

Incubation of cells in calcium-free medium blocked PDBu-induced PKCα translocation 

to the cell membrane and attenuated cell contraction compared to PDBu-treated cells in 
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regular medium (Fig. 24).  Both PKCα translocation and cell contraction in response to 

A23187 were blocked in calcium-free medium (Fig.24). 
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Figure 16. 
Confocal micrographs showing the spatial and temporal translocation of PKCα-EGFP in a 
A7r5 cell stimulated with 10-8M phorbol, 12, 13 dibutyrate (PDBu).  Relocalization of the 
fusion protein from its diffuse distribution in the cytosol was complete within 10 to 20 
minutes and was irreversible in the presence of PDBu.  Results are representative of those 
obtained in 5 individual experiments in which total of 70 cells were evaluated.  The original 
magnification was 400X.  The bar indicates 50 microns. 
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Figure 17. 
Confocal micrographs showing the spatial and temporal translocation of PKCα-EGFP in a 
A7r5 cell stimulated by 2 x 10-5M A23187.  Relocalization of the fusion protein from its 
diffuse distribution in the cytosol to the plasma membrane was completed within 1 to 4 
minutes.  Subsequently, the protein was seen to redistribute slowly into the cytosol over a 
20 to 25 minute interval.  Results are representative of those obtained in 5 individual 
experiments in which a total of 58 cells were evaluated.  The original magnification was 
400X.  The bar indicates 50 microns. 
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Figure 18. 
Confocal images showing the spatial and temporal translocation of PKCα-EGFP in a 
A7r5 cell stimulated with 10-5M thapsigargin.  Thapsigargin stimulated PKCα-EGFP 
translocation from the cytosol to the plasma membrane within 0.5 to 1.0 minutes. 
Translocation was completed within 4 minutes.  Subsequently, the protein was 
observed to slowly redistribute from the membrane to the cytosol over an interval of 5 
to 10 minutes. At 60 min, the readministration of thapsigargin induced a second rapid, 
but not reversible, PKCα-EGFP translocation to the plasma membrane without further 
cell size change. Results are representative of those obtained in 3 individual 
experiments in which a total of 56 cells were evaluated.  The original magnification 
was 400X.  The bar indicates 50 microns. 
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Figure 19. 
Confocal micrographs showing the spatial and temporal translocation of PKCα-EGFP 
in A7r5 cells after addition of 10-6M angiotensin II to the media.  Translocation of the 
fusion protein was observed as early as 10 seconds after addition of the drug and was 
highly localized at brightly fluorescing patches at the cell periphery.  Subsequently, the 
protein was observed to redistribute from the membrane to the cytosol over an interval 
of approximate 2 minutes.  Note that no evidence of cell contraction was obtained in 
studies of angiotensin II.  Results are representative of those obtained in 3 individual 
experiments in which a total of 30 cells was evaluated.  The original magnification was 
400X.  The bar indicates 50 microns. 
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Figure 20. 

 Confocal images showing the spatial and temporal translocation of PKCα-
EGFP in A7r5 cell stimulated with 10-2 M potassium. (A) Control,  (B) 
relocalization of the PKCα was started within 10 minutes, (C) 20 minutes 
after potassium stimulation and (D) completed within 30 minutes.  
Translocation of PKCα was irreversible in the presence of potassium and 
most of PKCα-EGFP flourescence accumulated at the cell membrane.  
However, detectable amounts were observed as granular structures scattered 
throughtout the cell body.  Results are representative of those obtained in 4 
individual experiments in which a total of 50 cells were evaluated.  The 
original magnification was 400X.  The bar indicates 50 microns.  
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Figure 21. 
Effect of the combination of 2 x 10-3M EDTA and 10-5M BAPTA-AM calcium chelators 
on the translocation of PKCα-EGFP in A7r5 cells stimulated with  (A) A23187 or  (B) 
PDBu.  Calcium chelators blocked the translocation of the fusion protein in response to 
both agents. Micrographs are representative of results obtained in 3 individual 
experiments in which 30 cells were evaluated.  The original magnification was 400X.  
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Figure 22. 
Effect of the serine/threonine PKC activity inhibitor, staurosporine, on the translocation of 
PKCα-EGFP in A7r5 cells stimulated by additions of   A) 10-5M PDBu and   B) 2 x 10-5M 
A23187.  Staurosporine had no effect on the translocation of the fusion protein in either 
treatment but blocked the contractile response to PDBu.  Micrographs are representative 
of results obtained in 3 individual experiments in which a total of 35 cells were evaluated.  
The original magnification was 400X. 
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Figure 23. 
Effect of cytochalasin B and colchicine on PKCα-EGFP translocation. Disruption of 
actin filaments with cytochalasin B did not affect A23187 or PDB-induced PKCα-EGFP 
translocation.  It was also shown that disruption of microtubules with colchicine had no 
effect on PKCα-EGFP translocation from the cytosol to the plasma membrane. 
Micrographs are representative of results obtained in 3 experiments in which a total of 40 
cells were evaluated. The original magnification was 400X.  The bar indicates 50 
microns. 
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Figure 24. 
Effect of PDBu and A23187 on PKCα-EGFP distribution and cells size change in a 
calcium-free medium.  In the calcium-free medium, PDBu and A23187 failed to 
stimulate a significant translocation of PKCα-EGFP.  PDBu stimulation induced a 
reduction of cell size while A23187 stimulation did not. Results are representative of 
those obtained in 3 individual experiments in which a total of 60 cells were evaluated.  
The original magnification was 400X.  The bar indicates 50 microns. 
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Calcium-Dependent Actin Remodeling in Contracting A7r5 Cells 
 

A7r5 Cell Contraction.   

The effects of A23187 and thapsigargin were effectively identical on the contraction and 

dynamics of the actin cytoskeleton, suggesting that the mechanism of increased [Ca2+]i 

had little or no effect on A7r5 smooth muscle contraction.  Both agents caused a 

sustained increase in [Ca2+]i which plateaued or continued to increase throughout the 

interval of observation.  Figure 25 shows the results from a typical experiment examining 

the effect of A23187 and thapsigargin on [Ca2+]i.  The change in [Ca2+]i of 11 individual 

cells in response to thapsigargin is summarized in Table 2.  Basal [Ca2+]i ranged between 

60nM and 120nM ( X = 81.4 ± 6.4 nM).  The addition of thapsigargin (5 x 10-6M) caused 

a biphasic response, with an initial slow phase of increase lasting about 10 minutes 

followed by a secondary increase in [Ca2+]i.  The maximum increase in [Ca2+]i ranged 

from 220 to 611 nM ( X = 507.2 ± 40.7 nM), which typically occurred at about 17 

minutes after the addition of thapsigargin. After an early phase of [Ca2+]i increase, 

periodic oscillations of varying frequency and amplitude were clearly observed.  Such 

oscillations are a common feature of the increase in [Ca2+]i in stimulated cells of various 

types (Thaler et al., 1992).   Administration of 2 x 10-5M 4-Bromo-A23187 induced an 

immediate increase of  [Ca2+]i which reached a plateau at 852 ± 21 nM. The calcium 

concentration then fell to baseline level over the next 4 to 6 minutes. After declining to 

the baseline level, the intracellular calcium did not respond to the addition of ionomyocin 

(Fig. 25), suggesting a possible leakage or inactivation of the Fura-2 dye.  A further study 

of the uptake of Ca45 in ionophore-treated cells indicated that the intracellular calcium 
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levels were elevated by 2 to 6 times for at least 30 minutes after addition of 2 x 10-5M 

A23187 (Table 3). 

Stimulation through the elevation of [Ca2+]i (A23187/thapsigargin) or the use of phorbol 

ester (PDBu) resulted in different patterns of A7r5 cell contraction.  The contractile 

response to A23187 and thapsigargin was more rapid in onset, shorter in duration, and 

less robust than that obtained with PDBu (Fig. 26).  Cell constriction in response to 

PDBu could be first observed at about 10 to 14 minutes and continued over an interval of 

60 to 120 minutes.  In the great majority of cells, contraction to PDBu was extremely 

strong, such that the resolution of individual actin fibers was lost within 40 to 45 minutes.  

By comparison, the responses to A23187 and thapsigargin elevations in [Ca2+]i were 

observed as early as 2 to 6 minutes and were completed by 20 to 30 minutes.  However, 

the response was well maintained with little or no evidence of change in cell dimensions 

after completion of constriction.  Cell contraction by these agonists exhibited thread-like 

extrusions and detached cell remnants on the glass substrate, indicating the forcible 

detachment from peripheral adhesion sites. Disruption of actin filaments by treatment 

with cytochalasin B (1 µg/ml) caused the precontracted cells to lose the ability to contract 

further and there was a visible elongation in the cell x-axis (Fig. 27).  

 

Actin Remodeling 

Figure 28 shows the changes in β-actin stress cables during cell shortening in an A7r5 

cell expressing β-actin-GFP.  The β-actin cables shortened without evidence of 

compression throughout the interval of contraction.  Because individual fibers could be 

identified throughout the interval of contraction, the results further indicate that 
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shortening was achieved without β-actin cable disassembly and reassembly of new 

structures.  Staining of A23187-and thapsigargin-treated cells with phalloidin confirmed 

the presence of an extensive system of actin stress cables in contracted cells (Fig. 29); 

however, these experiments showed a degree of diffuse staining suggesting some loss in 

F-actin.  Because diffuse staining was not noted in unstimulated cells (Fig. 29) nor was 

diffuse fluorescence observed in stimulated cells expressing β-actin-GFP (Fig. 28), the 

results suggest that the increase in [Ca2+]i was associated with loss in α-actin structure.  

Immunostaining of control A7r5 cells showed that α-actin was incorporated into thick 

stress cables similar in appearance to β-actin cables.  Addition of A23187 or thapsigargin 

to elevate [Ca2+]i resulted in partial to complete dissolution of α-actin cables (Figs. 30). 

The dissolution of α-actin fibers started approximately 2 minutes after stimulation and 

was completed by approximately 15 minutes.  Figure 31 shows enlarged images of both 

A23187- and thapsigargin-stimulated cells, indicating the partial to complete loss in α-

actin fiber structure following elevation of [Ca2+]i.  

 

Previous work has demonstrated that the crosslinking protein, α-actinin, is colocalized 

with α-actin in the A7r5 cell, both in the resting cell and during PDBu-induced α-actin 

remodeling (Fultz et al., 2000).  Similar to these findings, α-actinin was observed to form 

filamentous strands in unstimulated cells (Fig. 32 A, D).  The addition of A23187 or 

thapsigargin to elevate [Ca2+]i resulted in the dispersal of the protein which was 

completed after 15 minutes of stimulation (Fig. 32 C, F), further indicating a general 

dissolution of α-actin.  By comparison, the treatment did not significantly alter the 
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cellular distribution of talin (Fig. 33), suggesting that the effect was confined to the 

destabilization of α-actin cable structure. 

 

Effect of Increased [Ca2+]i on PDBu-Induced α-Actin Remodeling   

PDBu caused remodeling of α-actin into brightly fluorescing peripheral bodies with a 

reduction in the numbers of α-actin fibers (Fig. 34B).  The addition of A23187 (Fig. 34D) 

or thapsigargin (Fig. 34F) 30 minutes prior to the addition of PDBu resulted in the 

depolymerization of α-actin cables and blocked PDBu-induced remodeling.  In corollary 

experiments, it was further shown that the addition of A23187 or thapsigargin to cells 

pretreated with PDBu also caused dissolution of remodeled α-actin peripheral bodies� 

structure (Fig. 35). 

 

Effect of Ca2+-Free Medium on Actin Remodeling   

A7r5 cells incubated in calcium-free DMEM media for 1 hour did not contract in 

response to PDBu, A23187, or thapsigargin.  Incubation in the calcium-free medium had 

no detectable effect on the integrity of β-actin cables in unstimulated cells or in the 

presence of the three agonists (Fig. 36 B, D, E, H and G). After changing back to regular 

media, PDBu, A23187, or thapsigargin did not show a detectable effect on β-actin cable 

structure (Fig. 36 C, F, I).  By comparison, the calcium-free medium blocked α-actin 

disassembly by A23187 and thapsigargin and prevented PDBu-induced remodeling (Fig. 

37 B, D, E, H, G).  Similar to β-actin, no effect on the integrity of α-actin cables was 

noted in unstimulated cells incubated in calcium-free medium.   Cells returned to the 

calcium containing medium and examined immediately failed to show formation of 
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peripheral dense structure in response to PDBu or dissolution of α-actin cables in 

response to A23187 or thapsigargin (Fig. 37 C, F, I).  Incubation in regular medium for 2 

hours after the calcium-free medium, however, restored the effect of PDBu on formation 

of peripheral dense structure formation and the effects of A23187 or thapsigargin on 

dissolution of α-actin (data not shown). 

 

Effect of Kinase Inhibitors on Depolymerization of α-Actin Structure 

The effects of six different kinase inhibitors on calcium-induced α-actin cable dissolution 

were evaluated (Table 4). Staurosporine (ser/thre inhibitor), bisindolymaleimide (PKC 

inhibitor), H-89 (PKA inhibitor), KN-93 (CAMK II inhibitor), and genistein (tyrosine 

kinase inhibitor) had no detectable effect on A23187-or thapsigargin-induced α-actin 

cable disassembly.  Only ML-7, a selective inhibitor of myosin light chain kinase 

(MLCK), caused a partial inhibition of this phenomenon (Fig. 38E, F). 
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The time course of increase in [Ca2+]i in A7r5 smooth muscle cells after the addition of 5 
x 10-6M thapsigargin or 2 x 10-5M 4-Bromo-A23187.   Cells were loaded with Fura-2AM 
approximately fifty minutes prior to imaging with a Nikon Diaphot TMD inverted 
fluorescence microscope.  Tracings show the averaged results from eleven different 
control (baseline) and treated cells.  Ionomycin was added at the termination of the 
experiment for calibration purposes and to demonstrate continued cell responsiveness.  
Cells were successively excited at 340nm and 380nm light and the fluorescence emitted at 
510nm was captured on a DAGE-MTI video camera.  [Ca2+]i was then calculated by the 
equation of Grynkiewicz et al. (1985). 
 

Figure 25. 
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Table 2.  Thapsigargin increased [Ca++]i 
 
The basal [Ca++]i in individual A7r5 cells was determined in HBSS by using a ratio 
fluorescence microscopy procedure with Fura-2 as a fluorescent probe (see Materials and 
Methods). The magnitude of a 5 µM thapsigargin-induced increase in the [Ca++]i in 
individual cells was calculated 17 minutes after the addition of thapsigargin. 
 

Cell 
Number 

[Ca++]i, nM 
 

Increase in [Ca++]i, nM 

 In HBSS In 5 µM thapsigargin  
1 68 380 312 
2 94 578 484 
3 71 434 363 
4 58 498 440 
5 68 659 591 
6 109 588 479 
7 91 702 611 
8 93 604 511 
9 51 271 220 
10 118 511 393 
11 75 354 279 
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Table 3. 45Ca-uptake by A7r5 cells at selected time intervals after addition of the 
ionophore A23187.  Results reflect the averages from five or six individual cell cultures. 
 
 

 5 min  10 min 30 min 

Control 237 ± 15 193 ± 90 393 ± 120 

A23187    653 ± 120*   1324 ± 102*+  846 ± 109* 

 
Data are presented as dpm/cell culture well.  An (*) or (+) indicates significant difference from control and 5 minute 
value, respectively, p < 0.05. 
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Figure 26. 
The contractile response of A7r5 smooth muscle cells to 10-8M phorbol 12, 13 dibutyrate 
(PDBu); the calcium ionophore, A23187 (2 x 10-5 M ); and 2 x 10-6M thapsigargin.  Cells were 
transfected with β-actin-GFP expression plasmid to enable visualization of single cell 
shortening.  Cells are shown prior to stimulation (control) and at 30 and 60 minutes after the 
addition of agonists.  Micrographs represent the results from 16 separate experiments in which a 
total of 76, 62, and 56 cells were examined in response to PDBu, A23187, and thapsigargin, 
respectively.  The original magnification was 400X.  The scale bar indicates 50 microns. 
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Figure 27. 
The effect of cytochalasin-induced dissolution of the actin on cell length in the 
precontracted A7r5 cell.  Cells were contracted by 10-8 M PDBu 30 minutes prior to 
the addition of 0.1 µg/ml cytochalasin B to the media for up to 40 minutes.  A7r5 cell 
was transfected with an β-actin-GFP expression plasmid. The results show that 
within 10 minutes the cell began to elongate in the x-axis (arrow) parallel to the 
visible β-actin stress cables.  Micrographs are representative of images collected in 3 
separate experiments in which 8 cells were evaluated.  The original magnification 
was 600X. 
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Figure 28. 
The shortening of individual β-actin stress fibers during an A23187-induced 
contraction.  A7r5 cells were transfected with β-actin-GFP expression plasmid 3 days 
prior to experimentation.  Micrographs show the cell A) prior to stimulation and B) 
10 minutes, C) 30 minutes, and D) 60 minutes after the addition of A23187.  Arrows 
indicate two individual fibers that can be identified throughout the interval of 
contraction.  The original magnification was 400X.  The scale bar indicates 50 
microns. 
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Figure 29. 
Confocal micrographs showing the effects of A23187 and thapsigargin on cellular F-actin.  
A7r5 cells were stained with TRITC-labeled phalloidin prior to stimulation (A, B), 20 minutes 
after A23187(C, D), and 20 minutes after thapsigargin (E, F). Micrographs represent the results 
from 3 separate experiments in which a total of 106 unstimulated, 95 A23187-treated, and 96 
thapsigargin-treated cells were evaluated.  The original magnification was 400X.  The scale bar 
indicates 50 microns. 
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Figure 30. 
Confocal micrographs of α-actin structure in unstimulated A7r5 cells (Control; A, D); 
cells treated with A23187 for 2 minutes (B) and 15 minutes (C); and cells treated with 
thapsigargin for 2 minutes (E) and 15 minutes (F).  Cells were stained with 
monoclonal anti-α-smooth muscle actin clone 1A4FITC-labeled antibody.  
Micrographs represent the results of 4 separate experiments in which a total of 126 
control, 198 A23187-treated, and 182 thapsigargin-treated cells were evaluated.  An 
average of 76 ±3% of treated cells showed significant loss of α-actin fibers.  The 
original magnification was 400X.  The scale bar indicates 50 microns. 
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Figure 31. 
High magnification imaging (2500X) of α-actin structure at 15 minutes after 
treatment with A23187 (C) and thapsigargin (D).  Boxes indicate the portion of 
cell selected for visualization (A, B).  Cells were stained with monoclonal anti-α-
smooth muscle actin clone 1A4 FITC-labeled antibody.  Images are 
representative of those obtained in 3 separate experiments indicating that 
treatment with either compound to elevate [Ca2+]i resulted in partial to complete 
depolymerization of the α-actin cytoskeletal structure. 
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Figure 32. 
Confocal micrographs showing the distribution of α-actinin in unstimulated control 
cells (A, D), cells stimulated with A23187 for 2 minutes (B) and 15 minutes (C), and 
cells stimulated with thapsigargin for 2 minutes (E) and 15 minutes (F).  A7r5 cells 
were stained with anti-α-actinin primary antibody followed by Alexa 488-labeled 
secondary antibody.  Micrographs represent the results from 3 separate experiments in 
which a total of 102 control, 110 A23187-treated, and 106 thapsigargin-treated cells 
were evaluated.  An average of 80 ± 3% of treated cells showed dispersal of α-actinin.  
The original magnification was 400X.  The scale bar indicates 50 microns. 
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Figure 33. 
Confocal images showing the distribution of talin in unstimulated control cells and in cells 
treated with A23187 for 2 minutes and 15 minutes.  A7r5 cells were stained with anti-talin 
primary antibody followed by an Alexa 488-labeled secondary antibody.  Micrographs 
represent the results of 3 separate experiments in which a total of 120 control and 130 
A23187-treated cells were evaluated.  An average of 95 ± 3% of treated cells were judged 
to be indistinguishable from control cells.  The original magnification was 400X.  The 
scale bar indicates 50 microns. 
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Figure 34. 
A comparison of the effects of A23187 and thapsigargin on α-actin cytoskeletal structure in 
previously unstimulated cells (-PDBu) and cells in which PDBu was added to induce α-actin 
remodeling 20 minutes after the addition of A23187 and thapsigargin (+PDBu).  Control 
panels show α-actin structure in unstimulated cells (A) and after PDBu alone (B).  Other cells 
were incubated for 20 minutes with A23187 (C) or thapsigargin (E) or were successively 
these drugs for twenty minutes followed by an additional 30 minutes exposure to PDBu (D, 
F).  Cells were stained with monoclonal anti-α-smooth muscle actin clone 1A4 FITC-labeled 
antibody.  Images represent the results from 3 separate experiments in which a total of 205 
A23187 + PDBu and 215 thapsigargin + PDBu cells were evaluated.  The original 
magnification was 400X.  The scale bar indicates 50 microns. 
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Figure 35. 
The effect of A23187 and thapsigargin on α-actin cytoskeletal structure in A7r5 cells 
precontracted with 10-8M PDBu.  Cells were exposed to PDBu for 15 minutes to initiate 
remodeling and the A23187 or thapsigargin was added for an additional 15 minutes.  α-Actin 
was visualized using a monoclonal anti-α-smooth muscle actin clone 1A4 FITC-labeled 
antibody.  Micrographs represent results from 3 separate experiments in which an average 90 
± 3% of treated cells showed dissolution of α-actin structure.  The original magnification was 
400X.  The scale bar indicates 50 microns. 
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Figure 36. 
A study of the effect of PDBu, A23187 and thapsigargin on the distribution of B-actin  
stress fibers in calcium-free media.  A7r5 cells were transfected with a β-actin-EGFP 
expression plasmid. PDBu treated cells (B), A23187 treated cells (D) and  thapsigargin 
treated cells (G) show no loss of β-actin fibers.  PDBu treated cells, PDBu + A23187 
treated cells (E) and PDBu + thapsigargin treated cells (H) show no loss of β-actin 
fibers.  The addition of calcium back to media did not cause any change of PDBu 
treated cells (C), PDBu + A23187 treated cells (F) or PDBu +thapsigargin treated cells 
(I).  Micrographs represent the results from 3 separate experiments in which a total of 
388 cells were evaluated.  The original magnification was 400X.  The scale bar 
indicates 50 microns.  
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Figure 37. 
A study of the effect of PDB, A23187 and thapsigargin on the distribution of α-actin 
stress fibers in calcium-free media.  A7r5 cells were stained with a monoclonal anti-α- 
smooth muscle actin clone 1A4 FITC-labeled antibody. Control cells (A), A23187 treated 
cells (D) and  thapsigargin treated cells (G) show no loss of α-actin fibers in calcium-free 
media.  PDBu treated cells(B), PDBu + A23187 treated cells (E) and PDBu + thapsigargin 
treated cells (H) also have intact actin fiber structures.  The addition of calcium back to 
media did not cause any change in PDB treated cells (C), PDBu + A23187 treated cells 
(F) or PDBu + thapsigargin treated cells (I).  Micrographs represent the results from 5 
separate experiments in which a total of 448 cells were evaluated.  The original 
magnification was 400X.  The scale bar indicates 50 microns.  
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Figure 38. 
The effect of myosin light chain kinase inhibitor, ML-7 on A23187 and thapsigargin-
mediated dissolution of α-actin structure.  Cells were visualized by staining with 
monoclonal anti-α-smooth muscle actin clone 1A4 FITC-labeled antibody.  The 
dissolution of α-actin cables (B, C) was partially blocked by ML-7.  Micrographs 
represent results from 3 separate experiments in which a total of 204 ML-7-treated cells 
were evaluated.  The original magnification was 400X.  The scale bar indicates 50 
microns. 
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Table 4. The effect of different kinase inhibitors on A23187-induced dissolution of 
α-actin structure. 
 
 

Inhibitor Target Kinase Concentration α-actin dissolution 
    

Staurosporine Ser/Thr 7 x 10-10M -  - 

Bisindolymaleimide I PKC 1 x 10-8M -  - 

H-89 PKA 3.7 x 10-6M -  - 

ML-7 MLCK 5 x 10-7M +  - 

KN-93 CAMK II 3 x 10-7M -  - 

Genistein Tyrosine Kinase 2.5 x 10-6M -  - 

 
A negative (-) or positive (+) indicates no effect or an inhibitory effect, respectively, of the inhibitor against A23187-
induced α-actin depolymerization. 
 
Target kinase: general serine/threonine kinase inhibitor (ser/thr); protein kinase C(PKC); protein kinase A(PKA); 
myosin light chain kinase (MLCK); calmodulin kinase II (CAMK II). 
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IV   Discussion 

 

PKCα translocation 

It is now thought that the various PKC isozymes differ in substrate specificity and 

sensitivity to activators.  This conclusion is consistent with the observation of multiple 

isozymes within different cell types which indicate isozyme-specific functions despite 

apparently minor differences in amino acid composition (Chalfant et al., 1996).  It is 

further thought that the high degree of PKC isoform specificity achieved in the cell is due 

to the localization of each isoform at specific subcellular sites.  The translocation and 

compartmentalization of PKC isoforms in stimulated cells is thought to be of importance 

in enzyme activation and access to target substrates.  Our experiments indicate that 

PKCα-EGFP fusion protein retained the enzymatic characteristics of PKCα and was a 

suitable probe for the study of translocation in A7r5 cells.  Western blot analysis 

indicated that the fusion protein was effectively expressed and showed little or no 

evidence of degradation (Fig. 5).  PKCα-EGFP retained kinase activity (Fig. 6) and 

showed a pattern of distribution identical to endogenous PKCα in unstimulated and 

PDBu-activated cells (Fig. 7).  Translocation of PKCα-EGFP fusion protein was calcium 

dependent (Fig. 24).  Moreover, the inactive phorbol ester 4α-PDD did not cause 

translocation, further suggesting that the cellular relocation of the fusion protein was due 

to the activation of PKC.  These results are consistent with the findings of Sakai et al. 

(1997) who studied the translocation of PKCγ-GFP fusion protein in three different cell 

lines.  They observed that the addition of GFP had no effect on distribution within the 

cell and concluded that the fusion protein provided a useful tool for the investigation of 
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the molecular mechanisms of PKCγ translocation.  Others have successfully used the 

expression of different GFP fusion proteins to study cytoskeletal dynamics in several 

mammalian cell lines (Atten et al., 1998), further indicating the general utility of this type 

of probe. 

 

In recent work, Wang et al. (1999) have demonstrated a phorbol 12-myristate 13-acetate 

(PMA) concentration-dependent translocation of PKCδ-GFP fusion protein in Chinese 

hamster ovary cells.  The present findings extend their observation, indicating a similar 

phorbol ester concentration-dependent translocation of PKCα to the plasmalemma or 

nucleus of A7r5 smooth muscle cells.  The results suggest that the mechanism for 

translocation of a specific PKC isoform to different primary target sites in response to 

variation in stimulus strength may occur in widely differing cell types.  The potentially 

obligatory role of microtubules in phorbol ester-induced perinuclear translocation of 

PKCα raises the possibility of unexpected complexity of PKC isoform regulatory activity 

in different cells. 

 

PKC activation is tightly linked to translocation.  Therefore, translocation movements of 

individual PKC isoforms have been investigated in different cell types under a variety of 

stimulus conditions.  The available evidence indicates that the target site of an individual 

PKC isoform can vary among even closely related cell types.  For example, PKCα has 

been shown to translocate to the perinucleus of cultured cells derived from canine 

pulmonary artery (Damron et al., 1998) and rat aorta (Haller et al., 1998) but is 

translocated to the plasmalemma in freshly isolated ferret portal vein smooth muscle 
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(Khalil et al., 1996).  It has been reported that PKCα is translocated to cytoskeletal 

structures in angiotensin II-stimulated cells derived from the adult rat aorta (Haller et al., 

1998) and to both the cell nucleus and cell membrane focal adhesions when these cells 

are grown on fibronectin (Haller et al., 1998). Overall, research suggests that the 

translocation target site of an individual PKC isoform may be different among cell types 

and altered by different stimuli. 

 

PKCs, which serve an important signal transduction function, interact with different 

components of the cytoskeleton and may play a central role in the regulation of 

cytoskeletal dynamics, while contributing to a variety of cytoskeletal-mediated cell 

functions.  PKC isoforms have been shown to be extensively associated with cytoskeletal 

components and are thought to phosphorylate a large number of cytoskeletal-associated 

proteins (Atten et al., 1998; Meininger et al., 1999; Nakhost et al., 1998). It was  

demonstrated that PKCα associates with cytoskeletal filaments in angiotensin II-

stimulated, but not PDGF-stimulated, vascular smooth muscle cells (Haller et al., 1998), 

suggesting that the association of this PKC isoform is specific to the stimulus utilized.  

Other research showed that PKC plays a key role in cell proliferation and differentiation 

(Montesano et al., 1985; Wang et al., 1997a; 1997b) as well as the contractile function of 

smooth muscle (Rasmussen et al., 1987; Wang et al., 1997B).  Inhibition of PKC 

prevents cell spreading in nonmuscle (Vuori and Ruoslahti, 1993) and smooth muscle 

cells (Haller et al., 1998), suggesting a role in the formation (Clark and Brugge, 1995; 

Lewis et al., 1996; Walters et al., 1996) or disruption (Jaken et al., 1989) of cell focal 

adhesions.  The role of PKC in smooth muscle contraction is not clearly understood.  It 
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has been proposed that it is involved in several steps in the force generating mechanism 

ranging from increasing calcium influx through activation of voltage gated calcium 

channels to the phosphorylation of myosin light chain, myosin light chain kinase, myosin 

light chain phosphatase and several other proteins thought to regulate the interaction 

between myosin and actin filaments (Akiyama et al., 1986; Horowitz et al., 1996; Kebe 

and Hartshorne, 1985; Masuo et al., 1994; Sobue and Sellers, 1991). In light of the 

extensive literature linking PKC to cytoskeletal function and the activities of 

cytoskeletal-associated proteins, the inhibition of PKC translocation by disruption of the 

microtubules may reflect a cytoskeletal protein/PKCα interaction enabling movement to 

or docking at perinuclear sites.  Alternatively, the results could be indicating an event 

mediated downstream of PKC activation that involves cytoskeletal components required, 

either directly or indirectly, for PKCα docking at the perinucleus.  Because there was no 

clear evidence of colocalization of PKCα with microtubules during the interval of 

translocation (Fig. 13), suggesting that the mechanism does not require direct association 

of PKCα with microtubules, we consider an event downstream or parallel to PKCα 

activation a more likely explanation of the present results in A7r5 cells.  The lack of an 

effect of cytochalasin B disruption of actin stress fibers on PKCα localization at either the 

cell membrane or perinucleus of PDBu-stimulated cells (Fig. 14) further indicates that the 

association between the cytoskeleton and PKCα translocation is highly specific to the 

microtubules. 

 

It is interesting to note that perinuclear localization was observed at PDBu concentrations 

well above those necessary to fully activate PKC.  One possibility is that high levels of 
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the phorbol ester resulted in the activation of other proteins affecting PKCα translocation.  

In addition to activation of the conventional and novel isoforms of PKC, substantial 

evidence now exists for phorbol ester-induced biological effects mediated via PKC-

independent pathways (Rapuano and Bockman, 1997).  At least 3 families of proteins 

have been identified as phorbol ester receptors (Kazanietz, 2000). The ras guanyl-

releasing protein (ras-GRP) has been proposed to play a role in cell growth and malignant 

transformation through PKC-independent regulation of ras activity.  The chimaerins are a 

family of proteins for which the α1 isoform has been demonstrated to exhibit GTPase-

activating protein (GAP)-like activity for the GTP binding protein Rac, a central 

regulatory molecule in many cytoskeletal-related cell functions.  Furthermore, the α2- 

and β2- chimaerins possess an N-terminal SH2 domain that may enable binding to 

phosphotyrosine proteins, suggesting that the chimaerins could be involved in more than 

one signaling pathway.  Other potential phorbol ester receptors (Unc-13, Ca1DAG-

GEF1) have been shown to bind phorbol esters with high affinity but are less well studied 

with regard to their biological properties.  Hence, a number of phorbol ester-responsive 

proteins have been described which act through GTP-binding proteins to influence a 

variety of cell functions.  To our knowledge, however, these or similar proteins have not 

been described in smooth muscle. 

 

Within the cytosol, interactions of PKC with actin filaments, microtubules and 

intermediate filaments have been reported (Jaken and Jones, 1992).  There are several 

other reports indicating a role of the cytoskeleton in the translocation response of PKCα.  

Schmaltz et al. (1996) showed that the transport of PKCα from the cytosol into the 
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nucleus of NIH 3T3 cells was blocked by disruption of either the microtubules or actin 

cytoskeleton without affecting the nuclear import of a karyophilic reporter protein 

containing a canonical nuclear localization sequence (NLS).  Battistella-Patterson et al. 

(2000), however, found that colchicine disruption of microtubules but not cytochalasin 

disruption of actin microfilaments, blocked PDBu-induced perinuclear localization of 

PKCα in passaged smooth muscle cells.  Their observations coupled with present 

findings suggest that the effects of colchicine are highly selective for perinuclear 

translocation and do not represent the nonspecific effect of a generalized loss in 

cytoskeletal integrity.  It is observed that disruption of one kind of filament affects the 

integrity of others.  Disruption of microtubules leads to a collapse of intermediate 

filaments into a ring around the nucleus (Murti et al., 1992). It is possible that PKCα 

perinucleus translocation is, in part, related to other cytoskeleton components. 

 

Studies from several laboratories have established that the specific isoform PKCα is 

translocated from the cytosol in stimulated vascular smooth muscle cells.  However, there 

has been considerable disagreement over the target site, suggesting that the spatial pattern 

of PKCα cellular movements may differ under the influence of a variety of factors.  

Plasticity in the signaling movements of an individual isoform could greatly expand its 

range of target substrates and could explain the multiple functional properties attributed 

to individual PKC isoforms by different laboratories.  To investigate the potential for 

variable localization of PKCα at subcellular sites, we directly observed translocation in 

live cells expressing PKCα-EGFP.  Studies were conducted in a single cell type under 

consistent cell culture conditions. 
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Our results confirm earlier reports that A7r5 cells retain responsiveness to vasoactive 

compounds (Byron et al., 1996) and may contract by both calcium-dependent and 

calcium-independent mechanisms (Nakajima et al., 1993).  The absence of contractile 

response to Ang II (Fig. 19) further suggests that, while these cells exhibit clear 

responsiveness to the elevation of intracellular calcium concentration  (thapsigargin, 

A23187) and activation of PKC (PDBu), they lacked the capability for receptor-mediated 

contraction to this compound. 

 

The results indicate that the spatial and temporal relocalization of an individual PKC 

isoform (α) markedly differed depending on the stimulating agent.  The direct activation 

of PKC with 10-8M PDBu caused an irreversible relocalization of PKCα to the 

plasmalemma which required 10 to 20 minutes for completion (Fig. 16).  Agents 

employed to elevate intracellular calcium concentration (A23187, Fig. 17; thapsigargin, 

Fig. 18) caused a rapidly transient translocation to the plasmalemma.  In this case the 

relocalization of PKCα at the cell membrane was completed within 4 minutes with a 

slower redistribution back into the cytosol in the subsequent 25 minutes.  By comparison, 

angiotensin II caused an extremely rapid transient location of PKCα to intensely 

fluorescing membrane patches (Fig. 19).  In this case the translocation of PKCα to 

membrane sites was completed within seconds and return of the fusion protein to the 

cytosol within 1 or 2 minutes.  Potassium stimulation induced a slow translocation of 

most of PKCα to the cell membrane, while small amounts were also observed as granular 

structures scattered throughout cytosol (Fig. 20).  Because these experiments were 
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conducted under identical conditions, the results indicate a remarkable range in the 

temporal and spatial translocation movements of an individual PKC isozyme within a 

single cell type. 

 

Our finding of concentration-dependent and agonist-dependent variations in PKCα 

translocation raises questions regarding the mechanisms which regulate PKC movements 

and/or docking at specific subcellular sites.  We consider two possibilities likely: (1) an 

ATP-requiring transport process that involves active PKC protein translocation via a 

mechanism involving a microtubular component of the cytoskeleton; (2) simple diffusion 

may provide the driving force, while the targeting mechanisms center on the regulation of 

the availability of high-affinity binding sites at different subcellular location.  To our 

knowledge, the possibility of active PKC translocation has not been investigated. 

 

There are a number of potential mechanisms affecting PKC localization at specific 

subcellular sites.  (1) Binding of calcium or diacylglycerol to PKC in the presence of 

phosphatidylserine causes a conformational change in the molecule that results in the 

exposure of the pseudosubstrate domain (Orr et al., 1992; Bosca and Moran, 1993) and 

increases hydrophobicity of the molecule, which, in turn, facilitates binding of the PKC 

to membrane lipids. (2) Phosphorylation of PKC would significantly affect the affinity of 

the protein for the lipid environment. Phosphorylation of PKC has been reported to be 

required for it to act as an effector-dependent kinase (Cazaubon and Parker, 1993). The 

phosphorylation sites of PKC have been identified as located in the catalytic domain in 

both α-PKC (Cazaubon and Parker, 1994) and β-PKC (Zhang et al., 1994). (3) It has 
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been suggested that PKC contains activator independent binding sites for arginine-rich 

polypeptides distal to the catalytic site (Leventhal and Bertics, 1993). These binding sites 

may allosterically activate PKC, but they may also allow targeting of PKC to specific 

subcellular locations.  (4) Specific receptors for PKC, such as RACKS, allow the 

targeting of PKC to different subcellular sites.   

 

Taken together, the evidence clearly suggests that the signaling movements of PKCα may 

be significantly different depending on cell type or differentiation state (Batistalla-

Patterson et al., 2000, Li et al., 2001), cell environment (Haller et al., 1998), stimulus 

intensity (Li et al., 2001), and stimulating agonist (present results).  The localization of an 

individual isoform at different subcellular sites may most likely be explained by concepts 

of specific protein binding of PKC.  However, mechanisms that acutely regulate the 

availability of protein binding at substrate target sites have not been proposed or are 

poorly defined.  The magnitude of difference in the time requirement for visible 

translocation and completion of relocalization at specific sites in response to different 

agonists further suggests that the rate of PKC isoform activation or activation of binding 

sites may play a role in PKCα translocation.  The concept of simple diffusion of PKC 

isoforms to available binding sites may not adequately explain the complex directional 

signaling movements observed. 

 

Summary  

The results of present studies indicate that the A7r5 cell type has the capability to acutely 

alter the translocation of an individual PKC isoform (PKCα) to a different subcellular 

 112



target site, depending upon the concentration of stimulating agent (PDBu) or the agonist 

employed.  The translocation of PKCα to the perinucleus but not the plasma membrane is 

dependent on an intact microtubular cytoskeleton.   Because PKCα perinuclear  

translocation does not involve direct association of PKCα with microtubules, it is 

unlikely that the cytoskeleton is directly involved in the directed movement of the PKCα 

isoform.  This further suggests the role of the cytoskeleton may center on events 

downstream or parallel to PKC activation that enable PKCα movement to and/or docking 

at a specific location.  The spatial and temporal characteristics of PKCα translocation 

were markedly different in A7r5 cells stimulated with different contractile agents.  The 

results may explain how individual isoforms can exert multiple functional effects through 

the selective phosphorylation of different substrates via translocation to different 

locations in a single cell type.  Mechanisms which regulate the selective PKC binding to 

different subcellular sites are not known. 

 

Actin remodeling in the Contracting A7r5 Cell 

It is well accepted that the temporal and spatial regulation of intracellular calcium 

concentration is crucial in the regulation of contractility in smooth muscle (Somlyo, 

1985).  However, repeated observations of dissociation between [Ca2+]i and force 

development have led to the concept of modulated calcium sensitivity of the smooth 

muscle contractile protein.  Fay et al. (1979) provided the first simultaneous 

measurements of [Ca2+]i and tension in single smooth muscle cells, demonstrating a 

transient increase in light emission in aequorin-injected cells from toad stomach muscle 

which decreased to near pre-stimulus levels before the onset of mechanical events.  
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Morgan and Morgan (1982 and 1984) subsequently showed that receptor-mediated 

contraction of vascular smooth muscle evoked a transient elevation of [Ca2+]i with peak 

concentration reached at activation followed by a decline to near basal levels at the 

completion of force development and the subsequent plateau and maintenance of tension.  

This pattern of calcium transient and dissociation of [Ca2+]i and force has been confirmed 

by numerous laboratories using different techniques in a variety of smooth muscle cell 

types (Ishii et al., 1989; Ozaki et al., 1989; Rembold and Murphy, 1986; Himpens and 

Casteels, 1987; Himpens et al., 1988; Cross et al., 2000).  Remarkably, one class of 

contractile agonist, phorbol esters, has been reported to cause contraction of smooth 

muscle without an elevation of [Ca2+]i (Sybertz et al., 1986; Itoh and Lederis, 1987; Jiang 

and Morgan, 1987).  Others, however, have noted increased [Ca2+]i in phorbol ester-

induced contractions (Rembold and Murphy, 1988; Nakajima et al., 1993; Kaneda et al., 

1995; Murthy et al., 2000), suggesting these agonists do have at least a low level calcium 

requirement which could differ among cell types.  In the present studies with A7r5 cells, 

A23187 and thapsigargin caused a sustained or increasing elevation of [Ca2+]i during the 

interval of observed cell contraction.  This suggests to us that the conditions of increased 

[Ca2+]i were not physiological but may more closely reflect events initiated at high Ca2+ 

concentration normally occurring during the early phase of force development following 

cell activation. 

 

The present work extends previous findings of different modes of α-and β-actin 

remodeling to contractions elicited by increased [Ca2+]i.  Both A23187 and thapsigargin 

caused visible constriction of cells in which β-actin cables were observed to shorten 
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without evidence of disassembly (Fig. 28).  By comparison, the elevation of [Ca2+]i 

resulted in the destabilization and loss of α-actin structure in the majority of cells by the 

completion of cell contraction (Figs. 30, 31).  Dissolution of actin filaments in the 

presence of high calcium concentration has been previously observed (Miyauchi et al., 

1994) and may be explained by the activation of known microfilament severing proteins 

such as gelsolin (Ebisawa et al., 1985; Kwiatkowski, 1999).  However, the concomitant 

dispersal of the α-actin-associated crosslinking protein, α-actinin (Fig. 32), the absence of 

change in the cellular distribution of talin (Fig. 33), and the lack of an effect on the 

integrity of the system of β-actin stress cables (Fig. 28) suggest that the destabilizing 

effect of increased [Ca2+]i was highly specific to α-actin cable structure. 

 

The present results support the contention of Fultz et al. (2000) that the separation into 

distinct domains (Small et al., 1986) as well as the different modes of α- and β-actin 

remodeling, reflect different functions of the two isoforms during contraction.  The 

shortened duration of the contractile response with concomitant, selective loss of α-actin 

cytoskeletal structure in A23187-and thapsigargin-treated cells is consistent with a direct 

involvement of α-actin in force development.  Similarly, the maintenance of the cell in 

the contracted configuration at the cessation of cell shortening and after the 

depolymerization of α-actin, concomitant with normal β-actin cable shortening and 

stability, is consistent with a role of β-actin cable in tension maintenance. 

 

We consider it probable that the degree of α-actin depolymerization seen in present 

studies represents an exaggerated response due to the sustained high levels of [Ca2+]i 
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induced by the agonists employed.  This conclusion is supported by the further 

observation that PDBu-mediated α-actin remodeling was also blocked by high [Ca2+]i.  

Finally, incubation of cells in a calcium-free medium indicated that the loss of α-actin 

structure was indeed due to the elevation in [Ca2+]i.  Interestingly, these latter 

experiments also indicated that the calcium-free medium inhibited PDBu-induced α-actin 

remodeling, suggesting that this activity has a requirement for at least low [Ca2+]i levels.  

Taken together, these results suggest that the pattern of transient increase in [Ca2+]i 

induced by physiological agonists could be important in the sequential activation of 

different Ca2+ concentration-dependent contractile activities.  In addition to activating 

myosin ATPase activity and rapid force development, the initial high levels of [Ca2+]i of 

the calcium transient could also serve to initiate α-actin destabilization preparatory to 

remodeling and a slower mode of force development.  Alternatively, the peak in [Ca2+]i 

could serve to inhibit α-actin remodeling during the initial phase of force development. 

The inhibition of high [Ca2+]i -induced α-actin depolymerization by ML-7 suggests that 

myosin light chain kinase (MLCK) could act as part of a pathway regulating the stability 

of α-actin cytoskeletal structure.  However, we emphasize the need for caution in the 

interpretation of results from these experiments.  Although studied at 10X, its IC50 

concentration, ML-7 was, at most, only partially effective in preventing the loss in α-

actin cable structure (Fig. 38).  Moreover, the general serine/threonine kinase inhibitor, 

staurosporine, which was expected to inhibit MLCK at the concentration used, had no 

effect on α-actin dissolution by increased [Ca2+]i.  In light of these observations, the 

protective effect of ML-7 on α-actin structure was likely not due to a direct effect of the 

inhibition of MLCK on α-actin dynamics.  Studies of calcium-dependent stress relaxation 
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of smooth muscle have suggested that the relaxant response to stretch involves 

remodeling of the actin cytoskeleton triggered by the strain placed on the tension bearing 

elements of the system (Wright and Battistella-Patterson, 1998).  By way of speculation, 

initial force development due to spiking of [Ca2+]i in the activated cell could provide an 

obligatory perturbation in the distribution of strain on actin cables for triggering 

remodeling activity.  Hence, an action of ML-7 to reduce or inhibit initial force 

development could indirectly influence actin remodeling. 

 

Summary 

The present results confirm earlier observations of different modes of remodeling of α-

actin and β-actin isoforms in the contracting A7r5 cell and extend these findings to 

include contractions induced through the elevation of [Ca2+]i.  Our findings are consistent 

with separate primary functional roles, namly, the direct involvement of α-actin in force 

development and the remodeling of β-actin to maintain tension.  Based on present 

findings, we speculate that the calcium transient reported in receptor-mediated activation 

of smooth muscle cells is of physiological importance in regulating the appropriate 

sequence of primary contractile events.  In addition to activating maximal myosin 

ATPase activity and early force development, the peak in [Ca2+]i may trigger 

destabilization of α-actin cable structure, enabling active remodeling as [Ca2+]i declines. 

 

Based on the present results and other recent findings (Fultz et al., 2000), we propose a 

modification of an earlier proposed mechanism of smooth muscle contraction by 

Battistella-Patterson et al. (1997).  Figure 39A depicts a theoretical system indicating that 
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α-actin and β-actin are segregated into separate cytoskeletal domains.  Immediately 

following agonist stimulation and elevation in [Ca2+]i, the cell complement of α-

actin/myosin contractile protein contracts, resulting in relatively rapid early force 

development and perturbation in the distribution of mechanical strain in the system (Fig. 

39B).  This, in turn, initiates a cycle of β-actin stress cable shortening to preserve gains in 

tension (Fig. 39C) and α-actin remodeling to modulate mechanical advantage of the 

contractile protein (Figs. 39 D, E, F).  In preloaded tissues or cells, the attainment of 

equilibrium between force generating capacity and opposing load would result in the 

plateau of active tension and restoration of balance in mechanical strain within the system 

(Fig. 39G).  The plateau in tension would be characterized by very low level remodeling 

and contractile protein activity with the establishment of a stable tension bearing system 

(Wright and Hurn, 1994).  The model predicts (1) an unexpectedly high level of force 

generating capacity due to modulation of mechanical advantage at the contractile protein; 

(2) slow force development during combined remodeling and contractile protein activity; 

(3) virtually unfettered shortening in length of unloaded cells and; 4) low energy tension 

maintenance cost. 
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Figure 39.                     
Proposed model explaining force development and maintenance of active tension in 
smooth muscle.  Resting mode with inactive contractile protein and associated β-actin 
stress bearing cables (A).  Agonist stimulation of increased [Ca2+]i, activation of early 
force development, and alteration in the distribution of strain (B).  Activation of β-actin 
remodeling (C) serving to preserve gains in tension during α-actin disassembly (D).  α-
Actin reassembly (E) serving to optimize actin/myosin overlap for additional contractile 
activity at shortened length (F).  Plateau in active force development with cessation of 
remodeling and establishment of a stable system of tension bearing elements (G).
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