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ABSTRACT 

The Northern Spring Salamander (Gyrinophilus porphyriticus) has a larval stage that could 

extend up to six years, an anomaly unheard of in other plethodontid salamanders.  The size of a 

larva could be larger than an adult of a younger age.  A sympatric species, Salvelinus fontinalis, 

the native brook trout, negatively alters the individual mass and survival of G. p. porphyriticus 

larvae.  In the absence of trout, the role of G. porphyriticus ascends to top predator in a small 

stream community.  Amphibians specifically have proven their role as stream indicators, a 

position attributed to their porous skin.  I attempted to determine the correlation between larval 

duration and size in streams with or without brook trout, using Skeletochronology as a method 

for aging.  Skeletochronology determined the age of individual salamanders using a cross-section 

of the femur.  Age was determined by counting the lines of arrested growth.  Basic methods of 

capture, measurement, and stream data collecting were implemented at four stream sites in 

western Pennsylvania from May 2012 to April 2013.  Study sites include two streams populated 

by Salvelinus fontinalis and two with no trout with a total of 35 specimens.  As expected, a 

standard growth curve (size vs. age) was found for larvae in streams containing Salvelinus 

fontinalis with a maximum age of 6 years.  Larvae in fishless streams exhibited a non-standard 

growth curve specific to the individual stream attributed to climactic conditions, water quality, 

resource abundance, competition or other unknown reasons.  The maximum age of larvae in 

fishless streams was 3 years, though all streams had similarly sized larvae.  Growth curves 

between fish and fishless streams were significantly different (P = 0.001).  Slow, consistent 

growth in the streams with trout was probably attributed to lower activity levels caused by risk of 

predation.  Faster, less consistent growth in streams with no trout was probably due to 

intraspecific competition in addition to the absence of trout.  The results of this thesis apply to a 

species of salamander with a broad range across the eastern United States, as well as the brook 

trout, an important game fish.  My experiment examines the problem at the root, starting with a 

fundamental life history question of the Northern Spring Salamander. 
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CHAPTER 1:  INTRODUCTION 

 

Up to 45% of all salamanders require streams for some part of their life cycle (Lanoo, 

2005), and salamanders of the family Plethodontidae show the greatest diversity in the headwater 

streams of the Appalachian Mountains (Milanovich et al., 2010).  Headwater streams are those 

where water begins in underground springs and flows down slope reaching the surface to begin 

their descent into larger streams and rivers (Hynes, 1970).  Headwater streams provide nutrients 

for not only the local species, but also cycle and transfer nutrients to downstream ecosystems as 

well as control floods and sedimentation loads (Peterman and Semlitsch, 2009; Vannote et al., 

1980).  Species that inhabit these small headwater streams in the eastern United States range 

from algae and zooplankton, and macroinvertebrates such as crayfish, mayfly nymphs, and insect 

larvae (Hynes, 1970).  These animals provide food for larger predators such as fish and 

amphibians, including salamanders.  

 Renowned herpetologist Whit Gibbons (1983) coined the phrase that reptiles and 

amphibians are the “hidden biodiversity.”  In headwater streams, salamanders are the 

numerically dominant vertebrate and may exceed birds by one order of magnitude in these 

streams and their terrestrial buffers (Petranka and Smith, 2005).  Most large bird and mammal 

species here are easily seen and documented, and attract public attention.   In turn, management 

practices of these species have been around for decades.  The species found in these small stream 

habitats also exhibit small size and fragile life cycles.  Due to the small size of these streams, 

human development easily alters them by logging, mining, and other sources of habitat 

destruction and fragmentation.  Much of the original forests and streams of the eastern United 

States, specifically the Appalachian Mountains, have been altered severely in the form of these 

damages and are only now, in the past 75 years, they are starting to be conserved (Karas, 1997; 



2 
 

Lewis, 1998).  The conservation of these small streams can only occur when the species that 

inhabit their waters are fully understood.  This study aims to further understand two relatively 

common aquatic species of the Appalachians (Gyrinophilus p. porphyriticus, Salvelinus 

fontinalis), and more specifically, the effect one fish species (S. fontinalis) has on a salamander 

species (G. p. porphyriticus).   

 

Statement of Problem 

 

The Northern Spring Salamander (Figure 1) ranges in the eastern United States from 

Maine to Alabama, coinciding with the Appalachian Mountains.  Like all amphibians, these 

salamanders have a larval stage before transforming to a reproducing adult (Hulse et. al., 2001).  

Most amphibians, especially those in the Eastern United States, have consistent known periods 

of time for which they are in this larval stage (Hulse et. al., 2001).  The larval stage of G. p. 

porphyriticus could last anywhere from two to seven years (Bruce, 1972, 1980; Resetarits, 

1995).  This high variability in a larval period presents a large ecological gap in not only the life 

history of this particular species, but for the small streams throughout the Appalachians where it 

occurs.   

Managing ecologically important headwater streams should begin at the bottom of the 

food chain, which is the common method.  Environmental and wildlife management agencies 

already use macroinvertebrates as a way to assess the health of streams such as in the EPA’s 

Rapid Bioassessment Protocol (Barbour et al., 1999).  Can the same be done with amphibian 

species?  The larval stage of the species in question (G. p. porphyriticus) preys on some of these 

macroinvertebrates (Bruce, 1972) and fish prey upon some size classes.  Johnson et al. (2009) 
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found that larval salamanders can indicate hydrologic permanence in headwater streams.  

Evidence for bottom-up dynamics in detritus based ecosystems has been shown using 

salamanders as model organisms (Huntsman et al., 2011; Johnson and Wallace, 2005).  If the 

importance of the abundant macroinvertebrates and longer-lived fish plays such a large role in 

stream health, then why ignore an animal whose abundance rivals fish (Resetarits, 1995), but 

may live nearly as long as fish in a stream?   

One of these fish species, the Brook Trout (Salvelinus fontinalis), inhabits these small 

streams throughout the same Appalachian range as G. p. porphyriticus.  These fish are the top 

predators of these streams (Resetarits, 1995) as well as a game species.  Their ecological niche 

shows the importance of this species, which in turn reflects an importance in the species below 

them in the streams’ food web.  The Brook Trout are known to negatively affect G. p. 

porphyriticus whether by competitive exclusion or predation (Resetarits, 1995).  This leaves G. 

p. porphyriticus as a type of “middle-man” in small stream ecology, acting as predator and prey.   

So how can biologists ignore an animal so ecologically important to small streams?  It is 

easy to ignore something biologists don’t fully understand.  Finding abundant benthic 

macroinvertebrates or certain size and age classes of fish gives us fine insight to the health of a 

stream, but what does it mean for a salamander larva that could be a year old or lived in the same 

stream pool for seven years?  First biologists must understand what causes larval G. p. 

porphyriticus to retain this larval stage or transform to an adult and leave the depths of a stream.   

Gyrinophilus p. porphyriticus larvae have been the topic of several studies throughout the 

years.  As explained previously, Resetarits (1991, 1995) examined how G. p. porphyriticus 

interacts with its aquatic neighbors.  Bruce (1972, 1980) has studied G. p. porphyriticus, 

specifically its larval stage for several years in the Southern Appalachians.  Bruce and Castanet 
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(2006) aged these larvae using skeletochronology, a method to be explained in detail in the 

methods section.  During preliminary experiments, they found that these larvae had no 

significant relationship of age vs. size (Bruce and Castanet, 2006).  The authors then added 

another species larvae (Pseudotriton r. ruber) of the same family, similar size, distribution, and 

aquatic nature (Hulse et al., 2001) to compare with G. p. porphyriticus larvae.  They found that 

P. r. ruber exhibited a standard positive growth curve correlating size vs. age.  (Bruce and 

Castanet (2006) attributed this to the more surface dwelling activity of P. r. ruber compared to 

the benthic nature of G. p. porphyriticus larvae, which may force P. r. ruber into decreased 

winter activity.  Though S. fontinalis occurs in the range where this experiment took place, its 

presence or absence was not noted.  Bruce and Castanet (2006) also stated that an error in 

methods may be at fault, again due to G. p. porphyriticus larvae possibly being active year 

round.  Though G. p. porphyriticus larvae may be active during winter months in Pennsylvania, 

harsher winters could drive the species under surface flowing water and possibly decrease their 

activity (Hulse et al., 2001).   

 Lowe (2003) studied the dispersal dynamics of G. p. porphyriticus larvae and adults in a 

first order New Hampshire stream.  He found that the species exhibited a strong upstream bias of 

dispersal, attributing to the salamanders moving to more suitable headwater habitat devoid of 

predators such as fish.  This shows that G. p. porphyriticus has evolved alongside predators such 

as S. fontinalis and readily attempts to avoid them through dispersing upstream to lay eggs in an 

area absent of S. fontinalis predation (Lowe, 2003).   

 My study aims to combine the experiments of previous studies done on G. p. 

porphyriticus larvae in an attempt to age the larvae specific to the habitat (trout or no trout)  they 

occupy.  Where Bruce and Castanet (2006) set a baseline for aging the larvae and Resetarits 
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(1991, 1995) set a baseline for the interactions with S. fontinalis, there are no studies examining 

the size and age of G. p. porphyriticus larvae in fish streams vs. fishless streams.  My study will 

provide basic data for this specific life history gap so that future studies can better understand an 

animal frequently encountered in small streams throughout Appalachia.  Because G. p. 

porphyriticus larvae interact with a game fish like S. fontinalis and several other species of fish 

and aquatic macroinvertebrates, their importance and ecology related to these species is sure to 

come into question again if one were to study these other species.   

 

Hypotheses:   

 

1.  Brook Trout affect G. p. porphyriticus larval size and age at metamorphosis in fish 

streams. 

Salvelinus fontinalis presence negatively affect G. p. porphyriticus larval activity and growth, 

even if these fish are of similar size, such as the fingerlings, and do not directly prey on the 

larvae (Resetarits, 1991, 1995).  Salvelinus fontinalis adults preying on larvae further shows 

G. p. porphyriticus larvae can live in a stressed environment.  Salamander larvae of 

ephemeral ponds respond to the rate at which the pond is drying, or metamorphose at a faster 

rate relative to the rate the pond is drying (Semlitsch and Wilbur, 1988; Sih et al., 2003).  If 

an environmental cue such as pond drying can increase the rate at which a salamander grows 

to a minimum size to metamorphose, a predation or competition stress could theoretically act 

in a similar manner.  In the presence of S. fontinalis, the G. p. porphyriticus larvae may not 

grow as large as in a predator free habitat due to reduced activity (Resetarits, 1995), and have 

a higher potential to transform faster and escape the negative interactions with S. fontinalis 
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and grow into adulthood.  Because the presence of S. fontinalis in streams where they occur 

should, in theory, be equal across a population (Karas, 1997), G. p. porphyriticus larvae born 

in these streams should experience the pressure equally, and grow at a rate relatively 

consistent with this pressure.  The size of an individual of a certain age found in a fish stream 

should be consistent with those occupying other fish streams of similar regions.  The use of 

different microhabitats by G. p. porphyriticus larvae, such as the benthic substrate of the 

stream, should allow them to coexist with S. fontinalis long enough to maintain a healthy 

population (Resetarits, 1995).    

2. Gyrinophilus p. porphyriticus larvae in fishless streams transform at high variability in 

size and age.   

In the absence of S. fontinalis, G. p. porphyriticus larvae are the most abundant, large aquatic 

predators of the stream (Lowe, 2005; Resetarits, 1991).  Enjoying the status of top predator in 

the stream should limit selective pressure to leave or transform into adulthood.  But this 

theory could also work in an opposite manner.  Streams with less flow are more susceptible 

to droughts varying year by year, and this could force G. p. porphyriticus larvae to transform 

sooner as in pond-dwelling larvae (Sih et al., 2003; Semlistch and Wilbur, 1988).  

Gyrinophilus p. porphyriticus larvae feed almost exclusively on aquatic invertebrates, while 

adults feed mainly on other species of salamanders (Bruce, 1972, 1980; Resetarits, 1995).  

The change in diet from salamanders to invertebrates could cause a variation in the larval 

period.  In the Northeastern U.S., salamanders were eaten less frequently by G. p. 

porphyriticus adults (Bishop, 1941; Burton, 1976).  This difference in diet could reflect the 

decrease in salamander diversity and abundance in the northern part of this species’ range 

(Hulse et al., 2001), and possibly be a reason to delay metamorphosis in fishless streams due 
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to the decreased availability of stage-specific prey items. Cave-dwelling species of the 

Gyrinophilus genus (G. palleucus, G. subterraneus) exhibit paedomorphic or neotenic 

characteristics because of their specific diet (Bruce, 1979).  The benefits of living in a cave, 

i.e. no predators, outweigh the costs of metamorphosis to a more terrestrial adult stage that 

could have trouble finding abundant prey (Bruce, 1979).  If a closely related species of G. p. 

porphyriticus can extend its larval stage in a cave situation devoid of predators, could this 

occur in a stream small enough or temporary enough to be absent of aquatic predators?  Of 

course, the absence of the aquatic predator S. fontinalis in a smaller stream could mean the 

stream has a higher susceptibility of predation from a terrestrial predator such as a raccoon 

due to more shallow water depth.  There are several variables for which G. p. porphyriticus 

larvae would transform faster or slower in a fishless stream as opposed to a fish stream.  The 

goal of this project is not to pinpoint those variables, but to show that the life history of G. p. 

porphyriticus differs between fish and fishless streams. 

 

CHAPTER 2:  SPECIES DESCRIPTIONS 

 

Gyrinophilus porphyriticus porphyriticus  

 

The Northern Spring Salamander (Gyrinophilus p. porphyriticus), inhabits the benthic 

region of cool, well-oxygenated, small streams (Lowe & Bolger, 2002).  It is a member of the 

family Plethodontidae and was first described as a genus in 1869 by Cope, then later by Dunn 

(1926).  All Plethodontids are lungless, a characteristic attributed to the reduction of buoyancy 

that allows for better movement on the stream bottom (Birchfield and Bruce, 2000; Wilder and 
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Dunn, 1920).  This lifestyle and morphology is the opposite of most ambystomatid salamanders 

whose larvae are pond dwelling and use lungs to move about the less heavily predated ephemeral 

water column (Birchfield and Bruce, 2000).  Grobman (1959) introduced the idea that the 

Gyrinophilus genus should be not be independent from the genus Pseudotriton, based on 

comparative anterior cranial elements.  This concept was refuted by Martof and Rose (1962) 

noting the difference in nasal bones forming before adult transformation and the fusing of the 

premaxilla bones.  Members of the Gyrinophilus genus have longer snouts, are more 

dorsoventrally flattened, and have shorter, less attenuated limbs (Figures 1 and 2) than other 

stream salamanders (Birchfield and Bruce, 2000; Martof and Rose, 1962).  Martof and Rose 

(1962) attributed this to an aggressive feeding habit, and Birchfield and Bruce (2000) attributed 

this as well as the small diameter of the eyes to a non-typical stream-type morphology more 

adapted to a subterranean lifestyle. 

  Several other plethodontid species occupy headwater streams during their aquatic larval 

stages, though most stream dwelling salamanders retain larval characteristics in the egg or 

transform after 1-2 years (Bishop, 1941; Bruce, 1980). Gyrinophilus p. porphyriticus larvae are 

nocturnal and generalist predators that feed on a variety of benthic macroinvertebrates (Bruce, 

1972, 1980; Resetarits, 1995), whereas adults feed almost exclusively on other adult and juvenile 

salamander species, but will consume other prey including small fish and terrestrial and aquatic 

invertebrates (Bruce, 1972; Hulse et al., 2001).  Adults in Pennsylvania average 92.6mm SVL 

and typically mature at 77-80mm SVL for males and 82-85mm for females (Hulse et al., 2001).  

Female reproduction is biennial and egg laying occurs from between April and mid-July, with 

hatchlings appearing from late July to September (Hulse et al., 2001).   
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The density of this species was found to be 5-10 individuals per square meter in a 

southern Appalachian stream (Bruce, 1980). This species shows an extended aquatic larval 

period that lasts two to seven years (Bruce, 1980; Resetarits, 1995), a period unseen in other 

stream-dwelling salamanders.  The causes in variation of larval age are mostly unknown.  

Studies have shown (Resetarits 1991, 1995) that larval size varies from 13-65mm snout-vent-

length, but adults are found smaller than 65mm.  In a Pennsylvania sample of 37 individuals, the 

smallest transformed individual was 100mm ToL, and the largest larva was 126mm ToL (Hulse 

et al., 2001).   

 The causes of this size and age variation could be numerous.  Environmental factors such 

as stream size, latitude, geomorphology, and hydrology (Hulse et al., 2001; Johnson et al., 2009) 

could affect distribution, which may in turn reflect size and age characteristics.  Gian L. Rocco 

(unpublished) found that G. p. porphyriticus were more tolerant of streams affected by 

acidification than other salamander species in Pennsylvania.  Pollutants have been shown to alter 

duration of larval periods and size at metamorphosis in the pond breeding salamander 

Ambystoma barbouri (Rohr, et al., 2004).  Sedimentation negatively affects adult G. p. 

porphyriticus possibly due to the elimination of interstitial spaces used for refugia (Lowe, 2005).   

Other influences on size and age variation are that of interactions with the several other 

species who share the same aquatic habitat as G. p. porphyriticus larvae.  The smaller, but more 

abundant Northern Two-Lined Salamander (Eurycea bislineata) has been shown to compete with 

G. p. porphyriticus larvae for food items while simultaneously acting as prey in different size 

cohorts (Rudolf, 2006).  Gyrinophilus p. porphyriticus larvae are also in competition for 

resources with crayfish species of the Cambarus genus, and could possibly be predated upon by 

the same species (Resetarits, 1991).  Larger G. p. porphyriticus larvae may also be cannibalistic 
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toward their smaller conspecifics if given the opportunity (Bruce, 1980; Resetarits, 1991; Rudolf, 

2006).  Though it has not been documented for this species, the mottled sculpin (Cottus bairdi) 

and darters (Etheostoma) could surely compete for the same food items (benthic 

macroinvertebrates) as G. p. porphyriticus larvae but their average size limits them to predation 

(Eddy and Underhill, 1974).  This same idea applies to terrestrial vertebrate predators such as 

raccoons, opossums, and birds. 

 

Salvelinus fontinalis 

 

Gyrinophilus p. porphyriticus larvae are known to share the resources of these headwater 

microhabitats in a top predator niche with the native brook trout (Salvelinus fontinalis) (Figure 

3); even though size variations of at least two orders of magnitude between salamander larvae 

and fish may occur simultaneously (Resetarits, 1995).  Resetarits (1991, 1995) as well as Lowe 

and Bolger (2002) have shown that population densities of G. porphyriticus are lower and mass, 

survival, and activity are negatively affected by the presence of S. fontinalis when compared to 

fishless streams.   

Salvelinus fontinalis differs from G. p. porphyriticus larvae in that they are diurnal, but 

will feed during nights with sufficient moonlight, and are primarily drift feeders (Resetarits, 

1995).  They are almost exclusively carnivorous, feeding on any type of aquatic invertebrate and 

vertebrate small enough to consume (Karas, 1997).  They are drift feeders, but will wander about 

during the early morning and late afternoon in search of prey (Karas, 1997).  During optimal 

temperatures, they will eat 50% of their body weight weekly (Karas, 1997).  Their optimal water 

temperature ranges from 55 to 65
0
 F with a pH range of 4.1 to 9.5, though neutral pH is optimal 
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(Karas, 1997).  Both sexes usually reach sexual maturity after their first year (Karas, 1997).  

Brook trout in small mountain streams rarely exceed lengths of 40 cm (Karas, 1997; pers. Obs).  

S. fontinalis occupies a range similar to G. p. porphyriticus, or roughly the Appalachian 

Mountains in the eastern United States from Alabama northward to Quebec (Karas, 1997; Hulse 

et al., 2001).  Though agriculture and deforestation severely damaged S. fontinalis populations 

throughout much of their range in the past 200 years, many populations are re-established by 

better management practices (Karas, 1997).  The stocking of exotic species of trout has also had 

a negative effect on native populations of brook trout (Karas, 1997).  After fisherman noticed 

brook trout numberbs were declining in streams throughout the Appalachians due to 

deforestation, the brown trout (Salmo trutta), a fish native to Europe, was heavily stocked in the 

eastern United States as a game fish because of its higher water temperature tolerance (Karas, 

1997).  Later on, the rainbow trout (Oncorhynchus mykiss), a fish native to the western United 

States were stocked (Karas, 1997).  The rainbow trout had a much greater impact on the native 

brook trout than the brown trout due to their aggressive and competitive nature, forcing brook 

trout into the smaller streams which it mostly occupies today (Karas, 1997).  Though some 

populations may differ from their genetically native populations to their specific streams, current 

S. fontinalis populations and individuals still exhibit the same phenotypic and ecological 

characteristics (Karas, 1997).  Because S. fontinalis feed and reproduce currently the same as 

historic individuals even after anthropogenic effects, it can be assumed that their interactions 

with G. p. porphyriticus larvae are similar for the purposes of this study.   

The lack of documentation on the interactions of other fish sympatric to G. p. 

porphyriticus larvae such as sculpins (Cottus), darters (Etheostoma) and well documented 

interactions with S. fontinalis (Lowe and Bolger, 2002; Resetarits, 1991, 1995) will, for the 
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purposes of this study, exclude these other fishes from the definition of “fish” and “fishless” 

streams.  Therefore, a “fish” stream will mean a stream which contains a sustainable, wild 

population of S. fontinalis, and a “fishless” stream will contain no populations of or individual S. 

fontinalis, though other smaller fish may be present.   

  

 

CHAPTER 3:  METHODS AND MATERIALS 

Study sites 

The two species of the experiment are common in headwater to third order streams of the 

Appalachians (Hulse et al., 2001).  Streams were selected throughout western Pennsylvania.  

Little research has been done on G. p. porphyriticus larvae in Pennsylvania, (Hulse et al., 2001) 

as most studies done on this species were in the southeastern (Bruce, 1972, 1979, 1980; Bruce 

and Castanet, 2006; Resetarits, 1991, 1995) or northeastern (Lowe, 2003, 2005; Lowe and 

Bolger, 2002) United States.  Streams were standardized by elevation, and water quality.  Most 

Native Brook Trout cannot compete for food resources or space with Oncorhynchus mykiss and 

Salmo trutta (Karas, 1997).  Years of data have been collected by agencies in Pennsylvania to 

determine native brook trout populations.  The Pennsylvania Fish and Boat Commission classify 

these streams as “Class A Wild Trout Streams” or “Wilderness Trout Streams.”  Class A Wild 

Trout streams are “Streams that support a population of wild (natural reproduction) trout of 

sufficient size and abundance to support a long-term and rewarding sport fishery. The 

Commission does not stock these streams (Commonwealth of Pennsylvania, 2012).”  Wilderness 

Trout Streams are “…designed to protect and promote native (brook trout) fisheries, the 

ecological requirements necessary for natural reproduction of trout and wilderness aesthetics 
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(Commonwealth of Pennsylvania, 2012).”  The Wilderness Trout Streams are classified as 

having “Exceptional Value” of water or “High Quality Cold Water Fishes.”   

The actual criteria of Class A streams were determined in 1983 by the PAFBC 

(http://fishandboat.com/pafish/trout/trout_plan/history.pdf, accessed 11/2012) and are as follows:   

a. Total brook trout biomass of at least 30 kg/ha (26.7 lbs/acre)  

b. Total biomass of brook trout less than 15 cm (5.9 in.) total length of at least 0.1 kg/ha  

c. Brook trout biomass must comprise at least 75% of total trout biomass   

 

 Gyrinophilus p. porphyriticus is a common species throughout its range, and throughout 

Pennsylvania (Hulse et al., 2001).  Preliminary searches throughout several streams were 

conducted to determine G. p. porphyriticus presence.  I first selected two streams containing 

brook trout.  For the streams without trout, tributaries of these streams were used. The fishless 

streams were small enough in size, or ephemeral (surface water flowing only part of the year) so 

that trout cannot survive (Karas, 1997).  Using the same watershed for the fish and fishless 

streams will help to eliminate some cofounding variables such as water quality and riparian 

vegetation.   

 

Millwood Hollow Run (Figures 4 and 5) 

 

 This second order stream flows down the western slope of Chestnut Ridge in Derry 

Township, Westmoreland County.  Though never officially named, the name of the valley this 

stream flows through is Millwood Hollow according to local knowledge.  Under PAFBC data, 

the stream is referred to as an unnamed tributary to McGee Run and has natural brook trout 
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reproduction.  Brook trout of various size classes were caught by line and reel throughout this 

stream within a period of nine years (pers. Observation).  The vegetation is mixed hardwood 

forest comprised mostly of beech (Fagus grandifolia), sugar maple (Acer saccharum), black 

cherry (Prunus serotina), and white oak(Quercus alba).  The land surrounding the stream is part 

of public-private partnership with the Pennsylvania Game Commission entitled “Trout Run 

Woods.”  This partnership covers roughly 4,000 acres of land on Chestnut Ridge and is open to 

the public.  An access road parallels the stream up and over the ridge with communication towers 

at the peak.  Though signs prohibit motor vehicles, obvious signs and sightings of vehicles are 

numerously present.  The stream flows from an elevation of 550 to 350 meters.  The tributaries 

to the main stem of the stream used for the fishless streams would be considered first order and 

ephemeral in cases of extreme drought, though they continued to flow year round during my 

collection year.   

 

Lick Island Run (Figure 6) 

 

 Lick Island Run is a second order stream located in Grove Township, Cameron County.  

It is classified as a “Class A” brook trout stream by the PAFBC. The stream flows down the 

eastern slope of a high plateau.  Vegetation surrounding the stream comprised mostly of eastern 

hemlock (Tsuga canadensis), white oak (Quercus alba), and Rhododendron sp.  The stream is 

located within Elk State forest, and has a gravel road adjacent to it with sporadic hunting/summer 

camps along the way.  The stream runs through an elevation of 365 to 285 meters, though either 

side has considerable topographic relief up to 600 meters.  The tributaries I planned to use for 

this stream became too dry to search for use of fishless streams, so a nearby stream was used as 



15 
 

the fishless stream.  Other tributaries where I could be certain brook trout were absent were too 

far upstream to be accessed regularly. 

 

Laurel Draft 

 

 Laurel Draft is a first-order tributary to Wykoff Run in Grove Township, Cameron 

County.  Both Laurel Draft and Lick Island Run eventually drain into the Driftwood Branch of 

the Sinnemahoning Creek watershed.  Laurel Draft is also located within Elk State Forest and 

flows down the eastern side of a high plateau, with vegetation similar to Lick Island Run.  The 

stream flows from elevation of 530 to 335 meters and is adjacent to a moderately used hiking 

trail.   

 

Measurements 

 

 I measured streams for pH and water temperature weekly using an Oakton pHtestr 10 and 

thermometer, both of which influence the distribution of G. p. porphyriticus larvae, as they 

cannot tolerate high levels of acidity (Gian L. Rocco, unpublished; Lindley, unpublished).  

Plethodontids are sensitive to mortality at a pH less than 4.2 with larvae being even more 

sensitive than adults (Green and Peloquin, 2008).   

 

Collection 
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 I collected G. p. porphyriticus larvae using leaf litterbags (Pauley and Little, 1998).  This 

is done by cutting two 70x70 cm squares of mesh netting (1.9 cm holes), placing one directly on 

top of the other and placing rocks in the middle of the square (Waldron et al., 2003).  Then leaf 

litter from the stream bank is piled on top of the rocks, and the corners of the netting pulled 

together in the shape of a bag to be tied together with a cable tie (Waldron et al., 2003).  I 

marked the bag with a bright colored red tape, and placed in the stream in trout habitat until this 

habitat is unsuitable in the fish streams (Waldron et al., 2003).  A pool was designated as an area 

in the stream that is calm with low flow rate (Shaffer et al., 1994).  Placing the bag in a pool area 

reduces the risk of losing the bag to high water events (personal obs.), but the bag will be tied to 

nearby vegetation using 0.9 kg test fishing line for reassurance.  Also, placing the bag in a pool 

habitat greatly increases the chance that S. fontinalis will occur in the same habitat thus 

increasing the chance of interaction with G. p. porphyriticus larvae.  Gyrinophilus p. 

porphyriticus larvae have been shown to be positively associated with riffles and pools and 

negatively associated with cascades and runs within a stream (Lowe, 2005).  The bags were 

checked every week by swiftly removing them and shaking them into a plastic container for 

approximately 15 seconds (Waldron et al., 2003).  Bags were replenished with fresh leaf litter 

approximately every 3 weeks.  If nothing was found in the bags after several weeks, they were 

moved to another location.  In areas where the stream was too small or has too little flow for a 

bag to be effective, a dipnet was used at night to collect salamander larvae.  Salamander larvae 

moved into these bags at night to seek refuge from predators, as well as feed on the 

macroinvertebrates that may already be in the leaf litter, or use the bags as refuge in the same 

manner as the salamander larvae (Waldron et al., 2003).  These bags have little impact on the 

stream environment and because the animals using the bag are not completely trapped they have 
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the option of escaping through the holes; unwanted mortality should not be an issue.  Though 

other organisms captured in the bags besides G. p. porphyriticus larvae were not collected, I 

identified and recorded them.  The bags were checked during the day and a few times during 

night.   

 I also used my hands and a dipnet for collection.  This method consisted of flipping cover 

objects (rocks, logs, leaves) and the swift retrieval of the salamanders before they could retreat to 

a subterranean lair, or be lost in a cloud of silt.  The nets used were a Frabill 8” triangular dipnet, 

and a 5” kitchen strainer.  Other equipment included kneepads and patience. 

 

Euthanasia and Measurements 

 

 The salamanders collected were euthanized by immersion in MS-222 (buffered aqueous 

solution with sodium bicarbonate (Cornell, 2012) for 30 minutes (Gentz, 2007), and placed into 

70% ethanol solution as recommended by the American Society of Ichthyologists and 

Herpetologists (2001).  Fixation in formalin was unnecessary for my experiment, as it is 

commonly used to better preserve soft tissue.   

Sample size for collection was (n=18) salamander larvae for fish streams, and (n=17) 

salamander larvae for fishless streams.  A total of (n=35) for all streams.  A larger sample size 

would be more ideal, but could be harmful to the populations in each stream.  Previous studies 

(Bruce and Castanet, 2006) used a sample size of 20.   

Snout-vent-length is the measurement of the salamander from the tip of the snout to the 

posterior end of the cloaca.  Snout-vent-length is more accurate than total length (ToL) (i.e., 

measuring from the tip of the snout to the end of the tail)(Werner, 1971).  Excluding the tail for 
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the SVL measurement standardizes the length to account for tails being partly or wholly missing 

due to predation or other unknown causes.  Although ToLs data were recorded.  Both SVL and 

ToL data were measured after the specimen was euthanized to ensure accuracy.  The G. p. 

porphyriticus larvae were taken back to the Herpetology Lab at Marshall University where 

further analysis ensued.  

 

Aging 

 

 I used skeletochronology to age G. p. porphyriticus larvae.  This process involves 

identifying growth marks in bones appearing “…during phases of active osteogenesis, separated 

by narrower layers that reflect reduced osteogenesis” (Bruce and Castanet, 2006).  These narrow 

layers show slower, or arrested, bone growth also referred to as lines of arrested growth (LAGs) 

(Bruce and Castanet, 2006; Castanet et al., 1993).  LAGs also appear the brightest under 

polarized light compared to other bone layers (Castanet et al., 1993).  The area between LAGs is 

considered the “growth zone” comprised of relatively pale colored lamellar bone (Leclair et al., 

2006).  Each line after the hatching line, which the animal is born with, will be seen as one year 

(Bruce and Castanet, 2006).  This method proves very useful on ectotherms of temperate regions 

due to their stages of slowed activity and growth during winter months (Bruce and Castanet, 

2006).  Because the G. p. porphyriticus larvae usually hatch in summer months, their collection 

in the summer months can be assumed to have the last LAG mean one full year (Bruce and 

Castanet, 2006).   

Mark and recapture methods for a salamander this small in a stream habitat would not be 

as accurate as skeletochronology (Russell et al., 1996).  An attempt to mark and recapture this 
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species by a previous Marshall Graduate student resulted in only 1 recapture out of 80 marked 

individuals (Lindley, 1999 unpublished).  Capturing and collecting larvae of size classes greater 

than hatchling size ( >12.5mm) greatly increased the accuracy of preparing and sectioning 

femurs (Bruce, 1980; pers. Obs.).   

 

Preparation 

 

After the specimens were preserved, I removed the femur of each individual using a 

scalpel and Xacto
TM 

 knife (Figures 7 and 8) and placed in 5% nitric acid for 6 h (Bruce and 

Castanet, 2006).  Because the annuli are hypermineralized, this process of acidification 

demineralizes the area to be viewable (Castanet et al., 1993).  The methods and numbers for 

demineralization were extremely variable throughout the literature according to author and 

species.  Leclair et al. (2006) used the humerus of Plethodon cinereus and demineralized for 3 

hours in 3% nitric acid then rinsed with tap water for 12 hours.  Castanet et al. (1996) used 3% 

for 1 hour with Desmognathine larvae, and 2 hours for adult femurs.  Castanet and Bruce (1996) 

used 3% nitric for 1 hour with an overnight rinse in tap water for several Desmognathus 

ochrophaeus, D. quadramaculatus, and D. monticola species. Miaud et al. (1993) washed 

phalanges of Triturus cristatus in distilled water for 1 hour, then demineralized in 3% nitric acid 

for 20 minutes and rinsed in running tap water for 12 hours.   

 I used methods outlined by Bruce and Castanet (2006) to age G. p. porphyriticus larvae.  

I originally demineralized several femurs in 1 ml of 5% nitric acid for 12 hours with the thought 

that extra would do no harm.  After demineralization, I pipetted out the nitric acid and added 1 

ml of phosphate buffered saline (PBS) solution, then subsequently added and removed 5 ml of 
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PBS two more times.  I then stored the femur in 10 ml of 30% sucrose solution in a refrigerator 

at 4
o 
C.  Femurs were left in the sucrose solution overnight before sectioning.  After the 12 hour 

demineralization, I noticed the femurs were flimsy and lost any rigid bone structure.  Many 

femurs broke in half at the diaphysis (mid-shaft) when I attempted to handle them with forceps.  

Because of this, I reduced the next set of femurs’ demineralization time and concentration to 4 

hours using 5% nitric acid.  The femurs still seemed flimsy when handled, so I further reduced 

the time to 3 hours and concentration to 3% nitric acid.  Larger specimens (SvL > 40mm) 

appeared to be rigid at 3 hours so were left in an extra hour.  Those smaller than 40mm SvL were 

taken out at 3 hours. 

 

Sectioning 

 

 I poured the entire contents of the 15 ml tube used to store the femur into a 50 ml beaker 

to avoid damage by dragging it out using forceps.  I then placed the femur in a small petri dish 

with a few drops of sucrose solution for ease of handling by forceps.  I then took the femur out of 

the petri dish and placed upright in a Tissue-Tek OCT Compound freezing medium on a stainless 

steel chuck.    Another drop of the medium was then placed over the exposed femur and allowed 

to chill at -15 to -19
o 
C for approximately 10 minutes.   

I then made cross-sections using a Leica CM 1950 cryostat by first trimming excess 

medium off at 60 um followed by sectioning at 15 um (Bruce and Castanet, 2006; Castanet et al., 

1996).  Twenty um sections were used for adult Desmognathine species (Castanet et al., 1996) 

and 24 um sections for adult Plethodon cinereus (Leclair et al., 2006), but as stated before the 

Bruce and Castanet (2006) study provided the best standard for this species and life stage.  After 
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sliced, the sections were placed on Fisherbrand Superfrost Plus Microscope Slides with a 

paintbrush and dried at room temperature overnight.  Anywhere from 30-150 individual sections 

were sliced per femur.  The ideal section of the femur for viewing LAGs is the diaphysis or long 

narrow mid shaft of the bone between the proximal trunk and distal condyles (Bruce and 

Castanet, 2006; Castanet et al., 1993, 1996).  Due to the small femur sizes (no less than 3 mm), it 

became difficult to tell whether they were standing up straight in the medium and whether I 

trimmed off too much medium before sectioning.  I used a conservative approach and sectioned 

as much as the bone as I could possibly see including both ends opposite the diaphysis.  I stained 

the slides with Ehrlich’s Hematoxylin for 20 minutes and air dried overnight (Bruce and 

Castanet, 2006).  Staining times were also variable in the literature (Castanet et al., 1993, 1996; 

Bruce and Castanet, 2006; Leclair 2006).  I analyzed the cross-sections using a Zeiss Primo Starr 

light microscope and photographs were taken using a Zeiss AxioVert 200 M.   

 

Analysis 

 

 After the samples dried I viewed them under a microscope to observe LAGs.  I attempted 

to eliminate personal bias by having the samples numbered in a random order.  Castanet et al. 

(1993) suggest a “blind analysis” of LAG counting with no prior knowledge of the biology or 

ecology of the animal in question.  Though I could eliminate some bias by not remembering the 

size of an individually numbered specimen, a completely “blind analysis” was impossible 

considering I collected and prepared the specimens myself. 

 Some specimen sections turned out better than others, and to be expected, I got better at 

sectioning as I went along.  I treated each individual section independently and averaged the two 
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viewings as the final count.  One method to determine the number of LAGs is to have each 

author examine the specimen independently once, then again several weeks later and confer with 

one another (Bruce and Castanet, 2006; Castanet and Bruce, 1996; Castanet et al., 1996).  If a 

deviation of greater or less than 1 LAG was found per specimen, the specimen was not used in 

analyses.  I am the sole author for my experiment so this could not be done exactly.  I allowed 1 

week to 1 month between the examinations of my specimens in order to have two separate 

observations.   

 Because there was a possibility of larvae adding a second ring in a period of slowed 

growth in the summer months in cases of drought, I used historical weather data to determine 

this preliminary source of error.  National Oceanic and Atmospheric Administration (NOAA) 

interactive archive data were used using Divisions 7 and 9 in Pennsylvania (southwestern and 

north-central Pennsylvania respectively).  I used the following data parameters:  June – August 

in the years 2009, 2010, 2011, and 2012, average precipitation for each three-month parameter 

(NOAA Time Series, Accessed June 2013).  I used these years to allow for the most rings found 

in a larva of a fishless stream (3), because these streams could become completely dry while the 

fish streams have permanent hydrologic flow (pers. obs.).  I found that Division 7 received an 

average precipitation change of 21.84mm above average for these parameters (NOAA Time 

Series).  Division 9 received an average precipitation change of 40.39mm below average for 

these parameters (NOAA Time Series).  This below average precipitation could not be 

considered drought.   The closest value to be labeled a drought was 70.72mm below average 

precipitation for the three months I used (NRCC Cornell, 2013).  The precipitation values 

presented allow me to assume that a period of drought did not exist in the collection year or the 

previous three years, and assume that one LAG means one year (Bruce and Castanet, 2006).     
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 I pooled raw data into SVL and age for fish and fishless streams, and then presented as 

scatterplots.  I performed a multiple regression model and an ANCOVA (analysis of covariance) 

using SAS Version 9.3 for statistical analysis.  I used snout-vent-length as the response 

(dependent) variable.  I averaged the two separate ring counts, and then used as the predictor 

(independent variable), i.e., average age.  Average age was then log transformed (Welsh and 

Ollivier, 1998).  I initially tested stream sites for significance before the fish vs. fishless variables 

were compared.  The null hypotheses tested were (α = 0.05): (1) There are no significant 

differences between sites.  (2) There are no significant differences between fish and fishless 

streams.  If no difference is found between sites, the first hypothesis will be rejected and a 

multiple regression model can be performed.  If the slopes of the two scatterplots (fish vs. 

fishless) show a significant interaction, i.e., the difference in size between streams depends on 

the covariate (average age), a further ANCOVA is unnecessary (Engqvist, 2005).  The multiple 

regression models alone will show whether there is a difference between the two groups.   

 

  

CHAPTER 4:  RESULTS 

 

Collection 

 

 I captured 35 G. p. porphyriticus larvae during the field season (Table 1).  Refugia bags 

yielded only two individual G. p. porphyriticus larvae caught from March 21 to October 14, 

2012.  One bag in the tributary to Millwood Hollow Run produced the only two individual G. p. 
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porphyriticus larvae on July 29 and August 5, 2012.  Some larvae were caught in the bags in the 

main stem that were too small to identify by the naked eye (< 10mm).   

ID SvL 

(mm) 

ToL 

(mm) 

Rings 

1 

Rings 

2 

MHF01 17.75 29 1 1 

MHF02 19.9 24.5 0 1 

MHF03 22.1 36.4 1 1 

MHF04 22 38.5 1 3 

MHF05 19.41 29.1 2 1 

MHF06 18.35 30.09 2 0 

MHF07 27.7 50.04 1 0 

     

MHL01 23.61 42.26 0 1 

MHL02 31.69 52.49 2 1 

MHL03 33.5 56.2 0 1 

MHL04 40.1 67.15 2 2 

MHL05 46.15 76.89 1 2 

MHL06 40.05 60.3 1 2 

MHL07 42.35 47 1 0 

MHL08 29 39.71 3 3 

MHL09 32.09 52 3 2 

MHL10 36.09 51.25 1 1 

MHL11 20.5 36.5 3 3 

Table 1.  Raw data measurements for each specimen.  

ID refers to the stream name, MH = Millwood Hollow 

Run, LI = Lick Island Run, LD = Laurel Draft, F = 

Fish, L = Fishless.  Rings 1 and 2 are the LAGs 

counted the first and second times, respectively.   
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MHL12 50 81 2 2 

MHL13 53.25 90.59 2 2 

     

LIF01 19.9 33.5 0 0 

LIF02 19.85 31 1 1 

LIF03 19.1 34.9 1 1 

LIF04 19.1 31.3 0 1 

LIF05 54.15 90.1 4 4 

LIF06 53.55 82.25 6 6 

LIF07 45.15 75.45 4 4 

LIF08 39.62 67.69 2 3 

LIF09 59.13 94.6 4 5 

LIF10 56.41 96.81 3 4 

LIF11 9.19 13.92 0 0 

     

LDL01 28.45 50.03 2 2 

LDL02 34.83 58.01 2 1 

LDL03 45.1 68.89 1 1 

LDL04 41.49 68.85 1 1 

 

 

Other salamander species of all age classes caught in the Millwood Hollow bags included 

Desmognathus fuscus, D. monticola, D. ochrophaeus, Eurycea bislineata, and Pseudotriton r. 

ruber.  Invertebrates in the bags included dragonfly nymphs (Odonata), mayflies 
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(Ephemeroptera), stoneflies (Plecoptera), and crayfish (Cambarus).   Crayfish were the most 

common animal caught in the bags, with salamanders the next most common.  On only one 

occasion a bag contained both a salamander and a crayfish. 

 In Lick Island Run, I found similar results for the refugia bags.  On only one occasion did 

I find a salamander in a bag, which was E. bislineata.  Invertebrates in the bags included 

dragonfly nymphs (Odonata), mayflies (Ephemeroptera), stoneflies (Plecoptera), and crayfish 

(Cambarus).  Again, crayfish were the most common animal found in the bag.  No bags were 

placed in Laurel Draft. 

 Because the refugia bags produced so few G. p. porphyriticus larvae, the main method of 

capture was by hand and dipnet.  Searches were opportunistic and consisted of walking upstream 

and flipping rocks within the stream and along the edge of the stream and bank.  All G. p. 

porphyriticus larvae except for one individual were caught under rocks at the edge of the stream 

and stream bank, except for the tributary to Millwood Hollow Run.   

 

Skeletochronology 

 

 Ages of specimens found in the fish streams ranged from 0 – 6 years, and 0 – 3 years in 

the fishless streams.  Specimens observed that showed no obvious LAGs after the hatching line 

were aged as 0 years, and assumed to have hatched either the summer of the collection year 

(2012) or the previous summer (2011) (Bruce and Castanet, 2006).   

Specimen LIF11 was measured at 9.11 mm SVL and 13.92 mm TOL, and was too small 

for the femur to be dissected and therefore too small for skeletochronology.  This specimen was 

assumed to be a hatchling of the collection year (probably within weeks of collection) and 
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measurements were consistent with historical hatchling data (Bruce, 1980; Hulse et al., 2001), so 

the age of this specimen was assumed 0 years.   

Specimen MHL08 had either an injury or deformity to both its hind legs causing the 

femur to be too greatly reduced for use of aging.  The left front leg was used in place for 

dissection of the humerus, a bone commonly used in other smaller plethodontid salamanders 

(Leclair et al., 2006).   

 

Water Data 

 

 

pH Temp 

(
o
C) 

MHL 6.2 16 

MHL 6.1 16 

MHL 6.2 17 

MHL 6.4 16 

MHL 6.3 15.5 

MHL 6.3 15 

MHL 6.4 17 

MHF 7 16.5 

MHF 7.5 15 

MHF 6.9 12 

MHF 6.9 17 

LIF 6.3 18 

Table 2.  Raw pH and temperatures taken 

at each study site. 
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LIF 6.3 17 

LIF 6.8 14 

LIF 6.1 15.5 

LIF 6.1 15 

LIF 6.3 16 

LIF 6.4 16 

LDL 6.4 11 

LDL 6.4 13 

LDL 6.5 13.5 

 

 The mean pH for the fish streams was 6.60, and 6.32 for the fishless streams.  Both of 

these values are near neutral (7) and slightly acidic.  The difference in pH between fish and 

fishless streams was not significant (P = 0.0712) using an unpaired t-test.  The mean temperature 

for fish streams was 15.37 and 15.00 for the fishless streams.  The difference in temperature 

between fish and fishless streams was not significant (P = 0.4247) using an unpaired t-test. 

 

Statisical Analysis 

 

The size (SVL) of larvae collected ranged from 9.19 – 59.13 mm with an average of 

33.45 mm (Table 1).  The average SVL in the fish streams was 30.13 mm and 36.96 mm in the 

fishless streams, which fall within the range of larvae in Pennsylvania (Hulse et al., 2001). The 

average age for the fish streams was 2 years and 1.59 for the fishless streams.  These averages 

were tested for normality and all found to be normal except for average age of the fish streams.  



29 
 

These results are probably occurred due to a small sample size and biased toward the extreme 

ends of young and old individuals (Figure 9). 

 The first null hypothesis was accepted, meaning there was no difference between the four 

stream sites (P = 0.4176), using a Type III sum of squares (Table 2).  This meant that a multiple 

regression model could be performed for the factor, fish and fishless streams.  A significant 

interaction term was found between slopes (P = 0.001), using a Type III sum of squares (Table 

3), so an ANCOVA was not performed.  This shows that there is a significant difference in 

slopes (size vs. age) between fish and fishless streams, rejecting the second null hypothesis 

(Figure 11).   

 Because an ANCOVA assumes homogeneity of slopes, the test for a difference in slopes 

must be performed first (Engqvist, 2005).  This multiple regression model is a statistical analysis 

test alone, which shows a significant interaction between the slopes.  This also shows that the 

difference between the groups, size (SVL), depends not only on the factor (fish or fishless 

stream), but the value of the covariate, age (Engqvist, 2005).   
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Figure 9.  A scatterplot of age versus size for specimens collected in fish streams. 

Figure 10.  A scatterplot of age versus size for specimens collected in fishless 

streams. 
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Fish 0 0.0000000 . . . 

logave 1 561.0825152 561.0825152 6.88 0.0142 

logave*Fish 1 711.9820353 711.9820353 8.73 0.0064 

Site 2 147.0917213 73.5458607 0.90 0.4176 

Source DF Type III SS Mean Square F Value Pr > F 

Fish 1 1002.413018 1002.413018 12.38 0.0015 

logave 1 888.055109 888.055109 10.97 0.0025 

logave*Fish 1 1094.122953 1094.122953 13.51 0.0010 

Table 3.  Multiple regression model to test for differences between four 

stream sites.   

Table 4.  Multiple regression model examining differences between slopes 

of fish and fishless streams. 
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Figure 11.  Multiple regression model showing slopes of lines for fish (blue) and fishless (red) streams.  Age has 

been averaged for both ring counts and log transformed. 
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CHAPTER 5:  DISCUSSION 

 

I expected age vs. SVL for the fish streams to have a positive correlation, showing that as 

G. p. porphyriticus larvae increase in age, they increase in SVL at a relatively consistent rate, 

which they did (Figure 9).   For the fishless streams, I expected age vs. SVL to not have a 

standard relationship (Figure 10).  The results showed that there was a significant difference 

between the slopes of fish and fishless streams, with no significant difference between sites.  

Though the first null hypothesis was supported, my hypothesis that larvae in the fish stream 

would transform earlier was not supported.  The oldest larva found (6 years) was in the fish 

stream, and no larvae found in the fishless streams exceeded 3 years (Figures 9 and 10).  I based 

these data on a somewhat small sample size, so it is possible that there are larvae in the fishless 

streams that are older even though none was found.   

There was no difference in temperature and pH (Table 2) between fish and fishless 

streams, so the effects of these factors in my experiment were not significant.  Though 

temperature has shown to have an effect on metamorphosis relative to elevation or latitude 

(Hickerson et. al., 2005), my experiment used streams with similar elevation and did not test for 

these factors.  Studies have shown that lower temperature as a result of higher elevation or 

latitude directly influences larval period and results in a longer larval period, or slower growth 

(Beachy, 1995; Hickerson et. al., 2005).  But Bernardo and Reagan-Wallin (2002) showed that 

this hypothesis does not always hold true for plethodontids, owing to their lunglessness and 

fidelity to lotic habitats. 
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Growth in fish streams 

 

 As shown in Figure 9, larvae in the fish streams grew at a relatively consistent rate in 

comparison to the fishless streams (Figure 10).  The negative impacts of the trout on G. p. 

porphyriticus are well documented (Lowe and Bolger 2002; Resetarits, 1991, 1995), but age at 

metamorphosis has not been shown, and has been suggested to be extremely variable (Bishop, 

1941; Bruce, 1980; Bruce and Castanet, 2006).  Reasons for this in G. p. porphyriticus and other 

plethodontids have been shown to be lower temperatures as a result of higher latitude or 

elevation (Adams and Beachy, 2001; Beachy, 1995; Hickerson et al., 2005), time at hatching 

(Beachy, 1995), and inter and intraspecific competition (Gustafson, 1994; Hileman and Brodie, 

1994; Keen, 1982; Lowe, 2005; Ransom and Jaeger, 2008; Rudolf, 2008).  But a study by 

Bernardo and Reagan-Wallin (2002) showed that plethodontids experience complex life histories 

compared to other salamanders, and temperature is not always a great predictor for growth rate.  

The older age, larger size, and consist growth of larvae in the fish stream could be attributed to 

the more consistent hydrology and fish presence of the larger streams.  These factors combined 

with the increased competition and predation could influence a slower rate of development.  

Although selection should favor larvae that feed and develop faster (Beachy, 1995; Petranka et 

al., 1987), the increased activity and foraging behavior results in a serious risk of predation 

(Resetarits, 1995; Sih et al., 2003).  

 Rudolf (2006) showed in an experiment with two size classes of G. p. porphyriticus 

larvae and E. cirrigera larvae (a G. p. porphyriticus prey item) that large G. p. porphyriticus 

forced smaller conspecifics into different microhabitats, thus indirectly lowering their predation 
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rates on E. cirrigera.  These competitive effects could substantially affect the rate of growth and 

time at metamorphosis in this species by lowering activity levels, and have other varying effects 

when other species, such as another predator (Brook Trout), occupy a stream.  Though the 

Rudolf (2006) study showed lower mortality of the prey species (E. cirrigera), increased growth 

did not occur.  A similar study (Rudolf, 2008) showed an “apparent mutualism” between two 

stages of one salamander species larvae (Pseudotriton ruber) and a prey species (E. cirrigera).  

The study showed that the smaller predator species and prey species had mutually indirect 

positive interactions when in contact with a larger predator.  This theory states that the strength 

of top-down trophic dynamics are reduced in stream communities with multiple sizes of animals. 

Another species with high density in the Lick Island Run (fish) study stream was the mottled 

sculpin (Cottus bairdi) (pers. obs.).  This fish is of similar size to G. p. porphyriticus, as well as 

nocturnal and has shown to strongly utilize a similar riffle microhabitat and behave similarly 

(Freeman and Stouder, 1989; Lowe, 2005; Rashleigh and Grossman, 2005).  Cottus bairdi 

showed size structure and density dependence similar to G. p. porphyriticus (Lowe, 2005; 

Rashleigh and Grossman, 2005), so it is possible a similar “apparent mutualism” may exist 

between these species.   

 Though strong evidence supports size structure in these communities, it has also been 

shown that gape-limited S. fontinalis incapable of consuming salamander larvae larger than 

themselves still negatively affect larvae growth (Currens et al., 2007; Resetarits, 1995).  The 

voracious behavior of S. fontinalis has shown to be a significant factor in regulating the size and 

age variation in larval G. p. porphyriticus in my experiment, consistent with the results of others.   

 

Growth in fishless streams 
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 As predicted, the scatterplot of size versus age for the fishless streams does not represent 

a standard growth curve (Figure 10), as opposed to the significantly different fish streams 

(Figure 10).  I hypothesized that size and age would vary greatly in the fishless streams, and 

these results represent a small sample (N=17) of such variation.   

 No larvae collected were aged over 3 years in fishless streams, as opposed to 6 years for 

the fish streams, though similarly sized larvae were found in both streams (Figures 9 and 10).  

The large size at younger ages could be explained by several factors.  Due to their smaller size 

and less stable hydrology, the fishless streams have a greater chance of drying out and becoming 

unsuitable for larvae.  This issue is probably not as significant as on other salamanders; owing to 

the morphology of G. p. porphyriticus, and their adaptability to subterranean habitats (Birchfield 

et al., 2000; Bruce, 1972).  Their specialized morphology (smaller limbs, dorsolaterally flattened 

body) allows them to retreat underground and find enough water suitable for gas exchange and 

possibly for foraging activity.  In this case, activity and growth can continue and increase. 

Many studies have shown that amphibian larvae that inhabit ephemeral ponds have 

higher activity and develop faster than those in lotic streams (Petranka et al., 1987; Sih et al., 

2003; Wells and Harris, 2001).  It is theorized that selection is strongly favored toward those 

individuals that feed and develop fast (Petranka et al., 1987), and evidence shows anuran 

tadpoles can allocate energy to development due to various selective pressures (Mueller et al., 

2012).  In the absence of S. fontinalis predation, G. p. porphyriticus should have the freedom to 

be active longer, feed more, and develop faster in order to metamorphose to a more semi-aquatic 

adult stage (Resetarits, 1995).   
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 This absence of S. fontinalis may also increase the effects of intraspecific interactions.  In 

the presence of large G. p. porphyriticus, smaller conspecifics decreased their activity levels, 

growth, and changed their use of microhabitats (Rudolf, 2006).  Complex intraspecific 

interactions have been well documented among plethodontids including courtship (Houck, 

1988), territorial defense (Keen and Reed, 1985; Mathis, 1990), cannibalism (Rudolf, 2008), and 

competition (Gustafson, 1994; Lowe, 2005).  In general, plethodontids have been shown to have 

complex life histories (Bernardo and Reagan-Wallin, 2002; Bruce, 2005).  Gyrinophilus p. 

porphyriticus larvae together in large densities and different size cohorts in fishless streams 

could face selective pressure strong enough to force them to metamorphose faster than in fish 

streams.  Larvae of G. p. porphyriticus have habitats independent from adults (Lowe, 2005), so 

metamorphosis to the adult stage could also reduce intraspecific competition and cannibalism 

(Eitam et al., 2005).   

 

Conclusions 

 

 My study showed that there was a significant difference between the size and age of G. p. 

porphyriticus larvae in streams with brook trout versus streams without brook trout.  The factors 

influencing these variations could be solely due to the presence/absence of the trout predator or 

with other factors not tested in my study.   

 Consistent and more delayed growth of G. p. porphyriticus larvae were found in the fish 

streams in contrast with highly variable growth in the fishless streams.  The consistency of 

predation or the threat of predation in the fish streams forces G. p. porphyriticus larvae further 
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down the trophic food web of the stream.  It is my conclusion that predation alone limits larval 

activity, which reduces growth and development until metamorphosis.   

 In the absence of S. fontinalis, G. p. porphyriticus larvae are the top predator in these 

small headwater streams (Lowe, 2003).  This shift in trophic dynamics changes in the variation 

in size and age from risk of predation to several other factors including hydrology, competition, 

water quality, and microhabitat use.  I conclude that one or more of these factors, as a sole or 

additive affect, strongly influence size and age variation depending on the stream itself or the 

microhabitats within a stream.  In my study, I believe that intraspecific competition drove growth 

and development to occur faster than the fishless streams rather than hydrology or water quality.  

I base this on the non-significant difference in pH and temperature between fish and fishless 

streams and the annual precipitation in the years these larvae were studied.   

 

Limitations 

 

 One potential weakness of this experiment is the low sample size (n=35).  More samples 

would be ideal to drive statistical power, but as stated previously I tried to keep conservation of 

the species in mind.  Another weakness arises in skeletochronology.  Bruce and Castanet (2006) 

found a large variation in LAGs for G. p. porphyriticus larvae attributed possibly to this species 

being more active during winter months than other amphibians due to their benthic nature.  My 

hope is that this variation was not as problematic because where Bruce and Castanet’s study was 

done in the Southern Blue Ridge Mountains (North Carolina, South Carolina, Georgia border), 

my was done in western Pennsylvania.  This change in latitude reflects a colder climate in 
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Pennsylvania, which could mean G. p. porphyriticus larvae are more prone to slower activity and 

growth in this climate.   

The refugia bags present another potential weakness.  Salamander larvae living in 

habitats not in direct interaction with S. fontinalis could travel to and occupy the bags.  The 

downside to this method is that I will not know exactly where the larvae came from as opposed 

to capturing them in direct observation with the trout.   

Other species coexist with G. p. porphyriticus larvae besides S. fontinalis that could 

negatively influence their growth.  Several smaller fish species occur in these streams such as 

sculpins and darters (Commonwealth of Pennsylvania, 2012), but are probably too small to act as 

predators, as nothing has been found in the literature to denote otherwise.  But even if they do 

not prey on G. p. porphyriticus larvae, competition for habitat and prey must surely exist.  To 

test this variable, these species would have to be captured [probably using electroshocking 

method (Barbour et al., 1999)] and analyzed for stomach contents.   

Experimental streams could also be a useful method, as used by Resetarits (1991, 1995) 

for studying G. p. porphyriticus larvae.  Experimental streams could control for climactic factors 

such as stream drying, and better standardize food and spatial resources as well as observe 

interspecific interactions.  Other possible terrestrial predators could be mammals such as 

raccoons and opossums, and several species of birds.  Aquatic feeding birds such as the Great 

Blue Heron (Ardea herodias) and the Belted Kingfisher (Megaceryle alcyon) are known to occur 

within these streams, though I have seen neither (pers. obs.) in any of the study sites.  These 

birds usually feed in larger streams and rivers rather than smaller headwater streams for which I 

used (Haas and Burrows, 2005).  Though they still may occur, the potential of these birds having 

a high influence on G. p. porphyriticus larvae should be low due to their opposing activity 
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periods (diurnal vs. nocturnal).  This leaves nocturnal terrestrial mammals as a question, and a 

difficult one to answer.  A way to test this could be the capture and stomach content analysis of 

said mammals, or the use of trail cameras.   

The knowledge of S. fontinalis actually being native to the fish streams being studied also 

comes into question.  Pennsylvania has a long history of deforestation throughout the state that 

decimated several historic native populations of S. fontinalis (Karas, 1997).  Whether enough 

native populations survived or recolonization by stocked Brook Trout occurred in the streams 

being studied is difficult to know.  For this study, it will be assumed that the trout are native, or 

occurred in that stream for a long enough period of time for G. p. porphyriticus larvae to be 

influenced by them.  If the trout were there before an area was logged or affected since 

Pennsylvania was colonized, and are there now, this gap in time when they possibly were not 

there should not have that great of an influence on the trout’s current interactions with G. p. 

porphyriticus larvae.  

 

Significance 

 

My experiment shows that larvae in fishless regions have a more variable larval period, 

and variable size, than those where S. fontinalis occur.  Most salamander studies of this species 

occur in the southeast United States where salamanders hibernate for shorter periods or not at all 

(Bruce, 1972, 1980; Resetarits, 1991, 1995).  The results of this study will add to the greater 

understanding of a species that ranges from the southeast, to the northeast, where the ecology of 

such an ectotherm could change dramatically.  A species occupying such a great range should be 

fully understood across this entire range.  Effects of logging, acid mine drainage, and acid 
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precipitation may alter this species morphology as well.  Evidence of climate change has already 

shown to have a negative influence on G. p. porphyriticus (Lowe, 2012).  This study may set a 

baseline for these effects if water quality is found to have a significant influence on size and age 

of G. p. porphyriticus larvae. 

 The unique physiology of this salamander and its possible ability to delay metamorphosis 

provides interesting questions.  It has already been questioned that this species may exhibit a 

form of paedogenesis or neoteny (Bruce, 1978).  Future studies may look to this experiment for a 

baseline into these questions.   

 Because salamanders are long-lived and have a philopatric nature, that is occupying and 

reproducing in the same area through generations, they serve as an indicator for the health of the 

ecosystem they inhabit (Crawford and Semlitsch, 2007; Johnson et al., 2009; Lowe and Bolger, 

2004; Peterman and Semlitsch, 2009; Welsh and Ollivier, 1998).  This could even be truer for a 

species such as G. p. porphyriticus, as their larval stage could last several years, as shown by my 

study.  The salamander’s porous skin and sensitivity to heavy metals and other pollutants reflects 

the quality of the stream it occupies, especially a species that has the ability to live several years 

in a stream (Hulse et al., 2001; Lowe and Bolger, 2002).   

The results of these data will help close a simple ecological gap in the natural history of 

the larval stage of this common salamander species.  The information presented applies to not 

only other Appalachian stream-dwelling salamanders, but species across the globe.  Amphibians 

have shown to be indicator species internationally due to their porous skin and life history (Lowe 

& Bolger, 2002), and those who represent a long aquatic life stage represent this theory with 

greater magnitude.  Because the native brook trout is the state fish of Pennsylvania, state 

agencies will always keep a close eye on its abundance.  Salvelinus fontinalis is also a popular 
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game species in the state as well as other states in its range so its ecology is relevant not only to 

the scientific community, but the fishing and gaming community.  Managing the streams for 

which the brook trout occur usually begins with assessing the stream for benthic 

macroinvertebrates (Barbour et al., 1999).  I propose that salamander larvae including that of G. 

p. porphyriticus exhibit the same importance in streams and should be looked at closer and 

included in these bioassessments.  But before these amphibians can be included in assessing 

streams, their complete life history must be understood.  Finding a G. p. porphyriticus larva in a 

stream could be meaningless if nothing is known about its size relative to its age.   
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Figure 1:  Gyrinophilus p. porphryiticus.  A typical larva. 
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Figure 2:  Gyrinophilus. p. porphyriticus.  Note the external gills, canthus rostralis, and 

flattened, shovel-shaped head.   
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Figure 3:  Salvelinus fontinalis.  An average sized native brook trout, caught with a hook and 

line in Millwood Hollow Run.   
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Figure 4:  Millwood Hollow Run.  The main stream section occupied by brook trout.   
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Figure 5:  Millwood Hollow Run.  The fishless tributary where the majority of larvae were 

collected.   
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Figure 6:  Lick Island Run.  The main stem occupied by brook trout.  Though this picture 

shows large boulders and cascades, the stream is highly variable in width, depth, and velocity.   
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Figure 7:  Dissected hind leg.  A larva’s leg removed and ready to have the femur dissected. 
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Figure 8:  Femur.  Two separate femurs from two individual larvae.  Femurs were placed on a 

penny to show scale. 
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Figure 12:  Cross section.  The sectioned femur of larva MHL04.  2 rings are present.  40x. 
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Figure 13:  Cross section.  Sample LIF02.  One ring is present, with the hatching line clearly 

seen.  40x. 
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Figure 14:  Salvelinus fontinalis.  Me holding a large native brook trout caught with a hook and 

line.   
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