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Dissertation Abstract 

Cystic fibrosis is a genetic disorder that results from mutations in the CF 

transmembrane conductance regulator gene.  These mutations cause a disruption in 

the chloride transport in mucosal tissues causing the accumulation of dehydrated 

mucus, and a decrease in the mucocilliary removal of environmental pathogens within 

the lungs.  Additionally, the accumulation of dehydrated mucus within the lungs provides 

a hospitable environment for various bacteria, including the Gram-negative opportunistic 

pathogen Pseudomonas aeruginosa. P. aeruginosa uses the overproduction of a 

surface polysaccharide called alginate to form a biofilm to evade the host’s 

immunological defenses.  The overproduction of alginate, often referred to as mucoidy, 

is a virulence factor that is responsible for chronic P. aeruginosa infections, as well as 

an increased resistance to antibiotics and phagocytosis by the host defense cells.  

Chronic P. aeruginosa infections are the leading cause of morbidity and mortality in CF 

patients, and the detection of mucoid isolates is a proven predictor of a decline in the 

patient’s health.  The transition from the non-mucoid phenotype, found in environmental 

isolates, to the mucoid phenotype found within the CF lung is typically due to “loss-of-

function” mutations in the transmembrane anti-sigma factor MucA.  However, P. 

aeruginosa can overproduce alginate independent of mutations in mucA, through the 

regulated proteolysis of MucA.  A series of proteases, beginning with AlgW, can 

degrade MucA, and release the alternative sigma factor AlgU to drive transcription of 

the alginate biosynthetic operon.  It is generally accepted that the regulated proteolysis 

of MucA is a mechanism used by early colonizing strains prior to the selection for MucA 

mutations.  Therefore, understanding this mechanism employed by those early 

colonizing strains may prove beneficial in preventing the establishment of chronic P. 
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aeruginosa respiratory infection.   In this dissertation, I identify and characterize two 

novel regulators of alginate overproduction in P. aeruginosa strains possessing a wild-

type MucA.  Using the model strain PAO579, I determined that mutations that result in 

the truncation of the type-IV pilin precursor protein, PilA, can induce alginate 

overproduction through activation of the AlgW resulting in an increased rate of 

proteolysis of MucA.  Additionally, I identify that expression of the genetic locus 

PA1494, referred to as mucoid inhibitor A (muiA), can suppress mucoidy in P. 

aeruginosa strains with a wild-type MucA.  Collectively, these findings provide needed 

insight into the regulation of mucoidy in those early colonizing strains, as well as 

identifies potential therapeutic targets for the prevention of chronic P. aeruginosa 

infections in the CF lung. 
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CHAPTER 1:  Introduction and Literature Review 

Cystic Fibrosis 

Cystic fibrosis (CF) is an autosomal recessive genetic disorder predominantly 

associated with individuals of European descent.  CF afflicts approximately 30,000 

individuals in the United States and 70,000 worldwide, with about 1,000 new cases 

being diagnosed each year.  CF is the result of mutations in the cystic fibrosis 

transmembrane conductance regulator gene (CFTR), located on the long arm of 

chromosome 7 at locus q31.2.  Currently, >1,500 mutations in CFTR have been 

identified that cause CF, with the most common being a deletion of a single codon for 

phenylalanine at amino acid position 508 (ΔF508).  The ΔF508 mutation is found in over 

90% of all CF cases in the United States, and approximately 70% worldwide (8).        

CFTR is categorized as an ATP-binding cassette membrane transporter, and is 

responsible for the export of chloride ions (Cl-) across epithelial membranes.  Disruption 

in the CFTR gene causes a decrease in export of chloride ions to the surface of 

epithelial cells.  Chloride ions are required to attract water molecules to sufficiently 

hydrate the epithelial cell surface.  Following the loss of chloride export and hydration of 

the epithelial cells, a thick, dehydrated mucus accumulates.  This accumulated mucus 

affects several organ systems including the lungs, liver, pancreas and gastrointestinal 

tract.  Symptoms associated with CF include salty-tasting sweat, poor growth and 

weight gain, constipation, frequent chest infections, coughing, shortness of breath and 

infertility. 

Of particular importance, with regards to the overall morbidity and mortality of CF 

patients, is the accumulation of mucus within the lungs.  This accumulation causes a 
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decrease in mucociliary removal of microbial pathogens, and provides a hospitable 

environment for their cultivation (6, 15, 73).  Indeed, microbial infection is the leading 

cause of mortality in individuals with CF (35).  However, the spectrum of microbial 

pathogens that are associated with CF pulmonary infections is limited.  Those 

pathogens that are associated with CF pulmonary infections are primarily bacterial and 

include Burkholderia cepacia, Haemophilus influenza, Pseudomonas aeruginosa and 

Staphylococcus aureus.  Initial colonization by bacterial pathogens occurs early in life 

(<1 year), with 50-60% caused by S. aureus.  However, starting in adolescents, P. 

aeruginosa surpasses S. aureus to become the leading cause of morbidity and mortality 

among bacterial pathogens associated with CF (35).   Increased susceptibility of CF 

patients to bacterial infections is likely due to a direct interaction of microbes with the 

mutated CFTR protein (61, 62).  However, Parker et al. suggest that mutations in CFTR 

provide an opportunity for microbial cultivation because of a decrease in immune 

surveillance due to disruptions in type-I interferon signaling (57).  Additionally, mice 

possessing CFTR mutations were unable to properly to kill phagocytosed bacteria due 

to poor lysosomal acidification (25).  Therefore, the function of CFTR mutation with 

regards to the increased susceptibility in CF lungs is still not completely understood.          

Historically, individuals with CF did not live past infancy.  However, due to the 

implementation of second and third generation antibiotics, as well as improved 

therapeutics, CF patients are able to live well into adulthood, with the average lifespan 

being 37.5 years of age (Cystic Fibrosis Foundation).   Ultimately, increased mortality 

rates in all CF patients is due to the “overwhelming sequelae of repeated pulmonary 

exacerbations arising from persistent P. aeruginosa colonization” (35).    
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Figure 1.  Mucoid phenotype in P. aeruginosa.  Shown on the left side of the illustration is a mucoid P. 
aeruginosa strain (PAO579), and on the right is the nonmucoid progenitor strain PAO1.  The bacteria are 
cultured on plates containing Pseudomonas isolation agar (PIA) and were incubated at 37⁰C for 24 hours and 
then at room temperature for 24 hours.  

Pseudomonas aeruginosa and Biofilms 

Pseudomonas aeruginosa is a motile, Gram-negative bacterium that is found 

throughout the environment.  P. aeruginosa is also classified as an opportunistic 

pathogen and has been linked to severe infections in immuno-compromised individuals, 

such as burn victims (40), those afflicted with HIV/AIDS (2, 78), and pediatric patients 

undergoing chemotherapy (11, 81).  P. aeruginosa has also been shown to successfully 

colonize abiotic surfaces of equipment and vehicles used in space exploration (12).  

Moreover, P. aeruginosa is the leading cause of hospital-acquired pneumonia and 

bacteremia by a Gram-negative pathogen (26, 39).   

P. aeruginosa is particularly adept at establishing chronic infections in individuals 

with CF through the formation of a biofilm.  The term “biofilm” was first introduced in 

1977, and is used to define a collection of bacteria adhered to a surface surrounded by 
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a self-produced exopolysaccharide matrix (37, 64).  Biofilm formation confers a 

selective advantage upon the bacteria. Specifically with P. aeruginosa biofilms, there is 

an increased resistance to antimicrobial therapies (17, 18, 47, 59, 79, 80), increased 

protection against opsonization (49, 52, 63), and decreased engulfment by amoeba and 

macrophages (10, 36, 45, 46, 54).  Current estimates are that the vast majority of all 

pathogenic P. aeruginosa infections, and 80% of all microbial infections, are due to 

biofilm formation.   

A biofilm is both functionally and morphologically different from a single free-floating, 

or planktonic, bacterium.  Moreover, the formation of a bacterial biofilm is often 

compared to the developmental processes associated with multi-cellular organisms.  A 

biofilm develops in four distinct stages:  attachment, development of microcolonies, 

maturation, and dispersal (18, 74, 82).  Initially, planktonic cells use flagella, type-IV pili 

and other outer membrane adhesion proteins to adhere to biotic or abiotic surfaces (55).  

Following initial adherence, the bacteria transition into microcolonies through the 

production of an extracellular matrix consisting primarily of an extracellular polymeric 

substance (EPS), or exopolysaccharide.  In P. aeruginosa, the exopolysaccharides Psl 

and Pel are involved in this initial stage of biofilm development (34, 41).  The regulation 

of Psl and Pel is often facilitated through cell-density dependent signaling or quorum 

sensing.  Two quorum-sensing systems, las and rhl, are used in P.aeruginosa (58). 

During the maturation stage, the biofilm increases in population and volume and 

begins to take on a three dimensional structure.  In P. aeruginosa, this is due to an 

overproduction of an exopolysaccharide called alginate (30, 35).  The terminal stage of 

biofilm development, dispersal, is marked by the evacuation of the bacteria following a 



5 
 

return to the planktonic state (18, 74).  This transition the planktonic state is often in 

response to environmental signals such as changes in pH, the concentrations of carbon 

and oxygen, the presence of nitric oxide, the presence of heavy metals, as well as the 

presence of various quorum-signaling molecules (4, 5, 38, 43, 75).   Interestingly, the 

use of alginate in this maturation stage of biofilm development is generally not found 

outside of the CF lung, and is indicative of a chronic infection (35).  Moreover, alginate 

is not used by nonmucoid, environmental isolates of P. aeruginosa in the formation of 

biofilms (89).                               

Alginate Production and Regulation 

In the CF lung, the transition of P. aeruginosa between initial attachment and the 

development of mature biofilm is marked by the overproduction of the 

exopolysaccharide alginate.  Alginate is a biopolymer consisting of two monomers of β-

D-mannuronate acid and its epimer α-L-guluronate.  Overproduction of alginate is often 

referred to as the mucoid phenotype, or simply mucoidy.  The emergence of mucoid 

isolates from CF patient sputa is indicative of a chronic infection, and is pathognomic for 

both CF and P. aeruginosa (24, 35) .  Additionally, the conversion from the nonmucoid 

to the mucoid phenotype is considered a prognostic marker for the poor overall health of 

the CF patient (35). 
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Gene 

Locus 

Gene 

Name 

MW 

(kDa) 

Predicted 

Localization Product Name 

References 

PA3540 algD 47.6 Cytoplasm GDP-mannose 6-dehydrogenase (22, 23) 

PA3541 alg8 56.5 Inner Membrane glycosyltransferase (48, 56, 70) 

PA3542 alg44 41.8 Inner Membrane c-di-GMP binding-activation/membrane fusion protein (48, 53, 71) 

PA3543 algK 52.5 Periplasm periplasmic multi-protein complex (44) 

PA3544 algE 54.4 Outer Membrane outer membrane protein (porin) (16, 68, 85) 

PA3545 algG 59.8 Periplasm alginate C5-epimerase (14, 28) 

PA3546 algX 52.6 Periplasm alginate o-acetyltransferase (72, 84) 

PA3547 algL 40.8 Periplasm poly(β-D-mannuronate) lyase (1, 42) 

PA3548 algI 58.7 Inner Membrane alginate o-acetyltransferase (29, 32, 33) 

PA3549 algJ 43.1 Inner Membrane alginate o-acetyltransferase (29, 32, 33) 

PA3550 algF 22.8 Periplasm alginate o-acetyltransferase (29, 31, 33) 

PA3551 algA 53.1 Cytoplasm phosphomanose isomerase/guanosine 5’-D-mannose 

pyrophosphorylase 

(21, 60) 

Table 1.  Summary of the alginate biosynthetic operon 
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The overproduction of alginate in P. aeruginosa is the result of increased expression 

of the alginate biosynthetic operon (22).  The alginate biosynthetic operon is located 

between genome positions 3,962,825 and 3,979,476 in the reference strain PAO1, and 

consists of 12 genes responsible for the manufacture, assembly and export of the 

alginate polymer across the periplasmic space to the extracellular matrix (Table 1).  The 

regulation of the entire alginate biosynthetic operon occurs at a single promoter site 

upstream of the algD gene (PalgD).  Transcription at PalgD is primarily controlled by the 

alternative sigma 

factor AlgU (also 

known as AlgT, σ22, 

σE) (50, 88).  

Increased expression 

of AlgU also 

modulates the two-

component regulators, AlgB and AlgR, as well as the transcription factor AmrZ (67).  

Subsequently, the increased expression of AlgB, AlgR, and AmrZ, which directly bind to 

different sites upstream of algD, also causes an increase in activity at PalgD and mucoidy 

(7, 67, 76, 88).  Therefore, the initiation of the alginate biosynthetic operons hinges 

upon the regulation of AlgU.   

The algU gene (PA0762) is found at the 5’ end of an operon containing the negative 

regulators mucA (PA0763), mucB (PA0764) and mucD (PA0766) (Figure 2). AlgU is 

localized in the cytoplasm and is a stress-related alternative sigma factor, which 

belongs to a superfamily of sigma factors known to control extra-cytoplasmic function 

Figure 2.  Regulation of the algU-mucA-mucB-mucC-mucD operon.  The 
regulation of the algUmucABCD operon occurs at five promoter sites (P1-P5) 
upstream of algU.  Expression of algU and its subsequent negative regulators, 
mucA, mucB and mucD, is auto-regulated at the P1 and P3 promoter sites.  (+) 
and (-) identify the associated gene as a positive or negative regulators of algU, 
respectively. (?) signifies either unknown function or transcriptional regulator. 
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(ECF).  MucA is the cognate anti-sigma factor for AlgU, and is associated at its C-

terminus with the periplasmic protein MucB (51).  MucB is thought to improve the 

stability of MucA by protecting its periplasmic portion from proteolytic degradation.  The 

mucC gene codes for a 15.9 kDa protein of unknown function.  The algU-mucA-mucB-

mucC-mucD operon is regulated transcriptionally by 5 promoters (P1-P5) upstream of 

algU.  P1 and P5 are constitutively active in nonmucoid P. aeruginosa strains with a 

wild-type MucA, while P1 and P3 are AlgU-dependent and responsive to external 

stressors (77).  MucD is a homolog of DegP in E. coli, and is classified as a periplasmic 

chaperone-protease.  Inactivation of MucD causes mucoidy in P. aeruginosa strain 

PAO1 (20, 66).      

The positive regulation of alginate overproduction is primarily attributed to AlgU and 

its cognate anti-sigma factor MucA.  MucA is a transmembrane protein that spans the 

inner membrane, with the C-terminus and N-terminus localized in the periplasm and 

cytoplasm, respectively.  In a nonmucoid wild-type P. aeruginosa strain, AlgU is 

sequestered by MucA to the cytoplasmic leaflet of the inner membrane.  This prevents 

AlgU from moving freely about the cytoplasm and initiating transcription of the alginate 

biosynthetic operon at the algD promoter site, as well as the promoter sites for the 

additional modulators of alginate biosynthesis, algB, algR and amrZ.       
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Currently there are two mechanisms identified by which AlgU is released from MucA.  

The first is through the abrogation of MucA.  In the majority of clinical CF isolates, 

selective pressure causes the emergence of mucoid isolates through the selection of 

MucA mutants (3, 9).  This is commonly due to frameshift or insertion/deletion (INDEL) 

mutations that result in a 

complete loss of function 

or diminished function due 

to the translation of 

truncated MucA protein.  

The truncated protein has 

decreased overall stability 

when compared to the 

wild-type, full length MucA 

(65).  Interestingly, Reiling 

et al. reported that the 

periplasmic protease Prc 

is required for mucoidy in 

the truncated MucA 

mutant, mucA22, but not in strains possessing a wild-type MucA (69).  Prc has both a 

PDZ and a tail-specific protease domain; however the substrate specificity is not fully 

understood.  Additionally, the cytoplasmic protease complex ClpXP is required for 

mucoidy in the truncated MucA mutant, mucA25 (65).  Hypothetically, the site-2 

Figure 3.  Mutations in MucA cause mucoidy in Pseudomonas 
aeruginosa.  In the nonmucoid PAO1 strain, the alternative sigma factor 
AlgU is sequestered to the inner membrane. The emergence of mucoid 
isolates in the CF lung is typically due to mutations in that either abrogate 
or truncate the gene for the transmembrane anti-sigma factor MucA.  The 
loss of function for MucA causes the release of AlgU and an increase in 
expression of the alginate biosynthetic operon at the algD promoter site.  
AlgU also modulates expression of the algB, algR and amrZ.  Previously it 
has been shown that the proteases Prc and ClpXP are required for 
mucoidy in the truncated MucA strains mucA22 and mucA25, respectively.       
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protease MucP (YaeL) could degrade the intramembrane portion of the truncated MucA; 

however no data confirming this hypothesis is currently available (19).                                                              

The second mechanism for the release of AlgU involves the regulated 

intramembrane proteolysis (RIP) of wild-type MucA.  More specifically, MucA is 

systematically degraded by a series of proteases beginning in the periplasm with AlgW, 

continuing with the site-

2 intramembrane 

protease MucP, and 

completed with the 

cytoplasmic protease 

complex ClpXP (Figure 

4).  AlgW, a serine 

protease and a 

functional homologue 

of DegS in E. coli, 

contains an N-terminal 

anchor, a PDZ domain 

and a protease domain 

(27, 66, 86).  Activation 

of AlgW results in the cleavage of MucA at a major cut site between the alanine residue 

at position 136 and the glycine residue at position 137 (13).  Activation of AlgW occurs 

in response to the presence of external stress agents, such as D-cycloserine (86).  

Additionally, the overexpression of the small periplasmic protein MucE (PA4033) 

Figure 4.  Activation of mucoidy through regulated intramembrane 
proteolysis (RIP).  When activated by the presence of stress agents (not 
shown) or the accumulation of envelop proteins, the serine protease AlgW 
can positively regulate AlgU by cleaving the periplasmic portion of MuA.    
This is followed by proteolytic cleavage of the intramembrane portion of MucA 
by the site-2 metalloprotease MucP.  The protease complex ClpXP degrades 
the cytoplasmic portion of MucA.  AlgU is now free to drive transcription of the 
alginate biosynthetic operon at the algD promoter, as well as the algB, algR 
and amrZ.            
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induces mucoidy via AlgW in the nonmucoid strain PAO1 (66).  This activation of AlgW 

is due to an interaction between the C-terminal motif of tryptophan-valine-phenylalanine 

(WVF) of MucE and the PDZ domain of AlgW (13, 66, 83).  MucP is also required for 

activation of mucoidy in both the presence of D-cycloserine and the overexpression of 

MucE (66, 87).  MucP possesses two PDZ domains and a zinc metallo-proteolyic 

domain consisting of a motif of histidine-glutamic acid-X-X-histidine (HExxH), which is 

required for alginate overproduction (20).  It has also been proposed that the 

cytoplasmic portion of MucA is degraded by the ClpXP complex following cleavage by 

MucP (65).  Following the complete degradation of the wild-type MucA, AlgU is free to 

drive transcription of the alginate biosynthetic operon at the PalgD promoter site, as well 

as modulate transcription of algB, algR and amrZ. 
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Dissertation Introduction 

Colonization of the CF lung by P. aeruginosa via infiltration of nonmucoid 

environmental strains with a wild-type MucA, and natural selection for mutations in 

MucA that provide protection from the host’s defenses through biofilm formation using 

the overproduction of alginate is the current dogma for the evolution of chronic 

P.aeruginosa infections in CF patients.  Although, the majority of mucoid CF isolates 

possess mutations in MucA, regulated proteolysis of MucA is proposed as the 

mechanism for biofilm formation used by those early colonizing strains.  Therefore, the 

goal of my study was to identify novel regulators of alginate overproduction in P. 

aeruginosa strains with a wild-type mucA.  To achieve this goal, I used a prototypic 

mucoid strain PAO579 as the model system (shown in Figure 1).  PAO579 possesses a 

wild-type mucA and is mucoid via an unclassified mutation referred to as muc23.  

Additional details regarding the origin of PAO579 are described in Chapters 2 and 3.  I 

used whole genome sequencing to identify the muc23 mutation.  The parameters and 

results are provided in Chapter 2.  In Chapter 3, I describe the use these sequencing 

results, as well as various molecular and microbiological techniques, to determine that 

mucoidy in PAO579 is due to three tandem mutations in the gene locus PA4525.  These 

three tandem mutations result in a truncation in the type-IV pilin precursor protein, PilA, 

which activates the regulated proteolysis of MucA via AlgW.  In Chapter 4, I describe 

the use of complementation and in vitro transposon mutagenesis of a whole genome 

cosmid library, derived from the reference strain PAO1, to identify novel inhibitors of 

alginate production in PAO579.  I identified gene locus PA1494 that can inhibit alginate 

overproduction after localization of the gene product to the periplasm.  As set forth in 
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Chapter 5, I explore the relationship between the expression of gene locus PA1494 and 

the periplasmic chaperone/protease MucD.   These chapters identify and detail both the 

positive and negative regulatory pathways involved in mucoidy in the P. aeruginosa 

strain PAO579.  The summation of these chapters, as well as the proposal of new 

questions and ideas, is found in Chapter 6.  Collectively, the research described in this 

dissertation identifies novel mechanisms for the genetic regulation of alginate 

production in Pseudomonas aeruginosa.  More importantly, it provides insights that may 

aid in the suppression of biofilm formation in the CF lung.                      
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Chapter 2 Overview and Rationale 

In this study, I used the model strain PAO579 to identify novel regulators of 

mucoidy in P. aeruginosa strains possessing a wild-type MucA.  PAO579 is a mucoid 

mutant derived from the non-mucoid progenitor strain PAO1.  The genetic mutation(s) 

responsible for mucoidy in PAO579 is unknown and is referred to as muc-23.  In order 

to identify potential candidates for the muc-23 mutation, I used next-generation 

sequencing technology to sequence the entire genome of PAO579, and compared it to 

the previously published PAO1 reference genome.  These results are presented and 

discussed in this chapter. 
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Abstract 

Pseudomonas aeruginosa is an opportunistic pathogen that establishes a chronic 

infection in individuals afflicted with cystic fibrosis.  Here we announce the draft genome 

of P. aeruginosa strain PAO579, a mucoid derivative of strain PAO381. 
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PAO1: Prototroph Alg

PAO381: PAO1 Alg leu38 strA2 mucA

PAO579: PAO381 Alg leu38 strA2 mucA muc23+

+-

-

+

Stanisich & Holloway; 1969

Govan & Fyfe; 1980

Figure 1.  Origin of P. aeruginosa strain PAO579. PAO579 was derived 
from a series of mutagenic experiments beginning with bacteriophage-
mediate mutagenesis of PAO1 yielding PAO381.  Next, mucoid mutants 
were isolated following exposure of PAO381 to sub-lethal concentrations of 
carbenicillin.  Alg-=nonmucoid; Alg+=mucoid; leu38=leucine auxotrophic; 
strA2=streptomycin resistant; mucA+=wild-type mucA; muc23=unclassified 
mutation(s).  

Pseudomonas aeruginosa is a ubiquitous, opportunistic pathogen and the 

leading cause of mortality in individuals afflicted with cystic fibrosis.  P. aeruginosa uses 

the overproduction of an exopolysaccharide, called alginate, to form biofilms.  Biofilm 

formation is responsible 

for the development of 

chronic infections, as well 

as increased resistance to 

antibiotic treatment (2), 

and reduced phagocytosis 

by macrophages (4).  P. 

aeruginosa strain PAO579 

was first isolated as 

mucoid variant of 

PAO381, a derivative of the non-mucoid strain PAO1 (3, 5).  Both PAO579 and PAO381 

have a wild-type mucA (mucA+), and both strains are leucine auxotrophic (leu38) and 

streptomycin resistant strains (strA2).     

Genomic DNA from P. aeruginosa strain PAO579 was isolated using 

phenol/chloroform extraction and ethanol precipitation, and paired-end sequencing 

libraries were generated using vendor protocols (Illumina, San Diego, CA) and genome 

sequencing was performed on an Illumina GAIIX with a total of 54, 496, 482 60-bp 

paired-end reads resulting in 3, 269, 788, 920 bp for ~500x coverage.  Data was 

generated and assembled using Illumina Pipeline version SCS 2.8.0 paired with OLB 

1.8.0, and aligned and annotated according the P. aeruginosa strain PAO1 reference 
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genome (GenBank accession no. NC_2516.2) using NovoAlign version 2.07.10.  All 

specifics regarding aligner algorithms can be obtained from novocraft.com.  Further 

analysis of the genome was performed using Samtools version 01.16a for the 

generation of pileup after sorting and removing duplicate reads, and then applying 

analysis pipeline software developed by CoFactor Genomics (St. Louis, MO, USA).  The 

genome was annotated and prepared for submission using NCBI Prokaryotic Genomes 

Automatic Annotation Pipeline 

(PGAAP; http://www.ncbi.nlm.nih.gov.genomes/static/Pipeline.html) server at NCBI. 

Based upon our analysis, single nucleotide polymorphisms (SNPs) and INDELS 

were observed between the sequenced reads and the PAO1 reference genome and 

were tabulated for each genomic position, as well as the total coverage of bases 

observed at that location.  As a result, 16 non-synonymous and 15 synonymous single 

nucleotide polymorphisms (SNPs) were identified using two criteria:  more than 4X 

coverage and greater than 60% frequency.  This data is shown in Table 1.  Of particular 

interest is the substitution of thymine for adenine at genome position 4980548 in the 

DegS-like MucA protease gene, algW (PA4446). This alteration results in a change in 

the primary structure of AlgW, more specifically a substitution of isoleucine for 

phenylalanine at amino acid position 239.  This predicted substitution is thought to effect 

the proteolytic activity of AlgW (1).  Also of note, we observed mutations in leuA 

(PA3792), 2-isopropylmalate synthase, and rpsL (PA4268), 30S ribosomal protein S12.  

These mutations are contiguously part of the PAO381 lineage, and are responsible for 

leucine auxotrophy and streptomycin resistance, respectively.    

 

http://www.ncbi.nlm.nih.gov.genomes/static/Pipeline.html
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Nucleotide sequence accession number.  The draft genome sequence of P. 

aeruginosa strain PAO579 has been deposited in GenBank under accession number 

AFLOF00000000.
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Table 1.  Complete sequencing results for PAO579  

SNP Genome 
Position 

Change SNP Position 
(Gene Size) 

ORF Gene  
Name 

Gene Product Protein 

1 5036891 A→C -183(1602) PA4500  Probable binding protein 
component of ABC transporter 

 

2 4771865 T→C 263(372) PA4268 rpsL 30S ribosomal protein S12 K88R+ 

3 183697 T→G 930(939) PA0159  Probable LysR transcriptional 
regulator 

C310W 

4 4251149 G→A 322(1779) PA3792 leuA 2-isopropylmalate synthase E108K+ 

5 6115455 T→G 858(1254) PA5434 mtr Tryptophan permease K266N 

6 4980548 A→T 715(1170) PA4446 algW DegS-like serine protease I239F 

7 4924552 C→G 532(837) PA4394 yggB Conserved hypothetical protein V178L+ 

8 4924553 G→C 531(837) PA4394 yggB Conserved hypothetical protein  

9 6098781 G→C 1758(3018) PA5418 soxA Sarcosine oxidase α subunit  

10 1871272 T→C 157(342) PA1728  Hypothetical protein S53P 

11 4212201 A→G 1907(2529) PA3760 nagF N-acetyl-D-Glucosamine 
phosphotransferase system 

transporter 

H636R 

12 1589438 G→C 101(1107) PA1459 cheB Probable methyl-transferase G34A 

13 6079222 A→G 1179(1962) PA5399 dgcB Dimethylglycine catabolism  
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14 5743462 G→C 1292(1680) PA5100 hutU Urocanase T431S+ 

15 5743461 C→G 1293(1680) PA5100 hutU Urocanase  

16 4869855 T→G 474(771) PA4341  Probable IcIR transcriptional 
regulator 

E158D+ 

17 4344266 A→G 570(1296) PA3877 nark1 Nitrite extrusion protein 1  

18 721611 C→T (1200)+55 PA0668 tyrZ tyrosyl-tRNA synthetase 2  

19 2239547 T→G -280(408) PA2046  Hypothetical protein  

20 413850 T→C -196(291) PA0369  Hypothetical protein  

21 4334140 G→C 207(990) PA3870 moaA1 Molybdopterin biosynthetic 
protein A1 

 

22 4448855 C→G (1500)+38 PA3970 amn AMP nucleosidase  

23 4448856 G→C (1500)+37 PA3970 amn AMP nucleosidase  

24 1603577 T→G -94(759) PA1477 ccmC Heme exporter protein CcmC  

25 5069207 G→A 325(450) PA4525 pilA Type IV fimbrial precursor Stop 

26 5069206 T→C 326(450) PA4525 pilA Type IV fimbrial precursor Stop 

27 5069205 C→T 327(450) PA4525 pilA Type IV fimbrial precursor Stop 

28 1440625 A→G 1920(1971) PA1327  Probable protease  

29 169284 G→C -77(546) PA0149  Probable σ70 factor, ECF  
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30 2768847 C→G 9958(16884) PA2462  Hypothetical protein A3320P 

31 2813321 A→G 128(1419) PA2495 oprN Multidrug efflux outer 

membrane protein 

D43G 



30 
 

Acknowledgments 

We would like to thank Jian Gao and Cofactor Genomics for assistance in 

sequencing, annotation and data analysis.   

This project was funded through National Aeronautics and Space Administration 

West Virginia Space Grant Consortium (NASA WVSGC) and the Cystic Fibrosis 

Foundation (CFF-YU11G0).  H.D.Y. was supported by NIH P20RR016477 and 

P20GM103434 to the West Virginia IDeA Network for Biomedical Research Excellence. 

  

 

                      



31 
 

CHAPTER 2 REFERENCES 

1. Cezairliyan, B. O., and R. T. Sauer. 2009. Control of Pseudomonas aeruginosa 
AlgW protease cleavage of MucA by peptide signals and MucB. Mol Microbiol 
72:368-379. 

2. Govan, J. R., and V. Deretic. 1996. Microbial pathogenesis in cystic fibrosis: 
mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 
60:539-574. 

3. Govan, J. R., and J. A. Fyfe. 1978. Mucoid Pseudomonas aeruginosa and 
cystic fibrosis: resistance of the mucoid from to carbenicillin, flucloxacillin and 
tobramycin and the isolation of mucoid variants in vitro. J Antimicrob Chemother 
4:233-240. 

4. Leid, J. G., C. J. Willson, M. E. Shirtliff, D. J. Hassett, M. R. Parsek, and A. K. 
Jeffers. 2005. The exopolysaccharide alginate protects Pseudomonas 
aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. 
Journal of immunology 175:7512-7518. 

5. Stanisich, V. a. H., B. W. 1969. Conjugation in Pseudomonas aeruginosa 
Genetics 61:327-339. 

 

 



 32 

CHAPTER 3:  Truncation of type IV pilin induces mucoidy in Pseudomonas 

aeruginosa strain PAO579 

A manuscript published in MicrobiologyOpen 2(3):  459-470 

T. Ryan Withers1, F. Heath Damron1, 4, Yeshi Yin1 and Hongwei D. Yu 1, 2, 3 * 

1Department of Biochemistry and Microbiology, 2 Department of Pediatrics, Joan C. 

Edwards  School of Medicine at Marshall University, Huntington, WV 25755-9320, USA 

3Progenesis Technologies, LLC, 1111 Veterans Memorial Blvd, Huntington, WV  

25701, USA.  

4Current address: Department of Microbiology, University of Virginia, Box 800734, 

Health System, Charlottesville, VA 22908, USA 

 

Running title: Pilin mutations induce mucoidy in P. aeruginosa  

Keywords: alginate, biofilms, Pseudomonas aeruginosa, pilA, muc-23 

* Corresponding author 

Mailing address: Robert C. Byrd Biotechnology Science Center, One John Marshall 

Drive, Huntington, WV 25755-9320; Tel: 304-696-7356    Fax: 304-696-7207 

E-mail: yuh@marshall.edu 

mailto:yuh@marshall.edu


 33 

Chapter 3 Overview and Rationale 

In chapter 2, I identified 31 mutations unique to P. aeruginosa strain PAO579, as 

compared to the previously published PAO1 reference genome.  In order to determine 

the specific mutation(s) responsible for mucoidy in PAO579, I used functional analyses 

and PCR sequencing to narrow the search to two potential candidate loci.  Using 

standard cloning and molecular techniques, I determined that three tandem mutations in 

the pilA gene (pilA108) are responsible for the induction of mucoidy by activating the 

serine protease AlgW to degrade MucA, thereby releasing the AlgU to drive transcription 

of the alginate biosynthetic operon.  Therefore, the three tandem mutations in the pilA 

gene are the muc-23 mutation.  These results are presented and discussed in this 

chapter.       
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Abstract 

Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that uses 

the overproduction of alginate, a surface polysaccharide, to form biofilms.  

Overproduction of alginate, also known as mucoidy, affords the bacterium protection 

from the host’s defenses and facilitates the establishment of chronic lung infections in 

individuals with cystic fibrosis.  Expression of the alginate biosynthetic operon is 

primarily controlled by the alternative sigma factor AlgU (AlgT/σ22).  In a non-mucoid 

strain, AlgU is sequestered by MucA, a transmembrane anti-sigma factor, to the 

cytoplasmic membrane.  AlgU can be released from MucA by regulated intramembrane 

proteolysis by proteases AlgW and MucP, causing the conversion to mucoidy.  P. 

aeruginosa strain PAO579, a derivative of the non-mucoid strain PAO1, is mucoid due 

to an unidentified mutation (muc-23).  Using whole genome sequencing, we identified 

16 non-synonymous and 15 synonymous single nucleotide polymorphisms.  We then 

identified three tandem single point mutations in the pilA gene (PA4525), as the cause 

of mucoidy in PAO579.  These tandem mutations generate a premature stop codon 

resulting in a truncated version of PilA (PilA108), with a C-terminal motif of phenylalanine-

threonine-phenylalanine (FTF).  Deletion of pilA108 confirmed it was required for 

mucoidy.  Additionally, algW and algU were also required for mucoidy of PAO579.  

Western blot analysis indicated that MucA was less stable in PAO579 than non-mucoid 

PAO1 or PAO381.  The mucoid phenotype and high PalgU and PalgD promoter activities 

of PAO579 require pilA108, algW, algU and rpoN.  We also observed that the alternative 

sigma factor RpoN regulates expression of algW and pilA in PAO579.  Together, these 

results suggest that truncation in PilA can induce mucoidy through an AlgW/AlgU-
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dependent pathway. 
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Introduction 

Cystic fibrosis (CF) is a genetic disorder that results from mutations in the CF 

transmembrane conductance regulator gene (32).  These mutations cause a disruption 

in chloride transport of mucosal tissues resulting in an accumulation of dehydrated 

mucus.  This accumulation of mucus within the lungs prevents the removal of infectious 

agents by interfering with the mucociliary escalator (6).  This provides a hospitable 

environment for the adherence and cultivation of microbial pathogens (2, 34).  As a 

result, individuals afflicted with CF are highly susceptible to various bacterial infections 

including P. aeruginosa (13).  This bacterium is a Gram-negative, opportunistic 

pathogen that uses the overproduction of alginate, a surface polysaccharide, to form 

biofilms.  The overproduction of alginate, also known as mucoidy, is responsible for the 

establishment of chronic infections, as well as an increased resistance to antibiotics (13) 

and phagocytosis by macrophages (21) in CF patients.  Chronic lung infections with P. 

aeruginosa  cause an increase in morbidity and mortality in individuals afflicted with CF 

(22), and this transition from the non-mucoid to the mucoid phenotype is a proven 

predictor of an overall decline in the patient’s health (16).    

 

Typically, constitutively mucoid strains arise in the lungs of CF patients due to 

mutations in the mucA gene which encodes the inner membrane-spanning anti-sigma 

factor (4, 23).  MucA is a negative regulator of alginate overproduction due to 

sequestering AlgU (AlgT, σE, σ22), the primary sigma factor responsible for activation of 

the alginate biosynthetic operon at the algD promoter (40).  Alternatively, the conversion 

to mucoidy can occur when MucA is degraded by regulated intramembrane proteolysis 
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which will release AlgU (31).  Proteolytic degradation is initiated through cleavage of the 

C-terminus of MucA between the alanine and glycine at position 136 by the serine 

protease AlgW (5), anchored in the periplasmic leaflet of the inner membrane, and 

followed by the transmembrane protease MucP (YaeL) and the cytoplasmic proteases 

ClpX and ClpP (5, 7, 30, 31).  The activation of AlgW, and subsequent proteolysis of 

MucA, is thought to be in response to extracellular stress, as well as the accumulation 

of misfolded envelope proteins (31, 39). We previously found that induction of a small 

envelope protein called MucE causes mucoidy (31).  MucE has an AlgW activation 

signal with a C-terminal motif of tryptophan-valine-phenyalanine (WVF) (31). The MucE 

peptide is also a potent ligand that activates AlgW resulting in the degradation of the 

periplasmic fragment of MucA (5).          

 

P. aeruginosa strain PAO579 was first generated in the 1970s through the 

isolation of mucoid variants of PAO381 (14), a non-mucoid derivative of the progenitor 

strain PAO1, following exposure to a sub-lethal concentration of carbenicillin.  PAO579 

is highly mucoid due to unclassified mutation(s) that is referred to as muc-23 (14).  

Mucoidy in PAO579 depends on the alternative sigma factor RpoN (σ54) (3).  In this 

study, we used whole genome sequencing to identify mutation(s) that cause the 

mucoidy of PAO579.  We found three tandem mutations in pilA that are responsible for 

the mucoid phenotype in this strain.    Moreover, the mucoid phenotype of strain 

PAO579 is dependent upon AlgW, as well as AlgU and RpoN.  Our data suggests 

truncation of pilin induces mucoidy in P. aeruginosa strain PAO579. 
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Experimental Procedures 

Sequence analysis of PAO579.  Methods and parameters used in the sequencing of 

P. aeruginosa strain PAO579 were previously described (37). 

 

Bacterial strains and growth conditions.  Bacterial strains used in this study are 

indicated in Table 1.  P. aeruginosa and E. coli strains were grown at 37°C in Lennox 

broth (LB), on LB agar, or Pseudomonas Isolation Agar (PIA).  When indicated, the 

media was supplemented with carbenicillin, gentamycin, tetracycline, kanamycin and/or 

arabinose. 

 

Construction of mutant strains.  In-frame deletion of target genes algU (PA0762) and 

algW (PA4446) in PAO579 was performed through PCR amplification of the upstream 

and downstream regions (500 to 1000 base pairs) flanking the target gene.  Using 

crossover PCR, these upstream and downstream regions were fused and ligated into 

pEX100T-NotI.  A two-step allelic exchange procedure was used by first screening the 

possible deletions mutants for carbenecillin resistance and sucrose sensitivity, then 

screening for sucrose resistance and carbenecillin sensitivity.  For construction of the 

PAO579rpoN::TcR strain, rpoN (PA4462) was amplified through PCR, cloned into the 

pCR®4-TOPO® Vector (Invitrogen) and transformed into E. coli DH5α.  In vitro 

transposon mutagenesis was performed on the pCR®4-TOPO®-rpoN vector using the 

EZ::TN <KAN-2> insertion kit (Epicentre Biotechnologies).  The mutant library was 

recovered and triparentally conjugated en masse into PAO579.  Mutants were selected 

on PIA containing tetracycline and screened for the non-mucoid phenotype. 



39 
 

        Table 1.  Bacterial strains and plasmids used in this study. 

Strain, Plasmid Genotype, phenotype, description Reference 

E. coli 
 

 

TOP10 DH5α derivative Invitrogen 

P. aeruginosa 
 

 

PAO1 algU+mucA+; non-mucoid P. Phibbs* 

PAO381 algU+mucA+; non-mucoid, derived from PAO1 J. Govan** 

PAO579 algU+mucA+muc-23; mucoid, derived from PAO381 J. Govan** 

PAO579ΔalgU mucA+muc-23, In-frame deletion of algU (PA0762); non-mucoid This study 

PAO579ΔalgW algU+mucA+muc-23, In-frame deletion of algW (PA4446); non-mucoid This study 

PAO579pilA::aacC1 algU+mucA+muc-23,  pilA::GmR (PA4525) encoding a Type-IVa pilin precursor; non-mucoid This study 

PAO579rpoN::TcR algU+mucA+muc-23, rpoN:: TcR (PA4462) of the sigma factor RpoN (σ54); non-mucoid This study 

Plasmids 
 

 

pCR4-TOPO 3.9-kb, ApR, KmR; TA cloning vector Invitrogen 

pRK2013 KmR, Tra Mob ColE1 (12) 

pHERD20T pUCP20T P lac replaced by 1.3-kb AflII-EcoRI fragment of araC-PBAD cassette (29) 

pHERD20T-algW algW (PA4446) from PAO1 in pHERD20T; EcoRI/HindIII This study 

pHERD20T-algW I239F algW (PA4446) from PAO579 in pHERD20T; EcoRI/HindIII This study 

pHERD20T-pilA pilA (PA4525) from PAO1 in pHERD20T; EcoRI/HindIII This study 

pHERD20T-pilA108 pilA (PA4525) from PAO579 in pHERD20T; EcoRI/HindIII This study 

pHERD20T-pilA-HA C-terminally tagged pilA-HA ending with the PKGCDN motif cloned in pHERD20T; EcoR1/HindIII This study 
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pHERD20T-pilA108-HA C-terminally tagged pilA-HA ending with the DITFTF motif cloned in pHERD20T; EcoR1/HindIII This study 

pHERD20T-oprF oprF (PA1777) from PAO1 in pHERD20T; EcoRI/HindIII This study 

pHERD20T-oprF-FTF oprF (PA1777) from PAO1 with FTF-motif fused to the C-terminal; EcoRI/HindIII This study 

pHERD20T-HA-mucA N-terminally tagged HA-mucA in pHERD20T; EcoRI/HindIII (9) 

pUCP20T-PBAD-rpoN araC-PBAD-rpoN fusion in pUCP20; XbaI/HindIII (9) 

miniCTX-lacZ Gene delivery system used to fuse target genes to lacZ and integrate onto the chromosome at the 
CTX phage att site in P. aeruginosa, TcR 

(17) 

miniCTX-PalgD-lacZ Complete PalgD promoter (1,525 bp upstream of ATG) HindIII/BamHI in miniCTX-lacZ (9) 

miniCTX-PalgU-lacZ Complete PalgU promoter (541 bp upstream of ATG) EcoRI/HindIII in miniCTX-lacZ (9) 

pEX100T-NotI Pseudomonas suicide vector with NotI restriction site fuse into SmaI of pEX100T, sacB, oriT, CbR (9) 

pEX100T-ΔalgW 1.4-kb fragment flanking the algW (PA4446) gene ligated into pEX100T-NotI with in-frame deletion 
of algW 

(31) 

pEX100T-ΔalgU 2.5-kb fragment flanking the algU (PA0762) gene ligated into pEX100T-NotI with in-frame deletion 
of algU with 24 bp remaining. 

(9) 

pCR4-pilA::GmR 
1941 bp fragment contained 966 bp upstream of ATG and 975 bp downstream of TAA with a MluI 
GmR cassette (750 bp) inserted 9 bp before ATG of an in-frame deleted pilA ligated into pCR4-
TOPO 

This study 

pLP170 8.3-kb, lacZ, ApR, multiple cloning site  (28) 

pLP170-PalgU Complete PalgU  promoter (541 bp upstream of ATG) fused with lacZ in pLP170 BamHI/HindIII This study 

pLP170-PalgD Complete PalgD  promoter (989 bp upstream of ATG) fused with lacZ in pLP170 BamHI/HindIII This study 

pLP170-PpilA Complete PpilA  promoter (500 bp upstream of ATG) fused  with lacZ in pLP170 BamHI/HindIII This study 

pLP170-PalgW Complete PalgW  promoter (1,000 bp upstream of ATG) fused  with lacZ in pLP170 BamHI/HindIII    This study 

        *P. Phibbs, East Carolina University, Greenville, NC, USA. 

        **J. Govan, University of Edinburgh, Scotland, UK. 
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The PAO579pilA::aacC1 strain was constructed using crossover PCR of 1000 bp 

upstream and downstream fragments of pilA (PA4525) containing an internal MluI 

restriction site.  This crossover PCR product was cloned into the pCR®4-TOPO® vector 

and digested using MluI.  A cassette containing a gentamycin resistance marker was 

digested with MluI and ligated into the pCR®4-TOPO®-pilA construct.  Finally, the 

pCR®4-TOPO®-pilA construct was triparentally conjugated and a two-step allelic 

exchange procedure was used by first screening for gentamycin resistance and 

carbenicillin resistance, then gentamycin resistance and carbenicillin sensitivity.  All 

strains were amplified by PCR and sequenced to confirm proper insertion or deletion of 

the target genes. 

Plasmid construction and complementation.  The plasmids used in this study are 

indicated in Table 1.  Standard recombinant DNA cloning techniques were used in the 

construction of all plasmids used in this study (33).  Briefly, oligonucleotide primers were 

designed based on PAO1 sequence information and synthesized by Eurofin MWG 

Operon.  Primer sequence information is available in Table 1.  PCR amplifications were 

done using EasyStart™ Micro 50 PCR Mix-in-a-Tube (Molecular BioProducts) and Taq 

DNA Polymerase (New England BioLabs).  The pCR®4-TOPO® Vector (Invitrogen, Inc.) 

was used as an intermediary before ligation into the target vector.  All plasmids were 

purified using QIAprep® Spin Miniprep Kit (Qiagen Sciences).  All plasmid constructs 

were sequenced to confirm they contained no mutations.  Plasmids were transformed 

into E. coli DH5α for all intermediate cloning steps.  Completed plasmids were 

triparentally conjugated into target P. aeuginosa strains using pRK2013 as a helper 

strain(12). 
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Alginate assay.  Alginate was measured using the previously published carbazole 

reaction (19).  Bacterial strains were streaked onto triplicate PIA plates, and incubated 

at 37° C for 24 hrs.  The bacterial cells were scraped into 10 mL of PBS and the OD600 

was recorded.  The amount of uronic acid was measured and compared to an alginate 

standard curve made with D-mannuronic acid lactone (Sigma-Aldrich) in the range 0 to 

100 μg/mL.  The reported values represent an average of three independent 

experiments with standard deviation. 

 

β-galactosidase activity assay.  Pseudomonas strains carrying the plasmid pLP170 

(empty vector) or pLP170 containing PalgD, PalgU, PalgW or PpilA or PAO1 miniCTX-PalgU-

lacZ and miniCTX-PalgD-lacZ with pHERD20T, pHERD20T-pilA or pHERD20T-pilA108 

were cultured at 37°C on three PIA plates supplemented with carbenecillin or 

carbenicillin and tetracycline.  Bacterial cells were harvested, resuspended in PBS and 

the OD600 was recorded.  The cells were permeabilized using toluene, and β-

galactosidase activity was measured with results calculated and reported in Miller Units 

(25). One Miller Unit equivalent to 1000 X (A420/-1.75 X A550 /OD600 mL-1 min-1).  The 

reported values represent an average of three independent experiments with standard 

deviation.  Student’s t test was performed to determine statistical significance. 

 

Protein analyses.  Bacterial strains were grown at 37°C on PIA or LB media 

supplemented with the appropriate antibiotics.  Cells were harvest and whole cell 
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lysates were prepared using the ProteaPrep Cell Lysis Kit (Protea Biosciences) and the 

total protein content was quantified using Dc Assay (Bio-Rad).  Using a HA Tag 

immunoprecipitation kit (Pierce®), HA-tagged proteins were isolated by combining cell 

lysates with anti-HA agarose beads, incubating overnight at 4°C, washing with a TBS-

Tween solution, and eluting the proteins from the anti-HA agarose beads.    The protein 

samples (25  µg) were boiled for 10 min in Tricine Sample Buffer (Bio-Rad) and 

electrophoresed on a 16.5% Tris-Tricine gel (Bio-Rad).  Samples were then electro-

blotted onto a Hybond™-P PVDF transfer membrane (GE Healthcare).  The membrane 

was blocked using 3% skim milk/PBS.  Mouse monoclonal antibody for the alpha 

subunit of RNA polymerase (Neoclone) and rat monoclonal antibody for hemagglutinin 

(Roche Diagnostics) were used as primary antibodies.  Anti-pilin serum was gifted from 

the Lory laboratory (University of California, San Francisco, CA).  Horseradish 

peroxidase-labelled goat anti-mouse IgG, goat anti-rabbit or goat anti-rat IgG were used 

as secondary antibodies.  Primary and secondary antibodies were diluted in 3% skim 

milk/PBS to 1:5000 and 1:10,000, respectively.  Western blot results were imaged using 

ECL Advance Western Blotting Detection Kit (Amersham; GE Healthcare) and UVP 

BioImaging Systems.  When necessary, blots were stripped using 62.5 mM Tris-HCl pH 

6.8, 2% SDS, 100 mM β-mercaptoethanol for 10 minutes at 40°C. 

 

Epifluorescent microscopy.  Pseudomonas strains containing pHERD20T-pilA-HA-

PKGCDN (WT), pHERD20T-pilA-HA-DITFTF or pHERD20T were cultured on PIA plates 

supplemented with 300 µg/mL carbenicillin and arabinose and incubated at 37°C.  For 

the detection of extracellular PilA, cells were stained according to the procedure 
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provided with the Anti-HA-Fluorescein, High Affinity (3F10) antibody (Roche 

Diagnostics).  Briefly, cells were harvested, washed and resuspended in incubation 

buffer.  Alternatively, for the detection of intracellular PilA, the cells were permeabilized 

using toluene.  Anti-HA-Fluorescein antibody was added to the cells, which were then 

incubated on ice for 30 minutes, washed with incubation buffer. Images were initially 

collected and recorded using an Olympus EX51 microscope with an Olympus DP70 

digital camera, and subsequently with a Leica SP5 TCSII equipped with a Coherent 

Chameleon multiphoton VisionII laser.  Images were further analyzed using ImageJ 

1.45s software.  
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Results 

PAO579 has polymorphisms in algW and pilA. 

Using PAO1 as a reference genome, we performed next-generation sequencing 

to determine the mutation(s) (muc-23) responsible for mucoidy in PAO579 

(ALOF00000000) (37).  We identified 16 nonsynonymous and 15 synonymous single 

nucleotide polymorphisms (SNPs) by using two critieria:  more than 4X coverage and 

greater than 60% frequency.  (previously shown in Table 1 of Chapter 2).  Consistent 

with previous phenotypic observations (14, 36), we detected mutations at loci rpsL 

(PA4268) and leuA (PA3792), both corresponding to previous genetic and phenotypic 

markers in the parent strain PAO381 (Table 2).  Further PCR sequencing revealed that 

only two genes, algW (PA4446) and pilA (PA4525) contained SNPs in PAO579 when 

compared to strain PAO381.  Our results showed a substitution of an adenine for a 

thymine at nucleotide 715 of the coding region of algW (PA4446), resulting in the 

exchange of phenylalanine for isoleucine at amino acid 239 (I239F) in AlgW (Table 2). 

We designated this mutation as algWI239F.   We also observed three tandem nucleotide 

substitutions (CT325, AG326, GA327) in pilA (PA4525) that predicted a premature 

stop codon (TGA) (Table 2).  The pilA gene encodes the protein precursor that 

constitutes the type-IVa pilin.  Further analysis of these tandem mutations at nucleotides 

352-327 confirmed a truncation in PilA from 149 to 108 amino acids (Table 2 and Figure 

4).   We designated this mutation as pilA108. We hypothesized that one, or both of these 

mutations could be responsible for mucoidy in PAO579. 
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Table 2.  Summary of sequencing results for PAO579  

SNP Genome 
Position 

Change SNP Position 
(Gene Size) 

ORF Gene  
Name 

Gene Product Protein 

1 4771865 T→C 263(372) PA4268 rpsL 30S ribosomal protein S12 K88R+ 

2 4251149 G→A 322(1779) PA3792 leuA 2-isopropylmalate synthase E108K+ 

3 4980548 A→T 715(1170) PA4446 algW DegS-like serine protease I239F 

 5069207 G→A 325(450) PA4525 pilA Type IV fimbrial precursor Stop 

4 5069206 T→C 326(450) PA4525 pilA      Type IV fimbrial precursor Stop 

 5069205 C→T 327(450) PA4525 pilA      Type IV fimbrial precursor Stop 
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algW and algU are required for alginate overproduction in strain PAO579.      

AlgW is the first in a cascade of proteases responsible for the degradation of 

MucA, (5, 38, 39).  To determine if algW is required for mucoidy in PAO579, we deleted 

algW and observed a decrease in alginate production and a conversion to the non-

mucoid phenotype (Figure 1).  Next, we cloned algW and algWI239F into the shuttle 

vector pHERD20T containing the arabinose-inducible PBAD promoter (29).  The 

expression of algW in trans restored mucoidy to PAO579ΔalgW (Figure 1).  Similarly, 

the expression algWI239 in trans restored mucoidy in PAO579, however we did not 

observe a significant difference in the amount of alginate produced (Figure 1).  More 

importantly, algWI239F did not induce mucoidy in PAO1ΔalgW (Figure 1).  These data 

support AlgW being required for mucoidy in PAO579, however the I239F mutation is not 

responsible for inducing mucoidy in PAO579. 

 

While algU is reportedly not required for alginate overproduction in the strain 

PAO579 (3), our data showing that AlgW is required for mucoidy, suggests that MucA 

degradation, and subsequently, the release of AlgU, is occurring in PAO579.  If this is 

correct, expression of MucA would result in a loss of mucoidy.  To test this hypothesis, 

mucA was expressed from both pHERD20T and the low-copy number Ptac vector (15), 

and indeed loss of mucoidy was observed (data not shown).  Additionally, deletion of 

algU from PAO579 resulted in a loss of mucoidy (Figure 1).  Expression of algU in trans 

in PAO579ΔalgU restored mucoidy (data not shown).  These data suggest that AlgU is 

required for alginate production in PAO579. 
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Figure 1.  Alginate produced by P. aeruginosa strains PAO1, PAO381 and PAO579 mutants.  All strains 
were grown on PIA plates for 24h at 37°C then for 24h at room temperature.  The alginate was collected and 
measured using the carbazole assay.  The values are reported as mean ± standard deviation of three 
independent experiments. M, Mucoid; NM, Nonmucoid 
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Expression of pilA108 induces mucoidy in PAO579. 

Since algW I239F is not responsible for the induction of mucoidy, we next 

examined the role of pilA108 in the regulation of alginate overproduction in PAO579. 

Sequence analysis, indicates that pilA108 encodes for ~11 kDa protein.  Western blot 

analysis using anti-PilA polyclonal antibody revealed a lack of the full length pilin protein 

in PAO579 (Figure 2A).  Additionally, HA-tagged PilA108 was only detected with 

Western blot analysis after immunopurification (Figure 2B and Figure 2C).  Similarly, 

HA-tagged PIlA108 was not detected on the cell surface of PAO1 using epifluorescent 

confocal microscopy (Figure 3). 

Figure 2.  Western blot analysis of PilA108   Panel A) PAO579 and PAO1 were grown at 37°C on PIA.  
Cellular protein was harvested and was subjected to SDS-PAGE electrophoreses, membrane transfer, and 
probed with anti-Pilin polyclonal antibody.  Panel B) PAO1 cells containing pHERD20T (Vector), pHERD20T-
pilA-HA and pHERD20T-pilA108-HA were grown at 37°C on PIA plates supplemented with carbenicillin and 0.1% 
arabinose.  Cellular protein was harvested was subjected to SDS-PAGE electrophoreses, membrane transfer, 
and probed with anti-HA monoclonal antibody.  Panel C) PAO1 pHERD20T and pHERD20T-pilA108-HA was 
cultured on PIA plates supplemented with carbenicillin and 0.1% arabinose. Cellular protein was harvested then 
purified using high affinity anti-HA immunoprecipitation and analyzed using SDS-PAGE electrophoresis, 
membrane transfer, and probed with anti-HA monoclonal antibody. 



50 
 

  

A B

C D

Figure 3.   Localization of PilA108.  Epifluorescent confocal microscopic images 
showing the localization of PilA-HA (WT) and HA-tagged PilA108 in PAO1:  A) 
confocal and B) epifluorescent image of PAO1 pHERD20T-pilA-HA; C) confocal 
and D) epifluorescent image of PAO1 pHERD20T-pilA108-HA. 
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The sequence of C-terminal of PilA108 consists of a 3 amino acid motif of 

phenylalanine-threonine-phenylalanine (FTF) (Figure 3A and Figure 3B).  Previously, we 

reported that the C-terminal motif tryptophan-valine-phenylalanine (WVF) found on the 

small periplasmic protein MucE can induce mucoidy through the activation of AlgW (31).  

Based on this information, we hypothesized that the truncated pilA108 could induce 

mucoidy through AlgW.  We tested this hypothesis by first inactivating pilA in PAO579 

through the insertion of a gentamycin cassette (PAO579pilA::aacC1).  We observed a 

decrease in alginate production and a conversion to the non-mucoid phenotype in 

PAO579pilA::aacC1 (Figure 1).  Next, we complemented these experiments by cloning 

the wild-type pilA and pilA108 into pHERD20T containing the arabinose-inducible PBAD 

Figure 4.  Diagram showing the predicted structure for PAO1 PilA and PAO579 PilA.  A) Base pair 
substitutions in the pilA gene in PAO579 result in a premature STOP codon and a truncation in the PilA protein 
from 149 amino acid residues and molecular weight of 15.5 to 108 amino acid protein with a molecular weight of 
11.2 kDa.  PAO579 PilA has an activating domain (β2) that is responsible for the positive regulation of alginate 
production which consists of a phenylalanine-threonine-phenylalanine (FTF) motif at its C-terminal.  B) The 
truncation of PAO579 PilA at amino acid 108 also results in the loss of the β3 and β4 antiparallel sheets, as well 
as revealing the activating domain in the β2 sheet. 
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promoter and expressed them in trans.  Expression of pilA108 increased alginate 

production inducing mucoidy in PAO579pilA::aacC1 (Figure 1), while expression of 

expression of pilA wild-type did not (Figure 1).  Similar results were also observed in 

PAO1 (data not shown).  In addition, the expression of pilA108 did not confer mucoidy in 

PAO579ΔalgW, suggesting that PilA108 acts through AlgW.  To confirm whether the FTF-

motif found in PilA108 can induce mucoidy via AlgW, we cloned the major outer 

membrane porin precursor oprF (PA1777) and oprF with the addition of the FTF motif to 

its C-terminal (oprF-FTF) into pHERD20T.  Next, we conjugated this construct, as well 

as pHERD20T-pilA and pHERD20T-pilA108 into PAO1 and PAO1ΔalgW.  After 

incubating in the presence of 0.1% arabinose, expression of oprF-FTF and 

pilA108 increased alginate production and conferred mucoidy in PAO1 (Table 3).  

Expression of  

oprF did not induce mucoidy in PAO1, which is consistent with our previously published 

results (29).  Expression of pilA did not induce mucoidy in PAO1.  As expected, we did 

not observe any phenotypic change when pilA, pilA108, oprF, oprF-FTF were expressed 

in PAO1ΔalgW.  These results suggest that the FTF-motif found at the C-terminal of 

PilA108 can activate mucoidy through AlgW.    
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Table 3. Complementation analyses of pilA, pilA108, oprF and oprF-FTF 

Pseudomonas strains Vector 
Control 

pilA pilA108 oprF oprF-FTF 

PAO1 NM(3.6±0.4) NM(11.7±1.6) NM(52.7±7.1) NM(6.3±5.8) NM(40.8±6.8) 

PAO1ΔalgW NM(6.7±3.2) NM(4.4±4.4) NM(5.2±3.3) NM(4.7±1.9) NM(7.4±1.2) 

                       

 

 

 

NM, non-mucoid; M, mucoid; pHERD20T was used in this study.  All strains were grown on PIA 
supplemented with 300 µg/mL carbenicillin and 0.1% arabinose and incubated at 37⁰C for 24h.  The 
alginate measurements for three independent experiments are represented as (Mean µg of 
alginate/mL/OD600±Standard Deviation). 
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pilA108 and algW are required for proteolytic degradation of MucA. 

Since expression of pilA108 required algW to confer mucoidy in PAO579, we 

hypothesized that the activation of alginate production was due to increased MucA 

degradation.  In order to test this hypothesis, we measured the degradation of MucA by 

expressing an N-terminally HA-tagged MucA (9) via the PBAD arabinose-inducible 

promoter (pHERD20T-HA-mucA) in PAO1, PAO381, PAO579, PAO579pilA::aacC1 and 

PAO579ΔalgW.  All strains were cultured on PIA plates supplemented with carbenicillin 

Figure 5.  Western blot analysis of N-terminally tagged HA-MucA in PAO1, 
PAO381, PAO579, PAO579pilA::aacC1 and PAO579ΔalgW.  Shown are 
representative panels of three independent experiments.  All strains were 
grown on PIA plates supplemented with carbenicillin and 0.1% arabinose for 
24h at 37°C then for 24h at room temperature.  Cell lysates were prepared and 
25 µg of total protein was loaded for each sample for SDS-PAGE 
electrophoresis.  Following transfer, the membrane was immunoblotted with 
primary rat anti-HA and secondary horseradish peroxidase-labelled goat anti-
rat IgG.  Protein levels were categorized as High MW (>20 kDa) or Low MW 
(<20kDa), normalized to PAO1 pHERD20T-HA-mucA, and presented as 
relative means ± standard deviations. 
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and 0.1% arabinose.  Western blot analysis of PAO1 and PAO381 showed similar levels 

of full length HA-MucA, although we detected greater accumulation of protein at 20 kDa 

and 10 kDa in PAO381 (Figure 4, Lane 1 and 2).  We detected a decrease in full length 

HA-MucA and an increase in lower molecular weight products (~10 kDa) in PAO579 

when compared to all other test strains (Figure 4, Lane 3).  We also detected similar 

amounts of full length HA-MucA in PAO579pilA::aacC1 and PAO579ΔalgW as PAO381 

(Figure 4, Lane 4 and 5).  These results suggest that there is an increase in MucA 

degradation in PAO579 when compared to its progenitor strains PAO1 and PAO381.  

Additionally, pilA108 and algW are required for increased MucA degradation in PAO579.            

 

Increased transcriptional activity at the PalgD and PalgU promoters in PAO579 

requires pilA108, algW, algU and rpoN. 

Based on our Western blot analyses of MucA, we hypothesized that deletion of 

pilA108, algW and algU would result in a decrease in transcriptional activity for the 

alginate biosynthetic operon.  To test this, we measured promoter activity by fusing the 

entire PalgD promoter to lacZ in the plasmid pLP170 (28), and performed a Miller assay 

(25) .  We observed a significant increase in PalgD activity in PAO579 as compared to its 

progenitor strains PAO1 and PAO381 (Figure 5).  We also observed a significant 

decrease in PalgD activity in the pilA108, algW and algU mutants in PAO579 (Figure 5).  

Since the expression of the AlgU gene is auto-regulated, it is possible to indirectly 

measure the release of AlgU following MucA degradation using a β-galactasidase 

promoter fusion assay.  Similar to our analysis of the algD promoter, we used the 

plasmid pLP170 to fuse the entire algU promoter region to lacZ, and performed a Miller 
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Figure 6. The β-galactosidase activity of the PalgD and PalgU promoter fusions was measured using the 
pLP170-PalgD-lacZ and pPLP170-PalgU-lacZ reporter constructs.  Each strain was on incubated at 37º C on 
PIA plates supplemented with 300 ug/mL of carbenicillin.  The values for the mean ± standard deviation are 
shown as relative expression, and are representative of three independent experiments.  Asterisks indicate 
statistical significance (*P<0.05). 

assay.  Similar to our algD promoter analysis, we observed a significant increase in 

PalgU activity in PAO579 compared to PAO1 and PAO381, and a significant decrease in 

PalgU activity in the pilA108, algW and algU mutants (Figure 5).    

 

Additionally, we measured the effect of wild-type pilA and pilA108 expression on 

merodiploid strains carrying PalgD and PalgU fused with the lacZ reporter gene (9) in the 

presence of the shuttle vector pHERD20T, pHERD20T-pilA and pHERD20T-pilA108.  

Induction of pilA108 with 0.1% arabinose, caused a significant increase in PalgD activity 

as compared to the vector control and wild-type pilA (Figure 6).  There was no 

significant difference in PalgD activity between the vector control and pilA wild-type 
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Figure 7.  The β-galactosidase activity of the algD promoter and algU promoters with pilA and pilA108 
expressed in trans.  The β-galactosidase activity was measured using the miniCTX-PalgD-lacZ and 
miniCTX-PalgU-lacZ reporter constructs integrated to att site in PAO1 and pHERD20T, pHERD20T-pilA or 
pHERD20T-pilA108 were conjugated using the helper plasmid pRK2013.   Each strain was incubated at 37º C 
on PIA plates supplemented with tetracycline, carbenicillin and 0.1% arabinose.  The values for the mean 
and standard deviation are shown as relative expression, and are representative of three independent 
experiments.  Asterisks indicate statistical significance (*P<0.01; **P<0.0005). 

(Figure 6).  A similar trend was observed when measuring the PalgU promoter activity 

(Figure 6). 

The alternative sigma factor RpoN was reported to be required for alginate 

production in PAO579 (3). Consistent with these findings, inactivation of rpoN in 

PAO579 (PAO579rpoN::TcR) resulted in a significant decreases in activity at the algD 

and algU promoters when compared to PAO579 (Figure 5).  Interestingly, 

overexpression of rpoN using pHERD20T failed to induce mucoidy in 

PAO579pilA::aacC1 and PAO579ΔalgU, suggesting that RpoN regulates mucoidy in 

PAO579 upstream of PilA and AlgU.  We performed Western blot analysis to measure 
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the level of RpoN in PAO1, PAO579 and PAO381 and found the level of RpoN was 

comparable in these three strains (data not shown).  RpoN regulates global gene 

expression of many motility genes in non-mucoid strains of P. aeruginosa (10).  

Likewise, RpoN is responsible for transcription of pilA through the PilS/PilR two-

component regulatory system (18).  Deletion of rpoN from a mucoid strain resulted in 

dysregulation of ~20% of the genome (8).  RpoN may be involved in the expression of 

algW (8).  Expression of pilA108 in PAO579rpoN::TcR did not restore mucoidy, indicating 

rpoN may have multiple roles in alginate overproduction in strain PAO579.  We 

hypothesized that the inability of pilA108 to confer mucoidy in PAO579rpoN::TcR could be 

due to RpoN’s role in driving transcription at both the pilA and algW promoters.  We 

tested this hypothesis by measuring the level of promoter activities of PpilA and PalgW.  

Promoter activity of PpilA and PalgW between strains PAO1 and PAO381 was similar; 

however, we observed a significant increase in promoter activity in PAO579 at both sites 

(Figure 7A and Figure 7B).  The level of promoter activity for both PpilA and PalgW fell 

below the threshold for detection in PAO579rpoN::TcR (Figure 7A and Figure 7B). These 

 

 

Figure 8.  The β-galactosidase activity of the algW promoter (A) and pilA promoter (B) was measured using the 
pLP170-PalgW-lacZ and pPLP170-PpilA-lacZ reporter constructs.  Each strain was incubated at 37ºC on PIA plates 
supplemented with 300 ug/mL of carbenicillin.  The values for the mean and standard deviation are representative 
of three independent experiments.  The measurement for PpilA activity is presented in log Miller Units.  Asterisks 
indicate statistical significance (*P<0.005; **P<0.0005). 

A B 
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results are consistent with previous reports, stating that RpoN drives transcription of pilA 

and algW in PAO579.  Collectively, our results suggest a pathway where RpoN 

regulates mucoidy in PAO579 upstream of pilA108, algW and algU.  
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Discussion 

Generally speaking, there are two types of mucoid isolates found in CF sputum 

samples: those with mutations mapped within the mucABCD cluster (1, 4, 35), and 

those with undefined mutations mapped outside of the mucABCD cluster. While mucA 

mutants are associated with chronic infections, it is not clear what mucoid-related 

genotypes are present in those early colonizing strains that precede chronic infection.  

In this study, we used whole genome sequence analysis to identify the unknown 

positive regulator(s) of alginate production in P. aeruginosa strain PAO579 (muc-23), an 

isogeneic derivative of PAO1.  We identified three tandem point mutations in the pilA 

gene resulting in a premature stop codon.  These alterations cause a truncation in the 

major subunit of type-IVa pilin at amino acid 108.  This truncated version of PilA reveals 

a C-terminal primary amino acid sequence of FTF that functions as a signal to activate 

alginate overproduction through the proteolytic degradation of MucA. The transcriptional 

activity at the algD and algU promoters was increased in PAO579, while inactivation of 

algW, algU, rpoN and the truncated pilA caused a significant decrease in activity at 

these promoters.  The sigma factor RpoN regulated transcription at both the pilA and 

algW promoters in PAO579. 

Initially we identified a non-synonymous mutation in algW of PAO579 (algWI239F).  

However, this mutation did not have an impact on AlgW activity (Figure 1).  Deletion of 

algW in PAO579 did result in a loss of mucoidy, however expression of algW and 

algWI239F in trans from the PBAD promoter did not result in a significant difference in 

alginate overproduction (Figure 1).  The amino acid substitution occurs in a non-

conserved region of the L2 loop (5) and this may explain why we did not observe any 
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Figure 9.  Schematic diagram summarizing the induction of alginate production and mucoid 
conversion by PilA108 in P. aeruginosa strain PAO579.  The sigma factor RpoN is required for 
transcription of pilA108 and algW.  PilA108 is transported to the periplasm where it activates the periplasmic 
protease AlgW which proteolytically degrades the anti-sigma factor MucA releasing the sequestered sigma 
factor AlgU.  AlgU drives transcription of the alginate biosynthetic operon via the algD promoter. 

significant difference in the amount of alginate produced.  Collectively, these results 

indicate that algWI239F is not the positive regulator involved in activating alginate 

overproduction.  However, the requirement of AlgW for mucoidy does implicate the 

release of AlgU due to proteolytic degradation of MucA.  Western blot analysis of the 

HA-MucA confirmed an increase in lower molecular weight products in PAO579 as 
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compared to PAO1, PAO381, PAO579pilA::aacC1 and PAO579ΔalgW (Figure 5),  

indicating increased MucA degradation in PAO579.         

We observed that the deletion of algU resulted in a loss of mucoidy in PAO579 

(Figure 1).  In Boucher et. al., RpoN was shown to be involved in driving transcription at 

PalgD (3).  In this same study algU was inactivated by an insertion of a tetracycline 

resistance cassette and observed to not be essential for the mucoid phenotype of 

PAO579 (3).  In our study, since AlgW was required for the mucoid phenotype of 

PAO579, degradation of MucA, and transcriptional activity at the PalgD promoter (Figure 

1, Figure 4 and Figure 5), we hypothesized that AlgU was most likely required for the 

mucoid phenotype of PAO579.  We then in-frame deleted algU from PAO579 and 

observed this strain to be non-mucoid (Figure 1).  We were also able to complement 

this mutated strain by expressing algU in trans and observed a return to the mucoid 

phenotype (data not shown).  The essential difference between our present work and 

the Boucher et. al. study is the complete deletion of algU from PAO579 in our study.  

Although our data argues that algU is required, it also confirms that RpoN is required for 

mucoidy in PAO579 (Figure 6 and 8).  However, overexpression of RpoN in 

PAO579pilA::aacC1 and PAO579ΔalgU did not confer mucoidy.  Additionally, we 

observed that rpoN may be regulating alginate production upstream of AlgU through 

controlling expression of algW and pilA (Figure 8).  Collectively these data suggest a 

pathway where RpoN acts upstream of pilA108 and algU in regulating mucoidy in 

PAO579, as illustrated in Figure 9.  RpoN drives transcription of algW and pilA108; 

PilA108 then activates AlgW to begin proteolytic degradation of MucA.  Upon release, 
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AlgU drive transcription of the alginate biosynthetic and algUmucABCD operons via the 

PalgD and PalgU, respectively. 

The pilA gene encodes the Type-IV pilin precursor that is responsible for 

adhesion to respiratory epithelial cells (11), as well as surface translocation or twitching 

motility (24).   Two missense mutations in pilA of Myxococcus xanthus can cause 

membrane accumulation of pili, resulting in a decrease in exopolysaccharide production 

(41).  Similarly, our current study found three tandem missense mutations in pilA that 

affect exopolysaccharide production; however in contrast to the Yang et al study (41),  

we observed an overproduction in alginate (Figure 1).  Hypermutations have been 

shown to occur in P. aeruginosa strains with those mutations typically associated with 

mutS gene in the DNA mismatch repair system (27).  Additionally, alterations in the 

mutL and uvrD have also been shown to result in a mutator phenotype (26).  However, 

we did not detect any polymorphisms at these loci, suggesting that the frequency at 
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Figure 10.   Basic Local Alignment Search Tool (BLAST) for the C-terminal of the PilA.  The red arrow identifies the 
location of the truncation revealing the phenylalanine-threonine-phenylalanine (FTF) motif found in PAO579.  The black arrows 
identify clinical isolates containing the same internal motif with NCBI accession GI number and strain name. 
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which three tandem point mutations may occur is quite low.  Although the C-termini of 

pilin displays a high diversity, those found in CF isolates tend to cluster together into 

one phylogenic group (20).  Through BLAST searches, we identified 6 CF isolates 

containing an internal FTF motif (Figure 10).  It is known that mucoid mutants are 

selected for in the CF lung.  Our study suggests that mutations can arise in envelope 

proteins, such as pilA, and induce alginate overproduction.  Since regulated proteolysis 

is controlled by the AlgW protease and envelope proteins, we wonder if a treatment 

strategy targeting these proteins could block alginate overproduction and allow for 

better clearance of chronic P. aeruginosa infections. 
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Chapter 4 Overview and Rationale 

In chapter 3, I determined that a series of single nucleotide polymorphism in the 

pilA gene result in the overproduction of alginate in PAO579.   However, inhibiting 

mucoidy and biofilm formation is of particular importance regarding the prevention of 

chronic respiratory infections in individuals afflicted with cystic fibrosis.   

In this chapter, I change the trajectory of our study to target novel genetic loci 

that can suppress alginate overproduction in P. aeruginosa strains possessing a wild-

type MucA.  To do so, I used whole-genome complementation coupled with in vitro 

transposon mutagenesis to identify an uncharacterized locus which suppresses 

mucoidy in the model strain PAO579.  I also explore its efficacy and specificity in 

suppressing mucoidy in a variety of P. aeruginosa strains.         
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Abstract 

In this study, we used whole genome complementation of a PAO1 cosmid library, 

coupled with in vitro transposon mutagenesis, to identify a gene locus (PA1494) 

encoding a novel inhibitor of alginate overproduction in Pseudomonas aeruginosa 

strains possessing a wild-type mucA. 

 

Keywords: Pseudomonas aeruginosa, alginate, biofilm, inhibitor, PA1494  

  



73 
 

Introduction 

Cystic fibrosis (CF) is autosomal recessive disorder that afflicts approximately 

70,000 individuals throughout the world.  CF can have serious effects on the pulmonary, 

gastrointestinal and cardiovascular organ systems.  This is due to the accumulation of 

mucus at the surface of epithelial cells.  In the lungs, the accumulated mucus causes a 

greater susceptibility to bacterial infection, with the most common pathogen being 

Gram-negative bacterium Pseudomonas aeruginosa (9). This bacterium establishes a 

chronic infection in individuals afflicted with CF, through the formation of a mucoid 

biofilm, which is facilitated by the overproduction of an exopolysaccharide called 

alginate (9).   

Alginate overproduction is achieved through increased transcription of the 

alginate biosynthetic operon at the algD promoter (7).  Regulation of alginate 

overproduction primarily involves the alternative sigma factor AlgU (AlgT, σ22) and its 

cognate anti-sigma factor, MucA (18, 19).  Typically, in environmental isolates of P. 

aeruginosa, AlgU is sequestered by MucA to the inner membrane (20, 27).  However, 

with a loss of MucA, AlgU is free to regulate transcription at the algD promoter (18, 32).   

Previous reports have determined the role of AlgW, a DegS-like serine protease, as the 

first in a series of proteases to degrade MucA (2, 25, 31).   Transcription of the alginate 

operon can also be dependent on the AlgK-AlgX-MucD multiprotein complex (11).  

Overexpression of MucE (PA4033) induces mucoidy through the regulated  proteolysis 

of MucA (25).  Additionally, we found that the truncation of the type IV precursor protein 

pilA can also induce mucoid through the regulated proteolysis of MucA in strain 
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PAO579 (29). Importantly, P. aeruginosa isolates initially colonizing the CF lung are 

typically nonmucoid, environmental strains.       

In this study, we used our knowledge of pathways for overproduction of alginate 

in the P. aeruginosa strain PAO579 to identify additional regulators of alginate 

synthesis. Preventing the overproduction of alginate (26), and more specifically 

inhibiting the regulated proteolytic degradation of MucA (4), is an attractive strategy to 

prevent the establishment of chronic P. aeruginosa infections. To investigate this 

possibility, we employed whole-genome complementation coupled with in vitro 

transposon mutagenesis to identify new genetic loci that can inhibit alginate 

overproduction in P. aeruginosa strains with a wild-type mucA. 
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Materials and Methods 

Bacterial strains and growth conditions.  All pertinent information regarding bacterial 

strains and plasmids used in this study are provided in Table 1.  P. aeruginosa and E. 

coli strains were grown at 37°C in Lennox broth (LB), on LB agar, or Pseudomonas 

Isolation Agar (PIA).  When indicated, the media was supplemented with 300 µg/mL 

carbenicillin, 200 µg/mL gentamycin, 200 µg/mL tetracycline and L-arabinose for P. 

aeruginosa strains, and 100 µg/mL carbenicillin, 15 µg/mL gentamycin, 10 µg/mL 

tetracycline and 40 µg/mL kanamycin for E. coli strains. 

 

MTP complementation and in vitro mutagenesis.  A PAO1-derived minimal tiling 

pathway (MTP) genomic cosmid library was conjugated into PAO579 using the helper 

plasmid pRK2013, and screened for the ability to complement mucoidy.  MTP cosmids 

that complemented mucoidy were isolated using Qiagen Maxi Prep Kit (Qiagen).  In 

vitro transposon-mediated mutagenesis of the complementing cosmid was performed 

using EZ::TN <KAN-2> insertion kit (Epicentre).  To construct a mutant library, 

transposon-inserted cosmids were transformed into E. coli DH5α and cultured on LB 

plates with kanamycin.  The mutant library was conjugated en masse into PAO579 and 

cultured on PIA with tetracycline overnight at 37°C.  Cosmids were screened for loss of 

complementation (i.e.; return to mucoidy).         

 

Plasmid construction and complementation.  Standard recombinant DNA cloning 

techniques were used in the construction of all plasmids used in this study (28).  Briefly, 

oligonucleotide primers were designed based on PAO1 sequence information and 
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synthesized by Eurofin MWG Operon.  PCR amplifications were done using 

EasyStart™ Micro 50 PCR Mix-in-a-Tube (Molecular BioProducts) and Taq DNA 

Polymerase (New England BioLabs) was used for PCR amplification.  The pCR®4-

TOPO® Vector (Invitrogen, Inc.) was used as an intermediary before ligation into the 

target vector.  Plasmids were isolated using the QIAprep® Spin Miniprep Kit (Qiagen 

Sciences).  All cloning constructs were sequenced to confirm the absence of mutations.  

Completed plasmids were tri-parentally conjugated into target P. aeuginosa strains 

using E. coli containing the helper plasmid pRK2013 (8). 

 

β-galactosidase activity assay.  PAO1 or PAO579 carrying the chromosomal 

integration vector miniCTX-PalgD-lacZ and either pHERD20T, pHERD20T-muiA or 

pHERD20T-muiAΔN22 were cultured at 37°C on three PIA plates supplemented with 

300 µg/mL carbenicillin and 0.1% arabinose.  Bacterial cells were harvested, 

resuspended in PBS and the OD600 was recorded.  The cells were permeabilized using 

toluene, and β-galactosidase activity was measured with results calculated and reported 

in Miller Units (21). One Miller Unit equivalent to 1000 X (A420/-1.75 X A550 /OD600 mL-

1 min-1).  The reported values represent an average of three independent experiments 

with standard deviation.  Student’s t test was performed to determine statistical 

significance. 
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     Table 1.  Bacterial strains and plasmids used in this study. 

Strain, Plasmid Genotype, phenotype, description Reference 

E. coli 
 

 

TOP10 DH5α derivative Invitrogen 

P. aeruginosa 
 

 

PAO1 algU+mucA+; nonmucoid P. Phibbs* 

PAO579 algU+mucA+muc-23; mucoid J. Govan** 

PAO1-VE2 algU+mucA+, PGM-mucE (PA4033); mucoid (25) 

PAO1-VE19 algU+mucA+, mucD::aacC1 (PA0766); mucoid (25) 

C4700m algU+mucA+;  clinical isolate; mucoid D. Speert*** 

C7447m algU+mucA+; clinical isolate; mucoid D. Speert*** 

Plasmids 
 

 

pCR4-TOPO 3.9-kb, ApR, KmR; TA cloning vector Invitrogen 

pRK2013 KmR, Tra Mob ColE1 (8) 

pHERD20T 
pUCP20T P lac replaced by 1.3-kb AflII-EcoRI fragment of araC-PBAD 

cassette 

(23) 

pHERD20T-muiA muiA (PA1494) from PAO1 in pHERD20T; EcoRI/HindIII This study 

pHERD20T-muiA-

HA 
muiA (PA1494) from PAO1 in pHERD20T; EcoRI/HindIII 

This study 

pHERD20T-

muiAΔN22 

muiA (PA1494) from PAO1 in pHERD20T with a deletion of the N-

terminal signal sequence; EcoRI/HindIII 

This study 

miniCTX-lacZ Gene delivery system used to fuse target genes to lacZ and integrate 
onto the chromosome at the CTX phage att site in P. aeruginosa, TcR 

(12) 

miniCTX-PalgD-
lacZ 

Complete PalgD promoter (1,525 bp upstream of ATG) HindIII/BamHI 
in miniCTX-lacZ 

(6) 

pEX100T-NotI Pseudomonas suicide vector with NotI restriction site fuse into SmaI 
of pEX100T, sacB, oriT, CbR 

(6) 

pEX100T-ΔmuiA 1.0-kb fragment flanking the muiA (PA1494) gene ligated into 
pEX100T-NotI with in-frame deletion of muiA 

(25) 

*P. Phibbs, East Carolina University, Greenville, NC, USA; **J. Govan, University of Edinburgh, Scotland, 
UK; ***D. Speert,   University of British Columbia, Vancouver, B.C., Canada
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Cell fractionation and protein analyses.  P. aeruginosa strain PAO579 containing the 

pHERD20T-muiA-HA was cultured at 37°C on PIA supplemented 300 µg/mL of 

carbenicillin and 0.1% arabinose.  Cells were collected and whole cell lysates were 

prepared using the ProteaPrep Cell Lysis Kit (Protea Biosciences).  Periplasmic proteins 

were harvested using the Epicentre Periplasting Kit (Epicentre).  Outer membrane 

proteins were collected and isolated using 2% sarkosyl with 2 mM PMSF, sonication 

and ultracentrifugation as previously published (5).  The total protein content for each 

fraction was quantified using Dc Assay (Bio-Rad).  Protein samples (25 µg) were boiled 

for 10 min in Tricine Sample Buffer (Bio-Rad) and electrophoresed on a 12.5% Tris-

Glycine gel (Bio-Rad).  Samples were then electro-blotted onto a nitrocellulose transfer 

membrane (GE Healthcare).  The membrane was blocked using 3% skim milk/PBS.  

Rat monoclonal antibody for hemagglutinin (Roche Diagnostics) was used as primary 

antibody.  Horseradish peroxidase-labeled goat anti-rat IgG was used as secondary 

antibody.  Primary and secondary antibodies were diluted in 3% skim milk/PBS to 

1:5000 and 1:10,000, respectively.  Western blot results were imaged using ECL 

Advance Western Blotting Detection Kit (Amersham; GE Healthcare) and UVP 

BioImagining Systems.   

 

Alginate assay.  Alginate was measured using the previously published carbazole 

reaction (16).  Bacterial strains were streaked in triplicate on PIA supplemented with 

antibiotics and/or L-arabinose when appropriate, and incubated at 37° C for 24 hrs.  The 

bacterial cells were collected and the OD600 was recorded.  The amount of uronic acid 

was measured and compared to an alginate standard curve made with D-mannuronic 
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acid lactone (Sigma-Aldrich) in the range 0 to 100 μg/mL.  The reported values 

represent an average of three independent experiments with standard deviation. 
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Figure 1.  Identification of PA1494 as a novel inhibitor of alginate 
overproduction. MTP87 cosmid was subjected to in vitro transposon 
mutagenesis to generate random gene knockouts. Shown in the inset are 
PAO579 (muc-23) exconjugants carrying cosmid MTP87 randomly 
mutagenized with an EZ::TN transposon (Epicentre), selected on a PIA 
plate supplemented with the appropriate antibiotic, and incubated at 37°C 
for 48h.   

Results and Discussion 

PA1494 encodes a novel inhibitor of alginate overproduction.  

Alginate overproduction in P. aeruginosa strain PAO579 (muc-23), a derivative of 

PAO1, is caused by the release of AlgU from MucA by regulated intramembrane 

proteolysis (29, 30).  This regulated intramembrane proteolysis is initiated by the 

activation of the protease 

AlgW by a truncated type-IV 

pili (PilA108) (29).  To identify 

novel inhibitors of alginate 

overproduction in P. 

aeruginosa strains with a 

wild-type mucA, a PAO1-

derived, minimal tiling path 

(MTP) genomic cosmid 

library (13) was conjugated 

into PAO579 (10). The 

cosmid MTP87 completely 

suppressed alginate 

overproduction in PAO579 

(data not shown).  MTP87 covers a region of 22,757 bp from the genome of PAO1 (start: 

1,618,021; end: 1,640,777).  To identify the exact gene within this cosmid responsible 

for the multi-copy suppression of alginate overproduction, MTP87 was subjected to 

random transposon-mediated in vitro mutagenesis, and the mutated cosmids were then 
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BJ              WLPLYDARLDTGAKDRKPQLELVRRAEITQSTGEDWSNITLGVSTVRVSRGG-SAPELG
RB              WAPSYDARLDSAAGS----LALDRFVSVHQASGEDWRGVALVLSTARPSERT-DPSQMW
CE              WTPFYDIRVTAGVEA---EMHVTYFGKVRQYSGEDWKTVPLVLSTARPAHGVKQLPKLGA
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Figure 2.  Characterization of PA1494.  Restriction map, gene organization and Tn insertion in the muiA 
gene.  Homology of MuiA with its orthologs. Shown are the most homologous regions (1, 2 and 3): R. 
capsulatus (RC; ORF1654; 534 aa), B. japonicum (BJ; CAC38742; 560 aa), Nostoc sp. (NOS; NP_484904; 545 
aa), and C. elegans (CE; NP_500427; 556 aa). A single Tn insertion occurred before regions 1, 2 and 3. 

conjugated en masse into PAO579 and screened for alginate overproduction (Figure 1).   

We observed the presence of alginate overproducing clones indicating a transposon-

mediated inactivation of a specific inhibitory gene within cosmid MTP87.  PCR and 

sequence analysis of the mutagenized MTP87 confirmed a single transposon insertion 

in open reading frame PA1494. This gene is up-regulated when P. aeruginosa is 

exposed to azithromycin (15, 22) and hydrogen peroxide (3).  However, since PA1494 

belongs to a class of unclassified/hypothetical genes, and its exact function is unknown, 

we refer to PA1494 as mucoidy inhibitor gene A, or muiA.    

The muiA gene is predicted to encode a polypeptide of 551 amino acids with a 

predicted molecular mass of 61 kDa and an isoelectric point (pI) of 5.5. Located 

immediately downstream is the E. coli periplasmic sulfate-binding ortholog gene (cysP: 

PA1493). The muiA gene uses GTG as a start codon with a typical type-I signal 
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Figure 3.  Western blot analysis and localization of 
MuiA.  PAO579 pHERD20T-muiA-HA was cultured on PIA 
supplemented with carbenicillin and 0.1% arabinose.  Shown 
is a representative panels from three independent  
experiments in which 25 μg total protein for whole cell lysate 
(Lane 1), periplasmic (Lane 2) and outer membrane (Lane 3) 
extracts were loaded on a 12.5% Tris-Glycine gel, 
transferred to a nitrocellulose membrane,  and probed with 
anti-HA antibody. 

sequence encoding 22 amino acids (NH2-MNRLAASPLLFAGLFASAPLLA-COOH) (17), 

and previous proteomic analysis detected MuiA in the periplasm of PAO1 (14).  Through 

BLAST analysis, we determined that MuiA is highly conserved amongst other P. 

aeruginosa strains; however no orthologs were identified in E. coli species, or other 

Pseudomonads.   MuiA orthologs were found in other organisms including Rhodobacter 

capsulatus, Bradyrhizobium 

japonicum, Nostoc sp., and 

Caenorhabditis elegans (Figure 2).  

These orthologs are all of similar 

size ranging from 530 to 560 

amino acids in length, and are 

classified as conserved 

hypothetical proteins.  An internal region of MuiA (232-274aa) displayed 3 highly 

conserved regions. In addition, the transposon insertion in MTP87 was located 15 bps 

in front of these conserved domains (Figure 2).  Additionally, using cell fractionation and 

Western blot analysis, we confirmed the results presented in the previous study by 

Imperi et al. (14) by detecting the presence of MuiA in the periplasm (Figure 3). 

 

Expression of muiA suppresses alginate overproduction.   
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In order to confirm whether muiA is responsible for suppressing alginate 

overproduction, we used standard molecular techniques (28) to clone muiA into the 

shuttle vector pHERD20T that contains the PBAD arabinose inducible promoter (23).  

PAO1 pHERD20T (vector control), PAO579 pHERD20T and PAO579 pHERD20T-muiA 

were cultured on PIA supplemented with carbenicillin and 0.1% arabinose, and the 

amount of alginate was measured using the standard carbazole assay (16).  When 

compared to the PAO1 and the vector control, there was a decrease in alginate 

overproduction when muiA was expressed in trans (Figure 4).  Additionally, we 

observed that pHERD20T-muiA can suppress mucoidy even in the absence of 

arabinose on PIA, suggesting that the basal expression from pHERD20T-muiA was 

sufficient for the suppression.  Removal of the N-terminal signal sequence (pHERD20T-

Figure 4.  MuiA suppresses alginate overproduction.  PAO1 pHERD20T, PAO579 
pHERD20T (vector control),  PAO579 pHERD20T-muiA (wild-type muiA) and PAO579 
pHERD20T-muiAΔN22 (deletion of N terminal signal sequence) were grown on PIA 
plates supplemented with carbenicillin and 0.1% arabinose for 24h at 37°C then for 24h 
at room temperature.  The alginate was collected and measured using the standard 
carbazole assay.  The unit of measurement used is µg of alginate/mL/OD600, and the 
values are representative of three independent experiments.  Statistical significance 
was determine using the Student’s t-test in comparison with PAO579 (*P<0.05). 

* 
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muiAΔN22) abrogated MuiA’s ability to suppress alginate overproduction in PAO579 

(Figure 4).  An in-frame deletion of muiA in strain PAO1 did not result in alginate 

overproduction, suggesting that MuiA does not play a central role in alginate regulation 

(data not shown).  Thus, MuiA likely suppresses alginate overproduction after 

localization to the periplasm, and also functions as a multi-copy suppressor for alginate 

overproduction in PAO579.   

 

Expression of muiA decreases PalgD transcriptional activity.   

Alginate overproduction in PAO579 has been reported to be due to increased 

transcriptional activity at the PalgD promoter site of the alginate biosynthetic operon (1, 

29).  To test the effect of expression of muiA on PalgD activity, we used PAO1 and 

PAO579 merodiploid strains (generated via miniCTX-PalgD-lacZ) that carry a 

chromosomal copy of the algD promoter fused with a reporter gene, lacZ.  Next, we 

conjugated pHERD20T (vector control) pHERD20T-muiA and pHERD20T-muiAΔN22 

into the PAO1 or PAO579 miniCTX-PalgD-lacZ, and cultured them on PIA plates 

supplemented with carbenicillin, tetracycline and 0.1% arabinose.  We measured the 

transcriptional activity of the PalgD promoter using the Miller Assay (21).  As expected, 

the level of transcriptional activity in PAO579 pHERD20T was significantly higher than 

that in PAO1 (Figure 5).  The activity at PalgD decreased when pHERD20T-muiA was 

expressed in trans in PAO579 (Figure 5).  Additionally, expression of pHERD20T-

muiAΔN22 did not result in a decrease in PalgD activity in PAO579 (Figure 5).  Based on 

these results, we conclude that expression of muiA suppresses transcriptional activity at 

the alginate biosynthetic operon at the algD promoter.   
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Expression of muiA suppresses alginate overproduction only in strains with a 

wild-type MucA.    

To determine the overall robustness, and also elucidate the possible mechanism 

by which MuiA suppresses alginate overproduction, we conjugated pHERD20T-muiA 

into a variety of laboratory and clinical strains.  Expression of muiA in trans suppressed 

alginate overproduction in PAO1-VE2 (Table 2).  PAO1-VE2 is a derivative of PAO1, 

and overproduces alginate due to activation of AlgW by MucE, a small envelope protein 

(2, 25).  When muiA was expression in trans it suppressed alginate overproduction in 

clinical strains possessing a wild-type MucA (C7447m and C4700m), but muiA was 

unable to suppress alginate overproduction in the PAO1-derived, mucA25 strain, 

PAO581 (Table 2).  PAO581 carries a truncated MucA25 protein which lacks the 

Figure 5.  MuiA suppresses transcription activity at the PalgD promoter.  The β-
galactosidase activity of the algD promoter was measured using PAO1 and PAO579 miniCTX-
PalgD-lacZ with pHERD20T, pHERD20T-muiA or pHERD20T-muiAΔN22.  All strains were 
incubated at 37º C on PIA plates supplemented with tetracycline, carbenicillin and 0.1% 
arabinose.  The values for the mean and standard deviation Miller Units (One Miller Unit=1000 
X (A420/-1.75 X A550 /OD600 mL

-1 
min

-1
)) are shown as relative expression as compared to 

PAO1, and are representative of three independent experiments. Statistical significance was 
determine using the Student’s t-test in comparison to PAO579 (*P<0.05). 
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transmembrane domain of the wild-type MucA, suggesting that MucA25 is likely 

localized in the cytoplasm (24).  Additionally, expression of muiA did not suppress 

alginate overproduction in the strain PDO300 (Table 2).  PDO300 carries a truncated 

MucA22 protein.  Interestingly, expression of muiA did not complement mucoidy in the 

PAO1-VE19 (Table 2).  This strain is mucoid due the inactivation of the serine protease 

MucD (PA0766).  The relationship between MuiA and MucD is explored further in 

Chapter 5.  Importantly none of the strains examined in this study, aside from PAO579, 

have three tandem mutations resulting in a truncation of type IV pili.  Collectively, these 

data suggest that MuiA’s ability to suppress alginate overproduction is not unique to 

PAO579; however it is only effective at suppressing alginate overproduction in strains 

with a wild-type MucA. 
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Table 2.  MuiA-mediated suppression of alginate overproduction in laboratory and 
clinical strains 

Strains Genotype Vector Controla muiAb 
Laboratory Strains    

PAO1 mucA+ NM(16.0±4.4)* NM(6.8±1.3) 

PAO579 mucA+; muc23 M(56.6±7.4)* NM(9.0±1.2)* 

PAO581 mucA25 M(102.2±12.5) M(111.6±9.3) 

PAO1-VE2 mucA+; PGm-mucE M(76.3±8.3) NM(12.2±3.4) 

PAO1-VE19 mucA+; mucD::aacC1 M(32.6±6.8) M(40.1±4.3) 

PDO300 PAO1 mucA22 M(81.8±9.5) M(76.0±9.6) 

CF Clinical Strains    

C4700m mucA+ M(66.7±20.1) NM(17.2±2.5) 

C7447m mucA+ M(71.8±3.3) NM(18.2±1.8) 

 
  All strains were conjugated with pHERD20Ta or pHERD20T-muiAb, using E. coli pRK2013 

and cultured on PIA supplemented with 300 µg/mL of carbenicillin and 0.1% arabinose and 
incubated at 37⁰C for 24h, then at room temperature for 24h.  The alginate measurements for 
three independent experiments are represented as (Mean±Standard Deviation).  *-as 
presented in Figure 4. 
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Figure 6.  Schematic diagram illustrating the suppression of alginate overproduction by 
MuiA.  The sigma factor AlgU drives transcription of the alginate biosynthetic operon at the PalgD 
promoter following regulated intramembrane proteolysis of MucA in P. aeruginosa strains PAO579 
and PAO1-VE2 (2, 25, 29).  Expression of MuiA suppresses alginate overproduction in these strains 
following localization to the periplasm. 

Summary 
In summary, we coupled whole genome complementation of a PAO1 cosmid 

library and in vitro transposon mutagenesis to identify a genetic loci, PA1494 (muiA), as 

a novel inhibitor of alginate overproduction in P. aeruginosa strains with a wild-type 

mucA.   Also, expression of muiA in trans resulted in a decrease in alginate production, 

as well as transcriptional activity at the PalgD promoter.  As outlined in Figure 6, we 

propose that expression of muiA suppresses alginate overproduction via the periplasm 

in P. aeruginosa strains PAO579, PAO1-VE2, and clinical strains with a wild-type MucA.  
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Nucleotide sequence accession numbers.  The GenBank accession number for P. 

aeruginosa strain PAO579 mucoidy inhibitor A (muiA) gene is AF226874. 
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Chapter 5 Overview and Rationale 

 In chapter 4, I discovered that expression of gene locus PA1494 (muiA) can only 

inhibit mucoidy in P. aeruginosa strains possessing a wild-type MucA.  Additionally, I 

observed that MuiA required the periplasmic chaperone protease MucD to suppress 

mucoidy.  Based on these results, I wanted to determine the molecular mechanism by 

which MuiA suppresses mucoidy, as well as MucD’s role in this regulation.   

 In this chapter, I used Western blot and protease analyses to examine the 

relationship between MuiA and MucD.  Additionally, I compared the proteomic profiles of 

two different mucoid strains expressing MuiA in trans to identify potential effector 

proteins.       
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Abstract 

In Chapter 4, we reported that the expression of the gene locus PA1494 (muiA) 

did not suppress alginate overproduction in the PAO1-VE19, a mucoid mutant of PAO1 

containing a transposon-inactivated mucD.  The protein enoded by mucD is a 

periplasmic serine protease classified as a negative regulator of AlgU and alginate 

production.  Inactivation of MucD bypasses the requirement of AlgW for alginate 

overproduction.  In this chapter, I present my work that further explored the relationship 

between the newly identified alginate regulator, MuiA, and the periplasmic protease 

MucD.  Western blot analysis of MucD showed an increase in low molecular weight 

products in PAO579 when compared to PAO1, and expression of muiA in trans reduced 

the amount of these low molecular weight products to the level found in PAO1.  

Additionally, we observed a low amount of low molecular weight products of MucD in 

PAO579ΔalgU.  Zymogram protease analysis showed an increase in periplasmic 

proteolytic activity in PAO579 as compared to PAO1 at the molecular weight of ~50 

kDa.  Moreover, we observed a decrease in periplasmic proteolytic activity at a 

molecular weight of ~50 kDa when muiA was expressed in trans.  Using iTRAQ 

analysis, we observed the down-regulation of three proteins common between PAO579 

and PAO1-VE2 when muiA was expressed in trans.  These data indicate a relationship 

between the expression of MuiA, MucD and periplasmic protease activity, as well as 

identifies three potential downstream effectors of MuiA:  elongation factor-Tu (PA4277), 

PasP (PA0423) and trigger factor (tig, PA1800). 
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Introduction 

The overproduction of alginate, or mucoidy, is a virulence factor commonly 

associated with the development of a biofilm, and the establishment of a chronic P. 

aeruginosa infection in individuals with cystic fibrosis (9).  There is considerable 

research identifying many of the key proteins involved in the regulation of alginate 

production.  Most notable are the proteins AlgU, AlgW, and MucA.  The production of 

alginate is primarily controlled by the sigma factor known as AlgU, whose activity is 

modulated by its cognate anti-sigma factor MucA (15, 16, 20).  AlgW is a periplasmic 

protease localized in the inner leaflet of the cytoplasmic membrane, and acts on the C-

terminus of MucA.  The accumulation of periplasmic or outer membrane proteins, as 

well as environmental stressors, can activate AlgW to initiate proteolytic cleavage of 

MucA, thereby releasing AlgU to up-regulate the expression of the alginate biosynthetic 

operon (2, 19, 23).  In Chapters 3 and 4, we presented evidence that the accumulation 

of type-IV pili induces mucoidy through an AlgW-dependent pathway in the model strain 

PAO579 (22).  Additionally, expression of the gene locus PA1494, referred to as muiA, 

suppressed mucoidy in laboratory and clinical strains of P. aeruginosa possessing a 

wild-type MucA.  

The suppression of mucoidy by the expression of muiA in trans required the 

periplasmic serine protease MucD (Chapter 4, Table 2).  MucD is a homolog of the 

periplasmic serine protease DegP found in E. coli, and negatively regulates alginate 

production (1).  Similar to the role of DegP in E. coli, expression of MucD can remove 

misfolded or accumulated periplasmic proteins that may activate alginate production, 

such as the small envelope protein MucE (19).  Boucher et al. and Qiu et al. also 
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observed that inactivation of MucD in PAO1 resulted in a conversion to mucoidy (1, 19).  

Interestingly, inactivation of MucD resulted in the degradation of MucA independent of 

the periplasmic protease AlgW, and is dependent on the site-2 protease MucP (6).   The 

cytoplasmic chaperone protease complex ClpXP, in conjunction with Trigger Factor 

(tig), is required for the induction of mucoidy by degrading the cytoplasmic portion of 

MucA (18).        

In this study, we used Western blot of analysis to explore the relationship 

between expression of MuiA and MucD.  Expression of muiA from arabinose-inducible 

vector pHERD20T in PAO579 caused a decrease in the amount of lower molecular 

weight products of MucD.  Similarly, a decrease in the amount of lower molecular 

weight products of MucD was observed in PAO579ΔalgU.  Based on these 

observations, we examined the proteolytic activity in the periplasm of PAO579 using 

zymogram protease gel analysis.  We observed an increase in protease activity in 

PAO579 at a molecular weight of 50 kDa in PAO579 compared to PAO1.  Expression of 

muiA in trans resulted in a decrease in 50 kDa proteolytic activity to below detectable 

levels.  Additionally, a comparative proteomic analysis of PAO579 and PAO1-VE2 with 

and without expression of muiA in trans identified EF-Tu (PA4277), Trigger Factor 

(PA1800) and the extracellular protease PasP (PA0423) as potential effectors of MuiA.           
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Materials and Methods 

Bacterial strains and growth conditions.  Information regarding the bacterial strains 

and plasmids used in this study are provided in Table 1.  P. aeruginosa strains were 

grown at 37°C on Pseudomonas Isolation Agar (PIA).  When indicated, the media was 

supplemented with 300 µg/mL carbenicillin and 0.1% L-arabinose.  

Western blot analysis of MucD.  Bacterial strains were grown overnight at 37°C on 

PIA plates supplemented with carbenicillin and L-arabinose.  Cells were harvested and 

whole cell lysates were prepared using the ProteaPrep Cell Lysis Kit (Protea 

Biosciences), and the total protein content was quantified using Dc Assay (Bio-Rad). 

Protein samples (50 μg) were boiled for 10 min in Tris-Glycine Sample Buffer (Bio-Rad) 

and electrophoresed on a 12.5% Tris-Glycine polyacrylamide gel.  Samples were then 

transferred to a nitrocellulose membrane and blocked using 3% skim milk/PBS.  Anti-

MucD monoclonal antibody was used as the primary antibody, and horseradish 

peroxidase-labelled goat anti-mouse IgG was used as the secondary antibody.  Primary 

and secondary antibodies were diluted in 3% skim milk/PBS to 1:10,000 and 1:10,000, 

respectively.  Western blot results were imaged using ECL Advance Western Blotting 

Detection Kit (Amersham; GE Healthcare) and UVP BioImagining Systems.  Blots were 

stripped using 62.5 mM Tris-HCl pH 6.8, 2% SDS, 100 mM β-mercaptoethanol for 10 

minutes at 40°C, and re-probed using anti-RNAPα and horseradish peroxidase-labelled 

goat anti-mouse IgG. 
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Table 1.  Bacterial strains and plasmids used in this study. 

Strain, Plasmid Genotype, phenotype, description Reference 

E. coli 
 

 

TOP10 DH5α derivative Invitrogen 

P. aeruginosa 
 

 

PAO1 algU+mucA+; nonmucoid P. Phibbs* 

PAO579 algU+mucA+pilA108(muc23); mucoid J. Govan** 

PAO1-VE2 algU+mucA+, PGM-mucE (PA4033); mucoid (19) 

PAO1-VE19 algU+mucA+, mucD::aacC1 (PA0766); mucoid (19) 

Plasmids 
 

 

pCR4-TOPO 3.9-kb, ApR, KmR; TA cloning vector Invitrogen 

pRK2013 KmR, Tra Mob ColE1 (7) 

pHERD20T 
pUCP20T P lac replaced by 1.3-kb AflII-EcoRI fragment of araC-PBAD 

cassette 

(17) 

pHERD26T 
pUCP26T P lac replaced by 1.3-kb AflII-EcoRI fragment of araC-PBAD 

cassette 

(17) 

pHERD20T-muiA muiA (PA1494) from PAO1 in pHERD20T; EcoRI/HindIII This study 

pHERD26T-muiA muiA (PA1494) from PAO1 in pHERD26T; EcoRI/HindIII This study 

 *P. Phibbs, East Carolina University, Greenville, NC, USA  

**J. Govan, University of Edinburgh, Scotland, UK  
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Protein isolation and zymogram protease analysis.  P. aeruginosa strains PAO1 

pHERD20T, PAO579 pHERD20T, PAO579ΔalgU and PAO579 pHERD20T-muiA were 

cultured at 37°C on PIA plates supplemented 300 µg/mL of carbenicillin and 0.1% 

arabinose.  Cells were collected and the periplasmic proteins were harvested using the 

Epicentre Periplasting Kit (Epicentre).  Electrophoresis was performed as previously 

described, but with 12.5% polyacrylamide gel containing zymogen and casein (Bio-

Rad).  Following electrophoresis, gels were incubated in renaturing solution (2.5% Triton 

X-100) for 30 minutes at room temperature, then at 37⁰C for overnight in development 

solution (50 mM Tris, 200 mM NaCl, 5 mM CaCl2, 0.02% Brij-35, pH 7.5).  Finally, gels 

were stained with Coomassie Blue and then destained.  Completed gels were imaged 

using an UVP BioImagining System. 

 

iTRAQ MALDI-TOF/TOF proteome analysis.  The comparative isobaric tags and 

relative and absolute quantitation (iTRAQ) analyses of PAO579:PAO579+muiA and 

PAO1-VE2:PAO1-VE2+muiA were performed as previously described (5).  Briefly, P. 

aeruginosa strains PAO579 pHERD26T, PAO579 pHERD26T-muiA, PAO1-VE2 

pHERD26T and PAO1-VE2 pHERD26T-muiA were streaked on PIA plates 

supplemented with tetracycline and 0.1% L-arabinose and incubated overnight at 37⁰C.  

Cells were harvested and whole cell lysates were isolated using the ProteaPrep Cell 

Lysis Kit (Protea Biosciences) and total protein content was quantified using the Dc 

Assay (Bio-Rad).  Samples were labeled with isobaric tags for relative and absolute 

quantification, and were spotted using an ABI Tempo liquid chromatography-matrix 

assisted laser desorption ionization (LC-MALDI) instrument with a Merck Chromolith 
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CapRod monolith column.  Samples were then further analyzed using an ABI 4800 

MALDI-time of flight (TOF/TOF) using ABI ProteinPilot and Paragon software programs.  

These data are reported as an average ratio either greater or less than 1, indicating up- 

or down-regulation, respectively.  The number of peptides identified with at least 95% 

confidence level is also represented, as well as a P-value indicating the certainty that 

the average ratio differs from 1.  The smaller the P-value, the more likely any differential 

expression is significant.      
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Figure 1.  Western blot analysis of MucD.  Shown is a representative panels from three independent 
experiments in which 50 μg of whole cell lysate was loaded on a 12.5% Tris-Glycine polyacrylamide gel, electro-
transferred, and probed with anti-MucD monoclonal antibody.         
 

Results and Discussion 

MuiA suppresses the accumulation of low molecular weight products of MucD. 

Previously, we found that expression of MuiA failed to suppress mucoidy in the 

mucD mutant, indicating a possible relationship between MuiA and the periplasmic 

chaperone/protease MucD.  To explore this relationship further, we PCR amplified muiA 

and fused it into the PBAD-arabinose-inducible shuttle vector pHERD20T (pHERD20T-

muiA) (17).  The completed pHERD20T-muiA construct was then conjugated into 

PAO579 and the recipient bacteria cultured on PIA plates supplemented with 300 µg/mL 

carbenicillin and 0.1% L-arabinose, and incubated for 24 hrs at 37⁰C.  Similarly, we 

conjugated pHERD20T into PAO1, PAO579 and PAO579ΔalgU, to use as a vector 

control.  Western blot analysis probing for MucD showed a distinct banding pattern 

consistent amongst all test strains (Figure 1).  In PAO1 pHERD20T, we observed full 

length MucD at ~50 kDa, and subsequent bands at ~37 kDA, ~30 kDa and ~20 kDa 

(Figure 1).  These bands observed between ~50 to ~37 kDa are identified as high 

molecular weight (High MW), while banding between molecular weights ~30 and ~20 
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kDa are identified as low molecular weight (Low MW).  Interestingly, we observed an 

accumulation of Low MW products in PAO579.  Previously, it has been shown that the 

MucD homologue in E. coli, DegP, is auto-catalytic (12).  Additionally, expression of 

mucD is operonic (algUmucABCD), and the regulation occurs at a series of promoters, 

two of which are AlgU-dependent (20).  We previously showed a significant increase in 

transcriptional activity at the AlgU-dependent promoters in PAO579 (22).  Therefore, the 

accumulation of Low MW products could be due to a combination of increased 

transcription of the algUmucABCD operon along with MucD’s ability for auto-proteolytic 

activity.  Supporting this hypothesis, we observed a decrease in the Low MW products 

in the PAO579ΔalgU (Figure 1).  MucD has been reported to have an independent 

promoter in the region corresponding to mucC, although the sigma factor that drives this 

promoter remains unknown (24).  In the PAO579ΔalgU strain, the amount of MucD is 

reduced when AlgU is not present, suggesting that AlgU is responsible for the 

production of MucD.  We also observed that expression of MuiA decreased the 

accumulation of Low MW products, again possibly a result of decreased transcriptional 

activity at the AlgU-dependent promoter sites of algUmucABCD operon. 

MuiA suppresses proteolytic activity at ~50 kDa. 

Since MuiA expression suppresses the function of MucD, we wanted to 

determine if this activity corresponded to a decrease in periplasmic proteolytic activity.  

Previously, we discovered that the regulation of mucoidy in PAO579 requires the 

systematic degradation of MucA, initiated by the periplasmic protease AlgW, posibbly 

activated by a truncated type IV pilin (22).  Since the expression of MuiA only 

suppresses alginate overproduction in P. aeruginosa strains that utilize the degradation 
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of the wild-type MucA by AlgW, we would expect to see a decrease in proteolytic activity 

for AlgW.  Therefore, expression of MuiA should result in a decrease in proteolytic 

activity in the periplasm of PAO579.  In order to test this hypothesis, we extracted the 

total protein from the periplasms of PAO1 pHERD20T, PAO579 pHERD20T, 

PAO579ΔalgW and 

PAO579 pHERD20T-muiA.  

Equal amounts of protein 

were electrophoretically 

separated on 12.5% poly-

acrylamide gels containing 

the common proteolytic 

substrates zymogen and 

casein.  Interestingly, we 

did not detect any proteolytic activity at ~41 kDa, the predicted molecular weight of 

AlgW, in any of our test strains (data not shown).  This may be due, in part, to low 

amounts of AlgW found within the cell.  However, we did detect an increase in 

proteolytic activity for a ~50 kDa protein (Figure 2) in PAO579 as compared to PAO1.  

Additionally, we observed a decreased proteolytic activity of the ~50 kDa protein in 

PAO579ΔalgW (Figure 2).   As illustrated in Figure 1, we observed an increase in 

expression and activity of the 50 kDa periplasmic protein MucD in PAO579 as 

compared to PAO1.  The increase in MucD activity may correlate with the increased 

proteolytic activity observed at ~50 kDa (Figure 2), however further analysis will be 

required to identify the specific protease responsible for this activity.  Interestingly, we 

Figure 2.  Zymogram analysis of protease activty.  Analysis of 
protease activity of PAO1 pHERD20T, PAO579 pHERD20T (vector 
control), PAO579ΔalgW pHERD20T and PAO579 pHERD20T-muiA in 
which 25 μg of total protein extracted from the periplasm was loaded on a 
12.5% polyacrylamide gel containing zymogen and casein, renatured, and 
stained with R250 SuperBlue Coomassie Stain.    
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also observed a complete loss of proteolytic activity at ~50 kDa when muiA is expressed 

in trans (Figure 2).  Collectively, these data suggest the expression of muiA in trans 

causes a decrease in proteolytic activity of the protein located at 50 kDa.               

Comparative iTRAQ analyses of PAO1-VE2 and PAO579. 

To further explore the effect of MuiA on protein profiles of mucoid P. aeruginosa 

strains with a wild-type MucA, we used the iTRAQ technology to performed comparative 

proteomic analysis of PAO1-VE2 and PAO579 following expression of muiA in trans.  

Both PAO1-VE2 and PAO579 are mucoid due to the increased degradation of the wild 

type MucA by activated AlgW.  Both can be suppressed by muiA in trans.  Simply 

pHERD26T (vector control) and pHERD26T-muiA plasmids were conjugated into 

PAO1-VE2 and PAO579 and cultured on PIA plates supplemented with 200 µg/mL 

tetracycline, and expression of muiA was induced by the addition of 0.1% arabinose.  

Cultures were incubated at 37⁰C for 24 hrs, cells were collected, and total protein was 

extracted.  From the proteomic analysis of PAO1-VE2 pHERD26T compared to PAO1-

VE2 pHERD26T-muiA, we identified 211 distinct peptides, at a 95% confidence value, 

that correspond to 35 proteins (Table 2).  As expected, the most detected protein was 

MuiA (PA1494), due to its overexpression from the multi-copy plasmid, pHERD26T-

muiA.  Interestingly, we observed an overall down-regulation in most proteins, with the 

exception of increases in the outer membrane porin precursor OprO, the conserved 

hypothetical protein at gene locus PA4739, and the alginate regulatory protein, AlgP 

(Table 2).   

Comparative analysis of PAO579 pHERD26T and PAO579 pHERD26T-muiA 

identified 95 unique peptides, at a 95% confidence value, that correspond to 12 proteins 
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(Table 3).  Similar to the analysis of PAO1-VE2 pHERD26T vs. PAO1-VE2 pHERD26T-

muiA, the most detected protein was MuiA (average ratio of 6.09).  Overall, we 

observed a down-regulation in the remaining proteins.  However, only 3 of the 

remaining 10 proteins detected in the comparative analysis of PAO579 pHERD26T vs. 

PAO579 pHERD26T-muiA, were also detected in the analysis of PAO1-VE2 

pHERD26T vs. PAO1-VE2 pHERD26T-muiA:  PA4277 (Elongation Factor-Tu), PA0423 

(PasP), PA1800 (tig, Trigger Factor).   

Translational Elongation Factor-Tu binds to amino-acylated tRNA, following GTP-

mediated activation, and assists in transporting it to the A site of the ribosome.  After the 

dephosphorylation of GTP to GDP, EF-Tu is removed from the tRNA and repeats the 

cycle.  EF-Tu is encoded in duplicate on the gene tufA and tufB, and is the most 

abundant protein found within the bacterial cell (11, 13).  Typically, the amount of EF-Tu 

found within the bacterial cell is equimolar with that of tRNA (8, 13).  We observed a 

1.88- and 1.27-fold down-regulation of EF-Tu in PAO1-VE2 and PAO579 when muiA 

was expressed in trans (Table 2 and Table 3).  This may be due to the decreased 

translation of all the biosynthetic operons including the alginate biosynthetic operon, 

although this remains to be determined.   

Additionally, we observed a down-regulation in PA1800 in both PAO1-VE2 and 

PAO579 when muiA was expressed in trans.  The gene loci tig (PA1800), also known 

as Trigger Factor, encodes for a 48.6 kDa cytoplasmic chaperone involved in 

translocation and prevention of improper molecular interactions with nascent 

polypeptides (4, 21).  In 2008, Qiu et al. reported that tig, as well as the genes encoding 

the cytoplasmic chaperone/ serine protease complex ClpXP, were required for mucoidy 
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in the truncated mucA strain PAO581 (18).   ClpXP was also reported by Qiu et al to be 

responsible for the degradation of the cytoplasmic portion of a truncated MucA (MucA-

25), and was also required for mucoidy in P aeruginosa strains possessing a wild-type 

MucA (18).  Thus, the down-regulation of Trigger Factor could be in response to the 

overall decrease in the total activity of the proteolytic cascade responsible for the 

stabilization of cytoplasmic MucA resulting the loss of mucoidy.   

Induction of mucoidy in PAO1-VE2 and PAO579 requires AlgW to initiate the 

regulated intramembrane proteolysis of MucA.  However, overproduction of alginate in 

mucD mutant (PAO1-VE19) requires the site-2 protease MucP, but not AlgW  (6).  

Therefore, through the genetic analysis of mucoidy, we found that there are two types of 

signals that can activate protease-mediated alginate overproduction:  those that activate 

AlgW such as mucE, and those that activate MucP through the loss of MucD.  Our data 

in chapter 4 shows that the expression of MuiA is unable to suppress mucoidy in the 

truncated MucA strain PAO581, as well as the mucD mutant PAO1-VE19.  As reported 

in chapter 4, suppression of mucoidy by MuiA requires an intact N-terminal signal 

sequence for proper translocation to the periplasm.  These data suggest that MuiA is 

only capable of suppressing mucoidy in the AlgW-dependent pathway.            

Lastly, we observed a down-regulation in PA0423, or PasP, PAO1-VE2 and 

PAO579 when muiA was expressed in trans.  PasP is 20.8 kDa protein that possesses 

a type I export signal and is secreted to the extracellular matrix (3, 10).  Marquart et al. 

identified PasP to be an extracellular protease that causes erosion of the corneal 

epithelial tissue (14).  Zymogram proteolytic analysis of purified recombinant PasP 

showed distinct protease activity at 50 kDa (14).  This may explain the decrease in 
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proteolytic activity observed at 50 kDa when MuiA is expressed in trans (Figure 2).  

Stated more simply, expression of MuiA down-regulates PasP possibly resulting in a 

decrease in proteolytic activity at 50 kDa.  However, identification of PasP as the 50 

kDa protease seen in our experiments remains to be done.   

Summary 

In this chapter, we explored the possible mechanism by which MuiA suppresses 

mucoidy in P. aeruginosa strains with a wild-type MucA.  We observed that expression 

of MuiA caused a decrease in the accumulation of low molecular weight protein 

products in the chaperone/protease MucD.  We also observed that expression of MuiA 

cause a decrease in proteolytic activity at ~50 kDa.  Finally, comparative iTRAQ 

analyses of PAO1-VE2 and PAO579 identified three shared downstream effectors of 

MuiA. 
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Gene Locus Name and Functional 
Descriptiona Localizationb Average 

Ratioc 
Peptides 

(95%) P-Value 

PA1494 Conserved hypothetical protein, 
MuiA P 5.50 43 2.19E-10 

PA4277 Elongation Factor-Tu C 0.53 28 2.34E-05 

PA3280 Pyrophosphate-specific outer 
membrane porin OprO precursor O 1.57 13 0.024 

PA1342 Probable binding protein 
component of ABC transporter P 0.66 12 0.049 

PA5556 ATP synthase alpha chain C 0.70 11 0.037 
PA4739 Conserved hypothetical protein P 1.84 14 0.032 
PA0423 PasP E 0.72 11 0.004 
PA3529 Probable peroxidase C 0.77 10 0.039 
PA2300 Chitinase E 0.74 10 0.019 
PA4236 Catalase P 0.68 9 0.001 
PA4266 Elongation factor G P 0.64 6 0.013 
PA4922 Azurin precursor C 0.57 8 0.016 
PA3162 30S ribosomal protein S1 C 0.44 5 0.013 

PA1589 Succinyl-CoA synthetase alpha 
chain C 0.56 6 0.010 

PA3309 Conserved hypothetical protein C 0.42 6 0.004 
PA4431 Probable iron-sulfur protein C 0.51 4 0.003 

PA5489 Thiol:disulfide interchange protein 
DsbA P 0.67 4 0.025 

PA3692 Probable outer membrane protein 
precursor, LptF O 0.35 4 0.030 

PA4495 Hypothetical protein P or O 0.59 3 0.005 

Table 2.  iTRAQ proteomic analysis of muiA expression in PAO1-VE2. 
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PA4453 Conserved hypothetical protein P or O 0.64 3 0.047 
PA4935 30S ribosomal protein S6 C 0.41 3 0.025 
PA0548 Transketolase DsbB C 0.55 3 0.027 
PA5046 Malic enzyme C 0.50 4 0.026 
PA2743 Translation initiation factor IF-3 C 0.74 2 0.019 
PA5173 Carbamate kinase C 0.47 2 0.030 

PA0865 4-hydroyphenylpyruvate 
dioxygenase C 0.49 2 0.018 

PA1579 Hypothetical protein P or O 0.63 2 0.032 
PA1800 tig, Trigger factor C 0.39 2 0.017 
PA2001 Acetyl-CoA C 0.64 1 0.037 
PA5253 Alginate regulatory protein, AlgP C 1.78 5 0.018 
PA5161 dTDP-D-glucose 4,6-dehydratase C 0.58 1 0.026 

PA3480 Probable deoxycytidine 
triphosphate deaminase C 0.52 1 0.019 

a, PseudoCAP Function Class (www.pseudomonas.com); b, C=cytoplasm; E=extracellular, O=outer membrane, 
P=periplasm, U=unknown; c, >1=up-regulated, <1=down-regulated 
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Gene Locus Name and Functional 
Descriptiona Localizationb Average 

Ratioc 
Peptides 

(95%) P-Value 

PA1494 Conserved hypothetical protein, 
MuiA P 6.09 26 1.65E-14 

PA4277 Elongation Factor-Tu C 1.27 24 2.77E-06 
PA4385 GroEL protein C 2.24 13 1.48E-07 
PA1092 Flagellin type B E 1.47 10 0.0076 

PA0139 Alkyll hydroperoxide reductase 
subunit C C 2.04 5 0.040 

PA0423 PasP E 0.50 4 0.029 
PA3250 Hypothetical protein C 1.39 4 0.011 
PA4386 GroES protein C or P 0.49 3 0.025 
PA1800 tig, Trigger factor C 0.83 3 0.0039 
PA5554 ATP synthase beta chain C 0.80 2 0.031 
PA4847 Biotin carboxyl carrier protein C 0.70 2 0.033 

PA3480 DNA-directed RNA polymerase 
alpha chain C 0.72 1 0.031 

a, PseudoCAP Function Class (www.pseudomonas.com); b, C=cytoplasm; E=extracellular, O=outer membrane, 
P=periplasm, U=unknown; c, >1=up-regulated, <1=down-regulate

Table 3.  iTRAQ proteomic analysis of muiA expression in PAO579. 
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CHAPTER 6:  General Discussion and Conclusions 

 Pseudomonas aeruginosa is an opportunistic pathogen that is primarily 

associated with severe respiratory infections in individuals with the autosomal recessive 

disorder cystic fibrosis.  The ability of P. aeruginosa to readily form a biofilm through the 

overproduction of alginate allows for greater adhesion to the lung epithelial cells and 

impairs mucociliary clearance (4).  Moreover, the overproduction of alginate assists in 

the avoiding the host’s immunological response, and confers increased resistance to 

the antimicrobial and chemotherapeutic agents (7, 11).  The regulation of alginate 

production is primarily controlled by the alternative sigma factor AlgU and its cognate 

transmembrane anti-sigma factor MucA.   

In non-mucoid environmental strains, AlgU is sequestered to the inner membrane 

by the wild-type MucA.  However, upon contact with the environment found in the cystic 

fibrosis lung, P. aeruginosa quickly transitions from the non-mucoid phenotype to the 

alginate overproducing, or mucoid phenotype.  This transition results from two 

regulatory mechanisms:  First, response to internal or external stressors causes the 

release of AlgU through the regulated proteolytic degradation of MucA; Second is the 

selection for those strains that possess a “loss of function” mutation in MucA.  It is 

generally accepted that those early colonizing strains utilize the proteolytic degradation 

of MucA for induction of alginate overproduction prior to the selection for mutations in 

MucA.  Moreover, this transition from the non-mucoid to the mucoid phenotype is 

emblematic of a decline in the overall health in individuals afflicted with cystic fibrosis 

(9).  Therefore, it is beneficial to understand the regulatory mechanisms responsible for 

the conversion to mucoidy in those P. aeruginosa strains with a wild-type MucA, in order 
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to prevent a chronic respiratory infection.  The overall goal of this dissertation was to 

identify and characterize novel regulators of alginate overproduction in those P. 

aeruginosa strains carrying a wild-type MucA.  In this chapter, I will review and discuss 

the research detailed in this dissertation and suggest future studies.   

  In Chapter 2, we used next generation sequencing to identify those mutations 

that are unique to the P. aeruginosa strain PAO579.  Based on our comparative 

genomic analysis, we identified 31 mutations that were present in PAO579 but were not 

present in PAO1 (Chapter 2, Table 1).  Of these 31 mutations, 16 were classified as 

non-synonymous, while the remaining 15 were classified as synonymous mutations.  As 

expected, we identified mutations in the leuA and rpsL genes, corresponding to the 

leucine-axotrophic and streptomycin-resistant phenotypes observed in PAO579.  

Interestingly, we identified a single nucleotide polymorphism resulting in a non-

synonymous mutation in the DegS-like serine protease AlgW.  AlgW has been shown to 

confer mucoidy in P. aeruginosa by proteolytically degrading the transmembrane anti-

AlgU factor, MucA (3, 15).  Also of importance, we identified three sequential mutations 

in pilA, a gene encoding the precursor for type-IV pilin.  Therefore, next-generation 

sequencing is an excellent tool for comparative genomic analyses and the identification 

of classical mutations  

In Chapter 3, I determined which mutations, identified through the sequencing 

analysis detailed in Chapter 2, were ultimately responsible for conferring mucoidy in 

PAO579.  Using standard molecular techniques and complementation analyses, I 

determined that the sequential mutations present in the pilA gene were responsible for 

the induction of mucoidy in PAO579.  Further analyses determined that these sequential 
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mutations result in a truncation in the PilA protein, revealing a C-terminal amino acid 

motif of phenylalanine-threonine-phenylalanine (FTF), which causes a release of the 

alternative sigma factor AlgU following the proteolytic degradation of MucA by AlgW.  

Previously, Boucher et al. reported that the sigma factor RpoN was required for mucoidy 

in PAO579, while the alternative sigma factor AlgU was not required for mucoidy (2).  

Based on their analysis, they suggested that the use of RpoN in place of AlgU for the 

induction of mucoidy was due to sigma factor antagonism (2).  My results suggest 

otherwise.  I did observe that RpoN is required for mucoidy in PAO579, however my 

data suggests that this is due to RpoN’s role in regulating transcription of AlgW and the 

truncated PilA.  Therefore, my results indicated that RpoN acts upstream of algD.  

Further supporting this model, I observed that the deletion of AlgU resulted in loss of 

mucoidy, confirming AlgU’s role in regulating mucoidy in PAO579.  I also observed that 

the truncated PilA protein did not localize to the cell surface, due to decreased stability.     

Taken together, the results from chapters 2 and 3 clearly outline a pathway in 

which truncated pilin can confer mucoidy in P. aeruginosa strains possessing a wild-

type MucA.  However, these results pose many interesting questions.  First, will 

exposure to subclinical doses of carbenicillin consistently select for mucoid colonies 

containing these same mutations?  This could be determined by repeating the previous 

experiments conducted by Govan and Fyfe (8), with the addition of PCR and sequence 

analysis targeting the particular genetic loci identified in this study.  Second, what is the 

clinical relevance of the sequential mutations causing a truncation of type-IV pilin?  

Simply stated, are these mutations found in clinical isolates?  Based on my preliminary 

analysis, I was unable to detect the three sequential mutations in pilA found in PAO579 
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in clinical strains possessing a wild-type MucA. However, I was only able to examine a 

small sample size of early colonizing clinical isolates possessing a wild-type MucA.  

Expanding this analysis to included hundreds of clinical isolates could help determine 

the clinical relevance of this mutation.  Finally, does the truncation of PilA have a 

synergistic effect regarding evasion from the host’s immune system?  I determined that 

the truncated PilA found in PAO579 does not localize to the cell surface due to an 

overall lack of stability.  PilA is a known immunogenic target for macrophages and 

neutrophils (12, 16).  Simultaneously, the truncation of PilA activates alginate 

overproduction, providing additional protection from the host’s immunological response 

(11).  Additional experiments analyzing immunological markers should be performed to 

determine whether this synergistic relationship is present.  Specifically, western blot 

analyses targeting interleukin-8 in CF- and non-CF cell lines cultured in the presence of 

PAO579 could best characterize this relationship.  Together, these future studies will 

identify the prevalence and relevance that mutations resulting in the truncation of type 

IV pili have with respect to the formation of a mucoid biofilm, and the development of a 

chronic respiratory infection. 

  In Chapter 4, I shifted the focus of my study to identifying possible genetic 

mechanisms to prevent the formation of a mucoid biofilm.  To do so, I expanded upon 

the initial observations of a previous graduate student, Dr. Nathan Head.  In this study, 

he used whole genome complementation analysis using a PAO1-derived cosmid library, 

coupled with in vitro transposon-mediated mutagenesis, to identify possible inhibitors of 

alginate overproduction.  These experiments were performed using PAO579 as the 

model strain; however these results were preliminary due to a lack of data determining 
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the precise mechanism by which PAO579 conferred mucoidy.  As a result of my 

continuance of this study, I identified the expression of gene locus PA1494 can inhibit 

mucoidy in P. aeruginosa strain PAO579.  Moreover, expression of PA1494, also 

referred to as mucoid inhibitor A (muiA), suppressed mucoidy in strains possessing a 

wild-type MucA.  This was not observed in mucoid P. aeruginosa strains with MucA 

mutations.  MuiA’s ability to suppress alginate overproduction required correct 

localization to the periplasm.  This finding supports previous reports identifying MuiA as 

a periplasmic protein (10).    Interestingly, characterization of MuiA based on sequence 

analysis identified no homologs in other Pseudomonads or E. coli.  While this study 

identifies MuiA as a potential target for the suppression of mucoid biofilm formation, 

many questions remain regarding the role of MuiA within the cell.  Primarily, what 

function does MuiA play in the physiology of P. aeruginosa?  To answer this question, 

X-ray crystallography analysis of the protein could be performed to determine the three-

dimensional structure of MuiA, as well as identify any potential active sites or binding 

domains.  Additionally, identifying those proteins which interact with MuiA within the 

periplasm could be particularly useful information in determining MuiA’s function.  Since 

the expression of MuiA was unable to suppress mucoidy in the absence of the 

periplasmic serine protease MucD, then, generally speaking, the mechanisms that 

activate protease-mediated alginate overproduction can be classified into two types.  

The first mechanism requires the activation of AlgW to initiate the degradation of MucA 

(3, 5, 15, 17), while the second occurs following the inactivation of MucD, and 

subsequent activation of the site-2 protease, MucP (6).  Despite this analysis, additional 

experiments to identify and characterize proteins that specifically interact with MuiA 
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should be performed.  Techniques such as the co-immunoprecipitation of MuiA, as well 

as bacterial of yeast two-hybridization, should be performed, with priority given to 

proteins found within the periplasm.  Comparison of the results garnered from these 

methods could provide potential candidates for further analysis. 

Experiments further examining the relationship between MuiA and MucD are 

presented in chapter 5.  MucD is a periplasmic serine protease that has considerable 

homology with the protease DegP found in E. coli (1).  Moreover, MucD plays a role in 

both the suppression and induction of mucoidy in P. aeruginosa (1, 6, 19, 20).   Western 

blot analysis probing for MucD revealed an accumulation of lower molecular weight 

bands in the mucoid strain PAO579, when compared to the non-mucoid progenitor 

strain PAO1.  However I did not observe the level of accumulation of lower molecular 

weight bands when the alternative sigma factor AlgU was deleted in PAO579.  Also, 

expression of muiA in trans reduced the amount of lower molecular weight bands in 

PAO579 to levels comparable to PAO1.  Collectively, these data suggest that there is 

an increase in expression of mucD in PAO579 as compared to PAO1.  Moreover, we 

observed a decrease in the accumulation of lower molecular weight products in 

PAO579ΔalgU, suggesting that the increased expression of mucD in PAO579 is likely 

due to auto-regulation of the algUmucABCD operon by AlgU.  However, these data do 

not identify a clear association between MuiA and MucD outside of MuiA’s ability to 

suppress the release of AlgU.  Based on these results, I wanted to determine if the 

expression of muiA affected proteolytic activity in PAO579.  I observed increased 

proteolytic activity at ~50 kDa.  Moreover, we also observed a decrease in proteolytic 

activity at ~50 kDa when MuiA is expressed in trans. These data possibly corresponds 
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to the proposed increased expression of MucD in PAO579, suggested in the previous 

western blot analysis, however the specific protease needs to be determined using 

either tandem mass spectroscopy or de novo peptide sequencing.   In future studies, 

the possible relationship between of MuiA and MucD could be succinctly determined 

using in vitro protein-protein interaction assays, or through bacterial two-hybridization.   

 The comparative iTRAQ proteomic analyses to identify changes in the protein 

profiles of mucoid strains PAO579 and VE2, due to the expression of muiA in trans is 

presented in chapter 5.  Based on these analyses, we identified three common proteins 

effectors down-regulated in both VE2 and PAO579 when muiA is expressed in trans:  

Elongation Factor-Tu (EF-Tu), Trigger Factor and the extracellular protease PasP.  The 

down-regulation in EF-Tu could be in response to the decrease in expression of the 

alginate biosynthetic operon; however this remains to be determined.  Previously, Qiu et 

al. identified Trigger Factor as being required for the proteolytic degradation of the 

cytoplasmic portion of MucA (14).  Therefore, the down-regulation of Trigger Factor may 

be in response to the decrease in regulated intramembrane proteolysis of MucA.  An 

interesting protein down-regulated by expression of muiA is PasP. This extracellular 

protease is associated with corneal pathogenicity, and causes proteolytic degradation at 

~50 kDa (13).  These findings correlate with the decrease in proteolytic activity at ~50 

kDa observed in the prior zymogram protease analysis of PAO579. Tandem mass 

spectroscopy is needed to determine whether the protein responsible for the increased 

protease activity at ~50 kDa is PasP. 
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Summary and Conclusions 

The goal of this thesis was to identify novel regulators of alginate overproduction, also 

known as mucoidy, in P. aeruginosa strains possessing a wild-type MucA.  The work in 

Chapters 2 and 3 identified the mutations resulting in the truncation of type-IV pili and 

demonstrated that this mutated protein can induce mucoidy via the regulated 

intramembrane proteolysis of wild-type MucA in the model strain PAO579.   Chapters 4 

and 5, describe the identification and characterization of a novel inhibitor of alginate 

overproduction in P. aeruginosa strains possessing a wild-type MucA.  An illustration 

summarizing the findings presented in this dissertation can be found on page 114 

(Figure 1).  However, many questions remain regarding the prevalence and clinical 

relevance of truncated type-IV pili-mediated alginate overproduction, and the 

mechanism by which MuiA suppresses mucoidy in P. aeruginosa.      

 There has been a considerable amount research focusing on the role of the 

alternative sigma factor AlgU and its cognate anti-sigma factor MucA in the regulation of 

alginate overproduction in P. aeruginosa.  Previous studies have shown the importance 

of mucA mutations in establishing a chronic infection within the cystic fibrosis lung 

through the formation of mucoid biofilm.  However, there are few studies that identify the 

genetic regulatory components involved in induction of mucoidy prior to selection for 

MucA mutants.  In this study, I identified and characterized two novel regulators that 

control alginate overproduction in strains possessing a wild-type MucA.  Understanding 

the mechanism by which these regulators control alginate overproduction will give us a 

better understanding of the progression from the non-mucoid to the mucoid phenotype 

in early colonizing strains of P. aeruginosa.  More importantly, the identification of novel 
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inhibitors of alginate overproduction may provide a solution for preventing the 

establishment of chronic respiratory infection in individuals afflicted with cystic fibrosis.  
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Figure 1. Illustration summarizing the research contained in this dissertation.  In PAO579, three 
tandem mutations coding a premature stop codon in pilA results in the truncation of the pilin protein to 
108 amino acids (PilA108) (18).  The sigma factor RpoN drives for transcription of pilA108 (muc-23) and 
algW (not shown).  PilA108 possesses a C-terminal motif of phenylalanine-threonine-phenylalanine 
(FTF) which activates the periplasmic protease AlgW after translocation to the periplasm (17).    Upon 
activation, AlgW initiates the proteolytic degradation of MucA, thereby releasing AlgU.  The release of 
AlgU drives transcription at the alginate biosynthetic operon.    Expression of MuiA suppresses alginate 
overproduction following localization to the periplasm.   IM, inner membrane; OM, outer membrane. 
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