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ABSTRACT 
 

Sarcopenia is the loss of muscle mass and strength that occurs with aging. Here 

we examine the effects of aging and gender on the regulation of  molecules believed to 

regulate muscle growth and adaptation in the F344/BN rat. In male animals, soleus and 

EDL muscle/body weight ratio declined continuously with aging while muscle atrophy in 

female animals plateaued at 26-months and remained constant thereafter. Aging 

increased the phosphorylation of protein kinase-B (Akt) and the mammalian target of 

rapamycin (mTOR) in the female but not male soleus muscle. This finding was 

associated with the attenuation of muscle atrophy observed in female animals. Male 

and female soleus muscles exhibited higher p70S6k phosphorylation with aging. 

Irrespective of muscle type or gender, aging was associated with increased calcineurin 

expression. Taken together, these data suggest that indices of protein synthesis and 

muscle adaptation are regulated differently with aging in different muscle types and 

gender.  

 (Keywords: Aging, sarcopenia, F344/BN, muscle, gender, soleus, EDL, diaphragm) 
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CHAPTER-I 
 

INTRODUCTION 
 

Sarcopenia is the loss of muscle mass that occurs as a result of the aging 

process. The number of aged (>60 years) increased from 31.2 million people in 1990 to 

35.0 million in 2000 in the United States (WHO Brasilia declaration on healthy aging, 

1996). It has been estimated that the direct healthcare costs of sarcopenia were $18 

billon in the United States in 2000 [1] with this number expected to rise as the number of 

aged increase. Sarcopenia is a consequence of normal aging that is characterized by 

decreased muscle strength, reduced performance and diminished quality of life [2, 3], 

Indeed, by the seventh and eighth decade of life, maximal voluntary contractile strength 

is decreased, on average, by 20–40% for both men and women. The etiology of 

sarcopenia includes physical inactivity, motor-unit remodeling, decreased protein 

synthesis, increased cytokine activity, oxidative stress, and decreased hormone 

levels[4]. How gender differences may affect the cause or progression of sarcopenia is 

not well understood [5].  

Rat models and substrains exhibit different life expectancies [6] and biological 

characteristics [7]. Probability of survival curves generated by the National Institute of 

Aging (NIA) were employed to identify F1 generation hybrid of Fischer 344/NNiaHSd X 

Brown Norway/BiNia (F344/BN), male and female rats ages so as to correspond 

roughly to humans in their third, seventh, and eighth decade of life, respectively [8]. This 

latter time point was chosen because the World Health Organization defines this age 
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group as ‘‘elderly’’,  a time where muscle atrophy and dysfunction are present and 

accelerating in humans [9]. The relatively new F344/BN hybrid model appears to be 

more resistant to diseases associated with aging [10] than the Fischer 344 (F344) rat 

strain. Average survival age is higher in the F344/N X BN than the F344, suggesting 

perhaps that they are a better model of age-related muscle loss since they appear to 

survive long enough to develop sarcopenia [10]. How aging affects skeletal muscle in 

the aging F344/BN is not well understood. Indeed, to our knowledge, there are no 

studies that have compared aging male and female F344/BN rats together within the 

same study.  

Aging in the rodents is accompanied by a progressive loss of skeletal muscle 

fibers. The muscle twitch also becomes slower, probably as a result of fiber-type 

conversion from fast-twitch glycolytic to slow-twitch oxidative fibers [11]. Recent data 

has demonstrated that fast twitch and slow twitch muscles in male animals respond 

differently during aging [11, 12]. Whether similar differences between muscle types are 

observed in the aging female F344/BN rat has not been investigated.  

Although age-associated decreases in strength per unit muscle mass, or muscle 

quality, may play a role, the majority of strength loss can be accounted for by decreased 

muscle mass [13]. It is thought that the ability of skeletal muscle to adapt to an 

increased contractile stimulus diminishes with aging [14]. The mechanism(s) 

responsible for this decreased adaptive potential are not clear. Studies investigating 

striated muscle hypertrophy have established that the p70 ribosomal protein S6 kinase 

(p70S6k) plays a critical role in regulating protein synthesis and muscle adaptation 

following an exercise stimulus [15-17]. In addition to p70S6k, protein kinase B (Akt), 
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glycogen synthase kinase-3 beta(GSK - 3β), the mammalian target of rapamycin 

(mTOR) and calcineurin (CnA), have also been identified as key signaling molecules 

involved in the regulation of muscle adaptation to increased contractile loading [18]. 

How the regulation of these molecules is altered with aging or with genders is not well 

understood.  
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HYPOTHESIS/PURPOSE OF STUDY 
 

Our long term goal is to identify the cellular and molecular mechanisms of age-

related skeletal muscle loss. The present study was designed to determine whether 

aging alters the regulation of proteins thought to be involved in regulating muscle 

adaptation. Here we examine the effects of aging and gender on the expression and 

phosphorylation of Akt, mTOR, p70S6k, and calcineurin in the fast-twitch extensor 

digitorum longus (EDL), the slow-twitch soleus and the continuously active diaphragm. 

We hypothesized that aging will alter the concentration of signal transduction proteins in 

EDL, soleus and diaphragm differently and that the regulation of these molecules may 

differ across genders.  

 

Specific Aim: To determine how aging effects the regulation of p70S6k, Akt, 

mTOR and calcineurin in the male and female F344/BN EDL, 

soleus and diaphragm muscles.  

 Hypothesis:    Aging will alter the regulation of p70S6k, Akt, mTOR and 

calcineurin differently in male and female F344/BN EDL, soleus, 

and diaphragm muscles.  
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SIGNIFICANCE OF STUDY: 
 

Sarcopenia is associated with increased health care costs and negatively 

impacts quality of life for many of the United States aging population. A greater 

understanding of the factors that cause and contribute to the progression of sarcopenia 

is needed.  Further studies on the mechanisms leading to sarcopenia could provide the 

basis for prevention and the establishment of therapeutic methods that will contribute to 

an increase in the standard of living among elderly people [19]. This study will 

determine how aging alters the regulation of proteins thought to govern muscle 

adaptation. The identification of age-related changes in the regulation of these proteins 

could lead to a greater understanding of the mechanisms leading to sarcopenia and 

could provide the basis for the establishment of therapeutic interventions that could be 

used to target sarcopenia.  
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CHAPTER-II 
 

REVIEW OF LITERATURE 

INTRODUCTION 

A review of the pertinent literature concerning the present study will be presented 

in the following chapter. The following areas will be addressed: 1) Age associated 

alterations in skeletal muscle, 2) Regulators of muscle plasticity and protein synthesis, 

and 3) Effects of gender on age-related changes in muscle mass and quality. 

 

Age associated alterations in skeletal muscle 

 

Isometric and dynamic strength increases up to the third decade, remains almost 

constant to the fifth decade, and then decreases with increasing age [20]. The loss of 

muscle mass and strength with aging, also referred to as sarcopenia, is highly prevalent 

and predicts several adverse outcomes, including disability, institutionalization and 

mortality. Although the exact mechanisms underlying sarcopenia are unknown, 

accumulating evidence suggests that an age-related acceleration of myocyte loss via 

apoptosis might represent a key mechanism driving the onset and progression of 

muscle loss [21].  A number of physiological factors have been suggested to be 

involved in sarcopenia, including an age-related reduction of growth hormone [22], 

thyroxine [23], and, in women and men, estrogen and testosterone [24], respectively. A 

number of mechanisms proposed include alterations in motor unit organization [25-28], 

contraction-induced injuries [29, 30], deficient satellite cell recruitment [31], increases in 
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free radicals and oxidative stress [32, 33], and age-related accumulation of 

mitochondrial abnormalities. Young et al., (1984, 1985), used ultrasonography and 

found 25-35% reductions in the cross sectional area of the quadriceps muscle in men 

and women over the age of 65 years when compared to young [34, 35]. The computed 

tomography scanning technique, performed by several researchers, has shown similar 

age-related reductions in cross sectional area of the psoas major and sacrospinalis 

muscles,[36] the quadriceps muscle [37], the brachial biceps and triceps muscles[38, 

39] and the plantar flexors [38, 39] of men over the age of 65.  

A great deal of research on aging has been performed on the aged rats because 

of the difficulties associated with aging studies in humans such as ethical, cross 

sectional design and inability to control life time activity pattern of the subjects. As with 

human beings, aging in animals also appears to affect muscle function. In rodents, 

several investigators have noted a similar, preferential reduction in type II fiber cross 

sectional area (CSA) and little or no decline in type I fiber CSA [40, 41]. Taken together, 

these data suggest that age-associated changes in fiber cross sectional area, muscle 

mass, may vary across different muscle fiber types and muscles depending on whether 

the muscle is used for weight bearing or non-weight bearing activity [42]. 

Skeletal muscle exhibits a great deal of plasticity, which is specific to the stimulus 

it receives [43, 44]. Muscle plasticity or the ability of muscle to adapt to an altered 

contractile stimulus decreases with aging in both humans and animals [14, 45-49]. 

Hypertrophy of muscle cells in response to increased functional demand is a well 

established phenomenon. It has been shown that resistance training in humans leads to 

muscle hypertrophy which is mainly the result of an enhanced cross-sectional area of 
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individual muscle fibers [23, 50, 51]. Similar adaptations have been observed in animals 

after ablation or denervation of synergistic muscles [50, 52]. The mechanisms 

underlying age-associated decreases in muscle plasticity are unknown.  Faulkner et al., 

2007 concluded that, for both humans and rats, the timing and magnitude of the loss of 

motor units is similar to that for muscle fibers which suggests that the mechanism 

responsible for the loss of fibers and for the loss of whole motor units is the same. It is 

thought that the degree of atrophy of the fibers that remain is largely dependent on the 

habitual level of physical activity of the individual [53]. 

 

Summary: 

The age associated deterioration in size, mass, and function of skeletal muscle 

was observed in both human and animal skeletal muscle and can be or at least partly 

be reversed by resistance training. These age associated changes may be due to 

changes in hormonal activity, muscle type (weight bearing or non weight bearing), or 

due to increased oxidative stress and several others, but the exact molecular 

mechanisms underlying the sarcopenia is still unknown.  
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Regulators of muscle plasticity and protein synthesis 

 

A decrease in the production of anabolic hormones such as testosterone, growth 

hormone and insulin-like growth factor-1(IGF-1) impairs the capacity of skeletal muscle 

to incorporate amino acids and synthesize proteins. An increase in the release of 

catabolic agents, specifically interleukin-6, amplifies the rate of muscle wasting among 

the elderly [54]. IGF-1 belongs to the insulin family of peptides and acts as a growth 

factor in any tissues and tumors. Locally acting IGF-1 enhances muscle growth and 

differentiation, prevents age related muscle atrophy, and potentiates regeneration after 

injury [55, 56]. IGF-1 also increases skeletal muscle anabolic processes and attenuates 

the ubiquitin – proteasome pathway and the formation of oxidative products. Similarly, 

IGF-1 decreases oxidative damage in the myocardium with aging [57].  Entela et al., in 

2001, examined mitochondrial abnormalities in muscles undergoing sarcopenia and 

concluded that different muscles accumulate different levels of electron transport 

system abnormalities during normal aging and also that these electron transport system 

abnormalities contribute to senescent muscle atrophy [58]. The exact role of the 

mitochondria in muscle sarcopenia is not well understood. 

Tumor necrosis factor-alpha (TNF- ) is elevated in the serum as a result of 

aging and it promotes pro-apoptotic signaling upon binding to the type I TNF receptor 

[59]. It is not known if activation of this apoptotic pathway contributes to the well 

documented age-associated decline in muscle mass. Skeletal muscles containing type 

II fibers are more susceptible to muscle mass losses via the extrinsic apoptotic pathway 

[60]. There is an overall increase in calpain activities associated with muscle aging, 
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suggesting that the calcium-dependent proteolytic system is indeed involved in 

sarcopenia [61].  Calcineurin (CnA), a calcium-sensitive phosphatase, plays a critical 

role in transduction of calcium(Ca2+) signals in different types of cells [62]. The main 

substrate of calcineurin is the nuclear factor of activated T cells (NFAT), a family of 

transcription factors (NFATC1–C4). During periods of sustained elevations of calcium, 

calcineurin dephosphorylates NFATC1–C4, allowing NFAT to translocate to the 

nucleus. A Ca2+-dependent CnA signaling pathway has been implicated both in the 

hypertrophic response and in the neurally dependent transition of skeletal muscle from 

fast-twitch to the slow-twitch phenotype [63, 64]. How CnA is regulated with aging in 

skeletal muscle has not been fully elucidated. 

Human sarcopenia may be linked to a reduction in the activity or sensitivity of 

anabolic signaling proteins such as growth hormone receptor (GHR), IGF-1, and protein 

kinase B (Akt). In addition, TNF- , suppressor of cytokine signaling-3 (SOCS-3), and 

myostatin are other potential candidates that may be involved in regulating age-

associated muscle loss [65]. A lack of myostatin appears to reduce age-related 

sarcopenia and loss of muscle regenerative capacity [66]. Akt plays a number of roles 

that may be important in sarcopenia including suppression of apoptosis and the 

modulation of muscle-specific protein degradation via the inhibition of the expression of 

the ubiquitin E3 ligases atrogin-1 and muscle ring factor-1 (MuRF-1). Akt activity also 

promotes protein translation via the inhibition of glycogen synthase kinase-3 β and the 

activation of mammalian target of rapamycin (mTOR). The activation of Akt is known to 

be sensitive to insulin and IGF-I levels [67]. The phosphatidyl inositol 3-kinase(PI3K) 

signaling substrate mTOR has been implicated in skeletal muscle hypertrophy during 
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overload [68]. After an acute bout of contractile activity and during chronic periods of 

overload, phosphorylation of mTOR and its downstream target 70-kDa ribosomal 

protein S6 kinase (p70S6K) are increased [68-71], and the degree of p70S6K 

phosphorylation after a single bout of contractile activity is strongly associated with 

increase in muscle weight. Correspondingly, pharmacological inhibition of mTOR 

prevents overload-induced hypertrophy in both type I and type II fibers [68]. Bodine et 

al., in 2001, concluded that activation of the Akt/mTOR pathway and its downstream 

targets, p70S6K and PHAS-1/4E-BP1, is requisitely involved in regulating skeletal 

muscle fiber size, and that activation of the Akt/mTOR pathway can oppose muscle 

atrophy induced by disuse [68]. How aging may affect the ability of skeletal muscle to 

regulate Akt →mTOR→p70S6k signaling is not well understood. 

 

Figure 1  

 

Schematic representation of molecules thought to be involved in Akt-mTOR pathway 
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Although extracellular regulated kinase 1/2 (ERK1/2) activity does not appear to 

be sufficient for myogenesis in vitro or for muscle hypertrophy in vivo [72], ERK1/2 

signaling is required for proliferation of satellite cells and may play a permissive role in 

the network of signals required for regeneration and hypertrophy of skeletal muscle. 

Emerging evidence suggests that nuclear factor-kappa B (NF-kappa B) is one of the 

most important signaling pathways linked to the loss of skeletal muscle mass in various 

physiological and patho-physiological conditions. Activation of NF-kappa B in skeletal 

muscle leads to degradation of specific muscle proteins, induces inflammation and 

fibrosis, and blocks the regeneration of myofibers after injury / atrophy [73]. How aging 

may alter the regulation of ERK1/2 and NF-kappa B in skeletal muscle has not been 

established. 

 

 

Summary 

The protein content in a skeletal muscle is dependent on the rate of protein 

synthesis and the rate of protein degradation. The anabolic hormones like growth 

hormone, insulin, testosterone in males, and estrogen in females initiates protein 

synthesis via several signaling pathways. Akt activity promotes protein translation via 

the inhibition of glycogen synthase kinase-3 β and the activation of mammalian target of 

rapamycin (mTOR) and it’s down stream protein, s6 ribosomal protein kinase (p70S6k). 

An increase in the release of catabolic agents like interleukin-6, TNF- α and activation of 

molecules like nuclear factor-kappa B(Nf-KB), B-cell CLL/lymphoma 3(BCL3) amplifies 

the rate of protein degradation in skeletal muscle among the elderly. How skeletal 
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muscle is able regulate all these anabolic and catabolic molecules with aging is not well 

understood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

14 
 

Effects of gender on age-related changes in muscle mass and quality 

 

In the developed world, most women live one-third of their lives in a state of 

profound estrogenic deprivation [74]. In addition, with advancing age of women there is 

a decrease in the serum levels of testosterone and androgens [75]. Moreover, elderly 

males have altered local levels of bioactive estrogens, secondary to reduced secretion 

of adrenal sex-steroid precursors to estrogen by aromatization [76]. Age-related 

strength losses are secondary to decline in skeletal muscle mass in men and women. 

While women may experience earlier strength losses than men, overall, age associated 

decreases in strength are similar. Although men may experience greater losses of total 

muscle mass, recent evidence points toward greater declines in muscle quality in older 

women [77]. Men are stronger than women at all ages [78] and in both sexes the 

average values for maximum voluntary strength of the dorsi flexors and plantar flexors 

begin to decline in the 6th decade [78]. Body mass index (BMI) is a strong predictor of 

skeletal muscle mass in women and men. The relative rate of skeletal muscle loss in 

men substantially exceeds the relative rate of bone mineral loss. In women, the relative 

losses of skeletal muscle and bone proceed at similar rates [79]. Aging men and women 

would therefore be anticipated to develop very different musculoskeletal relationships in 

old age. Falls, weakness, frailty, and ultimately fractures can potentially arise from 

changes in bone composition and quality, a loss of supporting and protective skeletal 

muscle, or a combination of the two [13, 79]. Several studies have shown differences in 

the prevalence of sarcopenia between men and women, with men being more 

susceptible [80-82], again suggesting that hormones may play a role in age-related 

muscle loss. Sex-related differences exist at the whole muscle and single fiber levels 



 
 

15 
 

with regarding to the strength and fiber cross-sectional area [83]. There is 

epidemiological data suggesting that there is a relationship with reduced testosterone 

levels and the decline in muscle mass, strength and functional status [84-86]. 

Testosterone replacement has resulted in increased muscle mass and strength in 

hypogonadal populations, elderly men and increased strength and protein synthesis in 

elderly women [87]. 

Age-related sarcopenia is largely confined to type II muscle fibers when 

compared to type I muscle fibers [88]. Rice KM and Blough ER, in 2006, worked on 

sarcopenia related apoptosis in different muscle fiber types and concluded that the 

apoptotic regulatory events differ between fiber types in the aging male F344/BN rats 

and that mitochondrial-dependent apoptosis pathways may not play a primary role in 

the loss of muscle nuclei with aging [89]. Whether similar findings are observed in the 

aging female F344/BN rats is not known.  

Satellite cells are small mononuclear progenitor cells with virtually no cytoplasm 

found in mature muscle. They are found sandwiched between the basement membrane 

and sarcolemma (cell membrane) of individual muscle fibers, and can be difficult to 

distinguish from the sub-sarcolemmal nuclei of the fibers. This cell type was discovered 

in 1961 by Mauro in muscles of anuran amphibians and given the term satellite cells. 

Although satellite cells are found in all muscle fibers their distribution is imbalanced. 

Increased numbers of satellite cells are found within muscles composed of type I, slow 

oxidative fibers such as the soleus compared with muscles composed of type II, fast 

glycolytic fiber types such as EDL [90]. How aging affects the regulation of muscle 

satellite cells is not well understood. 
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Summary: 

Sarcopenia is observed in both males and females but the molecular mechanism 

underlying the incidence of sarcopenia is not well understood. The sarcopenia involves 

more of the type II, fast glycolytic fibers than the type I, slow oxidative fibers in aging 

males but whether similar findings are observed in the aging females is not known. The 

molecular signaling mechanisms occurring in different muscle types and genders should 

be looked at to investigate the differences in signaling with gender, age, and fiber type.   
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ABSTRACT 

Sarcopenia is the loss of muscle mass and strength that occurs with aging that if 

allowed to proceed unchecked can lead to disability. Here we compare the total content 

and phosphorylation levels of several molecules believed to regulate muscle growth and 

adaptation in the slow twitch muscle-soleus, the fast twitch muscle-extensor digitorum 

longus (EDL), and the continuously active diaphragm muscles of 6-(adult), 30-(aged), 

and 36-month(very aged) male and 6-(adult), 26-(aged), and 30-month(very aged) 

female Fischer 344XBrown Norway rats. In male animals, soleus and EDL muscle/ body 

weight ratio was lower in the 30-month (6- vs. 30-month soleus: 20%,(P<0.05); 6- vs. 

30-month EDL: 25.58%,(P<0.05)) animals and decreased further at 36-months (30- vs. 

36-month soleus: 18.75%,(P<0.05) ;30- vs. 36-month: EDL 15.63%(P<0.05)). 

Conversely, muscle atrophy in the aging female animals plateaued at 26-months and 

remained constant thereafter (6- vs. 26-and 30-month soleus: 25%(P<0.05) and 25%); 

6- vs. 26- and 30-month EDL: 23.52%(P<0.05) and 27.45%). Aging increased the 

phosphorylation (activation) of protein kinase B (Akt) and the mammalian target of 

rapamycin (mTOR) in the female soleus. Both the male and female soleus exhibited 

higher p70S6k phosphorylation with aging while the aged EDL and diaphragm muscles 

failed to exhibit increased phosphorylation of Akt, mTOR or p70S6k with aging. 

Irrespective of muscle type, aging in both the genders was associated with increased 

calcineurin expression. Taken together, these data suggest that indices of protein 

synthesis and muscle adaptation are regulated differently with aging in different muscle 

types and gender.  
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INTRODUCTION 
 

Sarcopenia is the loss of muscle mass that occurs as a result of the aging 

process. It has been estimated that the direct healthcare costs of sarcopenia are in 

excess of $18 billon in the United States [1] and this number is expected to rise as the 

number of aged increase. Age-related atrophy is thought to be a consequence of 

normal aging and it is characterized by decreased muscle strength, reduced 

performance and diminished quality of life [2, 3]. Indeed, by the seventh and eighth 

decade of life, maximal voluntary contractile strength is decreased, on average, by 20–

40% for both men and women. The etiology of sarcopenia is not fully understood but 

likely includes changes in physical inactivity, motor-unit remodeling, decreased protein 

synthesis, increased cytokine activity, oxidative stress, and decreased hormone levels 

[4]. How gender differences may affect the cause or progression of sarcopenia is not 

well understood [5]. Similarly, recent data has also demonstrated that fast twitch and 

slow twitch muscles in male animals respond differently during aging [11, 12]. Whether 

similar differences between muscle types are observed in the aging female rats has not, 

to our knowledge, been investigated. 

The molecular mechanism(s) underlying age-associated muscle loss remain to 

be elucidated. Studies investigating striated muscle hypertrophy have established that 

the p70 ribosomal protein S6 kinase (p70S6k) plays a critical role in regulating protein 

synthesis and muscle adaptation following an exercise stimulus [15-17]. In addition to 

p70S6k, several other molecules including protein kinase B (Akt), mammalian target of 

rapamycin (mTOR) and calcineurin (CnA) have also been identified as key signaling 

molecules involved in the regulation of muscle adaptation to increased contractile 
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loading [18]. How the regulation of these molecules is altered with aging or gender is 

not well understood. The purpose of this investigation was to examine the regulation of 

Akt, mTOR, p70S6k and calcineurin with aging in male and female Fischer 

344/NNiaHSd X Brown Norway/BiNia (F344/BN) rats. Given the fact that muscle mass 

and adaptation decrease with increasing age, we hypothesized that the regulation of 

molecules involved in governing this process may also be altered with aging. Using 

probability of survival curves generated by the National Institute of Aging (NIA) we 

selected differently aged male and female F344/BN rats corresponding roughly to 

humans in their third, seventh, and eighth decades of life [8]. This latter time point was 

chosen because the World Health Organization defines this age group as ‘‘elderly’’, a 

time where muscle atrophy and dysfunction are present and accelerating in humans [9]. 

Our findings suggest that indices of muscle adaptation are regulated differently with 

aging in different muscle types and gender.  

 

 

 

 

 

 

 

 

 



 
 

21 
 

MATERIAL AND METHODS 
 

Animals 
 

All procedures were performed in accordance with the Guide for the Care and 

Use of Laboratory Animals as approved by the Council of the American Physiological 

Society and the Animal Use Review Board of The Marshall University. All procedures 

were conducted in strict accordance with Public Health Service animal welfare policy. 

Adult (6 months), aged (30 months) and very aged (36 months) male and Adult (6 

months), aged (26 months) and very aged (30 months) female F1 Fischer 344/NNiaHSd 

X Brown Norway/BiNia rats were obtained from the National Institute on Aging. Rats 

were barrier housed two per cage in an AAALAC approved vivarium. Housing 

conditions consisted of a 12 Hour: 12 Hour dark-light cycle and temperature was 

maintained at 22 ± 2 °C. Animals were provided food and water ad libitum. Rats were 

allowed to recover from shipment for at least two weeks before experimentation began, 

and during this time the animals were carefully observed and weighed weekly. None of 

the older animals exhibited signs of failure to thrive, such as precipitous weight loss, 

disinterest in the environment, or unexpected gait alterations. Systolic blood pressure 

was determined with the animal un-anaesthetized using a programmed electro 

sphygmomanometer with pneumatic tail cuff (Narco - Biosystems, Houston, TX). 

Animals were acclimatized to the procedure for a minimum of 3 days prior to obtaining 

blood pressure. 
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Materials 
 

Total and phosphorylated forms of AKT (catalog # 9272, 9271, 9275), m-TOR 

(catalog # 2972, 2971), P70S6K (Catalog # 9202, 9204, 9234) and mouse IgG and 

rabbit IgG antibodies were purchased from Cell Signaling Technology (Beverly, MA). 

Calcineurin (catalog # C1956) antibody was purchased from Sigma-Aldrich (St. Louis, 

MO). Precast 10% SDS-PAGE gels were procured from Cambrex Biosciences 

(Baltimore, MD), and enhanced chemiluminiscence (ECL) western blot detection 

reagent was from Amersham Biosciences (Piscataway, NJ). Restore western blot 

stripping buffer was obtained from Pierce (Rockford, IL) and 3T3 cell lysates were from 

Santa Cruz Biotechnology (Santa Cruz, CA). All other chemicals were purchased from 

Sigma-Aldrich (St. Louis, MO). 

 

Tissue isolation 
 

Animals were anesthetized with a ketamine-xylazine (4:1) cocktail (50 mg/kg 

intra peritoneal injection) and supplemented as necessary for reflexive response. 

Soleus, EDL, and diaphragm muscles were quickly removed, blotted dry, weighed, and 

immediately frozen in liquid nitrogen. Tissues were stored at -80° C until use. 

 

Western blotting 
 

Soleus, EDL, and diaphragm muscles were homogenized on ice, 2 times for 30 

seconds in T-PER (2mL/100mg tissue weight) supplemented with 1mM PMSF, 1mM 
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Na3VO4, and 1mM NaF. After homogenization and centrifugation (9000 X g X 60 min. at 

4ºC), the supernatant was separated from the pellet and stored in aliquots at -80ºC until 

use. Protein concentrations of the supernatant were determined in triplicate using 

bovine serum albumin (BSA) as a standard and the Bradford method (Pierce, Rockford, 

IL). Samples were diluted to a concentration of 2.5mg/ml in SDS-loading buffer and 

after boiling for 5 minutes, 50 µg of total protein for each age or time point were 

separated on 10% SDS-PAGE precast gels. Western blot transfer of protein onto 

nitrocellulose membranes was performed using standard conditions. To verify transfer 

of proteins and equal loading of lanes the membranes were stained with Ponceau S. 

For immune detection, membranes were blocked in 5% Milk in TBS-T for 1 hour at room 

temperature and then incubated with the appropriate primary antibody overnight at 40C. 

After washing in TBS-T, the membranes were exposed to horseradish peroxidase-

labeled IgG secondary antibody for 1 hour at room temperature. Protein bands were 

visualized with ECL (Amersham Biosciences). Exposure time was adjusted to keep the 

integrated optical densities (IODs) within a linear and non-saturated range, and band 

signal intensity was quantified by densitometry using a flatbed scanner (Epson 

Perfection 3200 PHOTO) and Imaging software (Alpha Ease FC). Molecular weight 

markers (Cell Signaling) were used as molecular mass standards and NIH 3T3 cell 

lysates were included as positive controls. To allow direct comparisons between 

expression levels of different signaling molecules, immunoblots were stripped with 

Restore western blot stripping buffer as detailed by the manufacturer (Pierce, Rockford, 

IL) and re-probed. After verifying the absence of residual HRP activity on the membrane 

by reaction with the ECL reagent, membranes were washed and re-probed. 
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Data Analysis 
 

Results are presented as mean ± SEM. Multiple group comparisons were performed by 

two-way ANOVA followed by post-hoc testing where appropriate. For all comparisons, 

the alpha level was set at P < 0.05 



 
 

25 
 

RESULTS 
 

Body mass, muscle mass and morphology 

In male animals, soleus and EDL muscle / body weight ratio was lower in the 30-

month (6-month soleus vs. 30-month: 20%, (P<0.05); 6-month EDL vs. 30-month: 

25.58% (P<0.05)) animals and decreased further at 36-months (30-month soleus vs. 

36-month soleus: 18.8%, (P<0.05) ;30-month EDL vs. 36-month: EDL 15.6% (P<0.05)) 

(Figure 1). Conversely, muscle atrophy in the aging female animals plateaued at 26-

months and remained constant thereafter (6 month soleus vs. 26-and 30-month: 25% 

(P<0.05) and 25%); 6 month EDL vs. 26- and 30-month: 23.5% (P<0.05) and 27.5%).  

 

Aging effects on AKT-mTOR-p70S6K pathway related protein expression and 

phosphorylation 

 

To investigate whether aging affected the total and phosphorylated amounts of 

AKT, mTOR, and p70S6k expression in the skeletal muscle, we performed protein gel 

electrophoresis and immunoblotting using antibodies which recognize both the 

unphosphorylated and phosphorylated forms of these molecules. Immunoreactive 

bands of ~60kDa, ~289kDa, and ~70kDa, corresponded to the predicted molecular 

mass of the AKT, mTOR, and p70S6k respectively. 
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Soleus 

            Aging did not alter the amount of p-Akt (Ser 308) or p-Akt (Ser 473) in the male 

soleus. Compared to 6-month animals the amount of p-mTOR was 27.1% lower in the 

36-month soleus (Fig 4A). Relative to 6-month animals, p-p70S6k (Ser 389) was 86% 

higher in 36-month old animals while calcineurin levels were 118.1% and 279.9% higher 

in the soleus muscles of 30- and 36-month animals (Figs. 5A and 6A). Opposite of what 

we found in the male animals, the amounts of p-Akt (Ser 308), p-Akt (Ser 473) and p-

p70S6k (ser 389) were 141.1%, 182.1%, and 96 % higher in the soleus of 30-month 

female animals.  Compared to 6-month animals, the amount of p-mTOR was 53.9% and 

104.9% higher in 26- and 30-month female animals (Fig. 4A). Calcineurin levels were 

17.4% and 63.3% higher in the soleus muscles of 26- and 30-month animals (Fig 6A). 

 

EDL 

 Compared to the 6-month animals the amount of p-Akt (ser 473) was 29% higher 

in the EDL muscles of 36-month male and the amount of p-mTOR and p-p70S6k 

(ser389) were 27.1% and 79.7% lower in the 36-month male EDL(Fig 3B, 4B and 5B). 

Relative to the 6-month animals, the calcineurin levels were 183.7% and 259.3% higher 

in 30- and 36-month animals (Fig 6B). In female rats, aging did not alter the levels of p-

Akt (Ser 473), p-mTOR, and p-p70S6k (Ser 389). Relative to the 6-month animals, the 

p-Akt (Ser 308) levels were 24.5% lower in 30-month (Fig 3B) and calcineurin levels 

were 69.2% and 116.1% higher in 26- and 30-month animals(Fig 6B). 
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Diaphragm 

 Aging did not alter the levels of p-Akt (Ser 308), p-Akt (Ser 473), and p-mTOR in 

the diaphragm of both male and female animals. Compared to the 6-month male 

animals the amount of p-p70S6k (Ser 389) was 42.6% higher in 36-month and did not 

change in female animals (Fig 5C). Relative to the 6-month male animals the amount of 

calcineurin was 76.7% and 351.9% higher in 30- and 36-month animals(Fig 6C). In 

female animals the calcineurin levels were 34.1% and 25.3% higher in 26- and 30-

month animals (Fig 6C). 
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DISCUSSION 
 

The intent of this study was to examine the effects of age on the intramuscular 

concentration of proteins thought to regulate protein synthesis and muscle plasticity in 

the fast-twitch EDL, the slow-twitch soleus, and diaphragm. Probability of survival 

curves generated by the NIA were employed to identify animal ages so as to 

correspond roughly to humans in their third, seventh, and eighth decade of life, 

respectively. The major finding of the present study is that the extent and potential 

mechanisms of age-related muscle atrophy may differ between muscles and with 

gender. Whether the changes we observe here in aging rats are also applicable to 

aging humans will require further studies. 

 

Effects of aging on indicators of muscle adaptation  
 

Similar to previous reports examining the effects of age on muscle mass in aging 

F344/BN male rats[10, 89] we found skeletal muscle mass continued to decrease with 

increasing age (Fig 1). Conversely, in the aging females, muscle atrophy expressed 

relative to body weight decreased in the aged (26-month animals) and then remained 

constant thereafter (Fig 1). This finding is supported by Iannuzzi-Sucich, (2002) who 

examined appendicular skeletal mass by dual x-ray absorptiometry in men and women 

and concluded that muscle atrophy varies with aging across gender in humans [81]. 

Why the degree of muscle loss with aging might vary across gender is not known. To 

our knowledge this finding in the F344/BN rat strain has not be reported before. In an 
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effort to understand these phenomena better, we examined how aging may affect the 

regulation of molecules previously found to be involved mediating muscle adaptation. 

Protein kinase B (Akt) plays a number of roles that may be important in 

sarcopenia [67, 91, 92] including the suppression of apoptosis and modulation of 

muscle-specific protein degradation via the inhibition of the expression of the ubiquitin 

E3 ligases atrogin- 1 and MuRF-1. In addition, increased Akt phosphorylation (activity) 

also promotes protein translation via the inhibition of glycogen synthase kinase-3 and 

the activation of mTOR[67]. The factors and pathways that regulate Akt are not totally 

understood but it has been shown that Akt activity is increased with the phosphorylation 

of Thr308 and Ser473 [92]. With aging we found that Akt phosphorylation (Ser 308 and 

Ser 473) was increased in the female soleus at 26- and 30-months and in the aging 

female EDL at 26-months. Conversely, Akt phosphorylation was not increased with 

aging in the male or in the diaphragm irrespective of gender. Why aging tended to 

increase Akt phosphorylation in the female but not in the male animals is not known. In 

addition, why Akt phosphorylation was not altered in the aging diaphragm is also not 

clear. Nonetheless, these data suggest that Akt is regulated with aging differently 

between muscle types and genders.  

To confirm these data, we next examined how aging may affect the regulation of 

mTOR. The mammalian target of rapamycin, mTOR is a Ser/Thr protein kinase[93-95], 

that is thought to lie downstream of Akt [96] and thought to act as a sensor for ATP and 

amino acids [97]. Under anabolic conditions, mTOR functions to increase translational 

activity by its ability to activate p70S6K  and relieve the repression of  4E-BP1 [98]. 

Similar to our findings for Akt, we found an increased phosphorylation (activation) of 
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mTOR in the aging female soleus (Fig 4A). Conversely, mTOR phosphorylation was not 

increased in the aging male or in the diaphragm muscles of either gender.  

Similar to our findings for Akt and mTOR, the phosphorylation of p70S6k also 

appears to be regulated differently with aging and gender. Here we observe that the 

amount of phosphorylated p70S6k increases in the soleus of aging male and female 

animals (Fig 5A.) while it also appears to be elevated in the diaphragm of aging male 

animals (Fig. 5C). It has been shown that p70S6k plays a critical role in the translation 

of transcripts involved in the cell cycle progression and the translational machinery [99]. 

We suggest that this increased phosphorylation observed in the aged soleus indicates 

that the protein anabolism mechanism is intact up to and including p70S6k.  As such, 

we believe that our data indicates that the aged soleus muscle is fully capable of 

elevated protein synthesis. Importantly, these data may also suggest that the 

differences in the loss of muscle mass with age in female animals may be attenuated 

compared to those observed in male animals. Taken further, these data collectively 

suggest that the elevation of protein synthetic potential in the face of sarcopenia 

observed in the present study indicates that a deficiency in the signals used to initiate 

protein anabolism is not the primary cause of sarcopenia in these animals. Whether 

other physiological mechanisms may be participating in age-associated muscle loss in 

this model is actively being pursued in our laboratory.  

 

Aging increases the muscle content of calcineurin 
 

Besides factors that may be directly involved in the regulation of protein 

synthesis, we also investigated the age-associated expression of calcineurin (CnA). 
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Calcineurin is a Ca2+/calmodulin-dependent protein serine/threonine phosphatase, is a 

mediator of Ca2+ signaling in different cell systems [100]. CnA has been implicated in 

the regulation of satellite cell fusion and in the control of myosin heavy chain expression 

[64, 101-103]. The function of calcineurin in skeletal muscle is not entirely understood, 

however, previous data have demonstrated that this calcium-sensitive phosphatase acts 

to dephosphorylate a family of transcription factors called NFAT. This 

dephosphorylation in turn is thought to activate NFAT by unmasking a nuclear 

localization signal allowing the movement of NFAT into the nucleus [62]. Calcineurin 

signaling has been implicated in a broad spectrum of cellular processes including cell-

cycle regulation and apoptosis while it has been shown that calcineurin is required for 

proper cardiovascular and skeletal muscle development [104, 105]. In skeletal muscle, 

calcineurin is thought to regulate the expression of slow myosin heavy chain [106]. 

Compared to adult (6-month) animals, we observed age-associated increases in the 

amount of calcineurin levels in each of the muscles examined irrespective of gender 

(Fig 6). Why aging may increase calcineurin levels is not known, however recent data 

suggests that aging in humans and the F344/BN rat model is associated with an 

increase in the amount of slow myosin heavy chain expression [97]. Although not 

measured in the present study, it is likely that the age-associated increase in calcineurin 

we observe here may be related to changes in the amount of slow myosin heavy chain 

expression. Future studies designed to directly test this assertion are currently ongoing.  

In summary, we demonstrate that aging has a profound effect on the mass of the 

F344/BN EDL and soleus muscles.  Because the ages of the oldest animals used in the 

current study correspond roughly to humans in their eighth decade, these data are 
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consistent with the hypothesis that the F344/BN strain is an excellent model for the 

study of age associated changes in human muscle and for the study of sarcopenia.  In 

addition, we also show that the expression of the muscle plasticity regulators, Akt, 

mTOR, p70S6k, and calcineurin are regulated differently between muscle types and 

across gender during aging.  In addition, our data also suggest that the activation of 

these molecules occurs during the progression of muscle atrophy. Taken together, 

these data suggest that alterations in the expression and / or activation of these 

molecules are, by themselves, not sufficient to explain why skeletal muscle wasting 

occurs with aging. Future research aimed at examining other pathways or molecules will 

no doubt be of interest in helping to increase our understanding of age-associated 

muscle atrophy. 
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FIGURE AND FIGURE LEGENDS 

 

This section presents all the figures used in this thesis document and the legends 

explaining the figures.  
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 Figure 2 
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Figure 2. Muscle to body weight ratio of: A) Soleus B) EDL of 6- (young adult), 30-  

(aged) and 36-month (very aged) male and 6- (young adult), 26- (aged) and 30-month 

(very aged) female Fischer 344/Brown Norway F1 hybrid rats. The data are presented 

as percent of the 6 month value (n = 4). * indicates significant difference from the 

corresponding 6 month value, † significantly different with 26- or 30-month animals 

within the same gender and # significantly different from age-matched males, (p < 0.05). 
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Figure 3 
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Figure 3. Tissue content of phospho Akt (Ser308)/ Total Akt/ GAPDH in: A) Soleus B) 

EDL and, C) Diaphragm in 6 month (young adult), 30 month (aged) and 36 month (very 

aged) male and 6 month (young adult), 26 month (aged) and 30 month (very aged) 

female Fischer 344/Brown Norway F1 hybrid rats. Relative changes in protein levels 

were determined by Western blot analysis. The data are presented as percent of the 6 

month value (n = 4). An asterisk indicates significant difference from the corresponding 

6 month value, a dagger symbol indicates a difference with 30- or 26-month animals 

with in the gender and a number symbol indicates a significant difference across the 

gender, (p < 0.05). 
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Figure 4 
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Figure 4. Tissue content of phospho Akt (Ser473)/ Total Akt/ GAPDH in: A) Soleus B) 

EDL and, C) Diaphragm in 6 month (young adult), 30 month (aged) and 36 month (very 

aged) male and 6 month (young adult), 26 month (aged) and 30 month (very aged) 

female Fischer 344/Brown Norway F1 hybrid rats. Relative changes in protein levels 

were determined by Western blot analysis. The data are presented as percent of the 6 

month value (n = 4). An asterisk indicates significant difference from the corresponding 

6 month value, a dagger symbol indicates a difference with 30- or 26-month animals 

with in the gender and a number symbol indicates a significant difference across the 

gender, (p < 0.05). 
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Figure 5 
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Figure 5. Tissue content of phospho mTOR/ Total mTOR/ GAPDH in: A) Soleus B) EDL 

and, C) Diaphragm in 6 month (young adult), 30 month (aged) and 36 month (very 

aged) male and 6 month (young adult), 26 month (aged) and 30 month (very aged) 

female Fischer 344/Brown Norway F1 hybrid rats. Relative changes in protein levels 

were determined by Western blot analysis. The data are presented as percent of the 6 

month value (n = 4). An asterisk indicates significant difference from the corresponding 

6 month value, a dagger symbol indicates a difference with 30- or 26-month animals 

with in the gender and a number symbol indicates a significant difference across the 

gender, (p < 0.05). 
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Figure 6 
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Figure 6. Tissue content of phospho p70S6k (Ser389)/ Total p70S6k/ GAPDH in: A) 

Soleus B) EDL and, C) Diaphragm in 6 month (young adult), 30 month (aged) and 36 

month (very aged) male and 6 month (young adult), 26 month (aged) and 30 month 

(very aged) female Fischer 344/Brown Norway F1 hybrid rats. Relative changes in 

protein levels were determined by Western blot analysis. The data are presented as 

percent of the 6 month value (n = 4). An asterisk indicates significant difference from the 

corresponding 6 month value, a dagger symbol indicates a difference with 30- or 26-

month animals with in the gender and a number symbol indicates a significant 

difference across the gender, (p < 0.05). 
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Figure 7 
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Figure 7. Tissue content of calcineurin/ GAPDH in: A) Soleus B) EDL and, C) 

Diaphragm in 6 month (young adult), 30 month (aged) and 36 month (very aged) male 

and 6 month (young adult), 26 month (aged) and 30 month (very aged) female Fischer 

344/Brown Norway F1 hybrid rats. Relative changes in protein levels were determined 

by Western blot analysis. The data are presented as percent of the 6 month value (n = 

4). An asterisk indicates significant difference from the corresponding 6 month value, a 

dagger symbol indicates a difference with 30- or 26-month animals with in the gender 

and a number symbol indicates a significant difference across the gender, (p < 0.05). 
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Figure 8 
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Figure 8. Summary of the results for all the molecules in : A) Soleus B) EDL and, C) 

Diaphragm in 6-month (adult), 30-month (aged) and 36-month (very aged) male and 6-

month (adult), 26-month (aged) and 30-month (very aged) female Fischer 344/Brown 

Norway F1 hybrid rats. The very aged group (36- and 30-month males and females 

respectively) data are presented as a comparison with the 6 month value. ‘-’ indicates 

no significant difference from the corresponding 6-month value. ‘↑’ indicates a significant 

increase with age while ↓ indicates a significant decrease with age. 

 

 

 

 

 
 

 
 

 
 

 
 



 
 

49 
 

CHAPTER IV 

 

CONCLUSIONS 

 

1. Aging affects the regulation of molecules thought to be involved in affecting 

muscle plasticity differently in different muscles and across genders. Specifically, 

we observed different alterations across genders in the amount and basal 

phosphorylation of Akt, mTOR, and p70S6k in the slow twitch-soleus, fast twitch-

EDL, and continuously active diaphragm. 

2. Differences in the regulation of the molecules thought to govern protein synthesis 

between aging male and female animals may help to explain why the extent of 

muscle atrophy differs with gender in the F344/BN rats. 

3. The alterations in Akt, mTOR and p70S6k observed with aging in the skeletal 

muscles of F344/BN rats suggest that a decrease in the signal to initiate protein 

synthesis is not the cause of sarcopenia. 

4. The increase in the expression levels of calcineurin suggests that there may be a 

phenotypic transformation from fast twitch-type II to slow twitch-type I with age in 

the soleus, EDL and diaphragm of male and female F344/BN rats.  
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FUTURE DIRECTIONS 

 

Future directions for research based on this study should focus on the mechanisms 

involved in the protein degradation, factors causing apoptosis, and the effects of 

reactive oxygen species on the initiation and progression of muscle atrophy with aging.  

We observed an increase or no change in the expression of anabolic biomarkers of 

protein synthesis with aging in F344/BN male and female rats. This suggests that a 

decrease in protein synthesis may not be a cause for induction and progression of 

sarcopenia. To further investigate this possibility, it may be useful to examine other 

upstream molecules that may be involved in regulating protein synthesis in muscle. 

Examples here include phosphatase and tensin homolog 10 (PTEN), insulin like growth 

factor-1 (IGF-1) or the mitogen activated protein kinases (MAPK). Further, it is well 

known that the total protein content of a tissue is regulated by a balance between the 

protein synthesis and protein degradation[107, 108]. As such, examining the regulation 

of protein degradation pathways may also reveal new and interesting information for 

understanding how aging affects skeletal muscle. Looking into the expression of the 

biomarkers involved in protein degradation mechanisms may be valuable to understand 

the incidence of sarcopenia. 

The free radical theory of aging states that there is an increase in the concentration 

of reactive oxygen species (ROS) with age[109]. It is thought that increased ROS may 

be positively associated with protein degradation[110]. To address this possibility, the 

effects of these reactive oxygen species with aging in the skeletal muscle could be 

analyzed by oxyblot analysis and/or by some immunohistochemical methods such as 
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hydroethidium staining. Additional data regarding how aging affects ROS levels in the 

skeletal muscles of aging male and female F344/BN rats will no doubt be useful in 

increasing our understanding of muscle atrophy in these animals.  

With aging we observed an increase in the expression of calcineurin in all the 

muscles we examined. Given the positive correlation between calcineurin levels and 

slow myosin heavy chain expression, future efforts could examine the effects of aging 

on myosin heavy chain expression [111]. The finding of an increased slow myosin at 

time points exhibiting augmented calcineurin expression may be useful in determining if 

this molecule plays a role in modulating age-associated changes in muscle phenotype.  
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APPENDIX 

 
This section includes table showing body weights, muscle weights and muscle to 

body weight ratio, and film properties reports, raw data tables, and statistics of various 

molecules in soleus, EDL, and diaphragm muscles used this study. 
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Table 1 
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Table 1. Muscle to body weight ratio of: A) Soleus B) EDL of 6- (young adult), 30-  

(aged) and 36-month (very aged) male and 6- (young adult), 26- (aged) and 30-month 

(very aged) female Fischer 344/Brown Norway F1 hybrid rats. The data are presented 

as percent of the 6 month value (n = 4). * indicates significant difference from the 

corresponding 6 month value, † significantly different with 26- or 30-month animals 

within the same gender and # significantly different from age-matched males, (p < 0.05). 
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SOLEUS 
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

17.00 18.80 12.20 15.60 20.00 16.50

16.80 18.80 12.20 15.80 19.80 16.60

18.60 19.30 15.00 14.10 15.40 17.50

18.70 19.50 15.00 13.90 15.10 17.80

16.80 18.80 12.20 15.80 19.80 16.60

18.70 19.50 15.00 13.90 15.10 17.80

N 6 6 6 6 6 6

Mean 17.77 19.12 13.60 14.85 17.53 17.13

STDEV 0.99 0.35 1.53 0.97 2.56 0.63

SEM 0.44 0.16 0.69 0.44 1.14 0.28
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Statistics 

Two Way Analysis of Variance 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 5.517 3 9.824 <0.001 Yes  

30.000 vs. 6.000 1.350 2 2.404 0.100 No  

6.000 vs. 36.000 4.167 2 7.420 <0.001 Yes  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 6.000 2.683 3 4.778 0.006 Yes  

30.000 vs. 36.000 0.400 2 0.712 0.618 No  

36.000 vs. 6.000 2.283 2 4.066 0.008 Yes  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 2.917 2 5.194 0.001 Yes  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

M vs. F 1.583 2 2.820 0.055 No  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 3.533 2 6.292 <0.001 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

0.94 0.55 0.46 0.44 0.87 2.65

0.89 0.53 0.47 0.45 0.86 2.71

1.00 1.11 1.43 0.67 0.87 0.89

0.61 0.96 1.49 0.64 1.37 1.00

1.16 0.93 0.92 0.94 0.77 1.22

1.17 0.93 0.93 0.89 0.77 1.23

N 6 6 6 6 6 6

Mean 0.96 0.84 0.95 0.67 0.92 1.62

STDEV 0.21 0.24 0.45 0.21 0.23 0.84

SEM 0.09 0.11 0.20 0.09 0.10 0.37
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Statistics 

Two Way Analysis of Variance 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.292 2 1.680 0.244 No  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.0822 2 0.472 0.741 No  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.669 2 3.842 0.011 Yes  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 30.000 0.126 3 0.724 0.866 No  

6.000 vs. 36.000 0.0146 2 0.0839 0.953 Do Not Test  

36.000 vs. 30.000 0.111 2 0.640 0.654 Do Not Test  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 0.947 3 5.438 0.002 Yes  

36.000 vs. 30.000 0.698 2 4.010 0.008 Yes  

30.000 vs. 6.000 0.249 2 1.428 0.321 No  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

0.94 0.55 0.46 0.44 0.87 2.65

0.89 0.53 0.47 0.45 0.86 2.71

1.18 0.94 0.93 0.88 0.76 1.25

0.80 0.51 0.38 0.51 1.13 2.53

1.16 0.93 0.92 0.94 0.77 1.22

1.17 0.93 0.93 0.89 0.77 1.23

N 6 6 6 6 6 6

Mean 1.02 0.73 0.68 0.68 0.86 1.93

SD 0.17 0.22 0.27 0.24 0.14 0.77

SEM 0.07 0.10 0.12 0.11 0.06 0.34
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Statistics 

Two Way Analysis of Variance 

 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.339 2 2.254 0.122 No  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.128 2 0.848 0.553 No  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 1.252 2 8.319 <0.001 Yes  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 36.000 0.344 3 2.287 0.254 No  

6.000 vs. 30.000 0.290 2 1.929 0.183 Do Not Test  

30.000 vs. 36.000 0.0538 2 0.357 0.802 Do Not Test  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 1.248 3 8.286 <0.001 Yes  

36.000 vs. 30.000 1.071 2 7.113 <0.001 Yes  

30.000 vs. 6.000 0.177 2 1.173 0.414 No  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

18.60 12.90 16.30 20.90 12.40 18.90

18.70 12.80 16.40 20.80 12.60 18.70

15.30 11.70 16.90 23.80 15.60 16.70

15.20 11.50 17.10 23.80 15.70 16.70

16.10 12.70 15.70 21.10 14.80 19.60

16.10 12.50 15.70 21.30 14.90 19.50

N 6 6 6 6 6 6

Mean 16.67 12.35 16.35 21.95 14.33 18.35

SD 1.58 0.60 0.59 1.44 1.47 1.32

SEM 0.71 0.27 0.26 0.65 0.66 0.59
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 Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 30.000 4.317 3 8.542 <0.001 Yes  

6.000 vs. 36.000 0.317 2 0.627 0.661 No  

36.000 vs. 30.000 4.000 2 7.915 <0.001 Yes  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 30.000 7.617 3 15.072 <0.001 Yes  

6.000 vs. 36.000 3.600 2 7.124 <0.001 Yes  

36.000 vs. 30.000 4.017 2 7.948 <0.001 Yes  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 5.283 2 10.455 <0.001 Yes  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 1.983 2 3.925 0.010 Yes  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 2.000 2 3.958 0.009 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

0.85 1.28 0.76 0.54 1.28 1.49

0.89 1.30 0.77 0.49 1.28 1.50

1.25 1.06 0.79 0.58 1.06 1.49

1.24 1.10 0.76 0.58 1.04 1.51

1.34 0.70 0.57 0.96 1.07 1.26

1.04 0.87 1.18 0.99 0.62 1.21

N 6 6 6 6 6 6

Mean 1.10 1.05 0.80 0.69 1.06 1.41

SD 0.20 0.23 0.20 0.22 0.24 0.14

SEM 0.09 0.10 0.09 0.10 0.11 0.06
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Statistics 

Two Way Analysis of Variance 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.414 2 4.839 0.002 Yes  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.00825 2 0.0965 0.946 No  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.606 2 7.088 <0.001 Yes  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 36.000 0.299 3 3.490 0.050 Yes  

6.000 vs. 30.000 0.0515 2 0.602 0.674 No  

30.000 vs. 36.000 0.247 2 2.888 0.050 No  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 0.722 3 8.436 <0.001 Yes  

36.000 vs. 30.000 0.351 2 4.103 0.007 Yes  

30.000 vs. 6.000 0.371 2 4.333 0.005 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

14.90 21.50 4.20 8.90 27.50 23.00

14.80 21.70 4.00 8.70 27.60 23.10

12.10 20.90 7.80 9.60 27.70 21.90

12.20 20.90 7.70 10.00 27.60 21.60

16.20 26.70 6.90 5.80 27.10 17.30

16.30 26.40 7.00 5.80 27.10 17.40

N 6 6 6 6 6 6

Mean 14.42 23.02 6.27 8.13 27.43 20.72

SD 1.86 2.76 1.72 1.87 0.27 2.67

SEM 0.83 1.23 0.77 0.84 0.12 1.20
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 16.750 3 20.207 <0.001 Yes  

30.000 vs. 6.000 8.600 2 10.375 <0.001 Yes  

6.000 vs. 36.000 8.150 2 9.832 <0.001 Yes  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 6.000 19.300 3 23.283 <0.001 Yes  

30.000 vs. 36.000 6.717 2 8.103 <0.001 Yes  

36.000 vs. 6.000 12.583 2 15.180 <0.001 Yes  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 6.283 2 7.580 <0.001 Yes  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 4.417 2 5.328 <0.001 Yes  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 14.450 2 17.432 <0.001 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

1.59 1.33 3.93 0.49 0.29 0.83

1.59 1.30 4.15 0.52 0.29 0.82

1.62 1.28 2.01 0.39 0.43 1.02

1.57 1.29 2.05 0.38 0.42 1.06

1.43 1.02 2.30 0.71 0.37 1.12

1.18 1.02 2.26 0.66 0.42 1.31

N 6 6 6 6 6 6

Mean 1.50 1.21 2.78 0.52 0.37 1.03

SD 0.17 0.14 0.98 0.14 0.07 0.19

SEM 0.08 0.06 0.44 0.06 0.03 0.08
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.974 2 5.650 <0.001 Yes  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.835 2 4.843 0.002 Yes  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 1.759 2 10.204 <0.001 Yes  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 30.000 1.578 3 9.157 <0.001 Yes  

36.000 vs. 6.000 1.287 2 7.468 <0.001 Yes  

6.000 vs. 30.000 0.291 2 1.689 0.242 No  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 30.000 0.654 3 3.796 0.031 Yes  

36.000 vs. 6.000 0.502 2 2.914 0.048 Yes  

6.000 vs. 30.000 0.152 2 0.881 0.538 No  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

2.40 16.70 28.80 10.70 20.30 21.10

2.80 16.50 28.70 10.70 20.30 21.10

5.90 18.80 24.10 13.50 18.80 19.00

5.80 18.90 24.20 13.40 18.30 19.40

16.60 16.60 12.60 10.10 16.10 28.10

16.60 16.60 12.60 10.10 16.10 28.10

N 6 6 6 6 6 6

Mean 8.35 17.35 21.83 11.42 18.32 22.80

SD 6.55 1.16 7.44 1.60 1.89 4.19

SEM 2.93 0.52 3.33 0.71 0.85 1.88
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 13.483 3 7.281 <0.001 Yes  

36.000 vs. 30.000 4.483 2 2.421 0.097 No  

30.000 vs. 6.000 9.000 2 4.860 0.002 Yes  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 11.383 3 6.147 <0.001 Yes  

36.000 vs. 30.000 4.483 2 2.421 0.097 No  

30.000 vs. 6.000 6.900 2 3.726 0.013 Yes  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 3.067 2 1.656 0.251 No  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.967 2 0.522 0.715 No  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.967 2 0.522 0.715 No  
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EDL 
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

13.60 24.80 21.40 9.90 9.70 20.50

13.90 24.60 21.50 10.00 9.80 20.30

12.10 15.30 13.40 15.20 21.40 22.60

12.20 15.30 13.40 15.30 21.30 22.60

12.70 21.40 18.20 16.40 13.30 18.00

12.60 21.80 18.30 16.30 13.00 17.90

N 6 6 6 6 6 6

Mean 12.85 20.53 17.70 13.85 14.75 20.32

STDEV 0.74 4.29 3.63 3.06 5.33 2.08

SEM 0.33 1.92 1.62 1.37 2.39 0.93
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 6.000 7.683 3 5.351 0.002 Yes  

30.000 vs. 36.000 2.833 2 1.973 0.173 No  

36.000 vs. 6.000 4.850 2 3.378 0.024 Yes  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 6.467 3 4.503 0.009 Yes  

36.000 vs. 30.000 5.567 2 3.877 0.010 Yes  

30.000 vs. 6.000 0.900 2 0.627 0.661 No  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 1.000 2 0.696 0.626 No  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

M vs. F 5.783 2 4.028 0.008 Yes  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 2.617 2 1.822 0.208 No  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

1.41 0.75 0.87 1.31 1.58 0.74

1.42 0.77 0.89 1.23 1.51 0.74

0.86 1.00 1.35 1.20 0.82 0.90

0.78 1.00 1.35 1.23 0.84 0.90

1.20 0.55 0.96 1.10 1.38 1.07

1.25 0.58 0.95 1.07 1.37 1.06

N 6 6 6 6 6 6

Mean 1.16 0.78 1.06 1.19 1.25 0.90

SD 0.28 0.19 0.23 0.09 0.33 0.14

SEM 0.12 0.09 0.10 0.04 0.15 0.06
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.0367 2 0.399 0.780 No  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.473 2 5.146 0.001 Yes  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.162 2 1.759 0.223 No  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 30.000 0.379 3 4.127 0.018 Yes  

6.000 vs. 36.000 0.0939 2 1.021 0.476 No  

36.000 vs. 30.000 0.286 2 3.105 0.036 Yes  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 0.349 3 3.799 0.031 Yes  

30.000 vs. 6.000 0.0571 2 0.621 0.664 No  

6.000 vs. 36.000 0.292 2 3.179 0.032 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

1.02 0.77 1.13 1.10 1.62 0.79

0.90 0.71 0.99 1.08 2.27 0.78

1.03 1.10 1.58 0.73 1.08 0.68

1.02 1.17 1.60 0.68 1.00 0.73

0.98 0.84 1.18 0.63 1.61 0.91

1.22 0.92 1.48 0.69 0.78 0.89

N 6 6 6 6 6 6

Mean 1.03 0.92 1.33 0.82 1.39 0.80

SD 0.11 0.18 0.26 0.21 0.55 0.09

SEM 0.05 0.08 0.12 0.09 0.24 0.04
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.210 2 1.845 0.202 No  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.478 2 4.206 0.006 Yes  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.528 2 4.646 0.003 Yes  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 30.000 0.409 3 3.601 0.042 Yes  

36.000 vs. 6.000 0.298 2 2.621 0.074 No  

6.000 vs. 30.000 0.111 2 0.980 0.494 No  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 0.596 3 5.251 0.002 Yes  

30.000 vs. 6.000 0.576 2 5.071 0.001 Yes  

6.000 vs. 36.000 0.0205 2 0.180 0.900 No  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

13.00 19.30 23.50 17.20 13.00 13.90

13.30 19.10 23.10 17.30 13.30 13.80

13.15 19.20 23.30 17.25 13.15 13.85

7.00 21.40 33.00 15.80 8.40 14.40

6.80 21.50 33.30 15.50 8.70 14.20

6.90 21.45 33.15 15.65 8.55 14.30

N 6 6 6 6 6 6

Mean 10.03 20.33 28.23 16.45 10.85 14.08

SD 3.43 1.23 5.40 0.88 2.52 0.26

SEM 1.53 0.55 2.41 0.39 1.13 0.11
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 23.232 3 17.817 <0.001 Yes  

36.000 vs. 30.000 9.922 2 7.609 <0.001 Yes  

30.000 vs. 6.000 13.310 2 10.208 <0.001 Yes  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 30.000 7.499 3 5.751 0.001 Yes  

6.000 vs. 36.000 6.009 2 4.609 0.003 Yes  

36.000 vs. 30.000 1.489 2 1.142 0.426 No  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 8.037 2 6.164 <0.001 Yes  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

M vs. F 12.772 2 9.795 <0.001 Yes  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 21.205 2 16.262 <0.001 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

1.30 0.73 0.72 1.31 1.30 0.91

1.27 0.73 0.73 1.35 1.23 0.93

1.29 0.73 0.73 1.33 1.26 0.92

2.80 0.50 0.45 1.14 2.00 1.39

2.85 0.52 0.45 1.15 1.95 1.39

2.60 0.60 0.49 1.34 1.96 1.09

N 6 6 6 6 6 6

Mean 2.02 0.64 0.59 1.27 1.62 1.11

SD 0.81 0.11 0.15 0.10 0.39 0.23

SEM 0.36 0.05 0.07 0.04 0.17 0.10
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Statistics 

Two Way Analysis of Variance 

 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.751 2 4.751 0.002 Yes  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.980 2 6.202 <0.001 Yes  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.513 2 3.249 0.029 Yes  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 36.000 1.425 3 9.022 <0.001 Yes  

6.000 vs. 30.000 1.382 2 8.746 <0.001 Yes  

30.000 vs. 36.000 0.0437 2 0.276 0.846 No  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 0.510 3 3.229 0.074 No  

30.000 vs. 6.000 0.349 2 2.207 0.129 Do Not Test  

6.000 vs. 36.000 0.161 2 1.022 0.476 Do Not Test  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

8.9 22.5 12.4 8.9 14.2 33.1

7.8 23.3 12.1 8.3 14.1 34.5

13.5 21.7 13.9 14.2 14.9 21.7

13.8 21.1 14.2 14.2 15 21.5

8.35 22.9 12.25 8.6 14.15 33.8

13.65 21.4 14.05 14.2 14.95 21.6

N 6 6 6 6 6 6

Mean 11.00 22.15 13.15 11.40 14.55 27.70

SD 2.93 0.88 0.99 3.07 0.44 6.70

SEM 1.31 0.39 0.44 1.37 0.20 3.00
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Statistics 

Two Way Analysis of Variance 

 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 7.383 3 3.686 0.037 Yes  

30.000 vs. 6.000 5.167 2 2.579 0.078 No  

6.000 vs. 36.000 2.217 2 1.107 0.440 No  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 16.917 3 8.445 <0.001 Yes  

36.000 vs. 30.000 11.633 2 5.808 <0.001 Yes  

30.000 vs. 6.000 5.283 2 2.638 0.072 No  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.267 2 0.133 0.926 No  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.150 2 0.0749 0.958 No  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 18.867 2 9.419 <0.001 Yes  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

2.85 0.87 0.53 0.99 1.62 0.50

3.25 0.84 0.54 1.06 1.63 0.48

2.26 1.31 0.54 0.65 1.08 0.38

2.20 1.35 0.54 0.64 1.08 0.38

3.34 1.05 0.58 1.05 1.39 0.37

1.86 0.91 0.47 0.62 1.54 0.77

N 6 6 6 6 6 6

Mean 2.63 1.05 0.53 0.84 1.39 0.48

SD 0.61 0.22 0.04 0.22 0.26 0.15

SEM 0.27 0.10 0.02 0.10 0.11 0.07
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 1.793 2 14.364 <0.001 Yes  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.338 2 2.711 0.065 No  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.0517 2 0.414 0.772 No  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 36.000 2.094 3 16.778 <0.001 Yes  

6.000 vs. 30.000 1.575 2 12.621 <0.001 Yes  

30.000 vs. 36.000 0.519 2 4.157 0.006 Yes  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 0.909 3 7.282 <0.001 Yes  

30.000 vs. 6.000 0.556 2 4.453 0.004 Yes  

6.000 vs. 36.000     0.353         2      2.828      0.055 No  
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

8.40 22.60 24.20 8.20 15.50 21.20

7.90 22.70 24.60 7.90 15.60 21.30

9.00 17.50 22.60 9.70 15.90 25.30

9.00 17.50 22.60 9.70 16.00 25.20

7.10 19.50 26.60 7.40 16.10 23.20

6.80 19.30 26.40 7.40 16.90 23.20

N 6 6 6 6 6 6

Mean 8.03 19.85 24.50 8.38 16.00 23.23

SD 0.94 2.33 1.75 1.06 0.50 1.79

SEM 0.42 1.04 0.78 0.48 0.22 0.80
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 Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 16.467 3 26.438 <0.001 Yes  

36.000 vs. 30.000 4.650 2 7.466 <0.001 Yes  

30.000 vs. 6.000 11.817 2 18.972 <0.001 Yes  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 14.850 3 23.842 <0.001 Yes  

36.000 vs. 30.000 7.233 2 11.613 <0.001 Yes  

30.000 vs. 6.000 7.617 2 12.229 <0.001 Yes  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.350 2 0.562 0.694 No  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

M vs. F 3.850 2 6.181 <0.001 Yes  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 1.267 2 2.034 0.161 No  
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DIAPHRAGM 
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Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

14.4 15.7 19.2 16 18.2 16.5

14.3 15.9 19.2 15.9 18.1 16.5

13.6 15.5 20.6 15.1 17.7 17.5

13.6 15.6 20.7 14.9 17.7 17.5

14.2 17.8 17.9 17.3 17.1 15.8

14 17.8 17.9 17.1 17.3 15.8

N 6 6 6 6 6 6

Mean 14.02 16.38 19.25 16.05 17.68 16.60

SD 0.35 1.11 1.23 0.99 0.43 0.76

SEM 0.16 0.49 0.55 0.44 0.19 0.34
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 Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 5.233 3 14.623 <0.001 Yes  

36.000 vs. 30.000 2.867 2 8.010 <0.001 Yes  

30.000 vs. 6.000 2.367 2 6.613 <0.001 Yes  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 6.000 1.633 3 4.564 0.008 Yes  

30.000 vs. 36.000 1.083 2 3.027 0.041 Yes  

36.000 vs. 6.000 0.550 2 1.537 0.286 No  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 2.033 2 5.681 <0.001 Yes  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 1.300 2 3.632 0.016 Yes  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 2.650 2 7.405 <0.001 Yes  
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 Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

1.66 2.20 3.76 0.82 0.71 0.43

1.76 2.19 3.74 0.88 0.73 0.43

0.78 0.97 1.07 1.42 1.45 0.79

0.77 0.98 1.05 1.38 1.47 0.79

1.29 2.00 1.23 0.74 1.15 0.62

1.25 2.15 1.29 0.83 0.97 0.65

N 6 6 6 6 6 6

Mean 1.25 1.75 2.02 1.01 1.08 0.62

STDEV 0.42 0.60 1.34 0.30 0.34 0.16

SEM 0.19 0.27 0.60 0.14 0.15 0.07
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.238 2 0.891 0.534 No  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.668 2 2.500 0.087 No  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 1.405 2 5.257 <0.001 Yes  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 0.772 3 2.888 0.120 No  

36.000 vs. 30.000 0.273 2 1.021 0.476 Do Not Test  

30.000 vs. 6.000 0.499 2 1.867 0.197 Do Not Test  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 0.464 3 1.736 0.447 No  

30.000 vs. 6.000 0.0687 2 0.257 0.857 Do Not Test  

6.000 vs. 36.000 0.395 2 1.479 0.304 Do Not Test  
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 Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

1.00 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00

0.48 0.35 0.30 2.53 1.87 1.55

0.71 0.52 0.41 1.80 1.82 1.41

1.25 1.88 0.69 0.82 0.96 0.98

0.84 1.15 0.41 1.15 1.14 1.14

N 6 6 6 6 6 6

Mean 0.88 0.98 0.64 1.38 1.30 1.18

SD 0.26 0.54 0.31 0.66 0.43 0.24

SEM 0.12 0.24 0.14 0.29 0.19 0.11
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.502 2 2.836 0.054 No  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.316 2 1.784 0.217 No  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.545 2 3.075 0.038 Yes  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 0.345 3 1.946 0.366 No  

30.000 vs. 6.000 0.101 2 0.569 0.690 Do Not Test  

6.000 vs. 36.000 0.244 2 1.377 0.338 Do Not Test  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 36.000 0.201 3 1.137 0.703 No  

6.000 vs. 30.000 0.0855 2 0.482 0.736 Do Not Test  

30.000 vs. 36.000 0.116 2 0.655 0.647 Do Not Test  
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 Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

10.6 10.1 13 12.1 24.2 30

10.8 9.7 13.3 11.8 24.6 29.7

11.8 15.8 13.2 14.5 21.1 23.7

10.7 17.3 13.3 16 20 22.7

3.8 20 23.8 14.1 19.5 18.9

3.6 20 23.6 15.2 19.4 18.2

N 6 6 6 6 6 6

Mean 8.55 15.48 16.70 13.95 21.47 23.87

SD 3.78 4.62 5.42 1.68 2.35 5.10

SEM 1.69 2.07 2.43 0.75 1.05 2.28
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

36.000 vs. 6.000 8.150 3.469 0.002 0.017 Yes  

30.000 vs. 6.000 6.933 2.951 0.006 0.025 Yes  

36.000 vs. 30.000 1.217 0.518 0.608 0.050 No  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

36.000 vs. 6.000 9.917 4.220 0.000 0.017 Yes  

30.000 vs. 6.000 7.517 3.199 0.003 0.025 Yes  

36.000 vs. 30.000 2.400 1.021 0.315 0.050 No  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

F vs. M 5.400 2.298 0.029 0.050 Yes  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

F vs. M 5.983 2.546 0.016 0.050 Yes  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means t Unadjusted P Critical Level Significant?  

F vs. M 7.167 3.050 0.005 0.050 Yes  
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 Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

1.09 1.92 1.68 1.49 0.67 0.43

1.12 2.00 1.62 1.53 0.62 0.45

1.01 1.00 1.39 0.96 0.95 0.84

1.08 0.97 1.33 0.86 1.02 0.88

2.16 0.94 0.87 1.26 0.76 1.05

2.22 0.91 0.89 1.19 0.77 1.09

N 6 6 6 6 6 6

Mean 1.45 1.29 1.30 1.21 0.80 0.79

SD 0.58 0.52 0.35 0.27 0.16 0.29

SEM 0.26 0.23 0.16 0.12 0.07 0.13
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.233 2 1.466 0.308 No  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.491 2 3.089 0.037 Yes  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.505 2 3.176 0.032 Yes  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 30.000 0.159 3 1.002 0.760 No  

6.000 vs. 36.000 0.152 2 0.955 0.505 Do Not Test  

36.000 vs. 30.000 0.00750 2 0.0472 0.974 Do Not Test  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 36.000 0.423 3 2.664 0.161 No  

6.000 vs. 30.000 0.417 2 2.625 0.073 Do Not Test  

30.000 vs. 36.000 0.00628 2 0.0395 0.978 Do Not Test  
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 Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

13.6 18.4 14 19.1 18.6 16.2

13.6 18.3 13.9 19.4 18.6 16.2

8.5 22.1 17.4 16.7 17.8 17.4

8.1 22.7 17.7 16.5 18 17.1

11.9 18.9 17 17.7 16.8 17.7

11.8 19 16.9 17.7 16.9 17.7

N 6 6 6 6 6 6

Mean 11.25 19.90 16.15 17.85 17.78 17.05

SD 2.42 1.96 1.73 1.20 0.79 0.69

SEM 1.08 0.88 0.77 0.53 0.35 0.31
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 6.000 8.650 3 13.296 <0.001 Yes  

30.000 vs. 36.000 3.750 2 5.764 <0.001 Yes  

36.000 vs. 6.000 4.900 2 7.532 <0.001 Yes  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

6.000 vs. 36.000 0.800 3 1.230 0.663 No  

6.000 vs. 30.000 0.0667 2 0.102 0.943 Do Not Test  

30.000 vs. 36.000 0.733 2 1.127 0.432 Do Not Test  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 6.600 2 10.145 <0.001 Yes  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

M vs. F 2.117 2 3.253 0.029 Yes  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.900 2 1.383 0.336 No  
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 Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

0.60 0.78 1.30 1.02 1.17 1.11

0.57 0.80 1.33 1.00 1.18 1.09

1.18 0.73 1.11 1.22 1.24 0.99

1.21 0.73 1.07 1.24 1.23 1.02

0.66 0.75 1.08 1.11 1.32 1.01

0.68 0.75 1.09 1.10 1.30 1.01

N 6 6 6 6 6 6

Mean 0.82 0.76 1.16 1.12 1.24 1.04

SD 0.29 0.03 0.12 0.10 0.06 0.05

SEM 0.13 0.01 0.05 0.04 0.03 0.02
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: SEX within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.301 2 5.251 <0.001 Yes  

 

 

Comparisons for factor: SEX within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.481 2 8.404 <0.001 Yes  

 

 

Comparisons for factor: SEX within 36 

Comparison Diff of Means p q P P<0.05  

M vs. F 0.125 2 2.191 0.132 No  

 

 

Comparisons for factor: AGE within M 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 30.000 0.407 3 7.106 <0.001 Yes  

36.000 vs. 6.000 0.348 2 6.081 <0.001 Yes  

6.000 vs. 30.000 0.0586 2 1.024 0.475 No  

 

 

Comparisons for factor: AGE within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 36.000 0.200 3 3.489 0.050 Yes  

30.000 vs. 6.000 0.122 2 2.129 0.143 No  

6.000 vs. 36.000 0.0779 2 1.361 0.344 No  

 

 



 
 

127 
 



 
 

128 
 

 Raw data 

This section represents the raw data tables produced from spot densitometry of the 

immunoblot films. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

6m male 30m male 36m male 6m female 26m female 30m female

5.70 12.30 21.30 13.20 21.30 26.10

5.50 12.20 21.40 13.20 21.60 26.10

3.80 4.70 17.90 19.20 27.60 26.80

4.40 5.10 17.60 18.60 27.80 26.50

4.50 7.50 21.00 20.10 24.20 22.60

4.30 7.40 22.60 19.10 24.00 22.60

N 6 6 6 6 6 6

Mean 4.70 8.20 20.30 17.23 24.42 25.12

SD 0.74 3.34 2.05 3.16 2.81 1.97

SEM 0.33 1.49 0.92 1.41 1.26 0.88
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Statistics 

Two Way Analysis of Variance 

 

Comparisons for factor: Age within M 

Comparison Diff of Means p q P P<0.05  

36.000 vs. 6.000 0.961 3 10.690 <0.001 Yes  

36.000 vs. 30.000 0.732 2 8.138 <0.001 Yes  

30.000 vs. 6.000 0.229 2 2.552 0.081 No  

 

 

Comparisons for factor: Age within F 

Comparison Diff of Means p q P P<0.05  

30.000 vs. 6.000 0.347 3 3.864 0.028 Yes  

30.000 vs. 36.000 0.106 2 1.184 0.409 No  

36.000 vs. 6.000 0.241 2 2.680 0.068 No  

 

 

Comparisons for factor: Sex within 6 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.906 2 10.074 <0.001 Yes  

 

 

Comparisons for factor: Sex within 30 

Comparison Diff of Means p q P P<0.05  

F vs. M 1.024 2 11.386 <0.001 Yes  

 

 

Comparisons for factor: Sex within 36 

Comparison Diff of Means p q P P<0.05  

F vs. M 0.186 2 2.064 0.155 No  
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