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PRESENT VALUE MAXIMIZATION OF MONOPOLIST IN TIME

SCALES

Keshav Prasad Pokhrel

ABSTRACT

The present value of the investment of the monopolist for the continuous case is

given by PV =
∫∞

0
e−rtq(t)p(t)dt with demand condition p(t) = f(t)−q(t)−a1q

′(t)−

a2q
′′(t),(C), and the present value for the discrete case is PV =

∑∞
0 βtqtpt with

demand condition pt = ft − qt − αqt−1, (D), provided 0 < β ≤ 1.

We will discuss various conditions and possibilities of maximization of present value of

a monopolist. Basically we are focused on the Continuous (C) and Discrete (D) cases.

In the (C), there is an exponential approach of growth if and only if a2 6= 0. The

boundary conditions in (C) generate some mathematical issues. The first derivative

of the quantity q′(t) has finite jump at t = 0. If a2 = 0 then the jump is similar to the

jump of q(t) at t = 0. If the sufficient condition for the C problems are satisfied, then

the demand equation is unstable. Finally, in (C) the maximum positive discount rate

depends on a1 and a2 that yields finite maximum present value.

In (D) we do not need to have any adjustment as long as α 6= 0. The sufficient

conditions for maximum present value are satisfied for all t ∈ (0, 1). The optimal

path is uniquely determined by the boundary condition and the choice of discount

factor β. The stability of discount factor is a major player in (D) problem. The stable

demand condition implies the existence of bounded finite maximum present value for

all β ≤ 1.

General results for time scales with right dense points are established. A study of

issues that arise when unifying (C) and (D) is included in the analysis.
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1. Introduction

The development of science and technology is an indispensable tool for a prosperous

society. It is widely believed that the development of technology has a high degree of

correlation with the development of mathematics. The development of technology is

expanding the horizon of mathematics to a wider range. The rigorous involvement of

mathematicians in the development of medical science, computer science, business,

economics, and finance has given an ample amount of opportunity and challenges for

those who want to be involved in the field of mathematics and related areas. Nowa-

days an imbalance between demand and supply of gasoline is a political and financial

hot topic in the respective fields. Besides that it is an issue of every kitchen because

of the energy crisis.

Monopoly, the exclusive control of a commodity or service in a given market, or

control that makes possible the fixing of prices and the virtual elimination of free

competition, is a bi-product of the corporate world. It is natural that every business

person wants to maximize profit. Moreover, they also want to maximize the current

worth of their investment so that they can feel always secure in their business. The

monopolist is not out of this box.

Our study will focus on the maximization of the present value of the investment of a

monopolist under certain demand conditions. It is not a survey, rather is a mathe-

matical analysis of the respective theory. In this paper we have tried to touch a small

corner of demand and supply theory. The concept of the problem is taken from a

paper “Continuous and Discrete Time Approaches to a Maximization Problem” by

L.G. Telser and R.L. Graves [1]. An effort has been made to study the problem in

time scale analysis as well.

Fundamental concepts and definitions of some technical terms from economics are

mentioned in Chapter 2. The concept of present value and the derivation of the for-

mula for present value using integration is developed [27, 28, 29]. This gives a sense of
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strong bonding of calculus and financial mathematics. The Euler - Lagrange equation

for the calculus of variation is mentioned with proof. This is the main theory that we

have used for the purpose of maximization. In Chapter 3 we have tried to summarize

the definitions and some fundamentals of time scale calculus [5].

In Chapter 4 we have studied two types of monopolist demand conditions, continu-

ous and discrete. In the continuous case, (C), some mathematical conditions must be

satisfied to insure bounded maximum present value. An extensive discussion of the

variation of the parameter method is used to solve nonhomogeneous differential equa-

tions [19]. The second order differential equation (derived from the Euler-Lagrange

equation) must have real roots (λ1 and λ2). Moreover, for the given admissible

path the jump in q(t) is prohibited while the jump in q′(t) is generally required. For

a bounded maximum Present Value (PV) it is verified that lim
t→∞

e−rtq(t)q′(t) = 0

for ordinary differential equation and lim
t→∞

e−rtq(t)q4(t) = 0 for time scales with

right dense points. The maximum value of the characteristic root of the Euler equa-

tion occurs for that value of r which makes the discriminant of the roots of the Euler

equation zero. For the bounded maximum value in the discrete case, (D), the discount

factor must satisfy β ∈ (0, 1) and 1− αβ2 > 0.

The interpretation of the results by comparing the continuous and discrete cases is

the most interesting part of the problem. This interpretation can also be found in

chapter 4. The necessity of perfect forecasting in the perfectly competitive market is

a major problem for stability of the differential equation. However, forecasting always

helps the producers to judge the market and plan accordingly. The major difference

in the continuous and discrete problems depends on the derivative of the continuous

curve. This implies the slope is same whether it approaches from left or right. Thus

the right and left derivatives are equal. This implies for any point t there exist a

neighborhood Nδ(t) such that the future value is the same as the past value. Hence

it is completely predictable [1]. Thus, the complete symmetry of the demand relation
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over time is not practical.

Finally, an effort has been made to study the same problem on time scales. Due to

some technical reasons the problem is narrowed down to the right dense case only.

Without right dense points we have to face the partial derivative of qσ4(t) with respect

to q(σ(t)). The derivation of Euler-Lagrange equation for time scales was developed

by R . Hilcher, V. Zeidan [12] and Ahlbrandt, Bohner, Ridenhour [11].
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2. Preliminaries

Economics is the branch of social science that studies the production, distribution,

and consumption of goods and services. The term economics comes from the Greek

for oikos (house) and nomos (custom or law), meaning “rules of the house”.

The primary purpose of this chapter is to discuss some fundamental definitions of

the terms in economics, a derivation of present value and the derivation of the Euler-

Lagrange equation. The Demand function, revenue function, cost function, present

value, face value and the derivation of present value will be the nuclear part of the

discussion.

2.1. Fundamental Economics Terms. In every market, there are both buyers and

sellers. The buyers’ willingness to buy a particular good (at various prices) is known

as the “demand” for that good. The sellers’ willingness to supply a particular good

(at various prices) is referred to as the “supply” of that good. If the price of the good

increases, then the demand on the market decreases. Thus there exists an inverse

relation between demand and price. The graphical representation of the demand and

price relation is called the demand curve. Because of the inverse relation the demand

curve has a negative slope. In economics it is also called downward sloping.

The general form of the demand equation can be written p = a+ bq, where

p = price,

q = quantity demanded,

a = price when there is no demand, and

b = slope of the demand curve

Changes in preferences: As people’s preferences for goods and services change over

time, the demand curve for these goods and services will also shift. For example, as

the price of gasoline has risen, automobile buyers have demanded more fuel efficient,

“economy” cars and fewer gas-guzzling, “luxury” cars. This change in preferences
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could be illustrated by a shift to the right in the demand curve for economy cars and

a shift to the left in the demand curve for luxury cars.

In the above figure, we can see the change in demand without change in price. There-

fore price is not the only factor that causes a change in demand. In our analysis we

will discuss the major factors that affect demand.

Definition 1. Cost Function:

The amount or equivalent sum paid or charged for some commodity can be de-

scribed by the cost function. Mathematically, the cost function is defined as

C(x) = F (x) + V (x)

where x = total quantity produced; C(x) = cost function; F (x) = fixed costs; V (x)

= variable costs.

Fixed costs represents the cost when total quantity production equals zero. These

cost do not vary depending on production or sales levels, such as rent, property tax,

insurance, or interest expense.

Variable costs are costs of labor, material or overhead that change according to the

change in the volume of production units. The total variable cost changes with

increased production, the total fixed costs stays the same.

Definition 2. Revenue Function:
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The amount of money that a company actually receives during a specific period,

including discounts and deductions for returned merchandize is can be described by

the Revenue Function. It is the “gross income” figure from which costs are subtracted

to determine the net income.

Revenue is calculated by multiplying the price at which goods or services are sold by

the number of units or amount sold.

R(x) = P(x) × (x)

where x = total quantity sold; R(x) = revenue function and P(x)= price per unit.

Definition 3. Face Value

The nominal value or dollar value of a security stated by the issuer is called the

Face Value. For stocks, it is the original cost of the stock shown on the certificate.

For bonds, it is the amount paid to the holder at maturity. In terms of mathematics,

it is the sum of money invested plus interest over the course of time.

Definition 4. Present Value

The current worth of a future sum of money or stream of cash flow given a specified

rate of return is called the Present Value. Future cash flows are discounted at the

discount rate, and the higher the discount rate, the lower the Present Value of the

future cash flows. This is also known as “ the discounted value”.

2.2. Mathematics of present value. Consider the following example to motivate

our discussion. Let $1000 be invested at the rate of 10% per annum. By the end of

year the sum of money will be equal to $1100 ($ 1000+ 0.1* $1000). The difference

between the sum after one year and current sum of money is $100.

Thus, the rate of change in the sum of money per year = rate of interest * invested

sum.
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Numerically this is equivalent to
{

$1100−$1000
year

= 0.1 ∗ $1000
}
.

Let r be the interest rate at which sum of the money accumulates. Suppose B(t) is

the balance in any bank account at time t. The value of the account increases over

the course of time at the given rate of interest. This can be described by the equation:

d

dt
B(t) = rB(t).

This implies,
dB(t)

B(t)
= rdt,

lnB(t) = rt+ c,

(1) B(t) = ert+c.

When t=0, B(0) = er∗0+c = ec. Hence

B(t) = ertec = B(0)ert

and

(2) B(0) = B(t)e−rt.

In financial mathematics, B(0) is also termed as the Present Value (PV) and B(t)

as the Face Value (FV).

If the interest is calculated more frequently the investment is worth more. The idea

is that money available at the present time is worth more than the same amount in

the future, due to its potential earning capacity. Over the course of time the account

become less valuable. The bank ( or any investment business) increases the value in

such a way that the sum retains the same intrinsic value over the course of time.

From equation (2) we have
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ert =
B(t)

B(0)
.

Thus ert represents the ratio of the current balance to the balance when t = 0.

Let B(t1) and B(t2) be the balances at time t1 and t2, respectively. The intrinsic

value of the balance is equal if

B(t1) = B(t2)

which implies B(0)ert1 = B(0)ert2 .

Thus

$1 at time t1is equivalent to, er(t1−t2)at time t2.

This is also called an unit conversion formula.

Example 1: A sum of $1000 is invested at the rate of 10% per annum. What is the

rate of exchange between the value after 5 years and 9 years from now? Let t1 = 5;

t2 = 9 and r = 0.1. Suppose $1and $2 are values of the account at time t1 and t2,

respectively.

Thus, by conversion formula $11 = $2e
0.1(9−5). This implies $11 = $2e

0.4

where $11 represents the amount of money at time t1. Thus $1 after 5 years is equal

to $1.49 after 9 years.

2.3. Continuous Money Stream. If the sum of money is accumulated continuously

instead of for fixed time intervals, such a payment stream is called continuous payment

stream.

The continuous payment stream is not precisely the same as that of the discrete

payment stream but it can be used to approximate it. Moreover, in the continuous

payment stream we can use a powerful mathematical tool “integration”.

Example 2 : A constant payment of $500 per month ($ 6000 per year) for years can

be represented by the graph:
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From the diagram the value of money is the sum of the slices of rectangles within the

boundary of time. The money at time t is the money between time t and t + 4t.

Hence, we can introduce the Riemann sum and eventually an integral.

In the above diagram the area representing the total sum of money paid for 5 years

can be divided into a number rectangular slices and hence can be used to analyze

the continuous money stream with future value, present value and other financial

parameters.

Suppose, R(t)= (payment/unit time )*(total time )

Thus,

R(t) =

∫
(payment rate)dt.

=

∫
dR(t)

Theorem 1. Let the annual rate of income of some money stream be given by R(t)

at time t where 0 ≤ t ≤ T and the interest assumed to be compounded continuously

at the rate r per annum. Then, the present value PV (B(0) i.e., balance when t = 0),
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of the money stream is given by:

PV =

∫ T

0

R(t)e−rtdt.

Proof. : Let R(t) = balance at time t,

T = end of the time interval,

n = number of subintervals for [0.T]

(in terms of compound interest: total number of times the money compounded. )

This implies the interval [0, T ] is divided into n intervals.

Thus,

4t =
T

n
; where 0 = t1 < t2 < . . . < tn = T

and r = rate of interest compounded continuously.

The present value can be approximated by the following sum:

PV ≈ R(t1)e
−rt14t+R(t2)e

−rt24t+ . . . ,+R(tn)e−rtn4t.

∴ PV =
n∑
i=1

R(ti)e
−rti4t.

Now 4t→ 0implies n→∞.

Letting n→∞, P.V. can be written as

PV = lim
n→∞

n∑
i=1

R(ti)e
−rti4t.

∴ PV =

∫ T

0

R(t)e−rtdt

�

2.4. Euler-Lagrange Equation.

Lemma 2. Fundamental Theorem of Calculus of Variation

If f is a smooth function over the interval [a,b] and
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∫ b

a

f(x)h(x)dx = 0

for every function h ∈ C∞[a, b] with h(a) = 0, then f(x) is identically zero on the

interval (a, b).

Proof: Let f be a function satisfying the hypothesis.

Let r(x) be a function such that r(a) = 0, r(b) = 0 and r > 0, x ∈ (a, b)satisfying∴∫ b
a
f(x)h(x)dx = 0.

For example r(x) = −(x− a)(x− b).

Suppose, h = rf . Then∫ b

a

f(x)h(x)dx =

∫ b

a

f(x)r(x)f(x)dx =

∫ b

a

f 2(x)r(x)dx = 0.

Since r(x)f 2 ≥ 0 for r ∈ (a, b), f = 0 for all x ∈ [a, b].

Theorem 3. Let f(t) be be a real variable.

Suppose, J =
∫ b
a
F (t, f(t), f ′(t))dt where F is given by

F : R×X × Y → R with continuous first partial derivatives

where, f : R→ X and f ′ : R→ Y .

The Euler-Lagrange equation is the ordinary differential equation

Fx(t, f(t), f ′(t))− d

dt
Fy(t, f(t), f ′(t)) = 0

where Fx and Fy are the partial derivatives of F with respect to x and y respectively.

Proof: Let us consider f(a) = c, f(b) = d.

The function f(t) is supposed to extremize the functional
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∫ b

a

F (t, f(t), f ′(t))dt.

We assume that F has continuous first order partial derivatives,

and let gε(t) = f(t) + εη(t).

∴ g′ε(t) = (f ′(t) + εη′(t)).

Note that, ∂gε(t)
∂ε

= η(t) and ∂g′ε(t)
∂ε

= η′(t)

where η(t) is differentiable function satisfying η(a) = η(b) = 0.

Define

J(ε) =

∫ b

a

F (t, gε(t), g
′
ε(t))dt.

The total derivative of J with respect to ε is given by

dJ

dε
=

∫ b

a

dF

dε
(t, gε(t), g

′
ε(t))dt.

By the definition of total derivative

dF

dε
=

∂F

∂t

∂t

∂ε
+
∂F

∂gε

∂gε
∂ε

+
∂F

∂g′ε

∂g′ε
∂ε

= 0 +
∂F

∂gε
η(t) +

∂F

∂g′ε

∂

∂ε
η′(t).

∴
dJ

dε
=

∫ b

a

{
η(t)

∂F

∂gε
+ η′(t)

∂F

∂g′ε

}
dt.

Thus ε = 0 implies gε = f and since f is an extreme value, it follows that J ′(0) = 0.

Then the following are equivalent,

J ′(0) =

∫ b

a

{
η(t)

∂F

∂f
+ η′(t)

∂F

∂f ′

}
dt = 0
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=

∫ b

a

η(t)
∂F

∂f
dt+

∫ b

a

η′(t)
∂F

∂f ′
dt

=

∫ b

a

η(t)
∂F

∂f
dt+

{
η(t)

∂F

∂f ′

}b
a

−
∫ b

a

η(t)

{
∂F

∂f ′

}
dt

=

∫ b

a

{
∂F

∂f
− d

dt
(
∂F

∂f ′
)

}
η(t)dt+

{
∂F

∂f ′
η(t)

}b
a

=

∫ b

a

{
∂F

∂f
− d

dt
(
∂F

∂f ′
)

}
η(t)dt

provided η(a) = η(b) = 0.

By the fundamental theorem of calculus of variation

∂F

∂f
− d

dx
(
∂F

∂f ′
) = 0

which is the Euler -Lagrange equation.
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3. Time Scales Calculus

The calculus of time scales was introduced by Stefan Hilger in his Ph.D. thesis

(Universität Würzburz, 1988) in order to unify the discrete and continuous analysis.

A time scale is an arbitrary non-empty closed subset of the real numbers. It is usually

denoted by T.

Thus R,Z,N,N0 are some examples of time scales.

But Q,R − Q {irrationals} ,C and (0, 1) i.e. the rational numbers, the irrational

numbers, the complex numbers, and the open interval between 0 and 1, are not time

scales. We move through the time scale using forward and backward jump operators.

The gaps in the time scale are measured by a function µ, defined in terms of forward

jump operator, σ.

Definition 5. Forward and Backward jump operator:

Let T be a time scale. For t ∈ T we define the forward jump operator σ : T → T

by

σ(t) := inf {s ∈ T : s > t}

The backward jump operator is the operator ρ : T→ T given by

ρ(t) := sup {s ∈ T : s < t}

Note 1: If σ(t) > t, we say that t is right − scattered, while if ρ(t) < t we say that

t is left − scattered. The points which are right-scattered and left-scattered at the

same time are called isolated.

Note 2 : If t < supT and σ(t) = t, then t is called right-dense.

Note 3 : If t > infT and ρ(t) = t, then t is called left-dense.

The forward jump operator σ(t) is not always same as t. The difference between σ(t)

and t is called Graininess.

Definition 6. Graininess:
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The Graininess µ : T→ [0,∞) is defined by

µ(t) = σ(t)− t for all t ∈ T.

Note 4: If T has a left-scattered maximum m, then Tk = T−{m} . Otherwise Tk = T.

Tk =


T− (ρ(supT), supT] if supT <∞

T if supT =∞.

Note 5: Let f : T→ R be a function, then we define the function fσ : T→ R by

fσ(t) = f(σ(t)) for all t ∈ T i.e., fσ = f ◦ σ.

Using σ we define the delta derivative of a function f in a natural way.

Definition 7. Differentiation:

Assume f : Tk → R is a function and let t ∈ Tk. Then we define f4(t) to be

the number with the property that given any ε > 0 there exists a neighborhood

U = (t− δ, t+ δ) ∩ T of t such that

|[f(σ(t))− f(s)]− f4(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U

where f4(t) is called delta derivative of f at t.

We will introduce the delta derivative f4 for a function f defined on T. It is expressed

as

(i) f4 = f ′ is the usual derivative if T = R and (ii) f4 = 4f is the forward difference

operator if T = Z.

Theorem 4. Assume f : T → R is a function and let t ∈ Tk. Then we have the

following.

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t, then f is differentiable at t with

f4(t) =
f(σ(t))− f(t)

µ(t)
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(iii) If t is right- dense, then f is differentiable at t iff the limit

lim
s→ t

f(t)− f(s)

t− s

exists as a finite number. In this case

f4(t) = lim
s→ t

f(t)− f(s)

t− s
.

(iv) If f is differentiable at t,then

f(σ(t)) = f(t) + µ(t)f4(t).

Now we introduce the most powerful fundamentals delta of derivatives: sum rule,

product rule, quotient rule and the transformation of the sigma function in terms of

the original function and its derivative.

Theorem 5. Assume f , g: T→ R are differentiable at t ∈ Tk. Then:

(i) The sum f + g : T→ R is differentiable at t with

(f + g)4(t) = f4(t) + g4(t).

(ii) For any constant α, αf : T→ R is differentiable at t with

(αf)4(t) = αf4(t).

(iii) The product fg : T→ R is differentiable at t with

(fg)4(t) = f4(t)g(t) + f(σ(t))g4(t)

= f(t)g4(t) + f4(t)g(σ(t)).
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(iv) If f(t)f(σ(t)) 6= 0, then 1
f

is differentiable at t with

{
1

f

}4
(t) =

−f4(t)

f(t)f(σ(t))

(v) If g(t)g(σ(t)) 6= then f
g

is differentiable at t and

{
f

g

}
(t) =

f4(t)g(t)− f(t)g4(t)

g(t)g(σ(t))

Apart from the differentiability we need a few more conditions for integrability of

the function.

Definition 8. Regulated, rd-continuous and pre-differentiation

A function f : T→ R is called regulated provided its right-sided limits exists at all

right-dense points in T and its left-sided limits exists at all left-dense points in T.

A function f : T → R is called rd − continuous provided it is continuous at right-

dense points in T and its left-sided limits exist at left-dense points in T. It is denoted

by

Crd = Crd(T) = Crd(T,R).

A continuous function f : T → R is called pre-differentiable in the region of differ-

entiation D, provided D ⊂ Tk, Tk −D is countable and contains no right-scattered

elements of T, and f is differentiable at each each t ∈ D. Assume f : T → T is

regulated function. Any function F in theorem is called a pre− antiderivative of f

if F4(t) = f(t).

Theorem 6. Existence of Pre-Antiderivative

Let fbe regulated.Then there exists a function F which is pre-differentiable with region

of differentiation D such that F4(t) = f(t) holds for all t ∈ D.
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The indefinite integral of a regulated function f is given by∫
f(t)4t = F (t) + C

where C is an arbitrary constant and F is a pre-antiderivative of f . We define the

Cauchy integral by:

∫ s

r

f(t)4t = F (s)− F (r)

for all r, s ∈ T.

A function F : T→ R is called an antiderivative of f : T→ R provided

F4(t) = f(t) holds for all t ∈ Tk.

TABLE : Time scale derivative and Antiderivative for T = R or T = Z

Time T R Z

Backward jump operatorρ(t) t t− 1

Forward jump operator σ(t) t t+ 1

Graninessµ(t) 0 1

Derivative f4(t) f ′(t) 4f(t)

Integral
∫ b
a
f(t)4t

∫ b
a
f(t)dt

∑b−1
t=a f(t)(if a < b)

Rd-continuous f continuous f any f

Theorem 7. If f ∈ Crd and t ∈ Tk, then∫ σ(t)

t

f(τ)4τ = µ(t)f(t).

Some fundamental laws of integration are summarized in the following theorem

including two laws of integration by parts.

Theorem 8. If a, b, c ∈ T, α ∈ R, and f, g ∈ Crd, then

(i)
∫ b
a
[f(t) + g(t)]4t =

∫ b
a
f(t)4t+

∫ b
a
g(t)4t;
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(ii)
∫ b
a
(αf)(t)4t = α

∫ b
a
f(t)4t;

(iii)
∫ b
a
f(t)4t = −

∫ b
a
f(t)4t;

(iv)
∫ b
a
f(t)4t =

∫ c
a
f(t)4t+

∫ b
c
f(t)4t

(v)
∫ b
a
f(σ(t))g4t(t) = (fg)(b)− (fg)(a)−

∫ b
a
f4(t)g(t)4t;

(vi)
∫ b
a
f(t)g4(t)4t = (fg)(b)− (fg)(a)−

∫ b
a
f4(t)g(σ(t))4t;

(vii)
∫ a
a
f(t)4t = 0

(viii) If |f(t)| ≤ g(t)on[a, b), then |
∫ b
a
f(t)4t| ≤

∫ b
a
g(t)4t;

(ix) If f(t) ≥ 0 for all a ≤ t ≤ b, then
∫ b
a
f(t)4t ≥ 0.

The interesting aspects of time scales calculus is that the integration can also be

performed even if the domain of the function is a set of integers. Thus integration of

any function depends upon the domain of the function.

Theorem 9. Let a, b, c ∈ T and f ∈ Crd

(i) If T = R, ∫ b

a

f(t)4t =

∫ b

a

f(t)dt

where the integral on the right is the usual Riemann integral from calculus.

(ii) If [a,b] consists of only isolated points, then

∫ b

a

f(t)4t =



∑
t∈[a,b) µ(t)f(t) if a < b

0 if a=b

−
∑

t∈[b,a) µ(t)f(t) if a > b

(iii) if T = Z, then

∫ b

a

f(t)4t =



∑b−1
t=a f(t) if a < b

0 if a=b

−
∑a−1

t=b f(t) if a > b
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First order Linear Equation

Now we move to the differential equations that contain the delta derivative.

Definition 9.

Suppose f : T× R2 → R. Then the equation

(3) y4 = f(t, y, yσ)

is called a first order dynamic equation, or sometimes called a differential equation.

If

f(t, y, yσ) = f1(t)y + f2(t) or f(t, y, yσ) = f1(t)y
σ + f2(t)

for the functions f1 and f2, then (3) is called a linear equation. A function y : T→ R

is called a solution of (3) if y4(t) = f(t, y(t), y(σ(t))) is satisfied for for all t ∈ Tk.

The general solution of (3) is defined to be the set of all solutions of (3). We will

require a condition known as regressivity on functions as well as dynamic equations.

They are defined as follows:

Definition 10.

We say that the function p : T→ R is regressive provided

1 + µ(t)p(t) 6= 0

for all t ∈ Tk.

The set of all regressive and rd-continuous functions f : T → R is denoted by < or

<(T) or <(T,R).

The generalized exponential function is denoted by ep(t, s). It is used to solve differ-

ential equations.The basic properties of exponential function can be summarized as

follows:

If p, q ∈ <, then e0(t, s) = 1 and ep(t, t) = 1, 1
ep(t,s)

= e	p(s, t),
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ep(t, s)eq(t, s) = ep⊕q(t, s) and ep(t,s)

eq(t,s)
= ep	q(t, s) where “ circle plus” p⊕ q is defined

by p ⊕ p ≡= p(t) + q(t) + µ(t)p(t)q(t) for all t ∈ Tk , p, q ∈ <. and “ circle minus”

	p is defined as

(	p)(t) = p(t)
1+µ(t)p(t)

for all t ∈ Tk.

Note: If p ∈ <, then the first order linear dynamic equation

y4 = p(t)y

is called regressive.

Theorem 10. Suppose first order dynamic equation y4 = p(t)y is regressive and fix

t0 ∈ T. Then ep(., t0) is a solution of the initial value problem

y4 = p(t)y, y(t0) = 1.

Second Order Linear Equations

The general form of a the second order linear dynamic equation is

y44 + p(t)y4 + q(t)y = f(t)

where p, q, f ∈ Crd.

Let us consider an operator L2 : C2
rd → Crd defined by

L2y(t) = y44(t) + p(t)y4(t) + q(t)y(t) for t ∈ Tk.

Thus the general form of the second order equation can be written as

L2y = f,

where L2y = 0 is called the homogenous dynamic equation.

Theorem 11. The operator L2 : C2
rd → Crd is a linear operator, i.e;

L2(αy1 + βy2) = αL2(y1) + βL2(y2) for all α, β ∈ R and y1, y2 ∈ C2
rd.
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Definition 11.

The second order linear dynamic equation y44 + p(t)y4 + q(t)y = f(t) is called

regressive provided p, q, f ∈ Crd are such that

1− µ(t)p(t) + µ2(t)q(t) 6= 0 for all t ∈ Tk.

with this in mind, we establish conditions for existence and uniqueness of a solution.

Theorem 12. Existence and Uniqueness:

Assume that the second order linear dynamic equation y44 + p(t)y4 + q(t)y = f(t)

is regressive. If t0 ∈ Tk, then the initial value problem

L2y = f(t), y(t0) = y0, y4(t0) = y40 ,

where y0 and y40 are given constants, has a unique solution, and this solution is defined

on the whole time scale T.
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4. Continuous and Discrete Time Approach to a Maximization

problem

One of the the fundamental goals of the project is to seek a maximum present

value with a given rate of interest. The problem is narrowed down by taking the

present value maximization case of a monopolist. The generalization of the discrete

and continuous case of the the problem in time scale calculus is the primary concern

of the work. We will see differences between discrete and continuous cases.

4.1. Continuous(C) Monopoly Problem. The Present Value (PV ) of the mo-

nopoly problem is given by

(4) PV =

∫ ∞
0

e−rtq(t)p(t)dt

where,

p(t) = price per unit at time t,

q(t) = total quantity demanded at time t,

r = rate of interest.

The monopolist’s demand condition can be written as:

p(t) = f(t)− q(t)− a1q
′(t)− a2q

′′(t) provided, f(t) = 0 and q(t) = 0 for t < 0

where f(t) = size of the market.

Note: f(t) is taken in such away that p(t) is non-negative.

Definition 12. Admissible quantity path

Our solution will come from a class of functions known as admissible paths. Ad-

missible quantity q(t) is a continuous curve with a continuous first derivative except

at a finite number of points such that |e− rt
2
q(t)| and |e− rt2 q′(t)| are bounded.

Definition 13. Interior Curve and Boundary Curve
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If the integrals ∫ ∞
0

e−rtq2(t)dt

and

∫ ∞
0

e−rtq′2(t)dt

are finite then the admissible quantity curve is an interior curve otherwise the curve

is a boundary curve.

The PV(4) is said to have interior solution if the the integral
∫∞

0
e−rtq(t)p(t)dt is

finite for all admissible interior curves. Similarly, the integral (4) is said to have edge

solution for a given r if the value of the integral is finite for all admissible interior

curves and for some boundary curves.

4.2. Maximization of Present Value in continuous case. The present value for

the monopolist in the continuous case is given by: PV =
∫∞

0
e−rtq(t)p(t)dt

where p(t) = f(t)− q(t)− a1q
′(t)− a2q

′′(t)

Therefore, PV can be written as,

(5) PV =

∫ ∞
0

e−rt[f − q − a1q
′ − a2q

′′]q dt.

Equation (5) can also be written as

(6) PV =
[
−a2e

−rtqq′
]∞
0

+

∫ ∞
0

e−rt[fq − q2 − (a1 + a2r)qq
′ + a2q

′2]dt

or, equivalently,

(7)

PV =
[
−a2e

−rtqq′
]∞
0

+

∫ ∞
0

e−rt[fq−q2−a1qq
′]dt−a2r

∫ ∞
0

e−rtqq′dt+

∫ ∞
0

a2e
−rtq′2dt
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To verify this note that, from equation (7), considering the integral a2r
∫∞

0
e−rtqq′dt

and integrating by parts we get:

−a2

∫ ∞
0

e−rtqq′dt = a2[qq
′e−rt]|∞0 + a2r

∫ ∞
0

[
qq′′ + q′2

] e−rt
−r

dt

This implies,

(8) −a2r

∫ ∞
0

e−rtqq′dt = a2

[
qq′e−rt

]∞
0
− a2

∫ ∞
0

qq′′e−rtdt− a2

∫ ∞
0

e−rtq′2dt

Finally, substituting the equivalent expression of the integral from (8) into (7) yields,

PV =
[
−a2e

−rtqq′
]∞
0

+

∫ ∞
0

e−rt[fq − q2 − a1qq
′]dt+

[
a2e
−rtqq′

]∞
0

−a2

∫ ∞
0

qq′′e−rtdt− a2

∫ ∞
0

e−rtq′2dt+ a2

∫ ∞
0

e−rtq′2dt

Thus we return to,

P.V. =

∫ ∞
0

e−rt[fq − q2 − a1qq
′ − a2qq

′′]dt

provided, lim
t→∞

e−rtqq′ = 0. This verifies the validity of equation (6).

Now equation (6) is equivalent to

(9) PV = q(0)q′(0) +

∫ ∞
0

e−rt[fq − q2 − (a1 + a2r)qq
′ + a2q

′2]dt

Since, q(0) and q′(0) are constants. It is sufficient to maximize the integral on the

right side of (9).

Suppose, F (t, q, q′) = e−rt[fq − q2 − (a1 + a2r)qq
′ + a2q

′2].

For the Present Value maximization, we need to maximize
∫∞

0
F (t, q, q′)dt.

For maximization, the function q(t) must satisfy the Euler-Lagrange equation:

(10) Fq −
d

dt
Fq′ = 0.



26

Moreover, the sufficient condition for the maximum PV is given by the Legendre’s

condition :

Fqq′ < 0.

Differentiating the function F (t, q, q′) partially with respect to q and q′ respectively

gives us

Fq = e−rt[f − 2q − (a1 + a2r)q
′]

and

Fq′ = e−rt[−(a1 + a2r)q + 2a2q
′].

This implies, d
dt
Fq′ = e−rt[−(a1 + a2r)q

′ + 2a2q
′′] − re−rt[−(a1 + a2r)q + 2a2q

′]. Sub-

stituting the values of Fq and d
dt
F ′q in equation (10) we obtain

e−rt[f−2q−(a1 +a2r)q
′]−e−rt[−(a1 +a2r)q

′+2a2q
′′]+re−rt[−(a1 +a2r)q+2a2q

′] = 0,

f − 2q − (a1 + a2r)q
′ + (a1 + a2r)q

′ − 2a2q
′′ − r(a1 + a2r)q + 2a2q

′ = 0,

−2a2q
′′ + 2a2rq

′ − (2 + a1r + a2r
2)q + f = 0.

(11) ∴ 2a2q
′′ − 2a2rq

′ + (2 + a1r + a2r
2)q − f = 0.

The corresponding characteristic equation is given by:

2a2m
2 − 2a2m+ (2 + a1r + a2r

2) = 0

This implies,

m =
2a2r ±

√
4a2

2r
2 − 8a2(2 + a1r + a2r2)

4a2

, or

(12) m =
r

2
±
√
−a2

2 − 4a2 − 2a1a2r

2a2

.

Suppose, m = λ1 and λ2.

There are three possibilities :
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• λ1 and λ2 are real and unequal.

• λ1 and λ2 are real and equal.

• λ1 and λ2 are complex.

Claim: The Characteristic roots of the Euler equation (11) must be real for bounded

maximum present value.

Proof : Let us consider an admissible quantity path: q = Meδt, δ < r
2
, M = q(0).

Now equation (9) can be written as

PV = a2q(0)q′(0)+

∫ ∞
0

e−rtqfdt−
∫ ∞

0

e−rt[e2δt+(a1+a2r)MeδtMδeδt−a2δ
2M2e2δt]dt.

This implies

P.V. = a2q(0)q′(0) +

∫ ∞
0

e−rtfqdt+M2

∫ ∞
0

e(2δ−r)t[1 + (a1 + a2r)δ − a2δ
2]dt.

Thus

PV = a2q(0)q′(0) +

∫ ∞
0

e−rtfqdt+ [1 + (a1 + a2r)δ − a2δ
2]
e(2δ−r)t

2δ − r
|∞0 .

∴ PV = a2q(0)q′(0) +

∫ ∞
0

e−rtfqdt+
1

2δ − r
[1 + (a1 + a2r)δ − a2δ

2].

1
2δ−r → −∞ as δ → ( r

2
)−

Thus PV can be arbitrarily large if lim
δ→ ( r

2
)−

[1 + (a1 + a2r)δ − a2δ
2] < 0.

which is equivalent to:

1 + a1
r

2
+ a2(

r

2
)2 < 0.

To avoid the possibility of arbitrarily large PV, it is necessary that

(13) 1 + a1
r

2
+ a2(

r

2
)2 ≥ 0

The discriminant of the equation (12) can be written as

−a2
2r

2 − 4a2 − 2a1a2ri.e., −4a2[a2(
r

2
)2 + a1

r

2
+ 1],
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where, a2 < 0. This implies the discriminant is non negative. Hence the character-

istic roots (λ1 and λ2) are real. Ultimately, the Present Value is bounded above if

the characteristic roots of the demand equation are real. Considering the following

example

Example 3: Let f(t) = Ke
rt
2

1+t
. Then,

∫ ∞
0

e−rt {f(t)}2 dt =

∫ ∞
0

e−rt

{
Ke

rt
2

1 + t

}2

dt

=

∫ ∞
0

e−rt

(1 + t)2
K2ertdt

= K2

∫ ∞
0

1

(1 + t)2
dt

= K2[−1/(1 + t)]∞0

= K2

which is finite. Substituting the value of f(t) in the price equation

p(t) =
Ke

r
2

1 + t
−Meδt − a1Mδeδt − a2Mδ2eδt

or,

p(t) = eδt
{
Ke(

r
2
)t

1 + t
−M(1 + a1δ + a2δ

2)

}
.

If K > 0 is large enough so that price is positive then the market grows. For the

positive bounded value, the function must satisfy the inequality (13). Thus there

exists bounded positive maximum value provided:

• K > 0 and large enough so that p(t) is positive.

• 1 + a1
r
2

+ a2(
r
2
)2 ≥ 0 with a2 < 0. Let’s now consider the relevant cases.
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Case 1 The characteristic roots (λ1 and λ2 ) are not equal.

The complimentary function of the equation (11) can be written as:

(14) qc(t) = c1e
λ1t + c2e

λ2t

To find the particular solution of the equation (11), we therefore let

(15) qp(t) = v1(t)y1 + v2(t)y2

where y1 = eλ1t and y2 = eλ2t. Then,

q′p(t) = v′1(t)y1 + v′2(t)y2 + v1(t)y
′
1 + v2(t)y

′
2

We impose the condition

(16) v′1(t)y1 + v′2(t)y2 = 0

leaving

(17) q′p(t) = v1(t)y
′
1 + v2(t)y

′
2.

From this, we find

(18) q′′p(t) = v′1(t)y
′
1 + v′2(t)y

′
2 + v1(t)y

′′
1 + v2(t)y

′′
2 .

Substituting (15), (17), and (18) into (11) we obtain

2a2[v
′
1(t)y

′
1+v

′
2(t)y

′
2+v1(t)y

′′
1+v2(t)y

′′
2 ]−2a2[v1(t)y

′
1+v2(t)y

′
2]+A[v1(t)y1+v2(t)y2]−f = 0

where A = (2 + a1r + a2r
2), or, equivalently,

2a2[v
′
1(t)y

′
1 + v′2(t)y

′
2] + [y′′2 − 2a2ry

′
1 + Ay1]v(t) + [y′′2 − 2a2ry

′
2 + Ay2]v − 2(t) = f.
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Since y1 and y2 are solutions of corresponding homogenous differential equation for

(11), the expressions in the last two brackets in the above equation are identically

zero. This leaves

v′1(t)y
′
1 + v′2(t)y

′
2 =

f

2a2

(19) ∴ λ1v
′
1(t)y1 + λ2v

′
2(t)y2 =

f

2a2

.

Solving equations (16) and (19) by using Cramer’s rule we get:

v′1(t) = −f(2a2)
−1(λ1 − λ2)

−1e−λ1t and

v′2(t) = f(2a2)
−1(λ1 − λ2)

−1e−λ2t.

Thus, we obtain the functions v1(t) and v2(t) defined by

v1(t) = (2a2)
−1(λ1 − λ2)

−1

∫ t

0

f(s)e−λ1sds

v2(t) = −(2a2)
−1(λ1 − λ2)

−1

∫ t

0

f(s)e−λ2sds

Thus the general solution of equation (11) is

q(t) = qc(t) + qp(t)

∴ q(t) = [c1+(λ1−λ2)
−1(2a2)

−1
∫ t

0
f(s)e−λ1sds]eλ1t+[c2−(λ1−λ2)

−1(2a2)
−1
∫ t

0
f(s)e−λ2sds]eλ2t

Thus, q(t) = (λ1 − λ2)
−1
[

c1
(λ1−λ2)−1 + (2a2)

−1
∫ t

0
f(s)e−λ1sds]eλ1t

]
+ (λ1 − λ2)

−1
[

c2
(λ1−λ2)−1 + (2a2)

−1
∫ t

0
f(s)e−λ2sds

]
eλ2t

This implies

(20)

q(t) = (λ1−λ2)
−1

{[
C1 + (2a2)

−1

∫ t

0

f(s)e−λ1sds

]
eλ1t +

[
C2 − (2a2)

−1

∫ t

0

f(s)e−λ2sds

]
eλ2t

}
whereC1 = c1

(λ1−λ2)−1 and C2 = c2
(λ1−λ2)−1

Now by using boundary condition

q(0) = (λ1 − λ2)
−1(C1 + C2) and C2 = (2a2)

−1
∫∞

0
e−λ2sf(s)ds

we obtain, C1 = (λ1−λ2)q(0)−C2 i.e., C1 = (λ1−λ2)q(0)−(2a2)
−1
∫∞

0
e−λ2sf(s)ds
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Thus, the general solution can be written as

q(t) = (λ1−λ2)
−1

[
(λ1 − λ2)q(0)− (2a2)

−1

∫ ∞
0

e−λ2sf(s)ds+ (2a2)
−1

∫ t

0

f(s)e−λ1sds

]
eλ1t

(21) +(λ1 − λ2)
−1

[
(2a2)

−1

∫ ∞
0

e−λ2sf(s)ds− (2a2)
−1

∫ t

0

f(s)e−λ2sds

]
.

∴ q(t) = q(0)eλ1t + A1e
λ1t

∫ t

0

e−λ1sf(s)ds− A1e
λ1t

∫ ∞
0

e−λ2sf(s)ds

+A1e
λ2t

∫ ∞
t

e−λ2sf(s)ds

where A1 = (λ1 − λ2)
−1(2a2)

−1.

This yields, (By using fundamental theorem of calculus and Leibnitz notation for the

derivative: d
dx

∫ x
a
f(t)dt = f(x))

q′(t) = q(0)λ1e
λ1t+A1λ1e

λ1t

∫ t

0

e−λ1sf(s)ds+A1e
λ1te−λ1tf(s)−A1λ1e

λ1t

∫ ∞
0

e−λ2sf(s)ds

−A1λ1e
λ1t lim

h→∞
e−λ2hf(h)

+(λ1−λ2)
−1

[
(2a2)

−1λ2e
λ2t

∫ ∞
t

e−λ2sf(s)ds+ (2a2)
−1λ2e

λ2t lim
h→∞

{
e−λ2h − eλ2t

}
f(t)

]
∴ q′(t) = q(0)λ1e

λ1t + A1λ1e
λ1t

∫ t

0

e−λ1sf(s)ds− A1λ1e
λ1t

∫ ∞
0

e−λ2sf(s)ds

+A1λ2e
λ2t

∫ ∞
t

e−λ2sf(s)ds

This implies,

q(t)q′(t) = q2(0)λ1e
2λ1t+q(0)A1λ1e

2λ1t

∫ t

0

e−λ1sf(s)ds−q(0)A1λ1e
2λ1t

∫ ∞
0

e−λ2sf(s)ds

+q(0)A1λ2e
(λ1+λ2)t

∫ ∞
0

e−λ1sf(s)ds+q(0)A1λ1e
(2λ1)t

∫ t

0

e−λ1sf(s)ds+A2
1λ1e

2λ1t

[∫ t

0

e−λ1sf(s)ds

]2
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−A2
1λ1e

2λ1t

[∫ t

0

e−λ1sf(s)ds

∫ ∞
0

eλ2sds

]
+ A2

1λ1e
(λ1+λ2)t

[∫ ∞
0

e−λ2sf(s)ds

]2

−q(0)A1λ1e
2λ1t

∫ ∞
0

e−λ2sf(s)ds− A2
1λ1e

2λ1t

[∫ ∞
0

e−λ2sf(s)ds

∫ t

0

eλ1sf(s)ds

]
+A2

1λ1e
2λ1t

[∫ ∞
0

e−λ2sf(s)

]2

− A2
1λ2e

(λ1+λ2)t

[∫ ∞
0

e−λ2sf(s)

∫ ∞
t

e−λ2sf(s)ds

]
+q(0)A1λ2e

(λ1+λ2)t

∫ ∞
t

+A2
1λ1e

(λ1+λ2)t

[∫ ∞
t

e−λ2sf(s)ds

∫ t

0

e−λ2sf(s)ds

]
−A2

1λ1e
(λ1+λ2)t

[∫ ∞
t

e−λ2sf(s)ds

∫ ∞
0

e−λ2sf(s)ds

]
+ A2

1λ2e
2λ2t

[∫ ∞
t

e−λ2sf(s)ds

]2

.

For λ1 < r/2 and λ2 > r/2 , 2λ1 < r , 2λ2 > r and λ1 + λ2 = r.

Finally, multiplying q(t)q′(t) by e−rt and allowing t → ∞, we obtain the desired

condition.That is,

lim
t→∞

e−rtq(t)q′(t) = 0.

Case 2 The characteristic roots (λ1 and λ2 ) are equal.

In this case the discriminant in equation (12) is equal to zero. This implies a2r
2 +

2a2r + 4 = 0. Moreover, for the equal roots λ1 = λ2 = r
2
.

The characteristic equation of demand equation is a1n
2 + a1n + 1 = 0. When

n = r/2, we have a1n
2 + a1n + 1 = 0 which implies a2(r/2)2 + a1(r/2) + 1 = 0

i.e., a2r
2 + a1r + 4 = 0.

Therefore r/2 is also a characteristic root of demand equation. Suppose that another

root of demand equation is σ.

Example 4: Let f(t) = ert/2

1+t
. This implies

∣∣e−rt/2f(t)
∣∣ =

∣∣ 1
1+t

∣∣ and∣∣e−rt/2f ′(t)∣∣ =
∣∣∣ r/21+t
− 1

(1+t)2

∣∣∣ both are bounded for all value of t. Thus f is an admis-

sible function for q = ert/2 and the integral∫ ∞
0

e−rtq(t)f(t)dt =

∫ ∞
0

1

1 + t
dt

= [ln(1 + t)]∞0 is undefined.
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This implies the possibility of an edge solution.

Let f(t) ≤ Ceδt with δ < r/2. For C = 1 and f(t) = eδt.

The complimentary function of equation (11) can be written as

qc = c1e
rt/2 + c2te

rt/2.

Suppose, y1 = ert/2 and y2 = tert/2.

∴ qc = c1y1 + c2y2

To find the particular solution of the equation (11), we therefore let

qp = v1(t)y1 + v2(t)y2 i.e., qp = v1(t)e
rt/2 + v2(t)te

rt/2.

Thus q′p(t) = v′1(t)y1 + v′2(t)y2 + v1(t)y
′
1 + v2(t)y

′
2. We impose the condition

(22) v′1(t)y1 + v′2(t)y2 = 0 i.e., v′1e
rt/2 + v′2te

rt/2 = 0

leaving q′p(t) = v1(t)y
′
1 + v2(t)y

′
2. From this, we find

q′′p(t) = v′1(t)y
′
1 + v′2(t)y

′
2 + v1(t)y

′′
1 + v2(t)y

′′
2 .

By variation of parameters, we can write v′1(t)y
′
1 + v′2y

′
2 = f

2a2
, this implies

v′1(t)(r/2)e(rt/2) + v′2(t)[e
(rt/2) + r/2te(rt/2)] = f(2a2)

−1

i.e., v′1(t)(r/2) + v′2(t)[1 + (r/2)] = eδt(2a2)
−1e−rt/2

(23) ∴ v′1(t)r/2 + v′2(t)[1 + r/2] = (2a2)
−1e(δ−r/2)t.

Solving equations (22) and (23) by using Cramer’s rule we get

v′1(t) =
−(2a2)

−1e(δ−r/2)tt

1 + rt/2− rt/2
.
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∴ v′1(t) = −(2a2)
−1e(δ−r/2)tt.

This implies v1(t) = −(2a2)
−1

∫ t

0

e(δ−r/2)ssds

= (2a2)
−1

[
−se

(δ−r/2)s

δ − r/2
+

e(δ−r/2)s

(δ − r/2)2

]t
0

= (2a2)
−1

[
−te

(δ−r/2)t

δ − r/2
+

e(δ−r/2)t

(δ − r/2)2
+

1

(δ − r/2)2
.

]
Similarly, v′2(t) = (2a2)

−1e(δ−r/2)t

This implies v2(t) = (2a2)
−1
[
e(δ−r/2)t

δ−r/2

]t
0

∴ v2(t) = (2a2)
−1

[
e(δ−r/2)t

δ − r/2
− 1

δ − r/2

]
.

Thus the particular solution is given by

qp = (2a2)
−1

[
−te

(δ−r/2)t

δ − r/2
+

e(δ−r/2)t

(δ − r/2)2
+

1

(δ − r/2)2

]
ert/2

+(2a2)
−1

[
e(δ−r/2)t

δ − r/2
− 1

δ − r/2

]
tert/2

Or,

qp = (2a2)
−1

{
−te(δ−r/2)t

δ − r/2
+

e(δ−r/2)t

(δ − r/2)2
− 1

(δ − r/2)2
+
te(δ−r/2)t

(δ − r/2)
− t

δ − r/2

}
ert/2.

Finally,

qp(t) =
eδt(2a2)

−1

(δ − r/2)2
− (2a2)

−1

{
1

(δ − r/2)2
ert/2 +

1

(δ − r/2)
tert/2

}
=

eδt(2a2)
−1

(δ − r/2)2
− (2a2)

−1 {A1y1(t) + A2y2(t)}

=
[
(2a2)(δ − r/2)2

]−1
eδt.
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Since y1 and y2 are linearly independent solutions of the corresponding homogenous

equation, A1y1(t) + A2y2(t) = 0 where A1 = 1
(δ−r/2)2

and A2 = 1
(δ−r/2)

.

Thus for f = eδt the general solution of Euler equation (11) for equal roots is given

by

(24) q(t) = c1e
rt/2 + c2te

rt/2 +
[
(2a2)(δ − r/2)2

]−1
eδt.

Now q(0) = c1 +[(2a2)
−1(δ − r/2)−2]. This implies, c1 = q(0)− [(2a2)

−1(δ − r/2)−2] .

Setting c2 = 0 equation (24) can be written as

q(t) =
{
q(0)−

[
(2a2)(δ − r/2)2

]−1
}
ert/2 +

[
(2a2)

−1(δ − r/2)−2
]−1

eδt.

We have c1 =
{
q(0)− [(2a2)(δ − r/2)2]

−1
}

and

suppose, d1 = [(2a2)
−1(δ − r/2)−2]

−1
. This implies, q′(t) = r/2c1e

rt/2 + δd1e
δt

∴ q(t)q′(t)e−rt = e−rt
{
r/2c21e

rt + δc1d1e
rt/2eδt + r/2d1e

rt/2eδt + δd2
1e

2δt
}

= r/2c21 + δc1d1e
(δ−r/2)t + r/2d1e

(δ−r/2)t + δd2
1e

(2δ−r)t

For δ < r/2, (δ − r/2) < 0 and (2δ − r/2) < 0.

∴ lim
t→∞

q(t)q′(t)e−rt = r/2c21 6= 0.

From inequality (13) and a2 < 0 we can conclude that the maximum value of the

characteristic root of Euler equation occurs for that r which makes the discriminant

of the Euler equation zero. If a2 < 0 then a2r
2 + 2a1r + 4 = 0 has real roots of

opposite sign then largest admissible r is the positive root of a2r
2 + 2a1r + 4 = 0.

Thus the largest admissible r is the positive root of a2r
2 + 2a1r+ 4 = 0. The positive

root is the value of r which makes the discriminant equal to zero and q(t) grows most

rapidly. Thus we can conclude that for the given pair of numbers (a1, a2), there exists
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a positive r such that the present value is bounded and maximum . In this case the

demand equation and the Euler equation have common characteristic root (r/2).

4.3. Dicrete(D) Monopoly Problem. The Present Value of discrete monopoly

problem is given by:

(25) PV =
∞∑
t=0

βtqtpt

where, pt = price per unit at time t

qt = quantity demanded at time t

β = discount factor and 0 < β ≤ 1.

The monopolist demand condition for the discrete case is given by

(26) pt = ft − qt − αqt−1.

The relation between interest rate r and the discount factor β is given by :

β = e−r.

Similar to the continuous case we define admissible paths and interior and boundary

sequences.

Definition 14. Admissible quantity path

The quantity q(t) is said to be admissible if β−
t
2 qt is bounded for all sequences

{qt} . An admissible sequence is an interior sequence if
∑∞

t=0 β
tq2
t is finite, if not the

sequence is said to be a boundary sequence.

Note: In the continuous case(C) if the demand equation implies the bounded PV

then the the quantity purchased at time t must depend on the prices before and after

time t. But in the discrete case for bounded maximum present value, the quantity

purchased at time t depends on past prices and the past size of market f(t). That is

the trend of consumers’ behavior can be used to predict the future trend.
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The PV of the discrete monopoly problem can be written as

PV =
∞∑
t=0

βtqt[ft − qt − αqt−1].

This implies that

PV = q0(f0− q0) +βq1(f1− q1−αq0) +β2q2(f2− q2−αq1) +β3q3(f3− q3−αq2) + .....

+βtqt(ft − qt − αqt−1) . . .

Taking partial derivatives with respect to q0, q1,. . . , and qt respectively, we get

∂PV

∂q0
= f0 − 2q0 − αβq1,

∂PV

∂q1
= βf1 − 2βq1 − αβq0 − αβ2q2,

= β[f1 − αq0 − 2q1 − αβq2]

∂PV

∂q2
= β2f2 − 2β2q2 − αβ2q1 − αβ2q3

= β2[f2 − αq1 − 2q1 − 2q2 − αβq3],

and

(27)
∂PV

∂qt
= βt[ft − αqt−1 − 2qt − αβqt+1].

Thus for maximum PV it is necessary that

∂PV
∂q0

= 0, ∂PV
∂q1

= 0,. . . , and ∂PV
∂qt

= 0.

From equation (27) we can write: βt[ft − αqt−1 − 2qt − αβqt+1] = 0.

Thus, [ft − αqt−1 − 2qt − αβqt+1] = 0 i.e.,

(28) αqt−1 + 2qt + αβqt+1 = ft.
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For the finite maximum PV it is necessary to show that the difference equation (28)

must not have characteristic root of modulus β1/2 [6].

This is similar to the continuous case where the characteristic roots must be real and

must not be equal to r/2.

The corresponding system is equivalent to a system with Toeplitz matrix [25].
2 β1/2 0 0 0 . . .

β1/2 2 β1/2 0 0 . . .

0 β1/2 2 β1/2 0 . . .

. . . . . . . . . . . . . . . . . . . . .


Maximizing PV is equivalent to finding conditions to insure that the Toeplitz matrix

is positive definite [6]. This is equivalent to the conditions such that the zeros of

(29) β1/2αw + 2 + β1/2αw−1 = 0

are not of modulus 1, [6]. This implies

w =
1±

√
1− βα2

β1/2α

To insure that w is not of modulus of 1, we need (1− βα2) > 0.

A substitution of w = β1/2z returns us to (28) and therefore z = β−1/2w.

This implies that the modulus of z can not be β−1/2 and the zero for equation (28)

can not have modulus β1/2. Let µ1 and µ2 be the roots of the equation (29). Suppose

µ1 =
−1+
√

1−α2β

αβ
and µ2 =

−1−
√

1−α2β

αβ
.

For real roots the discriminant must be non negative. Moreover, |µ1| < |µ2|. For

|µ1| 6= |µ2| it is necessary and sufficient that the discriminant satisfy

(30) 1− α2β > 0.
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This implies 1 > α2β or, α < ± 1√
β
. Hence −1 < α < 1 for 0 < β ≤ 1.

This yields |α| < 1.

Thus for all α and all βs in the range, there exists a bounded maximum present value.

Generally, the discount factor satisfies β ∈ (0, 1).
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4.4. Differences Between the (C) and (D) problems. Lets look at some im-

portant differences that exist between the continuous problem, (C), and the discrete

problem, (D). 1. In C problem when a2 = 0 then equation (11) can be written as:

(2 + a1r)q = f . This implies,

(31) q(t) =
f(t)

2 + a1r
.

Similarly PV can be written as

PV =

∫ ∞
0

e−rt[f(t)− q(t)− a1q
′(t)]q(t)dt.

This implies the quantity path is discontinuous at certain point. Thus there exists the

necessity for an adjustment. Suppose q(t) is discontinuous when t = 0 and a2 < 0.

Let us approximate the quantity path on two intervals [k, h] and (h,∞) with different

slopes at t = 0.

Suppose, q(0−) = q(0) = q(0+) but q′(0−) 6= q(0+).

Consider, q′(0−) = q(t)−q(k)
t−k if t, k < 0, t > k and q′(0+) = q(t)−q(h)

t−h if t, h >

0, t < h.

Considering two terms containing the first derivatives from equation (6)

[
−e−rtqq′

]∞
0−

+

∫ ∞
0−

e−rtq′2dt

and integrating in the interval [k,h] implies,

−
{
q(0+)q′(0+)− q(0−)q′(0−) + lim

t→∞
e−rtq(t)q′(t)− q(0+)q′(0+)

}
+

∫ h

k

e−rtq′2dt
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= −
{
q(0−)q′(0−)

}
+

∫ 0

k

e−rtq′2(0−)dt+

∫ h

0

e−rtq′2(0+)dt

= −
{
q(0−)q′(0−)

}
+

1

−r
q′2(0−)[1− erk] +

a2

−r
q′2(0+)[ehr − 1]

= −
{
q(0−)q′(0−)

}
+

1

−r
[q′2(0−)(1− e−rk)− q′2(0+)(1− e−rt)].

note that lim
k→0−

(1−e−rk) = 0 and lim
h→0+

(1−e−rh) = 0. Again integrating in the interval

[h,∞] we get

−
[

lim
t→∞

e−rtqq′ − q(0+)q′(0+)
]

+

∫ ∞
h

e−rtq′2(0+)dt

= −[−q(0+)q′(0+)] + 1

∫ ∞
h

e−rtq′2(0+)dt

= −[−q(0+)q(0+)] +
1

−r
q′2(0+)

[
e−rt

]∞
h

= q(0+)q′(0+) +
1

−r
q′2(0+)e−rh

where lim
h→0+

(e−rh) = 1. Thus the Euler path is continuously differentiable for all t > 0

and the only discontinuity is the jump at q′(0).

Suppose for the Euler path q′(0) exists and that q(t) has a jump at t = 0. This

implies a2q
′2(t) < 0 because a2 < 0. Hence the value of the integral is arbitrarily

small. This jump would make integral approach to −∞. Moreover the slope of the

path at t = 0 does not necessarily equal the given slope q′(0). This ultimately leads

to the conclusion that the jump in q′(t) at t = 0 is required but the jump in q(t)

is rather prohibited. In (D) the demand equation is first order difference equation.

There is a geometric approach throughout the problem.

2. If the monopolist’s demand equation is stable then the characteristic equation of
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the demand relation

(32) p(t) = f(t)− q(t)− a1q
′(t)− a2q

′′(t)

is given by a2m
2 + a1m+ 1 = 0 and has roots with negative real parts. Let the roots

be σ1 and σ2.

The complimentary function for the demand relation is given by

qc(t) = c1e
σ1t + c2e

σ2t.

To find the particular solution of the the equation (32) we let qp(t) = w1(t)z1+w2(t)z2

where z1 = eσ1t and z2 = eσ2t

This implies q′p(t) = w′1(t)z1 + w1(t)z1 + w′2(t)z2 + w2(t)z2.

Imposing

(33) w′1(t)e
σ1t + w′2(t)e

σ2t

we can write q′p(t) = w1(t)z1 + +w2(t)z2.

By variation of parameter we can write v′1(t)z
′
1 + v′2(t)z

′
2 = (f − p)(2a2)

−1

. That is,

(34) σ1w
′
1(t)e

σ1t + σ2w
′
2(t)e

σ2t = (f − p)(a2)
−1.

Using Cramer’s rule to solve (33) and (34) we get

w′1(t) = (σ1 − σ2)
−(a2)

−1(f − p)e−σ1t.

Integrating we get

w1(t) = (σ1 − σ2)
−1(a2)

−1

∫ t

0

(f − p)e−σ1sds
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Similarly,

w2(t) = −(σ1 − σ2)
−1(a2)

−1

∫ t

0

(f − p)e−σ2sds

Thus

qp(t) = eσ1t(σ1−σ2)
−1(a2)

−1

∫ t

0

(f−p)e−σ1sds+eσ2t(σ1−σ2)
−1(a2)

−1

∫ t

0

(f−p)e−σ2sds.

Therefore the general solution of the demand equation is given by

(35)

q(t) = (σ1−σ2)
−1

{
eσ1t[c1 + a−1

2

∫ t

0

e−σ1s(f − s)ds] + eσ2t[c2 − a−1
2

∫ t

0

e−σ2s(f − s)ds].
}

From equation (35) we see that there is no provision for future prices after time t.

This implies the profit maximizing monopolist can find an quantity path with infinite

present value. This is a kind of short-sided consumer behavior. Since the demand

equation is stable, for perfect competition it is assumed that the consumer confidence

level is high and no consumer deferment of purchases occurs with the hope of a

change in price. The competition in the market always helps the consumer. In fact

it prevents the exploitation of the consumer. In such a situation forecasting always

helps the producer to improve inventory, output and employment policies without

exploiting the consumer.

3. Let us consider an unstable demand condition. Because of the unstable demand

the consumer forecasting is necessary but forecasting only may not be sufficient.

In (D) problem an unbounded maximum present value is impossible if the demand

relation is stable and f grows at a geometric rate less than β−1/2 for β ≤ 1. Moreover,

the quantity demanded at time t is a function of a weighted moving average of the

past prices. Therefore it can be interpreted as a forecast of future prices. This result

strongly contrasts with the result in (C) where perfect foresight is necessary for a

finite maximum value.

Basically, the difference between (C) and (D) depends on the nature of the continuous
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curve with a continuous first derivative. In such a case the slope is same whether it is

taken from the right or the left. This implies the demand is completely predictable.

That is, there is no uncertainty. The same phenomenon could be used by modifying

the discrete case. This helps to express the discrete problem with more clarity.

4. Discrete approximation of continuous problem.

Let q′(t) = qt − qt−1. The symmetric first difference is given by q′(t) = qt+1 − qt−1.

The perfect β-symmetric difference

q′(t) = β1/2qt+1 − β−1/2qt−1.

The future term qt+1 is discounted by the factor β1/2 and past term is increased by

β−1/2. This implies a connection between past and future. Let us assume the demand

relation is the perfect β-symmetric difference equation

(36) 2qt + α(β1/2qt+1 − β1/2qt−1) = ft − pt.

Substituting the value of pt in equation (25) we get

PV =
∞∑
0

β4[ft − 2qt − α(β1/2qt+1 − β1/2qt−1)]qt.

This yields,

PV = [q0f0 − 2q2
0 − αβ1/2q0q1] + β[q1f1 − 2q2

1 − αβ1/2q1q2 − αβ−1/2q1q0]

+β2[q2f2 − 2q2
2 − αβ1/2q2q3 + αβ−1/2q2q1]

Now differentiating PV with respect to q0, q1, q2,. . . , and qt respectively,

∂PV

∂q0
=
{
f0 − 4q0 − αβ1/2q1

}
+ β[−αβ−1/2q1].

∂PV

∂q1
= f1 − 4q1 − α(β1/2q2 − β−1/2q0)− α(β−1/2q0 − β1/2q2).
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∂PV

∂q2
= f2 − 4q2 − α(β1/2q3 − β−1/2q1)− α(β−1/2q1 − β1/2q3).

Similarly,

∂PV

∂qt
= ft − 4qt − α(β1/2qt+1 − β−1/2qt−1)− α(β−1/2qt−1 − β1/2qt+1).

For the maximum PV it is necessary that ∂P.V.
∂q0

= 0, ∂PV
∂q1

= 0. . . , ∂P.V.
∂qt

= 0. This

yields

ft − 4qt − α(β1/2qt+1 − β−1/2qt−1)− α(β−1/2qt−1 − β1/2qt+1) = 0.

∴ ft = 4qt.

The above equation exhibits similar behavior as the continuous case when a2 = 0, i.e.;

an instantaneous adjustment to the optimal quantity path. But for this problem a

finite maximum value always exists without any restriction on β. The complimentary

function [a2r
2 + a1r + 1 = 0] of the demand equation must satisfy

(σ1 + σ2) = −a1

a2
and (σ1σ2)

−1 = a2. This implies r = −a1

a2
. Therefore, a1 + a2r = 0.

Thus a2 = 0 implies a1 = 0. If the demand equation is missing q′′ then it also misses

q′. Thus there is no perfectly symmetric first order symmetric differential equation.

In this case the role of symmetry is controversial in the real world. This is because

such symmetry totally eradicates the difference between past and future. First, it

is impossible to change the decision of past. Also if there is perfect foresight then

there is not necessary to change the past decision. Practically, perfect forecasting is

impossible!! Thus the decision maker has to consider current circumstances as much

as possible.
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5. Time Scale Analysis

After the separate analysis of (C) and (D) cases, we intend to combine them by

using time scale analysis. In this section we focus our study on describing and gener-

alizing the problem using time scale calculus. Because of the similarity in calculation

most of the steps involving have been omitted. The present value under the monopoly

condition is given by

PV =

∫ ∞
0

e−r(t, t0)p(t)q(σ(t))4t

where p(t) = f(t)− q(σ(t))− a1q
4 − a2q

44. This implies

(37) PV =

∫ ∞
0

e−r(t, t0)
[
f(t)− q(σ(t))− a1q

4 − a2q
44] q(σ(t))4t.

Equation (37) can also be written as

(38)

PV =
[
−a2e−r(t, t0)q(σ(t))q4

]∞
0

+

∫ ∞
0

e−r(t, t0)
[
f(t)q(σ(t))− q(σ(t))2 − (a1 + a2r)q(σ(t))q4

]
4t

+

∫ ∞
0

e−r(t, t0)a2(q
σ4)24t.

Now if σ(t) = t, that is, for right dense points in the time scales, equation (38) can

be written as

PV = −a2q(0)q4(0) +

∫ ∞
0

L(t, q(t), q4(t))4t

provided

lim
t→∞

e−r(t, t0)q(t)q
4(t) = 0

where

L(t, q(t), q4(t)) = e−r(t, t0)
[
f(t)q(t)− q(t)2 − (a1 + a2r)q(t)q

4 + a2(q
4)2
]
.

For maximum present value it is sufficient to maximize L(t, q(t), q4(t)). From the

paper by Dr. Bohner and Dr. Ridenhour [11] the Euler-lagrange equation time scale
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T is

Ly(t, y(t), y4(t))− [Lr(t, y(t), y4(t)]4 = 0

where Lagrangian Lr(t, y, r) for t ∈ T, y ∈ Rn and r ∈ Rn. Thus, the Euler-Lagrange

equation can also be written as

(39) Lqσ − [Lq4 ]4 = 0.

For q(σ(t)) = q(t) equation (39) can be written as Lq(t)−
[
Lq4(t)

]4
= 0. This returns

us to (C) where T = [0,∞). For this time scale every point is right dense. This

implies q(σ(t)) = q(t).

Thus,

L(t, q(t), q4) = e−r(t, t0)
[
f(t)q(t)− (q(t))2 − (a1 + a2r)q(t)q

4 + a2(q
4)2
]
.

Applying Euler-Lagrange equation in L(t, q(t), q4) we can write

(40) 2a2q
44 − 2a2rq

4 + (2 + a1r + a2r
2)q − f = 0.

Suppose, m = λ1 and λ2. For the bounded maximum present value, the roots of the

equation (40) must be real.

Assertion: The Characteristic roots of the Euler-Lagrange equation (40) must be

real for bounded maximum present value.

Case 1: The characteristic roots (λ1 and λ2 ) are not equal.

Let us further suppose λ1 < r/2 and λ2 > r/2. The general solution of the Euler-

Lagrange equation is given by

q(t) = (λ1 − λ2)
−1

{[
C1 + (2a2)

−1

∫ t

0

f(s)e−λ1(s, s0)4s
]
eλ1(t, t0)

}

(41) +(λ1 − λ2)
−1

{[
C2 − (2a2)

−1

∫ t

0

f(s)e−λ2(s, s0)4s
]
eλ2(t, t0)

}
.
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where C1 =
c′1

(λ1−λ2)−1 and C2 =
c′2

(λ1−λ2)−1 .

Now by using boundary condition q(0) = (λ1 − λ2)
−1(c1 + c2) and

C2 = (2a2)
−1
∫∞

0
e−λ2(s, s0)f(s)4s we obtain

C1 = (λ1 − λ2)q(0)− C2 i.e. C1 = (λ1 − λ2)q(0)− (2a2)
−1
∫∞

0
e−λ2(s, s0)f(s)4s.

Thus the general solution can be written as

q(t) = (λ1 − λ2)
−1

[
(λ1 − λ2)q(0)− (2a2)

−1

∫ ∞
0

e−λ2(s, s0)f(s)4s
]

+(λ1 − λ2)
−1

[
(2a2)

−1

∫ t

0

f(s)e−λ1(s, s0)4s
]
eλ1(t, t0)

(42) +(λ1 − λ2)
−1

[
(2a2)

−1

∫ ∞
0

e−λ2(s, s0)f(s)4s− (2a2)
−1

∫ t

0

f(s)e−λ2(s, s0)4s
]

q(t) = q(0)eλ1(t, t0) + A1e
λ1(t, t0)

∫ t

0

e−λ1(s, s0)f(s)4s

−A1e
λ1(t, t0)

∫ ∞
0

e−λ2(s, s0)f(s)4s

+A1e
λ2(t, t0)

∫ ∞
t

e−λ2(s, s0)f(s)4s

provided A1 = (λ1 − λ2)
−1(2a2)

−1. This yields

q4(t) = q(0)λ1eλ1(t, t0)+A1λ1eλ1(t, t0)

∫ t

0

e−λ1(t, t0)f(s)4s+A1eλ1(t, t0)e
−λ1(t, t0)f(t)

−A1λ1eλ1(t, t0)

∫ ∞
0

e−λ2(s, s0)f(s)4s− A1λ1eλ1(t, t0) lim
h→∞

e−λ2(h, t0)f(h)

+A1

[
λ2eλ2(t, t0)

∫ ∞
t

e−λ2(s, s0)f(s)4s+ λ2eλ2(t, t0) lim
h→∞
{e−λ2(h, t0)− eλ2(t, t0)} f(t)

]
q4(t) = q(0)λ1eλ1(t, t0) + A1λ1eλ1(t, t0)

∫ t

0

e−λ1(t, t0)f(s)4s

−A1λ1eλ1(t, t0)

∫ ∞
0

e−λ2(s, s0)f(s)4s

+A1λ2eλ2(t, t0)

∫ ∞
t

e−λ2(s, s0)f(s)4s.
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For λ1 < r/2 and λ2 > r/2 : 2λ1 < r ; 2λ2 > r and λ1 + λ2 = r

Applying t→∞ in the product of q(t) , q4t and e−r(t, t0) we get

∴ lim
t→∞

e−r(t, t0)q(t)q
4(t) = 0.

Case 2 The characteristic roots (λ1 and λ2 ) are equal.

In this case the discriminant of the characteristic equation of (40) is equal to zero.

This implies a2r
2 + 2a2r + 4 = 0. Moreover, for the equal roots λ1 = λ2 = r

2
.

The characteristic equation of demand equation is a1n
2 + a1n + 1 = 0. When

n = r/2,

a1n
2 + a1n = 1 = 0 implies a2(r/2)2 + a1(r/2) + 1 = 0 i.e., a2r

2 + a1r + 4 = 0.

Therefore r/2 is also a characteristic root of demand equation. As the results in

chapter 4 show us, (C) and (D) have very distinct characteristics. Unification of these

two problems requires an adjustment to (D). This is certainly a valuable undertaking

for further study by the author but it may lead away from the practical applications

that has motivated this work. Study of the generalized problem has shown that

successful unification requires the determination of a function

L ≡ L(t, q(σ(t)), q4(t)

resulting from the original integral to be maximized. Then, the Euler-Lagrange equa-

tion for timr scale can be applied and the solution will follow from the theory of

second order dynamic equation on time scales, [5].
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6. Conclusion

In (C) there is an exponential approach to the equilibrium quantity path when

a2 6= 0. If a2 = 0, the demand equation reduces to a first order differential equation.In

this case we need to have instantaneous adjustment to the quantity path. For a2 = 0

there exists a jump in q′(t) at t = 0 while a jump in q(t) is prohibited. In (D) there

is no instantaneous adjustment as long as α 6= 0. For α 6= 0, qt approaches the

equilibrium path at a geometric rate. For the stable demand equation, it is assumed

that the consumer confidence level is high and no consumers defer their purchases in

the hopes of a change price. Competition always helps to prevent the exploitation

of the consumer. In such a case, forecasting always helps producers improve improve

output and employment. For the unstable demand condition, perfect forecasting is

necessary. In (D) there exists an unbounded maximum PV for the characteristic roots

of modulus β−1/2 or β1/2. The Discrete approximation of the continuous problem leads

towards the perfect symmetry in the demand condition. Perfect symmetry totally

eradicates the difference between the past and future demand. First it is impossible

to change the past and if there is perfect foresight then it is not necessary to change

the past decisions. The role of symmetry is controversial in real world applications.

For time scales when (q(σ(t)) = q(t)) the maximization of PV has close similarity

with (C). We have verified the existence of a finite maximum PV if σ(t) = t. To

extend the results to scattered points, i.e. a general time scale, the general problem

must be adjusted to meet the parameters of the Euler-Lagrange equation for time

scales. Research required to obtain similar results for a general time scale continuous.
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7. Appendix

Stable and Unstable Demand: We know that business is usually good when

prices are rising and usually not so good when prices are falling; the number of shoes

that will be bought at three dollars a pair will be greater if it is known that the price

is increasing at the rate of fifty cents per week than if the price may decrea at the

rate of fifty cents per week. A good approximation for such a situation is to assume

a law of demand as follows

q = a+ bp+ h
dp

dt
,

where a < 0, b > 0 and h > 0, and the quantity dp
dt

is the rate of increasing price.

The coefficient h is also called the sensitivity of demand. If the sensitivity of demand

is greater then the offer then that situation is unstable. If the sensitivity of offer

is greater then the demand is stable. In stable case the price tends toward definite

limits. The simple monopoly problem depends upon three relations:(a) between the

amount produced and cost of it; (b) between the demand and price; (c) relation

between the amount produced and the amount demanded. For any of the particular

functions we can choose a more general form of the function. In particular, the

relation between the price and the demand can be generalized as

q = a+ bp+ h
dp

dt
+ k

d2p

dt2
.

The more general form of the above second order equation can also be taken accord-

ing to the theoretical and practical interest and of the problem depending on the

parameters involved.
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