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ABSTRACT 

THE TRANSSULFURATION PATHWAY SIGNIFICANTLY CONTRIBUTES TO 

GLUTATHIONE BIOSYNTHESIS IN HUMAN MAMMARY EPITHELIAL CELLS  

By Andrea Belalcázar 

Cellular methylation and antioxidant metabolism are linked by the transsulfuration pathway, 

which converts the methionine cycle intermediate homocysteine to cysteine, a precursor for 

glutathione biosynthesis, principally in hepatic cells. In mammals, the transsulfuration pathway 

has been identified in liver, kidney, pancreas and brain.  To determine whether the pathway 

exists in mammary cells human breast adenocarcinoma cells (MCF-7) and normal mammary 

epithelial cells (HMEC) were labeled with 35S-methionine for 24 hours following pre-treatment 

with a vehicle control, the cysteine biosynthesis inhibitor propargylglycine (PPG) or the 

gammaglutamyl cysteine synthesis inhibitor buthionine sulfoximine (BSO).  Cell lysates were 

prepared and reacted with glutathione-S-transferase (GST) and the fluorescent labeling 

compound monochlorobimane (mCBi) to cause glutathione (GSH) to form a fluorescent GSH-

Bimane conjugate with mCBi.   Thin layer chromatography (TLC) was used to separate 

conjugated glutathione (GSH-Bi) from the free mCBi fluor. Fluorescent images and 

autoradiography of the TLC plate were compared; incorporation of 35S-methionine into 

glutathione-bimane spots identified through fluorescence (GSH-mCBi bands) indicated that 

functional transsulfuration occurs in mammary cells (there is no other known manner for the 35S 

of methionine to incorporate into cysteine and subsequently into GSH).  Given the role that 

glutathione plays as a major cellular antioxidant, we were interested in determining the extent to 

which transsulfuration contributes to glutathione production under conditions of oxidant stress; 

enzymatic determination of the impact of PPG pre treatment and 2hr 300uM hydrogen peroxide 

treatment of HMEC’s on GSH levels indicated PPG reduced total GSH by one third, and blocked 

the ability of oxidatively stressed cells to upregulate GSH production.  In summary, results of 

this study demonstrate the presence of the transsulfuration pathway in mammary epithelial cells 

and the importance of this pathway under oxidative stress conditions. 
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INTRODUCTION 

The transsulfuration pathway (see Figure 1) links two important processes for the human body, 

the regeneration of methionine (which occurs through the methionine cycle) to form S-

adenosylmethionine, the principal cellular methyl donor, and the synthesis of glutathione, the 

principal cellular antioxidant.  The transsulfuration pathway converts homocysteine, an 

intermediate of methionine cycle, to cysteine, a biosynthesis precursor of glutathione.1  Since the 

transsulfuration pathway was first described 30 years ago by Reed and co-workers in liver, 2 it 

has also been identified in certain other tissues including the kidney, 3,4 pancreas, 5,6 intestine, 7 

lens, 8 brain, 9,10 ,11 and lymphoid cells.12  Due the vital role of glutathione against oxidative 

stress,1 we were interested in determining whether transsulfuration provides biosynthetic 

precursors for glutathione in other tissues.  Breast cancer is a highly prevalent disease, and 

oxidant stress may contribute to its development. 13  For this reason we were exploring the role of 

transsulfuration in mammary tissues.  Our hypothesis was that human mammary epithelial cells 

(HEMC) and MCF-7 human breast adenocarcinoma cells would incorporate 35S-methionine into 

glutathione via a metabolically active transsulfuration pathway.  This would indicate that a link 

exists between the methionine cycle and the synthesis of glutathione in this tissue type.  As part 

of our research strategy, two inhibitors were used, propargylglycine (PPG),14 an irreversible 

inhibitor of gamma-cystathionase, and buthionine sulfoximine (BSO), a synthetic amino acid 

that irreversibly inhibits gamma-glutamylcysteine synthetase (see Figure 2).  Propargylglycine 

inhibition thus blocks the transsulfuration pathway, preventing the genesis of cysteine by 

blocking production of its precursor, cystathionine.  Buthionine sulfoximine inhibition prevents 

the incorporation of cysteine from any source into glutathione biosynthesis. 

To be able to identify glutathione, cell pellet lysates were reacted with monochlorobimane 

(mCBi) in the presence of added glutathione s transferase (GST).  Monochlorobimane (mCBi) 

forms a stable fluorescent GSH-bimane adduct in a reaction catalyzed by GST (see Figure 3).15  

This adduct can be detected fluorimetrically permitting us to identify the location of glutathione 

as a fluorescent spot on a TLC silica plate.16  This method has been tested before using liver 

tissue,15,16 cultured neural cells,17,18,19  and ocular tissues.20 
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In the methionine cycle (see Figure 4), methionine is converted to S-adenosylmethionine (SAMe) 

in a reaction catalyzed by methionine adenosyltransferase (MAT), a magnesium dependent 

enzyme.  MAT catalyzes the only reaction that generates SAMe. 21  In this reaction methionine 

and adenosine triphosphate (ATP) combine to form SAMe, releasing the tripolyphosphate 

portion of ATP after ATP donates the adenosine group to methionine.  The remaining 

tripolyphosphate portion of ATP is hydrolyzed simultaneously to Pi and PPi by the intrinsic 

tripolyphosphatase activity of MAT. 22 

SAMe, the principal methyl donor in the human body is converted to S-Adenosylhomocysteine 

(SAH) after its methyl group has been transferred to a large variety of acceptor molecules in 

reactions catalyzed by various methyltransferases.23  These methyl groups participate in the 

methylation of DNA, RNA, proteins, membrane phospholipids and neurotransmitters.22,24  Such 

methylation plays an important role in processes such as epigenetic regulation (via DNA and 

histone methylation), protein stability, and phospholipid and neurotransmitter production.25  

Also, methylation by SAMe is a critical step in the stabilization of many proteins, including 

myelin.  SAMe is also a key metabolite that regulates hepatocyte growth, death and 

differentiation.23 

In humans, homocysteine is derived usually from methionine through the transmethylation 

pathway from the hydrolysis of SAH via a reversible reaction catalyzed by 

adenosylhomocysteinase, releasing adenosine.26  SAH is a potent competitive inhibitor of 

methylation reactions and prompt removal of adenosine and homocysteine is required to prevent 

accumulation of SAH.23  

Homocysteine has two major metabolic fates, the first is the transmethylation catalyzed by 

methionine synthase (MS) which regenerates methionine.1  MS requires normal levels of folate 

and vitamin B12, and serves to release N5-methyl tetrahydrofolate as tetrahydrofolate (THF), the 

active form of folic acid.1  Methionine regenerates by retrieving the methyl radical from 5-

methyltetrahydrofolate (5-MTHF) creating tetrahydrofolate (THF) which will then regenerate to 

5-MTHF through the action of methylentetrahydrofolate reductase (MTHFR).  This process is 

called remethylation.27,28  THF supports a number of folate dependent one carbon transfer 

reactions.  The efficiency of folate metabolism has an impact on the availability of SAMe 

because it supplies the methyl group used to regenerate methionine from homocysteine. 
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Methionine can also be synthesized from homocysteine via a zinc dependent enzyme betaine 

homocysteine methyltransferase (BHMT), which is a betaine (a metabolite of choline) dependent 

reaction which also produces dimethylglycine (see Figure 4).23  An alternative metabolite fate of 

homocysteine is the transsulfuration catalyzed by cystathionine β synthase (CBS) that converts 

homocysteine to cysteine via a cystathionine intermediate (see figure 5).1 

As a consequence of the biochemical reactions in which homocysteine is involved, a blockage in 

these pathways due to dietary deficiencies of any of the cofactors involved in methionine and 

homocysteine metabolism (folic acid, vitamin B12, vitamin B6 (pyridoxine)),26 deficiency of 

cystathionine beta-synthase (CBS), gamma-cystathionase, 5,10-methylenetetrahydrofolate 

reductase, methionine synthetase (MS) or from genetic variations, acquired pathology, toxicity, 

or nutritional inadequacy, can result in elevated levels of total homocysteine concentrations in 

plasma,26,27,28,29,30,31,32,33,34,35,36 hypermethioninemia,37,38 homocystinemia,31,37,39 

cystathioninuria,31,32,38 cirrhosis,36,40,41,42,43,44 beta-mercaptolactate cysteine disulfideuria,38 sulfite 

oxidase deficiency (SOD),38 aging,45,46 chronic renal failure,4 cancer,46,47 anemia,47 goiter,48 

impaired coagulation,49,50,51 and, hyperhomocysteinemia26,30,52,53,54 correlated with cardiovascular 

diseases, 24,30,33,34,35,45,46,52,55,56,57,58,59,60,61 neural tube defect62 and neurodegenerative disorders 
10,63,64 as Parkinson disease,46,65 Alzheimer,46,66,67 Down syndrome,46 and Autism.24,4668,69,70,71,72  

Hormonal regulation has been discovered to be also a major factor in the metabolic control of 

folate, methyl groups, and homocysteine, thereby providing a potential link between the 

pathologies associated with these pathways and hormonal imbalance.73  For example it has been 

demonstrated that CBS, one of the homocysteine-clearing enzymes, is downregulated by 

testosterone.74   

In mammals, cystathionine beta-synthase (CBS) catalyzes the first step in the transsulfuration 

pathway (see Figure 5),23 a pyridoxal 5'-phosphate (PLP)-dependent condensation of serine and 

homocysteine to cystathionine.75,76  PLP is one of the different forms of vitamin B6.77  The 

second step of the transsulfuration pathway is the hydrolysis of cystathionine to cysteine, 

ammonia, and α-ketobutyrate catalyzed by the enzyme γ-cystathionase (cystathionine-gamma-

lyase (CGL)). 
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CBS contains three functional domains. The middle domain contains the catalytic core, which is 

responsible for the pyridoxal phosphate-catalyzed reaction. The C-terminal domain contains a 

regulatory region that is responsible for allosteric activation of the enzyme by S-

adenosylmethionine. The N-terminal domain contains heme,76 and this domain regulates the 

enzyme in response to redox conditions.78  Deficiency of CBS is the major cause of inherited 

homocysteinemia. 39 

CBS is regulated by the SAMe in the liver.  When SAMe is depleted, homocysteine is channeled 

to remethylation to regenerate SAMe via MAT; whereas when SAMe is abundant, homocysteine 

is channeled to the transsulfuration pathway via CBS.23,79 

Ischemia-reperfusion injury induces a systemic inflammatory response and causes oxidative 

stress producing reactive oxygen species.80,81  Recent studies have demonstrated that ischemia-

reperfusion reduces the activity of CBS leading to homocysteine accumulation in the kidney, 

which in turn leads to increases in oxidative stress contributing to renal injury.82,83,84 

Low levels of cysteine result from a decrease in methionine levels, so cysteine synthesis can be 

sustained only if the dietary intake of methionine is adequate.24  Biosynthesis of cysteine from 

methionine via the hepatic transsulfuration pathway is impaired in some cirrhotic patients.43,44  

Cysteine, which can be derived through diet, or synthesis from homocysteine via the 

transsulfuration pathway, is the limiting substrate for the biosynthesis of glutathione.9  Cysteine 

in the presence of glutamate, γ-glutamylcysteine synthase and ATP as source of energy, is 

converted into γ-glutamylcysteine; this product is converted to glutathione via the enzyme 

glutathione synthase in the presence of glycine, and ATP as source of energy (see Figure 6).  In 

liver, approximately half of the cysteine in glutathione is derived from homocysteine via the 

transsulfuration pathway.1,2,9 

Glutathione (GSH) is a tripeptide that contains an unusual linkage between the amine group of 

cysteine and the carboxyl group of glutamate side chain. Glutathione plays an important role in 

cellular anti-oxidant defense and detoxification reactions.9  Deficits in glutathione have been 

implicated in aging and a host of diseases as reviewed by James et al.46  Glutathione (GSH) is 

also an important intravascular scavenger that protects endothelial cells from atherosclerosis.85 
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Glutathione also provides the major intracellular defense against mercury-induced neurotoxicity 

due the high affinity that mercury has for thiol groups.86 

Glutathione acts as an antioxidant when the thiol (sulfhydryl (-SH)) group of cysteine donates a 

reducing equivalent.  After glutathione (GSH) acts as an antioxidant it becomes reactive and 

forms glutathione disulfide (GSSG) combining itself with another reactive glutathione.87  

Glutathione can be regenerated through reduction from the disulfide form via the enzyme 

glutathione reductase (see Figure 7). 88,89,90 

Hydrogen peroxide is an oxidant specie that causes cellular oxidative stress.  In the methionine 

cycle the presence of a peroxide will direct homocysteine to the transsulfuration pathway, 

activating the enzyme CBS and reducing the activity of MS (see Figure 8).1 

The transsulfuration pathway, which activity is reported in a small number of tissues, plays a 

clear role in the prevention of a variety of disorders which manifest themselves when the 

pathway is deficient.  We are interested in whether transsulfuration occurs in breast tissue, to 

determine its possible role in protection versus chronic diseases of mammary tissue such as 

breast cancer.  We will test our hypothesis using human mammary epithelial cells (HEMC) and 

MCF-7 human breast adenocarcinoma cells by measuring the incorporation of 35S-methionine 

into glutathione in the presence and absence of transsulfuration and glutathione biosynthetic 

pathway inhibitors.  
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MATERIALS AND METHODS 

Materials.  Mammary epithelial basal medium (MEBM), HEPES buffer saline solution (HEPES-

BSS), trypsin neutralizing solution (TNS), trypsin/EDTA (0.25 mg/ml), MEGM singlequots 

(supplements and growth factors), were from Lonza (Walkersville, MD); dulbecco’s modified 

eagle’s medium (DMEM) (With 4500 mg glucose/L, 110 mg sodium pyruvate/L and L-

glutamine), dulbecco’s modified eagle’s medium (Without methionine, cystine and L-glutamine) 

(With 4500 mg glucose/L and NaHCO3), insulin from bovine pancreas, D,L-propargylglycine, 

D,L-buthionine-(S,R)-sulfoximine (BSO), dymethyl sulfoxide (DMSO), glutathione s-transferase 

from equine liver (GST), L-methionine, L-glutathione (GSH), hydrogen peroxide 30%wt, were 

from Sigma (St. Louis, MO); fetal bovine serum (FBS) and penicillin streptomycin solution were 

from Hyclone (Logan, UT); L-[35S] methionine was from Perkin Elmer (Waltham, MA); 

monochlorobimane (mCBi) was from Invitrogen (Carlsbad, CA); potassium chloride (KCl), 

potassium phosphate monobasic (KH2PO4), sodium phosphate dibasic (Na2HPO4), butanol, 

methanol, acetic acid and scintiverse (TM) BD cocktail were from Fisher (Chicago, IL); 

trypsin/EDTA 1X (0.25% Trypsin/2.21 mM EDTA in HBSS without sodium bicarbonate, 

calcium & magnesium, porcine parvovirus tested) was from Cellgro (Manassas, VA) and sodium 

chloride (NaCl) was from Fisher (Fair Lawn, NJ). 

Cell lines.  Human mammary epithelial cells (HMEC) were purchased from Lonza (Walkersville, 

MD).  Human breast adenocarcinoma cells (MCF-7) were obtained as a gift from Dr. Michael Moore. 

Experimental protocol 1: 

The objectives of this experiment were to become familiarized with cell culture, follow  

reactions in cell culture, practice thin layer chromatography techniques, and to verify that the 

identity of the major fluorescent product present after reacting cell lysates with mCBi was the 

glutathione-bimane adduct by running mass spectroscopy. 

Cell Culture.  MCF-7 cells were cultured in T75 tissue culture flasks using water-Jacketed CO2 

incubators (Fisher Scientific, Thermo Forma Series II) at 37oC, 5% CO2 and high levels of 

humidity.  The standard medium for MCF-7 cells was Dulbecco’s Modified Eagle’s Medium 

(DMEM) with 10% fetal bovine serum (FBS), 5 ml of 200mM L-glutamine, 5 mg of insulin and 
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5 ml of penicillin.  The culture medium was changed every 3 days with 15 ml of standard 

medium. 

To prepare experimental cells, 80% confluent T75 flasks were split and used to seed a T75 flask 

with 5E6 cells in 15 ml of standard medium and incubated for 24 hours. 

Sample Collection.  Cells were harvested after 24 hours of incubation; for this purpose the 

medium was removed, the cells were rinsed twice with PBS and then trypsinized covering with 4 

ml of warm trypsin 0.25% solution (Cellgro).  When the cells detached after 5 minutes of 

incubation at 37°C and 5% CO2, they were collected in a 15 ml tube and trypsin was neutralized 

with 6 ml of a 10% FBS solution in PBS.  The 15 ml tube was centrifuged at 4oC for 10 minutes 

and the supernatant was removed from on top of the cells.  Then, the pellet was suspended with 

PBS.  Cells were pelleted again and pellets resuspended in fresh PBS, then removed to an 

eppendorf tube, spun to pellet the cells, the PBS was removed and an equal amount of water 

added to it and frozen at -80oC.  Cells were frozen and thawed 4 times with vortexing at each 

thaw.  The supernatant with cytosolic contents was isolated by spinning the cells at 4oC and 

15,000 rpm for 15 minutes in a Thermo Forma 3L GP 4500R Centrifuge and repeating the 

extraction and freeze-thaw 2 times more. 

Fluorescent labeling of GSH with monochlorobimane (mCBi).  Monochlorobimane (mCBi), in 

a reaction catalyzed by glutathione S-transferase (GST), forms a stable fluorescent GSH-bimane 

adduct that can be detected fluorimetrically and analyzed by thin layer chromatography (TLC).  

The reaction mixture to label GSH consisted of 100 µl of cell lysate, 2 µl of mCBi 20mM, 20 µl 

of 500 mM potassium phosphate (K2PO4) pH 6.5 and 2.5 µg of GST (20 µl of 25 µg GST 

dissolved in 100 µl of PBS) in a total reaction volume of 200 µl volume (water is used to 

equalize samples).  Reactions were prepared on ice then initiated by incubation at 37oC for a 

period of 10 minutes.  Reactions were stopped by freezing.  A control reaction was run by 

substituting the cell lysate with 2 µl of 10mM GSH in the same reaction volume of 200 µl.  10 µl 

of each reaction mixture were spotted on 250 microns silica gel GF uniplates (Analtech, Newark, 

DE) and analyzed by TLC using a 3:1:1 mixture of 1-butanol:methanol:water.  Two µl of 20mM 

mCBi were run in a separate lane as a control to indicate the migration of non reacted mCBi.  

The plates were removed from the TLC chamber when the mobile phase had covered 

approximately 90% of the height of the plate and allowed to air-dry [16].  Migrations of 
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fluorescent products were compared under UV light.  The fluorescence silica spots were scraped 

from the plate into a tube under an UV lamp.  Silica was extracted by adding 0.2% acetonitrile 

and extracts were sent for analysis by mass spectrometry. 

The mass spectrometer used was the Finnigan LCQ quadrupole ion trap mass spectrometer.  It is 

equipped with an atmospheric pressure ionization (API) source which can be operated in two 

modes: electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI). Both 

are soft ionization methods that can be utilized to produce either positive or negative ions. ESI is 

effective with most compounds, and is the default method of ionization. Polar compounds such 

as amines, peptides, and proteins are best ionized by ESI. Non-polar compounds such as 

hydrocarbons and steroids usually give better results with APCI. 

Experimental protocol 2: 

The objective of this experiment was to follow the incorporation of 35S-methionine into the 

glutathione biosynthetic pathway, with and without the presence of specific inhibitors in MCF-7 

cells and HMEC. 

Cell Culture and Treatment. 

MCF-7 cells were cultured as described under methods for experiment 1.  To prepare 

experimental cells, 80% confluent T75 flasks were split and used to seed 6 T75 flasks with 5E6 

cells in 15 ml of standard medium and incubated for 24 hours.  After 24 hours of incubation, 

cells received the two inhibitors added to the medium.  Two flasks were preincubated for 24 

hours with 9 mM BSO, two flasks with 2.5mM PPG and as a control, two flasks with PBS 

vehicle.  Then, to monitor the incorporation of radioactive methionine into glutathione the 

medium was replaced with 10 ml of radioactive labeling medium containing DMEM without 

methionine instead of standard DMEM, the inhibitors for each group, 0.4 mM methionine and 
35S methionine to give a 2.5 µCi/ml activity. 

HMEC are a primary cell culture and require particular conditions to ensure that they do not 

become senescent due to irreversible contact-inhibition if their confluence too greatly exceeds 

80%.  For this reason, many preliminary experiments were conducted to gain a working 

knowledge of their growth parameters (data not shown).  HMEC were cultured under the same 
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conditions of incubation as described under methods for experiment 1 but using as standard 

medium mammary epithelial basal medium (MEBM), supplemented with growth factors 

recommended by Lonza, the cell line distributor.  These are supplied in aliquots at proprietary 

concentrations, and include 2 ml of bovine pituitary extract, 0.5 ml of epidermal growth factor, 

0.5 ml of insulin, 0.5 ml of hydrocortisone and 0.5 ml of gentamicin sulfate / amphotericin-B.  

The culture medium was changed every 2 days with 15 ml of this standard medium.  To prepare 

experimental cells, 80% confluent T75 flasks were split and used to seed 12 T75 flasks each with 

2E5 cells in 15 ml of standard medium and were cultured changing the medium every 2 days.  

Seven days after seeding they were 50% confluent and experimental treatment began.  Cells 

received the two inhibitors added to the medium.  Four flasks were preincubated for 24 hours 

with 9 mM BSO, four flasks with 2.5mM PPG and as a control, four flasks with PBS.  Then, to 

monitor the incorporation of radioactive methionine into glutathione, the medium was replaced 

in 2 flasks of each group with 10 ml of radioactive labeling medium containing the appropriate 

inhibitors and 35S methionine to give a 2.5 µCi/ml activity. 

Sample Collection.  MCF-7 cells were harvested 24 hours later as described previously under 

experiment protocol 1.  HMEC are trypsinized after 48 hours of incubation; for this purpose the 

medium was removed, the cells were rinsed twice with HEPES-BSS and then trypsinized 

covering with 37°C trypsin/EDTA solution from LONZA.  When the cells were released after 6 

minutes of incubation at 37°C and 5% CO2, they were collected in a 15 ml tube neutralizing the 

trypsin with TNS and doing a final rinse of the flask with HEPES-BSS to collect residual cells.  

The 15 ml tube was centrifuged at 4oC for 10 minutes and the supernatant was removed from on 

top of the cells.  Then, the pellet was rinsed and re-suspended twice with PBS. The pellet was 

removed to an eppendorf tube, spun to pellet the cells, the PBS was removed and an equal 

amount of water added to it and frozen at -80oC.  Cells were frozen and thaw 4 times.  The 

supernatant with cytosolic contents was isolated by spinning the cells hard at 4oC and 15,000 

rpm for 15 minutes and repeating the freeze-thaw 2 times more.  Radioactive procedures were 

carried separately from non radioactive procedures to prevent radioactive cross contamination. 

Detection of GSH.  The mCBi conjugation reaction was run for this cell line as it was run for the 

MCF-7 but this time glutathione spots were fluorimetrically detected from the TLC plate using 

the BIO RAD universal hood imaging system. Radioactivity on the plates was detected through 
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phosphorimaging using the Typhoon 9200 variable mode imager, as well as by exposure to xray 

film.    

To prove the presence of glutathione in the HMEC’s that were not radioactively labeled, the 

fluorescence silica spots were scraped, silica extracted, and mass spectrometry conducted as 

described under protocol one.   

Experimental protocol 3: 

The purpose of this experiment was to determine the impact of oxidative stress on GSH 

production from transsulfuration pathway- and non transsulfuration pathway-derived cysteine as 

is shown in the flowchart in Figure 11. 

Cell Culturing and treatment.  HMEC cells were grown in T225 tissue culture flasks in 45 ml of 

standard medium, until they were 80% confluent.  The culture medium was changed every 2 

days.  

Cells were split from the flasks and 24 T225 flasks were seeded at different densities, 8 flasks 

with 2.75E6 cells, 8 with 1.38E6 cells and 8 with 7E5 cells; yielding three separate replicates at 

different harvest times.  Each of these was cultured by changing the medium every 2.  

Experiments began when cells were 50% confluent  For each group of 8 flasks, cells were treated 

for 24 hrs with either 2.5mM PPG or the vehicle control PBS.  Then, the medium was replaced 

to 4 flasks for fresh medium with inhibitors and to the other 4 flasks with oxidative stress 

medium containing 300 µM hydrogen peroxide (H2O2) and inhibitors during 2 hours. 

Pellet Collection.  The cells were harvested after the oxidative stress treatment as described 

previously for experimental protocol 2 under methods.  After the final PBS rinse, the pellets 

were roughly divided into thirds, frozen after PBS removal and stored at -80°C.  

Pellet analysis.  One aliquot of each pellet was sent to Dr. Monica Valentovic’s lab for 
determination of glutathione abundance, using their published methods.91,92,93,94,95  
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RESULTS 

Experiment 1: 

5E6 MCF-7 cells were cultured in a T75 tissue culture flask with the standard medium specified 

under methods and incubated for 24 hours, harvested, the cell pellet isolated and lysed.  A 

reaction with the cell lysate was run with monochlorobimane in the presence of GST to form 

fluorescent GSH-mCBi adducts.  As a control, the reaction was run with glutathione and 

monochlorobimane in the absence of cell pellet.  Ten µl of reaction mixture were spotted on TLC 

silica plates and allowed them to dry.  TLC was conducted using a 3:1:1 mixture of 1-

butanol:methanol:water as the mobile phase.  mCBi alone produced a single spot with fast 

migration (70 % of the height).  This matched a similar spot found in all lanes, indicating that 

sufficient mCBi was present in each sample to react with all the available GSH.  GSH-mCBi 

conjugate produced a fluorescent spot with slow migration (30% of the height).  Fluorescent 

spots were detected using a UV-lamp and lines were draw around the spots, which then, were 

scraped and eluted from silica plates for subsequent mass spectrometry analysis. 

Using a Finnigan LCQ quadrupole ion trap mass spectrometer, Dr. Frost helped us to determine 

the content of the fluorescent spots.  As result, mass spectrometry shows a peak at 498 for the 

control sample (see Figure 12) and MCF-7 lysate sample (see Figure 13) verifying the presence 

of glutathione-mCBi conjugate in the spot we had identified by virtue of its comigration with the 

GSH-mCBi control reaction products.  

Experiment 2: 

MCF-7 and HMEC cell lines were used to follow the incorporation of 35S-methionine into the 

glutathione biosynthetic pathway.  Each cell line was pretreated with two inhibitors, 2.5 mM 

propargylglycine (PPG) and 9 mM buthionine sulfoximine (BSO), in standard medium for 24 

hours; followed by replacement of the medium with radioactive labeling media, containing the 

same inhibitors and 35S-methionine  (2.5 μCi/ml) for 24 hours and 48 hours, as described under 

methods. 
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Figure 14 and Figure 15 show the digital fluorescent images of the silica plates where HMEC and 

MCF-7 cells lysates reacted with monochlorobimane were analyzed by TLC.  In these figures we 

can see that the fluorescent conjugated glutathione (GSH-mCB) was clearly separated from the 

free mCBi fluor (compare lanes 1-6 with lane 7). BSO blocks almost completely glutathione 

synthesis leading to very low GSH bimane levels, seen only as faint fluorescent spots (compare 

lanes 1 and 2 with lanes 3 and 4). Treatment with PPG inhibits the cysteine for GSH synthesis 

coming from the transsulfuration pathway, clearly a portion of, but not all glutathione present in 

the cells is derived from transsulfuration derived cysteine (compare lanes 1 and 2 with 5 and 6) 

leading to less fluorescent spots than controls, but more fluorescence than seen with BSO 

inhibition.  Glutathione can also be derived from cysteine released during protein turnover or 

imported from the extracellular medium. 

Position of the fluorescent spots from the TLC plates were marked under uv-light and TLC 

plates were scanned using a Typhoon 9200 variable mode imager, and autoradioagraphy 

conducted with Xray film.  Comparison of the positions of the fluorescent and radioactive spots 

indicate that the glutathione-bimane conjugate has incorporated 35S-methionine as is shown in 

Figure 16 and Figure 17 in lanes 1 and 2.  Incorporation of radioactivity into glutathione in BSO 

treated cells was inhibited by roughly 80%.  Interestingly, incorporation of radioactivity into 

glutathione in PPG treated cells was also inhibited by roughly 80%.  Since PPG inhibits the 

conversion of cystathionine to cysteine, this directly impacts the flux of sulphur from the 

methionine cycle.  Incorporation of 35S-methionine into glutathione (GSH-mCB bands) showed 

in the autoradiography demonstrates that functional transsulfuration occurs in mammary cells. 

The HMEC cell line was treated with inhibitors and non radioactive cell extracts were prepared 

and processed with monochlorobimane.  Extracts from GSH-mCB spots were analyzed by mass 

spectrometry.  Mass spectrometry showed a peak at 498 when cells were treated with PBS 

(vehicle) (see Figure 18) and PPG (see Figure 20) demonstrating the presence of glutathione 

migrating to the spot we identified as glutathione-bimane on the fluorescent and autoradiography 

pictures of the TLC plates (see Figure 16).  When HMECs were treated with BSO, the peak at 

498 was not detectable (see Figure 19), indicating that BSO thoroughly blocks the glutathione 

synthesis.  This is consistent with our fluorimetric findings (see Figure 16, fluorescent plate, 

comparing lanes 1 and 2 with lanes 3 and 4). 
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Experiment 3: 

Our objective for this experiment was to determine the impact of oxidative stress on GSH 

biosynthesis from transsulfuration pathway and also it was designed to test the hypothesis that 

transsulfuration in mammary cells provides necessary cysteine for the production of glutathione 

under conditions of oxidant stress. 

Therefore, HMEC were treated with a control or 300 µM H2O2 to induce oxidative stress 

responsive genes [93], in the presence of inhibitors and vehicle for 2 hours.  Cells were collected, 

lysates prepared, and GSH levels reported as mean +/- SEM were determined as described under 

experimental protocol 3.  Results, depicted in Figure 21 indicate that 24 hours of PPG inhibition 

reduced the levels of glutathione to roughly 2/3 that of control cells, though this was not 

determined a significant difference.  Cells treated with 300 µM H2O2 increased GSH levels 

relative to Basal controls by roughly 1/3, though this again was not determined a significant 

change.  Propargylglycine inhibited cells, when treated with 300 µM H2O2 did not increase their 

GSH levels, as compared with the increase seen with uninhibited cells (p<0.02, one way 

ANOVA).   
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DISCUSSION 

My hypothesis was that the transsulfuration pathway provides cysteine for glutathione 

production in mammary cells.  To approach testing this hypothesis I had a number of smaller 

learning objectives.  First, I needed to become familiar with general tissue culture techniques, 

followed by mastering the more exacting conditions of primary cell culture.  Cell tissue culture 

involves techniques that take time to learn and become familiarized with.  A primary cell culture 

is more stringent than the culture of transformed cells.  With a primary cell line, one has to be 

very careful with how confluent they can get and how often they are fed, to avoid triggering 

cellular senescence.  A transformed cell line is easier to handle due it ability to grow 

indifferently from frequency of media change and how much confluent they get.  I had a great 

experience using MCF-7 cell line to become familiarized with the tissue culture technique. 

My second learning objective was to learn how to conduct thin layer chromatography (TLC) 

analysis.  TLC was needed as the glutathione we isolate from cells needs to be separated and 

identified from other cell constituents.  Once we prepare cell lysates we react them with 

monochlorobimane. Reaction of glutathione instead of the cell lysates was used as a control.  

Then, we run the reaction in the presence of GST to form the fluorescent GSH-bimane 

conjugate, to identify the location of glutathione as a fluorescent spot following TLC.  Also, to 

prove the glutathione presence in the fluorescent spot, the samples were analyzed by mass 

spectrometry obtaining a peak at 498 that represents the GHS-bimane conjugate.   

My third learning objective was to master radioactivity techniques using 35S-methionine to 

determine if the methionine cycle supplies sulphur for glutathione (GSH) synthesis by the 

transsulfuration pathway.  As it name implies, the transsulfuration pathway supplies sulphur 

from the methionine cycle for glutathione synthesis.  Thus to determine if this pathway is active 

in mammary cells, we treated the MCF-7 and the HMEC cell lines with 35S-methionine.  After 

the treatments were done and the cell lysate were reacted for each cell line, we compared the 

fluorescence pictures and the autoradiographs of the TLC silica plate.  The positions and shapes 

of the fluorescent and radiographic spots on the plates were strikingly similar, indicating a co-

migration of the fluorescent label with the 35S from methionine.  These data indicate that the 35S 

from methionine did incorporate into the glutathione, demonstrating that a functional 
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transsulfuration pathway is present in human mammary epithelial cells.  Glutathione can also be 

synthesized from cysteine released during protein turnover or imported from the extracellular 

medium but the only possible way that glutathione could incorporate 35S in this experiment was 

by the transsulfuration pathway. 

When the inhibitors PPG or BSO, were used, the levels of glutathione were reduced, appearing 

as less intense spots in the TLC plate due to less incorporation of 35S methionine into glutathione 

(GSH-mCB bands).  For both inhibitor treatments, the reduction of 35S incorporation was around 

80% as each inhibits the transfer of the 35S from methionine to glutathione. 

Fluorescent levels of GSH following treatment with PPG are higher than seen following 

treatment with BSO, indicating the key difference between these inhibitors.  Propargylglycine 

blocks the formation of cysteine from cystathione, effectively blocking only the transsulfuration 

pathway as a source of cysteine.  Buthionine sulfoximine blocks the incorporation of cysteine 

from any source into the first step of glutathione biosynthesis.  This results in BSO reducing total 

GSH levels more significantly (as is shown in Figure 19 where levels were below the ability of 

the mass spec to detect), while PPG only reduces the portion of GSH that derives its cysteine 

from transsulfuration.   

When we tested whether oxidative stress would affect GSH biosynthesis using a treatment of 

H2O2, we found the following response in mammary cells.  Cells treated with 300 µM H2O2for 

two hours increased GSH synthesis by approximately ~30% as compared to untreated controls.  

In cells not treated with H2O2, PPG pre treatment for 24 hours reduced GSH by over 30%.  This 

result is similar to that which Reed and co-workers2  obtained when they treated rat hepatocytes 

with 1 mM propargylglycine for 2h; this resulted in a 35% depletion of the glutathione pool 

compared to untreated controls.  Interestingly, PPG pretreatment blocked the ability of 

mammary cells to respond to H2O2 yielding a significant reduction in GSH in PPG pretreated, 

H2O2 treated cells versus H2O2 treated cells that had received no pre treatment (One way 

ANOVA, p<0.02).  These results demonstrate the importance of the transsulfuration pathway to 

HMECs under conditions of oxidant stress.   

We feel that these experiments provide clear and conclusive evidence supporting our hypothesis, 

that the transsulfuration pathway provides cysteine for glutathione production in mammary cells.  
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Further, that this pathway is a significant source of cysteine under conditions of oxidant stress.  

These findings imply that transsulfuration may link oxidant stress to the critical methyl donor 

pool of SAMe, providing a means by which oxidant stress might impact epigenetic regulation in 

mammary tissues.  This in turn may provide a mechanism through which oxidant stress could 

lead to chronic diseases in mammary tissue such as breast cancer. 
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FIGURES 

 

 
 

Figure 1  The transsulfuration pathway linking the methionine cycle and the synthesis of glutathione.  

A metabolic pathway that converts homocysteine to cysteine, through the intermediate cystathionine. 
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Figure 2  PPG and BSO effects on the transsulfuration pathway.  Propargylglycine (PPG) is an 

irreversible inhibitor of gamma-cystathionase, and buthionine sulfoximine (BSO) is a synthetic amino 

acid that irreversibly inhibits gamma-glutamylcysteine synthetase.  While both of them prevent the 

incorporation of cysteine derived from the transsulfuration pathway into GSH, PPG has no impact on how 

cysteine derived from the media may incorporate into GSH. 
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Figure 3  Reaction scheme between monochlorobimane and glutathione to form GSH-mCB.  

Monochlorobimane (mCBi) forms a stable fluorescent GSH-bimane adduct in a reaction catalyzed by 

glutathione S-transferase (GST).  This adduct permits us to easily identify the position of GSH-bimane on 

TLC silica plates. 
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Figure 4  Methionine cycle.  Methionine is converted to S-adenosylmethionine (SAMe) by methionine 

adenosyltransferase (MAT).  SAMe is converted to S-adenosylhomocysteine (SAH) through donation of 

a methyl group by any methyltransferase.  SAH is hydrolyzed to form homocysteine via 

adenosylhomocysteinase.  Homocysteine can then regenerate methionine via methionine synthase or 

betaine homocysteine methyltransferase (BHMT), or follow the transsulfuration pathway via 

cystathionine-β-synthase (CBS) to produce cysteine (reaction not shown, see Figure 5). 
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Figure 5  Synthesis of Cysteine.  Cystathionine beta-synthase (CBS) catalyzes the first step in the 

transsulfuration pathway which converts homocysteine into cysteine in a two step reaction.  In 

the first step, cystathionine is obtained from homocysteine by a condensation reaction with serine 

in the presence of CBS.  The second step of the transsulfuration pathway is catalyzed by gamma 

cystathionase and it turns cystathionine into cysteine, ammonia and α-ketobutyrate. 

B6 
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Figure 6  Glutathione Synthesis Pathway.  Cysteine in the presence of glutamate, γ-glutamylcysteine 

synthase and ATP as source of energy, is converted into γ-glutamylcysteine; the latter is converted to 

glutathione via the enzyme glutathione synthase in the presence of glycine, and ATP as source of energy. 
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Figure 7  Role of glutathione as an antioxidant.  In the presence of an oxidative stress agent, the thiol 

group of cysteine present in glutathione donates a reducing equivalent becoming reactive and forming 

glutathione disulfide (GSSG) by combining itself with another reactive glutathione.  Then, glutathione 

can be synthesized again from the disulfide form via the enzyme glutathione reductase in the presence of 

NADPH produced in the glucose 6-phosphate dehydrogenase reaction. 
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Figure 8  Effect of H2O2 in the methionine cycle.  In the methionine cycle the presence of H2O2 will 
direct homocysteine to the transsulfuration pathway, activating the enzyme CBS and reducing the activity 
of MS.1   
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HMEC 
 

MCF-7 
  

Figure 9  The two cell lines used for studies. Pictures were taken at 400x 
magnification.  Human mammary epithelial cells (HMEC) were purchased from 
Lonza (Walkersville, MD).  Human breast adenocarcinoma cells (MCF-7) were 
obtained as a gift from Dr. Michael Moore.
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Figure 10  Methods diagram for experimental protocol 2. 
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Figure 11  Diagram of oxidative stress treatment for experiment 3.  Each replicate experiment was started 
when HMEC cells in the eight T75 flasks reached 50% confluence.  Cells were pretreated with the 
inhibitor propargylglycine (PPG) or the PBS vehicle control. Twenty four hours later they were treated 
for 2 hours with 300 μM H2O2 to generate an oxidant challenge followed by harvesting.  
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Figure 12  Mass spec of glutathione-monochlorobimane (GSH-mCB) conjugate used as a 
control. 
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Figure 13  Mass spec of MCF-7 lysate glutathione-monochlorobimane conjugate. 
 
 

  

GSH_sample6#100-104 RT: 1.74-1.80 AV: 5 NL: 7.41E6
T: + c ms [ 150.00-1000.00]

150 200 250 300 350 400 450 500
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e 
A

bu
nd

an
ce

498.3

435.3
499.3

520.1
369.1 516.5 540.1436.1 459.3243.2 353.2 392.1 429.2251.1 322.8181.6 285.3 307.1 472.5230.5213.0

172.4



 
 

30 
 

 
Figure 14  A scanned TLC plate showing the selectivity of the monochlorobimane reaction with 
glutathione present in HMEC lysates. 

Cells treated with PBS (lanes 1 and 2) generated glutathione-bimane (GSHmCB) conjugates 
which produced an intense fluorescent spot.  Cells treated with BSO (lanes 3 and 4) had little 
GSH-mCB conjugate, while cells treated with PPG (lanes 5 and 6) showed partial reduction of 
GSH levels, leading to less GSH-mCB conjugate.  Lane 7 indicates the migration of free mCBi 
(present in the tops of all reactions).  Inhibition of GSH levels by PPG (compare lanes 1 and 2 
with lanes 5 and 6) is an indication that transsulfuration is taking place in these cells. 
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Figure 15 A scanned TLC plate showing the selectivity of the monochlorobimane reaction with 
glutathione present in MCF-7 cell lysates. 
 
Cells treated with PBS (lanes 1 and 2) generated glutathione-bimane (GSHmCB) conjugates 
which produced an intense fluorescent spot.  Cells treated with BSO (lanes 3 and 4) had little 
GSH-mCB conjugate, while cells treated with PPG (lanes 5 and 6) showed partial reduction of 
GSH levels, leading to less GSH-mCB conjugate.  Lane 7 indicates the migration of free mCBi 
(present in the tops of all reactions).  Inhibition of GSH levels by PPG (compare lanes 1 and 2 
with lanes 5 and 6) is an indication that transsulfuration is taking place in these cells. 
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Figure 16  Incorporation of 35S-methionine into glutathione (GSH-mCB bands) showed in the 
autoradiography demonstrates that functional transsulfuration occurs in HMEC. 
 
HMEC cells treated with PBS (lanes 1 and 2) that generated glutathione-bimane (GSHmCB) 
conjugates producing an intense fluorescent spot also incorporated 35S-methionine represented as 
a darker spot in the autoradiography.  Cells treated with BSO (lanes 3 and 4) and with PPG 
(lanes 5 and 6) that had less GSH-mCB conjugate than controls, also show less incorporation of 
35S-methionine.  Incorporation of 35S-methionine in controls (lanes 1 and 2) demonstrates that 
functional transsulfuration occurs in mammary cells. 
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Figure 17  Incorporation of 35S-methionine into glutathione (GSH-mCB bands) showed in the 
autoradiography demonstrates that functional transsulfuration occurs in MCF-7. 
 
MCF-7 cells treated with PBS (lanes 1 and 2) that generated glutathione-bimane (GSHmCB) 
conjugates producing an intense fluorescent spot also incorporated 35S-methionine represented as 
a darker spot in the autoradiography.  Cells treated with BSO (lanes 3 and 4) and with PPG 
(lanes 5 and 6) that had less GSH-mCB conjugate than controls, also show less incorporation of 
35S-methionine.  Incorporation of 35S-methionine in controls (lanes 1 and 2) demonstrates that 
functional transsulfuration occurs in mammary cells. 
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Figure 18  Mass spec of HMEC showing the glutathione-monochlorobimane conjugate peak. 
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Figure 19  Mass spec of HMEC showing that under the presence of BSO there is no presence of 
glutathione-monochlorobimane conjugate peak.  

Gsh_26#113-123 RT: 1.80-1.96 AV: 11 NL: 5.53E6
T: + c ms [ 100.00-800.00]

150 200 250 300 350 400 450 500
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e 
A

bu
nd

an
ce

266.7

267.7

224.7
200.1

371.7236.6202.4140.0 180.5 301.5 326.5295.2 345.3 469.3 514.5385.3 448.5420.5 481.1159.1137.4



 
 

36 
 

Figure 20  Mass spec of HMEC treated with PPG showing the peak at 498 for glutathione-
monochlorobimane conjugate (GSH-mCB).  Indicates that under the presence of PPG, glutathione can be 
still synthesized as shown in the fluorescent and autoradiography figure of the TLC plate. 
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Figure 21  Impact of transsulfuration inhibition with PPG on cellular total glutathione levels in HMEC 
subjected to oxidative challenge (H2O2). 
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APPENDIX 

 

List of abbreviations 

 

ATP Adenosine Triphosphate  

BHMT Betaine Homocysteine Methyltransferase 

BSO Buthionine Sulfoximine  

CBS Cystathionine β Synthase  

DMEM Dulbecco’s Modified Eagle’s Medium  

DMSO Dimethyl Sulfoxide  

FBS Fetal Bovine Serum 

GSH Glutathione 

GST Glutathione-S-Transferase  

HEPES-BSS HEPES Buffered Saline Solution  

MCF-7 Human breast adenocarcinoma cells  

MEBM Mammary Epithelial Basal Medium  

MAT Methionine Adenosyltransferase  

MS Methionine Synthase  

mCBi Monochlorobimane 

HMEC Human mammary epithelial cells 

PBS Phosphate Buffered Saline  

PPG Propargylglycine 

SAH S-Adenosylhomocysteine 

SAMe S-adenosylmethionine  

THF Tetrahydrofolate 

TLC Thin Layer Chromatography  

TNS Trypsin Neutralizing Solution  
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