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ABSTRACT

In this work, we give an introduction to Time Scales Calculus, the properties of the exponential

function on an arbitrary time scale, and use it to solve linear dynamic equation of second order.

Time Scales Calculus was introduced by Stefan Hilger in 1988. It brings together the theories

of di↵erence and di↵erential equations into one unified theory. By using the properties of the

delta derivative and the delta anti-derivative, we analyze the behavior of a second order linear

homogeneous dynamic equation on various time scales. After the analytical discussion, we will

graphically evaluate the second order dynamic equation in Marshall’s Di↵erential Analyzer Lab.

Di↵erential analyzers (DA) are mechanical machines designed to solve di↵erential equations through

a process called mechanical integration. The DA can be used to demonstrate to students and science

educators a mechanical visualization of integration, specifically, Riemann sums. The DA can be

used to solve nonlinear di↵erential equations of interest to mathematics researchers in the broad

field of dynamic equations on time scales.

vii



CHAPTER 1

INTRODUCTION

In 1988, Stefan Hilger’s PhD dissertation laid out the framework for the theory of Time Scales

Calculus which unified continuous and discrete analysis. His dissertation o↵ered the unification of

the theory of di↵erential equations with that of di↵erence equations. For example, if we di↵erentiate

a function defined with domain R, then the definition of derivative and integration is equal to that

of standard calculus textbooks. However, if the function is defined on the integers then it is equal

to the forward di↵erence operator from the study of di↵erence equations. Dr. Martin Bohner and

Dr. Allan Peterson extended and combined the work of Stefan Hilger with that of many others

in the field in a book, Dynamic Equations on Time Scales – An Introduction with Applications,

which has allowed the field of time scales calculus to grow and expand. Instead of proving results

for di↵erential equations and then for di↵erence equations, the study of dynamic equations on time

scales allows us to prove the result for dynamic equations in which the domain of the unknown

function is a time scale, an arbitrary nonempty closed subset of the real numbers.

In this work, we will discuss the basic terms related to the theorems dealing with di↵erentiation

and integration on time scales. It is also necessary to define the generalized exponential function

and properties related to the first and second order linear dynamic equations. The main goal of

this project is to analyze how the second order linear homogeneous equation performs on various

time scales. In order to do this we will provide analytical discussion of a particular equation and

we will provide graphical solutions on the given time scales obtained by Art, Marshall University’s

four integrator di↵erential analyzer.
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CHAPTER 2

DIFFERENTIAL ANALYZERS

2.1 History of Di↵erential Analyzers

The DA was designed and first built in the late 1920s to solve nonlinear di↵erential equations that

could not be solved by other methods [4]. This machine is a precursor to the modern computer

and consider by many to be the first analogue computer.

2.1.1 DAs in the 1920s-30s

Dr. Vannevar Bush, Professor of Electrical Engineering at Massachusetts Institute of Technology

(M.I.T.), designed and built the first machine. The first machine had six integrators and the second

one called the Rockefeller Di↵erential Analyzer had 16 integrators and was built in 1941. The idea

traveled to England in the early 1930s. Dr. Douglas Hartree of the University of Manchester visited

Dr. Bush to learn more about his machine in the hopes to take the idea back to Manchester with

him. During this visit, Hartree developed the idea to build a working model of Bush’s machine from

Meccano parts (the British version of Erector Set) [4]. Hartree’s idea became a reality with the

assistance of Arthur Porter, Hartree’s research student majoring in physics. Porter took Hartree’s

idea and began to construct the first DA at the University of Manchester, primarily built from

Meccano parts [7]. Porter’s machine had four integrators and was used to solve many di↵erent

problems and in particular Porter analyzed the atomic structure for the chromium atom and other

problems involving control theory. Porter finished his doctoral thesis and then was selected for the

Commonwealth Fund Fellowship allowing him to study at M.I.T. with Bush using the Rockefeller

Di↵erential Analyzer [7]. With the advancement in electronics most DAs were destroyed or became

static displays, residing in museums across the world.

2.1.2 Present Day DAs

In the last ten years, there has been increased interest in DAs as a tool to develop our understand

of the first computers. This project was initiated by Dr. Bonita Lawrence, mathematics professor
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at Marshall University, in 2004. Dr. Lawrence was inspired by a static display of a portion of

the University of Manchester’s machine built by the Metropolitan-Vickers Company at the London

Science Museum while visiting that summer [1]. Dr. Lawrence returned to Marshall with the plan

to get students involved in researching this machine because she was interested in how the machine

o↵ers a physical model of a mathematics equation and the educational benefits that can result

from this aspect of the machine [1]. The Marshall DA Team started to make contacts with several

people in the U.S. that had experience with the machine and learned that Dr. Porter was residing

in North Carolina. Dr. Lawrence and a few of her students visited him to gain additional insight

about the machine and learn about the construction of the first machine built in England. The

team first built a two-integrator machine called Lizzie in 2006. Then, in May of 2009, the team

finished the construction of Art, a four integrator machine named after Dr. Arthur Porter. Art has

the capacity to run nonlinear di↵erential equations.

My connection with this historical work started when I saw a presentation by Dr. Lawrence

at the Rocky Mountain Mathematics Consortium Summer School in 2009 at the University of

Wyoming. Dr. Lawrence and her husband, Dr. Clayton Brooks, gave a presentation on Lizzie.

After the presentation, Dr. Lawrence, turned the DA on to show us how it worked. I was so

intrigued by the machine because it was something that I have never seen before. I was attending the

conference with Dr. Heidi Berger, Simpson College mathematics professor. Dr. Berger suggested

that I talk to Dr. Lawrence about the machine and that conversation led to me actually building a

DA for Simpson College the following summer. Dr. Berger and Dr. Lawrence planned a trip for me

to Marshall University to learn about the mechanics of a DA and to build a machine in Marshall’s

DA Lab and then bring it back to Simpson for my senior research.

During the fall semester of 2009, I studied abroad in London and was able to go to the London

Science Museum where Dr. Lawrence saw the piece of the Metropolitan-Vickers Company DA.

I spent time in the mathematics section where they have many di↵erent pieces from di↵erential

analyzers built in the early 1930s. With internal grants from Simpson and funding from Marshall

it was possible for me to visit Marshall for two weeks to complete the construction of Simpson’s

DA. Building the machine in two weeks by myself would have been impossible, even with the help

from the graduate students at Marshall. I asked another Simpson math student, Dani Peterson, to

3



come with me and help with the construction. As a team we were able to complete the building of

the machine in less than two weeks.

Dani and I built a two-integrator DA for Simpson College in 11 days and named it Miles-Di↵y

(MD), since we had to drive miles to West Virginia and it is a di↵erential analyzer. MD is a novel

design for a DA; Dr. Lawrence designed this DA to have a large interconnect, which is the section

of the machine that contains all the gears that are needed to program the equation the machine is

solving. This also allows for the possibility of doing more complex equations by building additional

integrators to model higher order di↵erential equations. Simpson College is the second location

in the U.S. to have a publicly accessible DA. The machines are currently not the most advanced

technology, but they provide a great resource as a teaching tool for many math courses and research

in di↵erential and dynamic equations.

During my senior year at Simpson I wrote my honors capstone paper on Miles-Di↵y and gave

presentations to local high schools, at the Science Center of Iowa, the Midwest Undergraduate

Mathematics Symposium, Simpson College’s Math Day, and to Simpson math and computer science

classes. I founded the Simpson College DA Club which won Outstanding Poster Presentation

at Simpson’s Honor Research Symposium. Having a strong connection with Marshall and Dr.

Lawrence, I knew it was the best fit for me when attending graduate school. Marshall’s DA Team

has added a third machine similar to Miles-Di↵y, called DA Vinci. During my first year at Marshall

I studied the mechanics specific to Art and worked to streamline DA Vinci’s interconnect system.

Dr. Lawrence, Kayode Olumoyin, my DA lab partner, and I have conducted labs for a variety

of classes at Marshall and traveled to Simpson College to assist in troubleshooting Miles-Di↵y to

insure smooth operation.

4



CHAPTER 3

MECHANICS AND MATHEMATICS OF DA, ART

In this chapter we o↵er insight concerning the mechanics and mathematics of di↵erential analyzers.

Since the machines are mechanical we must consider the turns of gears and rods to calculate the

values of the associated mathematical expressions throughout the machines.

3.1 Mechanics of DA

The main mathematical component of a DA is the integrator, consisting of a wheel and disk

combination, Figure 3.1.

Figure 3.1: Setup of the wheel and disk for each integrator.

The point of contact of the wheel and the disk creates the frictional force that causes torque

on the rod connected to the wheel on the integrator [5]. This torque is needed to move the rest of

the machine, since the motion of the wheel is calculating the result from each integrator and these

rotations must continue through the various components of the machine [4]. For instance, if the

equation involves several integrators, this movement would have to go through all of them. Also,

the torque created on a particular integrator might be required to move the output table, if that

part of the equation is being plotted.

The torque amplifiers do not a↵ect the mathematics of the machine because they do not have

gears that a↵ect the motion. Throughout history, di↵erent types of torque amplifiers have been

used, some more e�cient than others. The DA used in this thesis, Art, is a four-integrator di↵er-
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ential analyzer, which uses a computer-programmed servo-type motor to amplify torque.

An adder is necessary to model more complex equations that require adding or subtracting of

the output from two or more integrators. The DA uses a mechanical adder that consists of a bevel

gear connected in such a way as to allow rotations from two independent rods to be connected in

a manner that creates the sum of the two motions on a single rod [4].

An output table is required to graphically visualize solutions created by the particular di↵eren-

tial equation programed on the DA. Note that an output table connected to the DA is an accessory

and is not necessary for the operation of the DA. The integrators and interconnect of the DA are

setup to run the equation without an output table. If the operator desires a specific plot of an

equation he or she must connect the appropriate rods to the output table.

The output table plots the desired solution when fed two sources of motion that moves a pen in

both vertical and horizontal directions. Depending on the equation being modeled by the DA, the

operator has the option to choose the source of motion going into each direction of movement [4].

For example, if the operator wants to plot a derivative represented by a turning rod, this rod can

be connected to the vertical axis. If the independent variable motion is connected to the horizontal

axis, this connection to the output table would result in a plot of that particular derivative.

3.2 Mathematics of the Di↵erential Analyzer

The DA performs mechanical integration within each of its integrators. Because of this there are

three types of motion involved: the input, output, and independent variable. The DA’s mechanical

integrator consists of a horizontal disk located on a carriage that turns a vertical wheel [5]. The

horizontal disk (referred to as the independent variable) rotates under the wheel on the carriage

and the rotations of the disk turn the wheel [4]. A rod is connected to the wheel and the turns

of the rod (referred to as the integral) are added together to create motion that moves to other

components, in some cases the solution curve for a particular di↵erential equation. The carriage of

each integrator moves along a track fed by a lead screw, which changes the location of the wheel

from the center of the horizontal disk. The position of the wheel on the disk measured in inches

(referred to as the integrand) determines the number of turns of the wheel. For example, if the

wheel is situated on the center of the disk this means it is at zero and the wheel will not rotate.

6



For another example, if the radius of the wheel is denoted by a and the wheel is located a units

from the center of the disk then the wheel will turn one time for each turn of the disk. Ultimately,

all variables in the machine will be measured in shaft rotations. Therefore, we have to transform

the units from inches to rotations.

We must consider the embedded gears that are within Art. There is an integrator constant

that reflects a geardown of the output on Art. Its presence is due to the radius of the wheel, the

thread of the lead screw, and imbedded gear ratios. The integrator constant is important because

each time motion passes through the integrator the output is p·k
a of the integral, where p represents

pitch of the lead screw, a is the radius of the wheel in inches, and k is the ratio of reduction gears.

To calculate the movement of output relative to input to the integrator we evaluate:

p · k
a

=
1
32 inch per rotation ·

�
50
57 · 2

5 rotations2
�

15
16 inches

= .0116959 rotations

Therefore, one turn of each of the input rods will result in a factor of 0.0116959 rotations of the

output rod. This result is from the following particular data: the wheel has a radius of 15
16 inches,

the lead screw has thread of 32 per inch, the helical gears in the carriage have a gear ratio of 2
5

and the gearing near the clutch that moves the lead screw has a gear ratio of 50
57 . From this we

calculate our unit of measure on Art, excluding the counters, as

1
p·k
a

=
1

0.0116959
= 85.5.

Thus, one turn of input we get 85.5 turns of output.

Now, we need to consider the rotation on the integrator counter and the gearing within the

counter. To determine the unit of one on the machine we need to take into account the gear ratio

of 50
57 that moves the lead screw at the counter and the fact that one rotation of the gear on the

counter makes the counter spin
10

3
turns. Thus, on our counter our unit measure is equivalent to

85.5 · 10
1

· 1
3
· 50
57

= 250.

That is, 250 turns on the counters equals one unit on Art. This allow us to use the counters to set

7



initial conditions on each integrator. For example, if we want initials conditions of 1/2 and 1/4, we

would set the counter on one integrator at 125 and the other at 62.5.

3.2.1 Mechanical Integration – Riemann Sums

To explain how integration is occurring within the machine, consider the case when the carriage

is not moving along the track. Rotations of the disk will cause the wheel to create a circle on the

disk. We know that the circumference of the circle created by the wheel on the disk is Cd = 2⇡y

where y is the distance the wheel is from the center of the disk. The circumference of the wheel is

Cw = 2⇡a. From this we know then that one turn of the disk equals y
a turns of the wheel.

Once the carriage starts to move along the track from the input of motion from the lead screw,

the arc lengths being created by the rotations of the wheel on the disk will change according to

the change in radius (y) that defines the circle. The equation for arc length is s = r✓, where r = y

and ✓ = 2⇡�x, with �x being the portion of a circle traced by the wheel at radius y. Also, let n

represent the number of portions of a turn.

From this we can describe the total distance the wheel rotates on the disk for n portions of a

turn of the disk as the sum of the arc lengths at the di↵erent positions of the wheel on the disk [4].

The total distance can be written mathematically as

nX

i=1

y(xi)2⇡�xi (3.1)

where y(xi) = ri and 2⇡�xi = ✓i.

To obtain the number of rotations of the wheel, we must divide the sum (3.1) by 2⇡a, the

distance of one rotation of the wheel. Units of length for the radius a and the radii ri are the same

and the result is a sum of rotations since (3.1) is measured in units of length and 2⇡a is measured

in length/rotation of the wheel, the product is measured in rotations. So, the turns of the wheel

8



can be written as

Turns of the wheel =
Distance traveled by wheel

Distance of one rotation of the wheel

=
nX

i=1

y(xi)2⇡�xi
2⇡a

=
1

a

nX

i=1

y(xi)�xi

(3.2)

When we allow the portions of a rotation of the disk to shrink, the sum becomes the integral,

1

a

Z
y(x)dx,

with integrand y(x) multiplied by the constant 1
a .

As one can see this sum is a Riemann sum [4]. The following is a formal definition of Riemann

sum.

Definition 1 ([2]). If P is the tagged partition, which is a partition of a given interval together

with a finite sequence of numbers i = 1, 2, . . . , n, we define the Riemann sum of a function

f : [a, b]! R corresponding to P to be the number

S(f ;P ) :=
nX

i=1

f(ti)(xi � xi�1).

If the function f is positive on [a, b], then the Riemann sum is the sum of the areas of n rectangles

whose bases are subintervals Ii = [xi�1, xi] and whose heights are f(ti).

To be able to visualize the continuous movement of the integrators we can think about the shape

being inscribed by the wheel on the disk. When the DA is running one period of a di↵erentiable

periodic function the wheel and disk movement creates four spirals because the wheel crosses

each side of the disk twice. The shape of these spirals is determined by the particular equation

programmed on Art. The image of these spirals shows the path of the wheel on the disk as the

9



DA runs a positive increasing function. These spirals display the definite integral represented in

the mechanical integrator on Art, but we can connect this to the traditional description of definite

integrals representing areas under the curve. The four spirals can be graphed on a xy-plane where

the x-axis is the number of rotations of the wheel and the y-axis is the distance of the wheel from

the center of the disk.

The Riemann sum being represented in a mechanical form provides a physical representation of

integration, where the rotations of the rod that carries the wheel on top of the disk is the value of

the integral. Just as a graph has positive and negative values this is represented on the DA when

the wheel passes through the center of the disk (the zero location) [4]. This is because the motion

of the wheel reverses directions, o↵ering one direction to represent positive values and the other

negative values.

In general, if the location of the wheel on the disk of a given integrator defines the nth derivative

of a desired function, the turns of the wheel moving on the disk represents the (n� 1)st derivative

of a selected function [4]. Once the movement passes through n integrators the result is the desired

function.
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CHAPTER 4

TIME SCALES CALCULUS

In this chapter, we will provide an introduction to time scales calculus. This will include the

definitions of basic terms and specific properties needed to work with second order linear dynamic

equations. Time scales calculus was initiated in 1988 by Stefan Hilger. It bridges the gap between

continuous and discrete analysis and expands on both theories [3]. The following introductory

material can be found in [3] where complete proofs are provided.

4.1 Basic Terms

A time scale, denoted by T, is an arbitrary nonempty closed subset of the real numbers, R. For

example, the real numbers, R, the integers, Z, the natural numbers, N and the nonnegative integers

N0 are all time scales. However, the rational numbers, Q, complex numbers, C, and the open interval

(7, 11) are not time scales.

We are concerned with the classification of points in a time scale. One main operation is moving

forward or backwards on a time scale. Specifically, we are often concerned with moving to the next

point or previous point in the set when possible. Let us start by defining the forward and backward

jump operators.

Definition 2 ([3]). 1. For t 2 T we define the forward jump operator � : T! T by

�(t) := inf{s 2 T : s > t}.

2. For t 2 T we define the backward jump operator ⇢ : T! T by

⇢(t) := sup{s 2 T : s < t}.

The forward jump operator gives you the next point in the time scale when there is a gap.

Similarly, the backward jump operator provides you the previous point in the time scale at a point

after a gap.

11



We use jump operators to classify points in the time scale. We define t as right-scattered, if

�(t) > t. This means that such points have a measurable gap between them and the next point

in the time scale. Similarly, we define t as left-scattered, if ⇢(t) < t. These particular points have

a measurable gap between them and the previous point in the time scale. Points that are both

left and right scattered are called isolated. In contrast, if a point t is arbitrarily close to the next

point in T this implies that �(t) = t. In this case, t is called right-dense. Likewise, if a point t is

arbitrarily close to the previous point in T this implies that ⇢(t) = t. Here t is called left-dense.

Points that are right-dense and left-dense at the same time are called dense. We also will need to

know the distance between points, calculated using the graininess function.

Definition 3 ([3]). We define the change in position between consecutive points as µ(t) := �(t)� t

and we call µ(t) the graininess function.

Note that µ(t) will always be an element of the interval [0,1) and this function provides the

distance from a point t to �(t).

We now define the set Tk, which will be important in later sections dealing with di↵erentiation

and integration.

Definition 4 ([3]). If T has a left-scattered maximum m, then Tk = T �m. Otherwise, Tk = T.

So,

Tk :=

8
>><

>>:

T� (⇢(supT), supT] if supT <1

T if supT =1.

Now, let’s us examine a couple of examples to better understand the operators, �(t) and ⇢(t).

Also, we will determine the graininess, µ(t) for the given time scales.

Example 1. Let us consider the three examples.

1. If T = R, then we have for any t 2 R

�(t) = inf{s 2 R : s > t} = inf(t,1) = t

12



and similarly ⇢(t) = t. Hence every point t 2 R is dense. The graininess function µ is

µ(t) = �(t)� t = 0 for all t 2 T.

2. If T = Z, then we have for any t 2 Z

�(t) = inf{s 2 Z : s > t} = inf(t+ 1, t+ 2, t+ 3, . . . ) = t+ 1

and similarly ⇢(t) = t� 1. Hence every point t 2 Z is isolated. The graininess function µ in

this case is

µ(t) = (t� 1)� t = 1 for all t 2 T.

3. Refer to Figure 4.1. If T = [0, 1] [ [2, 3], then for t 2 (0, 1) [ (2, 3)

�(t) = inf{s 2 T : s > t} = t

and similarly ⇢(t) = t. The graininess function µ is

µ(t) = 0 for all t 2 (0, 1) [ (2, 3).

Hence every point t 2 (0, 1) [ (2, 3) is dense. If t = 0, then

�(0) = inf{s 2 T : s > 0} = 0

and

⇢(0) = sup{s 2 T : s < 0} = 0.

The graininess function µ in this case yields

µ(0) = �(0)� 0 = 0� 0 = 0.
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Hence t = 0 is dense. If t = 1, then

�(1) = inf{s 2 T : s > 1} = 2

and

⇢(1) = sup{s 2 T : s < 1} = 1.

The graininess function µ at t = 1 o↵ers

µ(1) = �(1)� 1 = 2� 1 = 1.

Hence t = 1 is left-dense and right-scattered. If t = 2, then

�(2) = inf{s 2 T : s > 2} = 2

and

⇢(2) = sup{s 2 T : s < 2} = 1.

The graininess function µ at t = 2 o↵ers

µ(2) = �(2)� 2 = 2� 2 = 0.

Hence t = 2 is left-scattered and right-dense. If t = 3, then

�(3) = inf{s 2 T : s > 3} = 3

and

⇢(3) = sup{s 2 T : s < 3} = 3.

The graininess function µ at t = 3 o↵ers

µ(3) = �(3)� 3 = 3� 3 = 0.
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Hence t = 3 is dense.

Figure 4.1: Visual representation of Example 1 Part 3, T = [0, 1] [ [2, 3]

The above example shows how the operators and graininess function perform on various time

scales. Using our knowledge of the above terms, in the next section we will examine how di↵eren-

tiation works in Time Scale Calculus.

4.2 Di↵erentiation

In this section, we will provide definitions, theorems, and examples to assist us in gaining an

understanding of di↵erentiation in Time Scale Calculus. This will allow us to see the similarities

and di↵erences between this and traditional calculus definitions and theorems on di↵erentiation.

Let us start with the definition of the derivative of a function from Time Scale Calculus. We

call this derivative the delta derivative.

Definition 5 ([3]). Assume f : T ! R is a function and let t 2 Tk. Then we define f�(t), the

delta derivative of f at t, to be the number (provided it exists) with the property that given any

✏ > 0, there exist a neighborhood U of t (that is, U = (t� �, t+ �) \ T for some � > 0), such that

|[f(�(t))� f(s)]� f�(t)[�(t)� s]|  ✏|�(t)� s| for all s 2 U .

Note that throughout this work when we refer to derivative we mean the delta derivative and

will use the symbol f�(t) to denote the derivative of f at t.

The following theorem provides a useful characterizations of delta di↵erentiable functions.

Theorem 2 ([3]). Let f : T! R be a function and t 2 Tk. Then we have the following:

1. If f is di↵erentiable at t, then f is continuous at t.
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2. If f is continuous at t and t is right-scattered, then f is di↵erentiable at t with

f�(t) =
f(�(t))� f(t)

µ(t)
.

3. If t is right-dense, then f is di↵erentiable at t i↵ the limit

lim
s!t

f(t)� f(s)

t� s

exists as a finite number. In this case

f�(t) = lim
s!t

f(t)� f(s)

t� s
.

4. If f is di↵erentiable at t, then

f(�(t)) = f(t) + µ(t)f�(t).

We refer to this formula as the “simple useful formula.”

Now let us consider some examples of how this di↵erentiation works on a time scale.

Example 3. Let f : T! R.

1. If T = R, then f�(t) = f 0(t) and if T = Z, then f� = �f(t) ⌘ f(t+ 1)� f(t).

2. Refer to our previous Example (1) part 3, T = [0, 1] [ [2, 3]. We desire to compute the

derivative at points 0.5, 1, 2, and 2.5. By using the definition of derivative we have:

(a) At dense point t = 0.5

f�(0.5) = lim
s!0.5

f(0.5)� f(s)

0.5� s
.

(b) The point t = 1 is right-scattered, so

f�(1) =
f(�(1))� f(1)

µ(1)
=

f(2)� f(1)

1
= f(2)� f(1).
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(c) The point t = 2 is right-dense, so

f�(2) = lim
s!2

f(2)� f(s)

2� s
.

(d) The point t = 2.5 is dense, so

f�(2.5) = lim
s!2.5

f(2.5)� f(s)

2.5� s
.

These examples show us how in R we can use our traditional understanding of the derivative

from calculus, and with other time scales, we must use the theorems involving the delta derivative.

The following theorem shows the linearity of the derivative, as well as the product and quotient

rules for delta di↵erentiation.

Theorem 4 ([3]). Assume f, g : T! R is di↵erentiable at t 2 T k. Then:

1. The sum f + g : T! R is di↵erentiable at t with

(f + g)�(t) = f�(t) + g�(t).

2. For any constant ↵,↵f : T! R is di↵erentiable at t with

(↵f)�(t) = ↵f�(t).

3. The product fg : T! R is di↵erentiable at t with

(fg)�(t) = f�(t)g(t) + f(�(t))g�(t) = f(t)g�(t) + f�(t)g(�(t))

4. If f(t)f(�(t)) 6= 0, then 1
f is di↵erentiable at t with

✓
1

f

◆�

(t) = � f�(t)

f(t)f(�(t))
.
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5. If g(t)g(�(t)) 6= 0, then f
g is di↵erentiable at t and

✓
f

g

◆�

(t) =
f�(t)g(t)� f(t)g�(t)

g(t)g(�(t))
.

Note that we use the notation f� and f � � interchangeably in the next sections. Thus, if

f� : T! R is a function, it is defined by

f�(t) = f(�(t)), for all t 2 T.

4.3 Integration

To be able to describe classes of functions that are “integrable”, we introduce the following two

concepts. We must start with the definitions of regulated and right-dense continuous functions

before we define the delta antiderivative.

Definition 6 ([3]). A function f : T ! R is called regulated provided its right-sided limits exist

(finite) at all right-dense points in T and its left-sided limits exist (finite) at all left-dense points in

T.

Definition 7 ([3]). A function f : T ! R is called rd-continuous provided it is continuous at

each right-dense point in T and its left-side limits exist (finite) at all left-dense points in T. The

set of rd-continuous functions f : T! R is denoted by

Crd ⌘ Crd(T) ⌘ Crd(T,R).

This next theorem provides us with results that focus on regulated, right-dense continuous, and

continuous functions.

Theorem 5 ([3]). Assume f : T! R.

1. If f is continuous, then f is rd-continuous.

2. If f is rd-continuous, then f is regulated.

3. The jump operator � is rd-continuous.
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4. If f is regulated or rd-continuous, then so is f�.

5. Assume f is continuous. If g : T ! R is regulated or rd-continuous, then f � g has that

property too.

Now with the knowledge of properties of regulated and right-dense continuous functions we need

the concept of a pre-di↵erentiable function and the existence of pre-antiderivatives before defining

our delta antiderivative.

Theorem 6 ([3]). Let f be regulated. Then there exists a function F which is pre-di↵erentiable with

region of di↵erentiation D [[3]] such that

F�(t) = f(t) holds for all t 2 D.

Definition 8 ([3]). Assume f : T! R is a regulated function. Any function F as in Theorem 6 is

called a pre-antiderivative of f . We define the indefinite integral of a regulated function f by

Z
f(t)�t = F (t) + C,

where C is an arbitrary constant and F is a pre-antiderivative of f . We define the Cauchy integral

by Z s

r
f(t)�t = F (s)� F (r) for all r, s 2 T.

A function F : T! R is called an antiderivative of f : T! R provided

F�(t) = f(t) holds for all t 2 Tk.

4.4 Hilger’s Complex Plane

Hilger’s complex plane is necessary for calculating the generalization of the exponential function

on a time scale. In Hilger’s complex plane, the Hilger imaginary circle is tangent to the imaginary

axis and the diameter of the circle is the reciprocal of the graininess, h.

Definition 9 ([3]). For h > 0 we define the Hilger complex numbers, the Hilger real axis,
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the Hilger alternating axis, and the Hilger imaginary circle as

Ch := {z 2 C : z 6= �1

h
}

Rh := {z 2 Ch : z 2 R and z > �1

h
}

Ah := {z 2 Ch : z 2 R and z < �1

h
}

Ih := {z 2 Ch : |z + 1

h
| = 1

h
}

respectively. Note that for h = 0, let C0 := C,R0 := R, I0 := iR, and A0 := ;. Refer to Figure 4.2

to see a visualization of Hilger’s complex plane.

Now, we need the definition of the Hilger real part and imaginary part of a complex number z.

Definition 10 ([3]). Let h > 0 and z 2 Ch. We define the Hilger real part of z by

Reh(z) :=
|zh+ 1|� 1

h

and the Hilger imaginary part of z by

Imh(z) :=
arg(zh+ 1)

h

where �⇡ < arg(z)  ⇡.

In Figure 4.2, we can see how Hilger’s complex plane is visualized.

Note that as the graininess, h, decreases then � 1
h becomes large causing the Hilger circle to

become large as well.

Definition 11 ([3]). The Hilger purely imaginary number ı̊! is stated by

ı̊! =
ei!h � 1

h

where �⇡
h < !  ⇡

h .
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Figure 4.2: Hilger’s Complex Plane

The Hilger imaginary circle has a radius of 1
h and is positioned 1

h units to the left of the origin.

Now we need to define circle plus and circle minus, which are both defined on Ch. Also, we

must define the cylinder transformation and the inverse cylinder transformation in order to define

and understand our exponential function on a time scale.

Definition 12 ([3]). The formula for circle plus addition � on Ch is

z � w := z + w + zwh.

Note that (Ch,�) forms an Abelian group.

Additionally, we use the definition of circle plus extensively when dealing with the exponential

function on time scales.
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Theorem 7 ([3]). For z 2 Ch we have

z = Rehz � iImhz.

As one would guess, we also have a definition for circle minus, which uses the concept of circle

plus.

Definition 13 ([3]). The circle minus subtraction  on Ch has the form

z  w := z � ( w)

where

 w :=
�w

1 + wh

Note that if z, w 2 Ch with h � 0 then the following properties hold

1. z  z = 0

2. z  w = z�w
1+wh

3. z  w = z � w if h = 0.

Next we provide the important definition of the cylinder transformation that is used in our

construction of the exponential function.

Definition 14 ([3]). For h > 0, we define the cylinder transformation ⇠h : Ch ! Zh by

⇠h(z) =
1

h
Log(1 + zh)

where Log is the principle logarithm function. For h = 0, we define ⇠0(z) = z for all z 2 C. Note

that Zh is the strip defined by Zh := {z 2 C : �⇡
h < Im(z)  ⇡

h} for all h > 0.

Definition 15 ([3]). The inverse transformation of the cylinder transformation ⇠h when h > 0

is given by

⇠�1h (z) =
1

h
(ezh � 1)
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for z 2 Zh.

Note that we call ⇠h, the cylinder transformation, since when h > 0 we can view Zh as a cylinder

if we join the boundary lines Im(z) = �⇡
h and Im(z) = ⇡

h of Zh together to form a cylinder.

4.5 Exponential Function

Now using our knowledge of the cylinder transformation we can generalize the exponential function

for a time scale. To arrive at this result we need a few additional definitions.

Definition 16 ([3]). We say that a function p : T! R is regressive provided

1 + µ(t)p(t) 6= 0 for all t 2 TK

holds. The set of all regressive and rd-continuous functions f : T ! R will be denoted by R =

R(T) = R(T,R).

We need the conditions of regressive and rd-continuous in order to evaluate the second order

linear dynamic equation. Now, we will define the general exponential function on a time scale.

Definition 17 ([3]). If p 2 R, then we define the exponential function by

ep(t, s) = exp

✓Z t

s
⇠µ(⌧)(p(⌧))

◆
�⌧ (4.1)

Note that

⇠µ(⌧) =
1

µ(⌧)
Log(1 + zµ(⌧)) (4.2)

is the cylinder transformation with respect to µ(⌧) and Log is the principle logarithm.

One property of the exponential function is that if p 2 R, then the semigroup property

ep(t, r)ep(r, s) = ep(t, s)

for all r, s, t 2 T holds.

The following theorem provides us with some additional properties of the exponential function.
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Theorem 8 ([3]). If p, q 2 R, then

1. e0(t, s) ⌘ 1 and ep(t, t) ⌘ 1;

2. ep(�(t), s) = (1 + µ(t)p(t))ep(t, s);

3. 1
ep(t,s)

= e p(t, s);

4. ep(t, s) =
1

ep(s,t)
= e p(s, t);

5. ep(t, s)ep(s, r) = ep(t, r);

6. ep(t, s)eq(t, s) = ep�q(t, s);

7. ep(t,s)
eq(t,s)

= ep q(t, s);

8.
⇣

1
ep(·,s)

⌘�
= � p(t)

e�p (·,s)

9. e�p (t, t0) = p(t) · ep(t, t0).

Now, we have arrived at the understanding of the basic terms of time scales calculus in order

to be able to analytically and graphically evaluate the second order linear dynamic equation!

4.6 Second Order Linear Dynamic Equations

In this section, we will define the second order linear dynamic equation. We will o↵er both the

general and particular solutions to this dynamic equation along with the necessary definitions and

theorems leading up to these results. Note that the second order linear dynamic equation has the

form

y�� + p(t)y� + q(t)y = f(t) (4.3)

where p, q, f 2 Crd. Let the linear operator L2 : C2
rd ! Crd be defined

L2y(t) = y�� + p(t)y� + q(t)y

for t 2 (TK)K .

Within the proofs of existence and uniqueness of solutions we need the regressive and rd-

continuous conditions.
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Definition 18 ([3]). Equation 4.3 is regressive given p, q, f 2 Crd such that the regressive condi-

tion is

1� µ(t)p(t) + µ2(t)q(t) 6= 0 for all t 2 TK2
. (4.4)

Before we can discuss conditions that insure uniqueness and existence of solutions of the second

order linear dynamic equation we need the concept of the Wronskian. The Wronskian is used in

the proof of the existence of solutions.

Definition 19 ([3]). Let y1 and y2 be two di↵erentiable functions. We define the Wronskian

W = W (y1, y2) by

W (t) = det

0

B@
y1(t) y2(t)

y�1 (t) y�2 (t)

1

CA .

Note that when W (y1, y2) 6= 0 for all t 2 TK , then the solutions y1 and y2 form a fundamental

system for the homogeneous equation L2y = 0.

The next theorem provides us with conditions that insure the existence and uniqueness to

solutions.

Theorem 9 ([3]). Suppose the dynamic equation 4.3 is regressive. If t0 2 TK , then the initial

value problem

L2y = f(t), y(t0) = y0, y�(t0) = y�0 ,

where y0 and y�0 are given constants, has an unique solution, and this solution is defined on the

whole time scale T.

One of our main goals is to use the following two theorems to be able to evaluate the analytical

behavior of the second order linear homogeneous dynamic equation. Also, note that when we state

general solutions we mean every function of this form is a solution and every solution is in this

form.

Theorem 10 ([3]). If the pair of functions y1, y2 forms a fundamental system of solutions for

L2y = 0, then y(t) = ↵y1(t) + �y2(t), where ↵ and � are constants, is a general solution of

L2y = 0. In particular, the solution of the initial value problem (L2y = 0, y(t0) = y0, y�(t0) = y�0 )
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is given by

y(t) =
y�2 (t0)y0 � y2(t0)y�0

W (y1, y2)(t0)
y1(t) +

y1(t0)y�0 � y�1 (t0)y0
W (y1, y2)(t0)

y2(t)

More specifically, our focus is the second order linear dynamic homogeneous equation with

constant coe�cients

y�� + ↵y� + �y = 0 (4.5)

where ↵,� 2 R on a time scale T.

Similar to our traditional understanding of the second order di↵erential equation we need the

characteristic equation in order to obtain a solution. Note that if y(t) = e�(t, t0), then

y��(t) + ↵y�(t) + �y(t) = �2e�(t, t0) + ↵�e�(t, t0) + �e�(t, t0)

= (�2 + ↵�+ �)e�(t, t0).

The above uses the fact that e�� (t, t0) = �(t) · e�(t, t0), which is shown in the proof of Theorem 2.33

in [3]. Thus, the characteristic equation is

�2 + ↵�+ � = 0 (4.6)

and the solutions �1 and �2 of equation (4.6) are

�1 =
�↵�

p
↵2 � 4�

2
and �2 =

�↵+
p
↵2 � 4�

2
(4.7)

by using the quadratic formula.

The following theorem provides us with the general solution of the homogeneous linear dynamic

equation and the solution of the initial value problem.

Theorem 11 ([3]). Suppose ↵2 � 4� 6= 0. If µ� � ↵ 2 R, then a fundamental system of equations

(4.5) is given by

e�1(t, t0) and e�2(t, t0)
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where t0 2 TK and �1 and �2 are given in (4.7). The solution of the initial value problem

y�� + ↵y� + �y = 0, y(t0) = y0, y
�(t0) = y�0 (4.8)

is given by

y(t) = y0
e�1(t, t0) + e�2(t, t0)

2
+

↵y0 + 2y�0p
↵2 � 4�

e�2(t, t0)� e�1(t, t0)

2
.

Now we have three theorems dealing with the solutions of the second order linear dynamic

equation. Just as in traditional di↵erential equations we will either have distinct, repeated or

complex roots. Let us first consider the case when ↵2 � 4� < 0. However, before we do this we

need definitions of sinp and cosp in Time Scale Calculus .

Definition 20 ([3]). If p 2 Crd and µp2 2 R, then we define the trigonometric functions cosp and

sinp by

cosp =
eip + e�ip

2
and sinp =

eip � e�ip
2i

.

We begin with the case when ↵2 � 4� < 0.

Theorem 12 ([3]). Suppose ↵2 � 4� < 0. Define

p =
�↵
2

and q =

p
4� � ↵2

2

If p and µ� � ↵ are regressive, the a fundamental system of (4.5) is given by

cos q
1+µp

(t, t0)ep(t, t0) and sin q
1+µp

(t, t0)ep(t, t0)

where t0 2 T, and the Wronskian of these two solutions is q eµ��↵(t, t0). The solution of the initial

value problem (4.8) is given by

y(t) =


y0 cos q

1+µp
(t, t0) +

y�0 � py0
q

sin q
1+µp

(t, t0)

�
ep(t, t0).

Next, let us consider the case where ↵2 � 4� = 0.

Theorem 13 ([3]). Suppose ↵2 � 4� = 0. Define p = �↵
2 . If p 2 R, then a fundamental system of
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(4.5) is given by

ep(t, t0) and ep(t, t0)

Z t

t0

1

1 + pµ(⌧)
�⌧

where t0 2 T, and the Wronskian of these two solutions is eµ↵2

4

(t, t0). The solution of the initial

value problem (4.8) is given by

y(t) = ep(t, t0)


y0 + (y�0 � py0)

Z t

t0

�⌧

1 + pµ(⌧)

�
.

Finally, let us consider the case when ↵2 � 4� > 0.

Theorem 14 ([3]). Suppose ↵2 � 4� > 0. Define

p =
�↵
2

and q =

p
↵2 � 4�

2

If p and µ� � ↵ are regressive, the a fundamental system of (4.5) is given by

cosh q
1+µp

(t, t0)ep(t, t0) and sinh q
1+µp

(t, t0)ep(t, t0)

where t0 2 T, and the Wronskian of these two solutions is qeµ��↵(t, t0). The solution of the initial

value problem (4.8) is given by

y(t) =


y0 cosh q

1+µp
(t, t0) +

y�0 � py0
q

sinh q
1+µp

(t, t0)

�
ep(t, t0).

The hyperbolic functions used in the above theorem are defined as follows and are very similar

to cosp and sinp.

Definition 21 ([3]). If p 2 Crd and �µp2 2 R, the we define the hyperbolic functions coshp

and sinhp by

coshp =
ep + e�p

2
and sinhp =

ep � e�p
2

.
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CHAPTER 5

A SECOND ORDER LINEAR HOMOGENEOUS DYNAMIC EQUATION:

ANALYTICAL SOLUTIONS

In this chapter, we will discuss the solutions of a particular second order linear dynamic equation.

We will provide analytical solutions on varying time scales. This section mainly uses theorems and

definitions from Chapter 4, such as Theorem 11 and Theorem 12, along with Definition 17 and

Definition 20.

5.1 Our Initial Value Problem

This work’s focus is a study of simple harmonic motion using dynamic equations on varying time

scales. Recall, that in di↵erential equations (when T = R) this problems looks like y00+ y = 0 with

initial conditions y00(0) = 0 and y0(0) = 1. We know that this initial value problem has the general

solution y(t) = c1 cos(t) + c2 sin(t) where c1 and c2 are constants. Thus, the particular solution to

our example is y(t) = sin(t). Also, note that the roots of the associated characteristic equation are

complex.

Our initial value problem, IVP,

y�� = �y y��(0) = 0, y�(0) = 1

has a unique solution Theorem 9. The time scale that we will use starts with one large gap

and we will slowly close the gap, thus, showing how the solution converges to the solution of the

original time scale on the limiting time scale. Our time scale is a union of two closed intervals,

[0,⇡] [ [2⇡, 3⇡]. We will slowly decrease the gap between the intervals and see how the solution

tends toward the solution of our second order dynamic equation on T = [0, 3⇡]. Be sure to note that

for this particular IVP has only one set of initial conditions are necessary. Time Scales Calculus

allows us to have disjoint sets in our domain, but requires only the one set of initial conditions.

This is because when we have a gap the value of the solution after the gap comes from information

that precedes the gap.
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Now, lets look at [0,⇡] [ [2⇡, 3⇡] analytically and note that it has an unique solution. Using

theorems and definitions from Chapter 4 we know the dynamic equation

y�� + ↵y� + �y = 0 for y(t0) = y0, y
�(t0) = y�0

has the general solution

y(t) =


y0 cos q

1+µp
(t, t0) +

y�0 � py0
q

sin q
1+µp

(t, t0)

�
ep(t, t0).

For this particular case we have ↵2 � 4� = 02 � 4(1) = �4 < 0. Since ↵ = 0, � = 1 then

p = �↵
2 = 0 and q =

p
4��↵2

2 = 1. Furthermore the characteristic equation of the dynamic

equation y�� = �y is �2 + 1 = 0. So, its roots are, �1 = i and �2 = �i.

Now, we will look at t 2 [0,⇡], t = 2⇡, and t 2 [2⇡, 3⇡]. We will be using both Hilger’s

sine, cosine, and exponential functions as well as sine, cosine, and exponential functions from our

traditional calculus (when T = R). Also, we will need to use Euler’s Formula to evaluate ei⇡

and eit. Note that ep(t, t0) is the Hilger exponential function and has the property e0(t, t0) = 1.

Also, the Hilger cosine and sine functions are defined as follows: cosp = eip(t,t0)+e�ip(t,t0)
2 and

sinp =
eip(t,t0)�e�ip(t,t0)

2i . The analytical solution follows.
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• For t 2 [0,⇡], since y0 = 0, y�0 = 1 and µ(t) = 0 we have

y(t) =


y0 cos q

1+µp
(t, t0) +

y�0 � py0
q

sin q
1+µp

(t, t0)

�
ep(t, t0)

=


(0) cos 1

1+0
(t, 0) +

1 + 0

1
sin 1

1+0
(t, 0)

�
e0(t, 0)

= sin1(t, 0)

=
ei(t, 0)� e�i(t, 0)

2i

=
exp(

R t
0 i�⌧)� exp(

R t
0 (�i)�⌧)

2i

=
exp(it)� exp(�it)

2i

=
cos(t) + i sin(t)� (cos(�t) + i sin(�t))

2i

=
2i sin(t)

2i

= sin(t)

• For t = 2⇡, since µ(⇡) = ⇡ we have two methods to determine the solution. We can use the

simple useful formula such that

y(�(t)) = y(t) + µ(t)y�(t)

y(�(⇡)) = y(⇡) + µ(⇡)y�(⇡)

y(2⇡) = 0 + ⇡(�1)

= �⇡.
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Or, we can use the general solution,

y(2⇡) =


y0 cos q

1+µp
(t, t0) +

y�0 � py0
q

sin q
1+µp

(t, t0)

�
ep(t, t0)

=


(0) cos 1

1+(⇡)0
(2⇡, 0) +

1 + 0

1
sin 1

1+(⇡)0
(2⇡, 0)

�
e0(2⇡, 0)

= sin1(2⇡, 0)

=
ei(2⇡, 0)� e�i(2⇡, 0)

2i

=
exp

⇣R ⇡
0 ⇠0(i)�⌧ +

R 2⇡
⇡ ⇠⇡(i)�⌧

⌘

2i

�
exp

⇣R ⇡
0 ⇠0(�i)�⌧ +

R 2⇡
⇡ ⇠⇡(�i)�⌧

⌘

2i

=
exp

⇣R ⇡
0 (i)�⌧ +

R 2⇡
⇡

1
⇡Log(1 + i⇡)�⌧

⌘

2i

�
exp

⇣R ⇡
0 (�i)�⌧ +

R 2⇡
⇡

1
⇡Log(1� i⇡)�⌧

⌘

2i

=
ei⇡eLog(1+i⇡) � e�i⇡eLog(1�i⇡)

2i

=
(1 + i⇡)(�1)� (�1)(1� i⇡)

2i

= �⇡
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• For t 2 (2⇡, 3⇡], since µ(t) = 0 we have

y(t) =


y0 cos q

1+µp
(t, t0) +

y�0 � py0
q

sin q
1+µp

(t, t0)

�
ep(t, t0)

=


(0) cos 1

1+0
(t, 0) +

1 + 0

1
sin 1

1+0
(t, 0)

�
e0(t, 0)

= [sin1(t, 0)] (1)

=
ei(t, 0)� e�i(t, 0)

2i

=
exp

⇣R ⇡
0 ⇠0(i)�⌧ +

R 2⇡
⇡ ⇠⇡(i)�⌧ +

R t
2⇡ ⇠0(i)�⌧

⌘

2i

�
exp

⇣R ⇡
0 ⇠0(�i)�⌧ +

R 2⇡
⇡ ⇠⇡(�i)�⌧

R t
2⇡ ⇠0(�i)�⌧

⌘

2i

=
exp((i)[⇡ � 0] + 1

⇡Log(1 + i⇡)[2⇡ � ⇡] + i[t� 2⇡])

2i

�
exp((�i)[⇡ � 0] + 1

⇡Log(1� i⇡)[2⇡ � ⇡] + (�i)[t� 2⇡])

2i

=
ei⇡(1 + i⇡)eite�2i⇡ � e�i⇡(1� i⇡)e�ite2i⇡

2i

=
(�1� i⇡)eit + (1� i⇡)e�it

2i

=
�2i(sin(t) + ⇡ cos(t))

2i

= �(sin(t) + ⇡ cos(t)).

Thus, the particular solution for T = [0,⇡] [ [2⇡, 3⇡] is

y(t) =

8
>>>>>><

>>>>>>:

sin(t), for t 2 [0,⇡]

�⇡, for t = 2⇡

�(sin(t) + ⇡ cos(t)), for t 2 (2⇡, 3⇡]

.

5.2 More Insight Into Di↵erent Time Scales

The above example uses the time scale T = [0,⇡] [ [2⇡, 3⇡], so y��(t), at t = ⇡, has value 0.

This reduces easily and hides some of the analytical structure of the solution, so we decided to

try di↵erent time scales to seek more insight. Note that to get y�(�(t)) we use the simple useful
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formula, y(�(t)) = y(t) + µ(t)y�(t). Now for y�(�(t)) the simple useful formula is y�(�(t)) =

y�(t) + µ(t)y��(t). Here we have y��(⇡) = 0, so the simple useful formula becomes y�(�(t)) =

y�(t) = 0. The following example does not have this simplification.

We decided to look at T = [0, 3⇡/4] [ [2⇡, 3⇡] with the same particular dynamic equation,

y�� = �y, y��(0) = 0, y�(0) = 1. This has the piecewise solution

y(t) =

8
>>>>>>>>>><

>>>>>>>>>>:

sin(t), for t 2 [0, 3⇡/4]

(�5⇡+4)
p
2

8 , for t = 2⇡

�(
p
2

2
)(
5⇡

4
) cos(t� 2⇡) + (

p
2

2
) cos(t� 2⇡)

�(
p
2

2
) sin(t� 2⇡)� (

p
2

2
)(
5⇡

4
) sin(t� 2⇡), for t 2 (2⇡, 3⇡]

.

Then we looked at the piecewise solution for this same particular IVP if we make the gap smaller

or make µ(t) smaller.

We decided to look at T = [0, 3⇡/4] [ [3⇡/2, 3⇡]. This has the piecewise solution

y(t) =

8
>>>>>>>>>><

>>>>>>>>>>:

sin(t), for t 2 [0, 3⇡/4]

(�3⇡+4)
p
2

8 , for t = 3⇡/2

�(
p
2

2
)(
3⇡

4
) cos(t� 3⇡

2 ) + (

p
2

2
) cos(t� 3⇡

2 )

�(
p
2

2
) sin(t� 3⇡

2 )� (

p
2

2
)(
3⇡

4
) sin(t� 3⇡

2 ), for t 2 (3⇡/2, 3⇡]

.

By comparing these two time scales with the same IVP we can see that we have the same form

of the piecewise solution. In the first interval the solution is sin(t) and when t = 3⇡
2 or t = 2⇡ the

solution value is a negative number. The value at t = 3⇡
2 is (�3⇡+4)

p
2

8 and t = 2⇡ is (�5⇡+4)
p
2

8 . For

the second interval we have the form

(constant)µ(t)[� cos(t� shift)� sin(t� shift)] + (constant)[cos(t� shift)� sin(t� shift)].

Thus, as we close the gap the only values that are changing are the constant and the shift, where

the shift takes the value of the start of the next interval.
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5.3 The General Case

Now, let’s consider the general case of y�� = �y with initial conditions y(t0) = y0, y�(t0) = y�0

with T = [t0, t1][ [t2, t3]. From Theorem 12 with ↵ = 0, � = 1, p = 0, and q = 1 our solution takes

the form:

• For t 2 [t0, t1] with µ(t) = 0,

y(t) =


y0 cos q

1+µp
(t, t0) +

y�0 � p · y0
q

sin q
1+µp

(t, t0)

�
ep(t, t0)

=


y0 cos 1

1+0
(t, t0) +

y�0 + 0 · y0
1

sin 1
1+0

(t, t0)

�
e0(t, t0)

=
⇥
y0 cos1(t, t0) + y�0 sin1(t, t0)

⇤
(1)

= y0
ei + e�i

2
+ y�0

ei � e�i
2i

= y0
exp(

R t
t0
i�⌧) + exp(

R t
t0
�i�⌧)

2
+ y�0

exp(
R t
t0
i�⌧)� exp(

R t
t0
�i�⌧)

2i

= y0
(eite�it0 + eit0e�it)

2
+ y�0

(eite�it0 � eit0e�it)

2i

= y0

✓
(cos(t� t0) + i sin(t� t0)) + (cos(�(t� t0)) + i sin(�(t� t0))

2

◆

+y�0

✓
(cos(t� t0) + i sin(t� t0))� (cos(�(t� t0)) + i sin(�(t� t0))

2i

◆

= y0 cos(t� t0) + y�0 sin(t� t0)

• For t = t2 with µ(t1) = t2 � t1,

y(t) =


y0 cos q

1+µp
(t2, t0) +

y�0 � p · y0
q

sin q
1+µp

(t2, t0)

�
ep(t2, t0)

=


y0 cos 1

1+0
(t2, t0) +

y�0 + 0 · y0
1

sin 1
1+0

(t2, t0)

�
e0(t2, t0)

=
⇥
y0 cos1(t2, t0) + y�0 sin1(t2, t0)

⇤
(1)

= y0
exp(

R t2
t0

⇠µ(⌧)p(⌧)�⌧) + exp(
R t2
t0

⇠µ(⌧)p(⌧)�⌧)

2

+y�0
exp(

R t2
t0

⇠µ(⌧)p(⌧)�⌧)� exp(
R t2
t0

⇠µ(⌧)p(⌧)�⌧)

2i

= y0[cos(t1 � t0)� sin(t1 � t0)µ(t1)] + y�0 [sin(t1 � t0) + cos(t1 � t0)µ(t1)]
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• For t 2 (t2, t3] with µ(t) = 0,

y(t) =


y0 cos q

1+µp
(t, t0) +

y�0 � p · y0
q

sin q
1+µp

(t, t0)

�
ep(t, t0)

=


y0 cos 1

1+0
(t, t0) +

y�0 + 0 · y0
1

sin 1
1+0

(t, t0)

�
e0(t, t0)

=
⇥
y0 cos1(t, t0) + y�0 sin1(t, t0)

⇤
(1)

= y0
exp(

R t
t0
⇠µ(⌧)p(⌧)�⌧) + exp(

R t
t0
⇠µ(⌧)p(⌧)�⌧)

2

+y�0
exp(

R t
t0
⇠µ(⌧)p(⌧)�⌧)� exp(

R t
t0
⇠µ(⌧)p(⌧)�⌧)

2i

= y0

"
ei(t1�t0)(1 + iµ(t1))ei(t�t2) + e�i(t1�t0)(1� iµ(t1))e�i(t�t2)

2

#

+y�0

"
ei(t1�t0)(1 + iµ(t1))ei(t�t2) � e�i(t1�t0)(1� iµ(t1))e�i(t�t2)

2i

#

= y0[cos(t1 � t0)[cos(t� t2)� sin(t� t2)µ(t1)]

+ sin(t1 � t0)[� sin(t� t2)� cos(t� t2)µ(t1)]]

+y�0 [cos(t1 � t0)[sin(t� t2) + cos(t� t2)µ(t1)]

+ sin(t1 � t0)[� sin(t� t2)µ(t1) + cos(t� t2)]].

Thus, the general solution for T = [t0, t1] [ [t2, t3] is

y(t) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

y0 cos(t� t0) + y�0 sin(t� t0), for t 2 [t0, t1]

y0[cos(t1 � t0)� sin(t1 � t0)µ(t1)]

+y�0 [sin(t1 � t0) + cos(t1 � t0)µ(t1)], for t = t2

y0[cos(t1 � t0)[cos(t� t2)� sin(t� t2)µ(t1)]

+ sin(t1 � t0)[� sin(t� t2)� cos(t� t2)µ(t1)]]

+y�0 [cos(t1 � t0)[sin(t� t2) + cos(t� t2)µ(t1)]

+ sin(t1 � t0)[� sin(t� t2)µ(t1) + cos(t� t2)]],

for t 2 (t2, t3]

.
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Note that cos(t1 � t0) and sin(t1 � t0) are constant terms since they do not depend on t.

5.4 Sequence of Time Scales

Now, we create a sequence of time scales, Tn. This allows us to analyze what is happening as we

close the gap. Let y�� = � y with initial conditions y��(t0) = y0 and y�(t0) = y�0 where y0,

y�0 are constants. The time scale we are considering is Tn = [m, a] [ [a+ �n, b] where m, a, b are

constants and n 2 N. For all n 2 N, let 0  �n  b� (a+ 1
n). In particular, we will use �n = 1

n and

define tn = a+ 1
n . Recall that the general solution to this dynamic equations has the form

y(t) =


y0 cos q

1+µp
(t, t0) +

y�0 � p · y0
q

sin q
1+µp

(t, t0)

�
ep(t, t0)

=


y0 cos 1

1+0
(t,m) +

y�0 + 0 · y0
1

sin 1
1+0

(t,m)

�
e0(t,m)

Now, we want to analyze the solution on the intervals and at the jump to see the solution’s

behavior. It is important to note that we use the same initial conditions and general solution for

each calculation. Time Scale Calculus provides us with a general solution that requires only one

set of initial conditions.

For n 2 N consider time scale, Tn = [m, a] [ [a+ 1
n , b].

• When t 2 [m, a].

yn(t) =


y0 cos 1

1+0
(t,m) +

y�0 + 0 · y0
1

sin 1
1+0

(t,m)

�
e0(t,m)

=
⇥
y0 cos1(t,m) + y�0 sin1(t,m)

⇤
(1)

= y0
ei(t,m) + e�i(t,m)

2
+ y�0

ei(t,m)� e�i(t,m)

2i

= y0
exp(

R t
m i�⌧) + exp(

R t
m�i�⌧)

2
+ y�0

exp(
R t
m i�⌧)� exp(

R t
m�i�⌧)

2i

= y0
(ei(t�m) + e�i(t�m))

2
+ y�0

(ei(t�m) � e�i(t�m))

2i

= y0

✓
(cos(t�m) + i sin(t�m)) + (cos(t�m)� i sin(t�m)

2

◆

+y�0

✓
(cos(t�m) + i sin(t�m))� (cos(t�m)� i sin(t�m)

2i

◆

= y0 cos(t�m) + y�0 sin(t�m)
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• For tn = a+ 1
n with µ(a) = 1

n .

yn(t) =


y0 cos q

1+µp

✓
a+

1

n
,m

◆
+

y�0 � p · y0
q

sin q
1+µp

✓
a+

1

n
,m

◆�
ep

✓
a+

1

n
,m

◆

=


y0 cos1

✓
a+

1

n
,m

◆
+ y�0 sin1

✓
a+

1

n
,m

◆�
(1)

= y0
ei(a+ 1

n ,m) + e�i(a+ 1
n ,m)

2
+ y�0

ei(a+ 1
n ,m)� e�i(a+ 1

n ,m)

2i

= y0
exp(

R a+ 1
n

m ⇠µ(⌧)i�⌧) + exp(
R a+ 1

n
m ⇠µ(⌧) � i�⌧)

2

+y�0
exp(

R a+ 1
n

m ⇠µ(⌧)i�⌧)� exp(
R a+ 1

n
m ⇠µ(⌧) � i�⌧)

2i

= y0

2

64
exp(

R a
m i�⌧ +

R a+ 1
n

a
1
1
n

Log(1 + i( 1n))�⌧)

2

3

75

+y0

2

64
exp(

R a
m�i�⌧ +

R a+ 1
n

a
1
1
n

Log(1� i( 1n))�⌧)

2

3

75

= y�0

2

64
exp(

R a
m i�⌧ +

R a+ 1
n

a
1
1
n

Log(1 + i( 1n))�⌧)

2i

3

75

�y�0

2

64
exp(

R a
m�i�⌧ +

R a+ 1
n

a
1
1
n

Log(1� i( 1n))�⌧)

2i

3

75

= y0

"
ei(a�m)(1 + i( 1n)) + e�i(a�m)(1� i( 1n))

2

#

+y�0

"
ei(a�m)(1 + i( 1n))� e�i(a�m)(1� i( 1n))

2i

#

= y0


cos(a�m)�

✓
1

n

◆
sin(a�m)

�

+y�0


sin(a�m) +

✓
1

n

◆
cos(a�m)

�

Note that this can also we found by using the simple useful formula, y(�(t)) = y(t)+µ(t)y�(t).
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• For tn 2 (a+ 1
n , b] with µ(tn) = 0.

yn(tn) =


y0 cos q

1+µp
(t,m) +

y�0 � p · y0
q

sin q
1+µp

(t,m)

�
ep(t,m)

=


y0 cos 1

1+0
(t,m) +

y�0 + 0 · y0
1

sin 1
1+0

(t,m)

�
e0(t,m)

=
⇥
y0 cos1(t,m) + y�0 sin1(t,m)

⇤
(1)

= y0
exp(

R t
m ⇠µ(⌧)p(⌧)�⌧) + exp(

R t
m ⇠µ(⌧)p(⌧)�⌧)

2

+y�0
exp(

R t
m ⇠µ(⌧)p(⌧)�⌧)� exp(

R t
m ⇠µ(⌧)p(⌧)�⌧)

2i

= y0

"
ei(a�m)(1 + i( 1n))e

i(t�(a+ 1
n )) + e�i(a�m)(1� i( 1n))e

�i(t�(a+ 1
n ))

2

#

+y�0

"
ei(a�m)(1 + i( 1n))e

i(t�(a+ 1
n )) � e�i(a�m)(1� i( 1n))e

�i(t�(a+ 1
n ))

2i

#

= y0


cos(a�m)


cos

✓
t�

✓
a+

1

n

◆◆
�
✓
1

n

◆
sin

✓
t�

✓
a+

1

n

◆◆��

+y0


sin(a�m)


� sin

✓
t�

✓
a+

1

n

◆◆
�
✓
1

n

◆
cos

✓
t�

✓
a+

1

n

◆◆��

+y�0


cos(a�m)


sin

✓
t�

✓
a+

1

n

◆◆
+

✓
1

n

◆
cos

✓
t�

✓
a+

1

n

◆◆��

+y�0


sin(a�m)


cos

✓
t�

✓
a+

1

n

◆◆
�
✓
1

n

◆
sin

✓
t�

✓
a+

1

n

◆◆��
.

Thus, the solution can be written as a piecewise solution.

yn(t) =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

y0 cos(t�m) + y�0 sin(t�m), for t 2 [m, a]

y0
⇥
cos(a�m)�

�
1
n

�
sin(a�m)

⇤

+y�0
⇥
sin(a�m) +

�
1
n

�
cos(a�m)

⇤
, for tn = a+ 1

n

y0
⇥
cos(a�m)

⇥
cos

�
t�

�
a+ 1

n

��
�
�
1
n

�
sin

�
t�

�
a+ 1

n

��⇤⇤

+y0
⇥
sin(a�m)

⇥
� sin

�
t�

�
a+ 1

n

��
�
�
1
n

�
cos

�
t�

�
a+ 1

n

��⇤⇤

+y�0
⇥
cos(a�m)

⇥
sin

�
t�

�
a+ 1

n

��
+
�
1
n

�
cos

�
t�

�
a+ 1

n

��⇤⇤

+y�0
⇥
sin(a�m)

⇥
cos

�
t�

�
a+ 1

n

��
�
�
1
n

�
sin

�
t�

�
a+ 1

n

��⇤⇤
, for tn 2 (a+ 1

n , b]

.
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Now, let’s look at particular initial conditions and assign m a value for our sequence case. Let

y�� = �y with initial conditions y��(0) = 0 and y�(0) = 1. The time scale we are considering is

Tn = [0, a][ [a+ 1
n , b] where a, b are constants and n 2 N. Let tn ⌘ a+ 1

n . To calculate the solution

for this case is very similar to general case shown above, but with our particular initial conditions.

Thus, the particular solution is

y(t) =

8
>>>>>>>>>><

>>>>>>>>>>:

sin(t), for t 2 [0, a]

sin(a) + ( 1n) cos(a), for tn = a+ 1
n

cos(a) sin(t� (a+ 1
n)) + sin(a) cos(t� (a+ 1

n))

+( 1n) cos(a) cos(t� (a+ 1
n))� ( 1n) sin(a) sin(t� (a+ 1

n)), for tn 2 (a+ 1
n , b]

.

5.5 Convergence of Solutions

We want to talk about the sequence of time scales, Tn, that converges to a time scale T in the

Hausdor↵ metric. Our goal is to show that

lim
n!1

Tn = T,

that is, the distance between Tn and T goes to 0. Let CL(R) be the space of closed nonempty

subsets of R. Define a metric

d : R⇥ R! R, d(x, y) = min{|x� y|, 1}.

Using the metric we define the Hausdor↵ metric, which measures distance between two sets.

Definition 22 ([6]). Let H(T,Tn) represent the Hausdor↵ metric, then

H(T,Tn) = max{sup
s2T

d0(s,Tn), sup
t2Tn

d0(T, t)}

where

d0(s,Tn) = inf
t2Tn

d(s, t)
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and

d0(T, t) = inf
s2T

d(s, t).

Since |s� t| � 0,

inf
t2Tn

d(s, t) = min
t2Tn

d(s, t)

and

inf
s2T

d(s, t) = min
s2Tn

d(s, t).

Also, sups2T d
0(s,Tn) and supt2Tn

d0(T, t) are bounded above. Therefore,

sup
s2T

d0(s,Tn) = max
s2T

d0(s,Tn)

and

sup
t2Tn

d0(T, t) = max
t2Tn

d0(T, t)

and the Hausdor↵ metric reduces to

H(T,Tn) = max{max
s2T

d0(s,Tn),max
t2Tn

d0(T, t)}.

Utilizing the Hausdor↵ metric and the analytical work with y�� = �y we state the following

proposition.

Proposition 1. Let Tn denote the time scale Tn = [m, a] [ [a + 1
n , b] with n 2 N and T = [m, b].

Consider the second order dynamic equation

y�� = �y with y��(0) = 0, y�(0) = 1. (5.1)

Let yn = yn(t) be a solution of (5.1) on Tn. Then, for all t 2 [m, b],

lim
n!1

yn(t) = sin(t�m).

That is, as Tn ! T, yn(t)! y(t) = sin(t�m) for all t 2 [m, b].
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Proof. Let Tn denote the time scale Tn = [m, a] [ [a + 1
n , b] with n 2 N and T = [m, b]. For all

n 2 N the solution of (5.1) on Tn is

yn(t) =

8
>>>>>>>>>><

>>>>>>>>>>:

sin(t�m), for t 2 [m, a]

⇥
sin(a�m) +

�
1
n

�
cos(a�m)

⇤
, for tn = a+ 1

n

⇥
cos(a�m)

⇥
sin

�
t�

�
a+ 1

n

��
+
�
1
n

�
cos

�
t�

�
a+ 1

n

��⇤⇤

+
⇥
sin(a�m)

⇥
cos

�
t�

�
a+ 1

n

��
�
�
1
n

�
sin

�
t�

�
a+ 1

n

��⇤⇤
, for tn 2 (a+ 1

n , b]

.

Using the Hausdor↵ metric, we have H(T,Tn) = max{0, 1
n} = 1

n .

If t 2 [m, a], then

lim
n!1

yn(t) = lim
n!1

sin(t�m).

Now, let’s consider when t 2
✓
a+

1

n
, b

�
. Since Tn ! T, there exists n1 2 N such that t 2 Tn1 .

Since Tn ⇢ Tn+1, t 2 Tn for all n � n1. Then

lim
n!1

yn(t) = lim
n!1

cos(a�m)


sin

✓
t�

✓
a+

1

n

◆◆
+

✓
1

n

◆
cos

✓
t�

✓
a+

1

n

◆◆�

+ lim
n!1

sin(a�m)


cos

✓
t�

✓
a+

1

n

◆◆
�
✓
1

n

◆
sin

✓
t�

✓
a+

1

n

◆◆�

= sin(t�m).

Thus, yn(t)! y(t) = sin(t�m) for all t 2 [m, b].

Note that y(t) = sin(t�m) is the solution of the DE on [m, b]. Therefore, using Hausdor↵ metric

and the dynamic equation (5.1) we were able to prove that, as Tn converges to T, the solution to

(5.1) converges as well, that is yn(t)! y(t) = sin(t�m).

5.6 More Than One Gap

The preceding discussion focuses di↵erent cases involving time scales with one gap. Now, let’s

consider more than one gap. We analyzed a time scale with two gaps for particular initial conditions

and a particular time scale. Let y�� = �y with initial conditions y��(0) = 0 and y�(0) = 1. The

time scale we considered is T = [0, ⇡2 ] [ [⇡.3⇡2 ] [ [2⇡, 5⇡2 ]. To calculate the solution for this case is
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very similar to our first particular case, but with an additional gap. Thus, the particular solution

is

y(t) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

sin(t), for t 2 [0, ⇡2 ]

1, for t = ⇡

cos(t� ⇡)� (⇡2 ) sin(t� ⇡), for t 2 (⇡, 3⇡2 ]

�⇡, for t = 2⇡

� sin(t� 2⇡)� (⇡/2) cos(t� 2⇡) + (⇡2 )
2 sin(t� 2⇡), for t 2 (2⇡, 5⇡2 ]

.

Throughout our journey of analyzing di↵erent time scales, initial conditions, and methods of

solving the dynamic equation y�� = �y, we concluded that the solution is a linear combination of

sine and cosine with a shift depending on the gaps. We also concluded, when analyzing one gap,

that when we close the gap the solution tends towards the solution on the interval without the gap.

We will present some visual representations of this in Chapter 6.
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CHAPTER 6

A SECOND ORDER LINEAR HOMOGENEOUS DYNAMIC EQUATION:

GRAPHICAL SOLUTIONS ON THE DIFFERENTIAL ANALYZER

With our high-tech society there are many ways to solve di↵erential equations graphically, such

as the use of MATLAB. However, in this study we will focus on evaluating the particular IVP

y�� = �y in Marshall’s Di↵erential Analyzer Lab. The graphical representation of solutions

created with the DA inspired our analytical study.

6.1 Graphing Solution of Time Scale with One Gaps

We will start graphing the solution on [0,⇡] [ [3⇡/2, 3⇡] (note that we are using this specific time

scale because it works well when graphing on Art’s output table) and slowly close the gap between

the two closed intervals until we are near a single closed interval. Before we can program Art to

run our IVP, we must determine the set-up for the interconnect. As stated in Chapter 2, we need

to draw a Bush Schematic Diagram (Refer to Figure 6.1).

Now, we can begin evaluating the graphical solution of the IVP,

y�� = �y, y��(0) = 0, y�(0) = 1

on varying time scales using the Di↵erential Analyzer, Art. Note, that as we closed the gap between

⇡ and 2⇡, t 2 [2⇡, 3⇡] our solution converged to the solution y(t) = sin(t) on [0, 3⇡].

There is a specific method for running Art when dealing with a time scale domain of this type.

In particular, we will explain how to run Art for a second order dynamic equation,

y�� = �y, y��(0) = 0, y�(0) = 1

and T = [0,⇡] [ [3⇡/2, 3⇡]. We start by setting our initial conditions for the problem (y��(0) =

0, y�(0) = 1). These are set using counters on Art; a counter set at 250 is equivalent to 1 unit in

the domain of the DE. Note that we only need one set of initial conditions to start the machine.

Then, with the mechanics of Art and time scale calculus, the following steps take us to the next
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Figure 6.1: Bush Schematic Diagram for y�� = �y.

interval. Our interconnect is programed as our Bush schematic diagram directs us (refer to Figure

6.1). Once Art is programmed, the following steps are used to run the machine for a second order

dynamic equation with one gap:

1. Run to the first gap and stop the machine.

2. Disconnect the lead screw to y�, lift pen and run across the time gap (µ(⇡)). Here we know

y and y�� at �(t). We record y�� placement on the disk using the counter and we mark the

spot of y on the output table.

3. Run y�� back to the position before the gap. Note that y� value has not changed.

4. We need y�(�(t)) We can use our knowledge of the simple useful formula for y� which is

y�(�(t)) = y�(t)+µ(t)y��(t). We want to fix y��, so we disconnect the lead screw to y��.
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Also we need to move y�, so we reconnect the lead screw to y�.

5. We run back across the time gap. Now, we have the y�(�(t)) term and we reset y�� term

found in Step 2.

6. Finally, we put the pen down and turn the machine back on!

We need all of the above steps to insure that y, y�� and y� are in the correct position at �(t)

when we turn the machine back on to plot the solution on [3⇡/2, 3⇡]. Note that this process can

be used when there is more than one gap. One would need to repeat the process for each gap.

Table 6.1 shows the recording of the counter for the first three run of this time scale. We record

the counter at Steps 2 and 5.

µ(t) y�(�(t)) y��(�(t))

3⇡/2 376 762
4⇡/3 205 756
5⇡/4 251 758

Table 6.1: Readings from Art from T = [0,⇡] [ [2⇡, 3⇡].

Figure 6.2 shows y�� = �y with one gap and reducing the gap gradually five times. This plot

uses the initial time scale of T = [0,⇡] [ [2⇡, 3⇡]. Note that after the gap we let the machine run

until the output table runs out of paper.

As stated in the analytical section, when we were calculating the solution on a given time scale,

we had y(�(t)) = y(t) since at t = ⇡, y(t) = 0. We recognized this graphically as well since, when

running the problem we do not have to change the values of y(t) at y(�(t)) for t = ⇡. So, we can

skip Steps 3 to 5. Thus, we changed our time scale, to get more insight, to T = [0, 3⇡/4][[3⇡/2, 2⇡]

and ran the problem on Art to get a graphically view.

Table 6.2 was used to determine y�(�(t)) and y��(�(t)) in Steps 4 and 6 and the plot (Figure

6.3) shows solutions of y�� = �y with one gap and gradually closing the gap two times. We

started with the time scale T = [0, 3⇡/4] [ [13⇡/4, 2⇡] and reduced the gap first to ⇡/6 and then

to ⇡/8. We can see from the plots on Art that as we shrink µ(t) the function is converging to the

continuous curve described by y = sin(t), which is what we analytically proved in Chapter 5.
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Figure 6.2: Plot of y�� = �y with T = [0,⇡][ [2⇡, 3⇡]. Shows the convergence of the graph as the
gap closes.

Table 6.2: Readings from Art from T = [0, 3⇡/4] [ [13⇡/4, 2⇡].

µ(t) y�(�(t)) y��(�(t))

⇡/3 494 990
⇡/6 597 901
⇡/8 640 887

6.2 Graphing Solution of Time Scale with Two Gaps

Finally, we wanted to graphically look at a time scale with two gaps. The particular time scale

we used to graph with Art was T = [0, 3⇡4 ] [ [⇡, 3⇡2 ] [ [2⇡, 5⇡2 ]. We followed the process of running

Art on a time scale to the first gap and, when we stopped the machine for the second gap we

repeated the steps. Table 6.3 shows the readings from the counters on Art at y(�(t)) = y(⇡) and

y(�(t)) = y(2⇡). Figure 6.4 shows the output of Art with two gaps.

Thus, looking at solutions of y�� = �y graphically we can see that, as you close the gap, the

graph of the solution converges to the solution in the limit interval case, which is that same result

we discovered analytically. Being able the graph the solutions of y�� = �y on various time scales
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Figure 6.3: Plot of y�� = �y with T = [0, 3⇡/4][ [13⇡/4, 2⇡]. Shows the convergence of the graph
as the gap closes.

Table 6.3: Readings from Art from T = [0, 3⇡4 ] [ [⇡, 3⇡2 ] [ [2⇡, 5⇡2 ].

µ(t) y�(�(t)) y��(�(t))

⇡/4 656 942
⇡/4 758 251

using Art provides us with great insight about how the dynamic equation’s solution is changed

from its value on a single closed interval to its value after the jump. Performing the steps presented

earlier in the chapter allows the machine to take us to the next point when we jump over a gap.

Therefore, as you close the gap of dynamic equation y�� = �y with initial conditions y��(0) = 0

and y�(0) = 1, the solution converges to y = sin(t), which is the solution to this dynamic equation

with T = R on the limit interval.
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Figure 6.4: Plot of y�� = �y with T = [0, 3⇡4 ] [ [⇡, 3⇡2 ] [ [2⇡, 5⇡2 ].
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