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ABSTRACT 
 

 

Despite continued advances in medical care, cardiovascular disease (CVD) remains the 

leading cause of death for American women [1].  Although humans and non-human primates are 

the only mammals to experience menses, rodent models are commonly used to study age-

associated cardiovascular alterations due to similar ovarian aging, low expense, and short lifetime 

to investigate cardiovascular aging.  Previous studies have found that aging in the female rodent 

is characterized by increased ventricular apoptosis, elevations in oxidative-nitrosative stress, 

ventricular remodeling, increased collagen content, mild systolic and diastolic dysfunction, and 

reduced occurrence of arrhythmias compared to males [2-7].  Similarly, age-associated alterations 

in the female rodent aorta have been shown to include increased proliferation/migration of 

vascular smooth muscle cells (VSMC) and endothelial dysfunction [8, 9]. However, no study has 

investigated the age-associated alterations in the female heart and aorta of the National Institute 

of Aging (NIA) approved Fischer 344/NNiaHSd x Brown Norway/BiNia (F344xBN) rat model.  The 

NIA has recommended the F344xBN due to its longer maximal life span, higher age for 50% 

mortality, and the fact that it exhibits a normal distribution of age-related pathologies at later 

ages [10, 11].  Here, we investigated the effects of aging on cardiovascular structure and function 

in the adult, aged, and very aged female F344xBN rats.  Compared to adult hearts, increased age 

was associated with increases in oxidative-nitrosative stress, oxidative damage, (increases in 

hydroethidine (HE) staining, 4-hydroxynonenal (4-HNE), and nitrotyrosine expression), and 

activation of the mitochondrial-mediated apoptosis pathway (increased number of terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive nuclei, increased activation 

of caspases, and Bax/Bcl-2 ratio).  Age related changes in cardiac structure consisted of an 
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increase in heart to body weight ratio, cardiomyocyte cross sectional area (CSA), posterior wall 

thickening, and left ventricle chamber dilatation.  Coincident with these changes in cardiac 

structure and signaling, we also found that increased age was associated with evidence of 

diastolic dysfunction, alterations in heart rhythm intervals, and alterations in connexin 43 (Cx43) 

expression.  The incidence of arrhythmias was not different with age; however, valvular 

dysfunction was increased.  In the female F344xBN aorta there was an age-associated increase of 

intima-medial thickness and activation of p44/42 MAPK.  Taken together, these results suggest 

that the female F344xBN rat may be an appropriate cardiovascular aging female rodent model in 

the absence of pathologies.  (378 words)   
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CHAPTER 1 

INTRODUCTION 
 

Cardiovascular disease is the leading cause of death in the United States. The costs 

associated with treating CVD are expected to increase to $1.48 trillion by 2030 [12].  In addition 

to the modifiable risk factors (such as lipid levels, diabetes, sedentary lifestyle, etc.) aging, in and 

by itself, is thought to be a major risk factor for the development of CVD [13] as greater than 80% 

of cardiovascular deaths occur in adults 65 years of age and older[13, 14, 15].  Cardiovascular 

aging is associated with a loss of cardiomyocytes by apoptosis, hypertrophy of remaining 

cardiomyocytes, and increases in tissue fibrosis which can lead to systolic and diastolic 

dysfunction [16-20].  These age-associated changes can lead to a decline in cardiac function 

causing the elderly heart to fail [14, 15, 21].  

It has been estimated that the costs of treating heart disease will increase 46% by 2025 

as people continue to live longer and longer [22, 23].  Although the projected increase in CVD as 

well as its impact on healthcare cost is known, the effect of sex on cardiovascular risk is not well 

understood.  Recent work has suggested that premenopausal women have a decreased risk of 

CVD compared to men of comparable age; however, this cardio-protective benefit appears to be 

lost in postmenopausal women [24, 25].  The decreased cardiovascular disease risk in 

premenopausal women may be due to age-associated sex differences in cardiac structure and 

function.  For example, in healthy aging adults, left ventricular mass and fractional shortening is 

increased in women compared to men [26-29].  Age-associated sex differences were also found 

in the incidence of different cardiovascular pathologies.  In the Framingham study, there was a 
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greater prevalence of left ventricular hypertrophy in women (69%) after 60 years of age compared 

to (15%) men.  Aged females with aortic stenosis also had better maintenance of left ventricular 

systolic function and a lower incidence of collagen structural abnormalities [26].  The short and 

long term prognosis are worse for women after myocardial infarction, however, women have 

improved survival rates following non-ischemic cardiomyopathy [16-20, 30, 31].   

The increase incidence of age-associated CVD has been attributed to the accumulation of 

free radical species known as reactive oxygen species (ROS) [32, 33].   The free radicals include 

superoxide anion (O2
·−), hydroxyl radical (HO·), lipid radicals (ROO−), nitric oxide (NO), and non-

free radicals such as hydrogen peroxide (H2O2), peroxynitrite (ONOO−), and hypochlorous acid 

(HOCl).  Increased ROS levels (due to imbalance of ROS species to antioxidants) can cause 

oxidative stress that can damage cellular lipids, proteins and DNA which has been shown to lead 

to cell death [34, 35].   

Cardiovascular disease research has mostly been focused on aging male animal models.  

Although women are also at an increased risk for CVD with aging, very few experimental studies 

have determined how aging affects the female heart and aorta.  The purposes of this dissertation 

are (i.) to determine the effects of aging on F344xBN cardiac structure and function, oxidative-

nitrosative stress, and apoptosis; and (ii.) to investigate how aging may affect aortic morphology 

and protein signaling.  Age-associated alterations would suggest that this aging rodent model 

may model that seen in the aging human cardiovascular system.  
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SPECIFIC AIMS     

 Cardiovascular disease is the leading cause of death, morbidity, disability, functional 

decline, and healthcare costs in aging women [36].  It is anticipated that a better understanding 

of the role that aging plays in CVD will increase the quality of life in the aged.  The long-term goal 

of this work is to improve our understanding of the age-associated alterations in the signaling 

pathways, structure, as well as function of the aging female heart and aorta to determine if the 

female F344xBN rat is an appropriate aging model to investigate therapeutic strategies to 

attenuate or reduce age-associated female cardiovascular dysfunction.  The hypothesis of this 

dissertation is that the female F344xBN rat will exhibit age-associated alterations in 

cardiovascular structure and function.  We plan to accomplish the goals and objective of this 

study by pursuing the following three specific aims and experimental design (Figure 1.1): 

Specific Aim I:  To determine if aging in the female F344xBN rat heart is characterized by 

alterations in heart weight, apoptosis, and oxidative-nitrosative stress.  

Hypothesis:  The female F344xBN rat heart will exhibit age-associated increases in 

hypertrophy, apoptosis, and oxidative-nitrosative stress. 

 

Specific Aim II:  To determine if the heart of adult and aged female F344xBN undergo age-

associated alterations in cardiac function.  

Hypothesis:  Aging in the female F344xBN heart will be associated with increased systolic 

and diastolic dysfunction. 
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Specific Aim III:  To determine if the aorta of adult and aged female F344xBN rats undergo age-

associated alterations in morphology and signaling transduction.  

Hypothesis:  Aging in the female F344xBN aorta will be associated with increased intima-

medial thickness, increased fibrosis, and activation of mitogen activated protein kinase 

(MAPK) signaling.     

 

   FIGURE 1.1 

 

 

 

FIGURE 1.1:   EXPERIMENTAL DESIGN TO STUDY AGE-ASSOCIATED ALTERATIONS IN THE 

FEMALE F344XBN HEART AND AORTA. 
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CHAPTER 2 

REVIEW OF LITERATURE 

  

The following chapter consists of the current literature review regarding this dissertation 

study.  The areas to be covered include the following:  aging and cardiovascular disease, aging 

female cardiovascular disease, aging cardiovascular structure and function, aging cardiovascular 

oxidative stress mechanisms, aging cardiac protein signaling, aging vascular aorta, aging aortic 

structure and function, and mechanisms of signal transduction in the aging aorta. 

 

AGING AND CARDIOVASCULAR DISEASE 

 Aging is often thought of as a progressive disorder that decreases an organism's ability to 

maintain ‘normostasis’ and reproductive capacity [37].  The functional consequences of aging 

tend to be cumulative, organ-specific, as well as species-dependent.  Aging is also strongly 

correlated with a higher incidence of several diseases including cancer, diabetes, Parkinson's 

disease, Alzheimer's disease, and dementia [37].  The majority of definitions of aging are based 

on calendar age [38].  The World Health Organization has devised a classification scheme in which 

it considers senility as those 60 years of age.  Conversely, in the United States senility is typically 

defined as those greater than 65 years of age while gerontologists classify using the following 

three subgroups: younger older people (60-74 years), older people (75-85 years), and very old 

people (over 85 years) [38, 39].   

Aging is considered a major independent risk factor for cardiovascular-related morbidity 

and mortality [37, 40-42].  According to the Center for the Disease Control (CDC), 12% of adults 
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have some form of CVD including hypertension, stroke, cardiomyopathies, or heart failure [37].  

Of additional concern is the finding that the percentage of men and women presenting clinically 

evident CVD increases to 70% over the age of 75 years [38, 39].  Cardiovascular disease deaths 

over the last twenty years have been higher for women compared to men in the United States 

making CVD the number one killer of women in the Western nations [26, 43-47].  In women, 

almost 44% of total CVD deaths occurred in those above 85 years of age while 24% of total CVD 

deaths were in men over 85 years [14, 36].  Although cardiovascular risk increases with age in 

both sexes, the increase in age-associated risk is sharper in women (Figure 2.1) [45-48].   

 

FIGURE 2.1 

 

FIGURE 2.1:  PREVALENCE OF CVD IN AGING MEN AND WOMEN ACCORDING TO THE 

AMERICAN HEART ASSOCIATION (2009).   
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Differences in pathophysiology, presentation, as well as the differences in age-associated 

cardiovascular function may explain the increased risk of CVD and death in women [44, 49, 50].   

Indeed, whereas congestive heart failure in men is oftentimes due to systolic insufficiencies, 

congestive heart failure in women is often related to diastolic dysfunction [44-46, 50-53].  

Similarly, the incidences of ischemia, cardiac failure, cardiac rupture, and ventricular remodeling 

have also been shown to differ between gender with aging and often lead to worse outcomes in 

women [20, 26, 27, 54-68].       

Aging women appear to exhibit an “age window” during pre-menopause where women 

have a decreased risk of CVD compared to men of comparable age [24, 69].  This cardio-protective 

benefit appears to be lost over time as the risk of developing CVD in postmenopausal women is 

similar to that observed in men of a comparable age [25].  The reason(s) for this increase in CVD 

risk following menopause is currently unclear but may be related to changes in estrogen levels 

[70]. 

 

AGING FEMALE ANIMAL MODELS 

 In order to distinguish the physiological as well as molecular alterations that may cause 

this age-associated gender specific differences in CVD, an appropriate aging model is needed.  

Human aging research is limited due to cost, differences in lifestyle/history, and more importantly 

the time required for data collection and analysis of that particular system.  There are a number 

of different animal models that can be used to acquire information on how aging affects the 

female cardiovascular system.  The most common aging female animals studied are non-human 

primates and rodents.  Non-human primates are the closest in regards to female human aging 
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due to the fact that they undergo menstrual sloughing of the endometrial lining.  Although non-

human female primates do experience some aspects of menopause in a manner similar to women 

(irregular cycles, hormone profiles, infertility, weight gain, blood and lipid profiles), non-human 

female primates differ in that there is a short postmenopausal lifespan, differences in hormone 

secretion timing, as well as seasonal menstrual cycles [71].  The use of non-human primates as 

aging models has been limited due to ethical concerns, complicated study logistics, and cost.   

 Conversely, rodents are widely used in aging research as they exhibit a relatively short 

lifespan and are genetically quite homogenous.  Although rodents do not experience menses, 

they do experience ovarian aging.  Ovarian aging in rodents has been determined to occur over 

the span of 24 months.  In female rodents, reproductive maturity is typically reached at five 

months when there is an estrous cycle that lasts four to five days.  During reproductive maturity, 

female rats exhibit periods of persistent estrous which consists of elevated and constant levels of 

estradiol, low levels of progesterone, lack of luteinizing hormone (LH) surges, and ovulation.  

Ovarian decline occurs between six to eighteen months depending on the rodent strain.  This 

stage is characterized by low levels of estradiol and progesterone along with little or no 

developing follicles [72].  Between ten to twelve-months of age, increase in the irregularity of 

estrous cycles often occurs.  Constant estrous usually takes place at about nineteen-months of 

age and is characterized by low to medium levels of serum estradiol, estrone, testosterone, 

androstenedione, progesterone, and very low levels of 20α-hydroxyprogesterone.  In addition to 

these hormones, there is no preovulatory release of gonadotropin and prolactin.  Luteinizing 

hormone was not changed but follicle-stimulating hormone (FSH) levels were found to be 

increased in the morning.  After twenty four months, the levels of prolactin were increased in 
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aging female rats (Table 2.1).   

 

TABLE 2.1:  STAGES OF OVARIAN AGING IN LONG-EVANS FEMALE RATS AS DESCRIBED BY LU  et 

al., (1979). 

 

 

 

Comparisons between aging research in female rodent models and humans can be 

complicated due to the differences in the mechanisms of ovarian/hormone aging in women and 

its potential impact on CVD.  Although not fully understood, it is thought that the loss of the 

hormones estrogen and progesterone in aging women is due to the decrease in the ovarian 

follicular reserve [73, 74].  Conversely, aging female rats experience a persistent estrous due to a 

chronic anovulation, which consists of pseudopregnant/disestrus estrogen levels and high 
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progesterone levels from increased ovulation and the corpora lutea [73, 75].  Therefore, 

reproductive senescence in female rats consists of alterations in the hypothalamic-pituitary axis 

while reproductive senescence in women is classified as ovarian follicle depletion [73, 75].   

 

OVARIECTOMY AND THE AGING CARDIOVASCULAR SYSTEM 

 In an effort to overcome the lack of menopause in rodents, the use of transgenic models, 

pharmacological acceleration of aging, and ovariectomy procedures are often performed to 

better mimic the hormone milieu seen in aging women.  Ovariectomy is the removal of the 

ovaries, which induces a surgical menopause.  The cessation of estrogen and progesterone, as 

well as the reduced production of testosterone, occurs after a surgical menopause.  Surgical 

menopause leads to more severe and sudden symptoms compared to those observed during the 

natural menopause where ovaries produce lower levels of hormones over time.  It is thought that 

surgery-induced menopause at the time or before natural menopause increases cardiovascular 

risk in rodents [76, 77].      

Other differences have been observed in surgically-induced models of menopause 

compared to models of natural menopause.  Bilateral oophorectomy is associated with different 

hormonal alterations including changes in estrogen production, reduced levels of progesterone 

and testosterone, as well as increases in gonadotropins (LH and FSH) compared to those that 

occur in women who experience natural menopause [78, 79].  Irrespective of age, estrogen levels 

are higher in women with intact ovaries than in women after bilateral oophorectomy [77, 80, 81].  

Interestingly, both natural and surgically-induced menopausal rats exhibit increased FSH and 

decreased levels of estradiol and inhibin (A/B) [82].  Surgically-induced menopause has also been 
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shown to alter dopamine receptor affinity in the heart [82].  Other studies have found that the 

majority of women who undergo natural menopause exhibit differences in age-associated 

cardiovascular alterations when compared to those seen in surgically-induced menopausal 

women [73, 74].  It appears that the timing of the surgically-induced menopause may have an 

effect on the degree of cardiovascular alterations.  For example, the elective bilateral removal of 

the ovaries at a young age is associated with an increased risk for CVD and premature death [77].  

Ovariectomy is also associated with alterations in heart structure and function which include 

increases in cardiac interstitial space, cardiac fibrosis, heart weight, left ventricular weight, 

reduced cardiac contractility, increased evidence of oxidative stress, cardiac apoptosis, cytokine 

expression (TNF-α and IL-1β) as well as angiotensin converting enzyme (ACE) and angiotensin II 

type 1 receptor gene expression [83-87].  When estradiol treatment was given to ovariectomized 

rats, it prevented the reduction of cardiac contractility as well as the increase in apoptosis and 

cytokine expression but not elevations in oxidative stress [84, 87].  Taken together, these data 

suggest that the loss of ovarian function during aging may influence cardiovascular structure and 

function.  Due to the complexities of the aging process, more studies are needed to distinguish 

whether observed differences are due to aging alone, hormone deprivation, or some combination 

of both.  Due to the difficulties experienced using humans, aging research using rodent models 

may be an important consideration.    

 

AGING CARDIAC STRUCTURE AND FUNCTION 

Aging has been shown to impact many structural and functional aspects of the human 

heart.  Echocardiography (ECHO; a serial noninvasive technique) has demonstrated age-
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associated structural alterations including increases in left ventricular wall thickness, myocyte cell 

volume, a decrease in the number of cardiomyocytes, in addition to increases or no changes in 

the myocyte to collagen ratio [88, 89].  Age-associated changes in cardiac function include 

decreases in oxygen consumption, cardiac contractility, and ejection fraction (EF).  Systolic 

function (the ability of the ventricles to contract) is usually preserved, while diastolic dysfunction 

(ability of the ventricles to fill) is commonly seen in aging humans as evidenced by increases in 

the diastolic function parameters, isovolumic relaxation time (IVRT) and mitral valve deceleration 

time (MV decel) [22, 90-96].  Myocardial stiffness, an important factor for diastolic dysfunction, 

has been shown to increase with advancing age, which may be associated with elevations in left 

ventricular end-diastolic pressure both at rest and with exertion [97].  Changes in the early to late 

filling velocity (E/A ratio), which is used to evaluate myocardial stiffness during diastole, also 

appear to increase with age [98, 99].  In addition to contractile alterations, other data has 

suggested that the aging heart also exhibits an increased incidence of ventricular arrhythmias, 

aortic valve sclerosis, and atrial fibrillation [22, 100].    

Biochemical techniques have shown that aging is associated with the loss of 

cardiomyocytes and a compensatory hypertrophy of those myocytes that may remain [99, 101].  

Within the cardiomyocyte, the mitochondria become larger and less efficient during aging [99, 

102].  At the level of the sarcomere, aging is characterized by a prolonged contraction as well as 

relaxation due to age-associated changes in cardiac gene expression and calcium regulation [99, 

103-105].  In the extracellular matrix surrounding the cardiomyocytes, aging is associated with an 

increase in collagen, fibrosis, and lipofuscin deposition [99, 106-108].  During exercise, older 

hearts also tend to increase heart rate to a smaller degree than that seen in the younger animals 
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which may be due to decrease catecholamine sensitivity or axonal degeneration of sympathetic 

neurons innervating the atria [99, 109, 110, 111].   

 

RODENT CARDIAC STRUCTURE AND FUNCTION 

 Unlike that seen in humans, few studies have examined how aging affects cardiac 

structure and function in rodents.  Research thus far has shown conflicting results with some 

studies demonstrating few or no signs of cardiac dysfunction [94, 112-113], whereas others have 

shown that the aging rodent heart is characterized by decreases in midwall fractional shortening 

and diastolic function as indicated by increase in isovolumetric relaxation time [94, 95, 112-115].  

Age-associated changes in rodent cardiac structure include cardiomyocyte enlargement as well 

as reduced number of cardiomyocytes due to necrosis or apoptosis [13].  Other functional 

changes that have been noted include a prolongation of the action potential, increased cytosolic 

calcium transient time, increased number of L-type calcium channels, a slowed inactivation of the 

L-type current, and decreased outward potassium currents [13].   

The F344xBN rat has been recommended for age-related studies by the NIA given that this 

hybrid rat lives longer and has a lower rate of pathological conditions than other inbred rat strains 

[10-11].  Similar to that seen in aging humans, Walker and colleagues, demonstrated that aging 

in the F344xBN rats was characterized by progressive diastolic and systolic left ventricular 

chamber dilatation; mild diastolic and systolic left ventricular hypertrophy; progressive age-

associated decrements in resting left ventricular systolic function; and mild diastolic dysfunction, 

especially in very aged rats [94].  Other parameters of systolic function (ejection fraction (EF), 

fractional shortening (FS), AVmax, PVmax, MVmax, TVmax) in aged and very aged rats were not 
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statistically different from those in adult male rats, suggesting cardiac compensation may have 

taken place to obfuscate mild systolic declines.  Most left ventricular structural and functional 

parameters did not differ significantly in aged and very aged rats, which suggested that most of 

the age-related changes have occurred or are well underway in the aged rats.  In addition, the left 

ventricular hypertrophy observed in the adult rats appeared to be offset by increases in 

ventricular apoptosis and the loss of ventricular cardiomyocytes [94].   

It has been postulated that age-associated increases in left ventricle mass (LVM), 

cardiomyocyte enlargement, decreases in cardiomyocyte number, and increases in extracellular 

collagen deposition may be responsible, at least in part, for the increase in arrhythmias seen with 

aging [116-119].  The aging rodent heart has been characterized as exhibiting a prolonged action 

potential, delays in total activation time, and decreases in anisotropic conduction velocity.  In 

addition to changes in conduction velocity, aging is also characterized by the generation of 

abnormal activation patterns that vary in space and time.  The molecular mechanisms underlying 

these alterations are not well understood but some researchers have posited that they may be 

due to age-associated increases in oxidative stress and fibrosis, as well as changes in ion channel 

expression [120].  Whether the molecular mechanisms that may be responsible for the age-

associated alterations in cardiac structure and function may differ with animal gender is not well 

understood.  

 

FEMALE RODENT AGING CARDIAC STRUCTURE AND FUNCTION 

 The increased risk of CVD in women may be due to differences in the type or magnitude 

of age-associated alterations in cardiac structure and function.  Olivetti and colleagues have 
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demonstrated a small decrease in human heart weight with aging in males but not females [89, 

121] Studies have also shown differences in animal model myocyte volume and diameter [89, 

121].  Male non-human primates have also been shown to exhibit decreases in left ventricle/body 

weight, myocyte hypertrophy, and increases in the number of cells undergoing apoptosis when 

compared to that observed in their female counterparts [121].  Although a limited number of 

studies have looked at how cardiac structure and function change with age in a rodent, very few 

have directly investigated how sex may affect cardiac structure and function.  

Boluyt and colleagues investigated how aging may affect cardiac and structure in female 

Fischer 344 (F344) rats using echocardiography.  Aging female rat cardiac structural changes 

included a dilatation of the left ventricle between 13- and 22-months of age.  This dilatation was 

characterized by increases in posterior and septal wall thickness during diastole at 22- and 30-

months of age [2].  Aging in the female F344 was also associated with increases in collagen 

content and collagen cross-linking [4, 122-123].  In addition, Boluyt and colleagues demonstrated 

mild systolic dysfunction (decline in left ventricle EF, fractional shortening (FS), and velocity of 

circumferential fiber shortening) in 22-month old animals when compared to young adults and 

that these changes preceded the development of mild diastolic dysfunction [2, 124]. These 

authors suggested that this modest decline in systolic function was due, at least in part, to a shift 

in the amount of alpha and beta myosin heavy chains [2, 123]. Additional work, perhaps using 

other rodent models is needed in order to truly distinguish if these alterations are due to 

increasing age or if they are simply specific to the F344 strain.     
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ARRHYTHMIAS 

Proper cardiac function is dependent upon the precise conduction of electrical impulses 

through the heart.  The electrocardiogram (EKG), a readily performed and repeatable diagnostic 

tool, can measure and record the conduction system of the working heart in order to find 

abnormalities in cardiac conduction and to diagnose some forms of cardiovascular disease [125-

130].  The EKG records a tracing of the depolarization and repolarization of the heart that can be 

separated into specific waves and intervals (Figure 2.2). 

 

FIGURE 2.2 

 

 

 

 

 

 

 

 

 

FIGURE 2.2.  EKG TRACE ILLUSTRATING THE DIFFERENT WAVES AND INTERVALS IN A HEART 

RHYTHM.   

 

Aging is considered a risk factor for ventricular arrhythmia [100, 119].  Mirroring the 

increase in the percentage of elderly is the incidence of atrial fibrillation [130-131]. Age-
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associated increases in cardiac fibrosis as well as changes in gap junction morphology have been 

hypothesized to cause changes in cardiac conduction in addition to the incidence of arrhythmias 

and death [119, 132].  As humans age, there is an increase in the EKG abnormalities which are 

associated with increased mortality [132-133].  Men tend to experience more atrial fibrillation, 

early repolarizations, Brugada syndromes, and sudden cardiac death than women, while women 

are more likely to be at risk to develop long QT syndrome-based arrhythmias as well as 

bradycardia-induced torsades de pointes [134-135].  Although sex related differences in cardiac 

electrocardiogram parameters have been observed, electrocardiogram abnormalities seem to 

vary between studies.  In men, there is an increase in QRS duration and sinus cycle length while 

women tend to a have a higher heart rate upper limit [136-137]. 

Electrocardiogram analysis in elderly men and women have demonstrated large or 

intermediate Q waves, left axis deviation, negative T-waves, complete right bundle branch block 

as well as atrial fibrillation/flutter [138].  In aging men, the QRS complex has been found to be 

narrowed while aged women have been shown to undergo a shifting of the QRS axis to the left 

[139].  Other work has suggested that aging in men may be associated with a shortened QT 

interval, increased PR intervals, and a prolongation of the QT interval [137, 140].  Conversely, 

other research found that aging did not appear to alter EKG tracings in either men or women 

[137].   

Similar alterations in electrocardiogram parameters have also been found in aging 

rodents.  In Wistar rats, the PR and corrected QT intervals were found to increase with age [132].  

Similarly, QRS duration has also been found to be prolonged in old rats [141].  Alterations in aging 

electrocardiogram parameters have been shown to be rodent strain dependent and could only 
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be detected subsequent to heart failure at 19-months of age [142].  Very few studies have 

investigated electrocardiogram parameters in the aging female rodent.  Gonadectomy appears to 

decrease the number of arrhythmias in male but not female rats [143].  Although not fully 

understood, these differences have been attributed to higher heart rates in male animals, longer 

QT intervals, as well as gender differences in ion channel expression [134-135, 144-148].  The 

exact mechanisms of the reduction of arrhythmias by estrogen are not fully understood but two 

potential indirect mechanisms have been proposed.  One potential indirect mechanism may be 

related to the ability of estradiol to reduce the incidence of cardiac ischemia [149].  Other work 

has suggested that high levels of estradiol in female and male rats may directly reduce 

arrhythmias, possibly by causing a slowing of the inward calcium current [149, 150].  Although 

multiple studies have investigated EKG changes in aging rodents, these parameters have not been 

determined in the NIA approved aging F344xBN rat model.   

 

CONNEXIN 43 

Gap junction function is particularly important for the proper regulation of cardiac 

contraction (Figure 2.3).  Changes in the expression, activation, and distribution of gap junction 

protein Cx43 may help to explain alterations in heart rhythm intervals during normal ventricular 

growth, age, and in some diseases [151-155].  It is thought that increases in Cx43 expression lower 

the susceptibility to lethal arrhythmias  as decreased Cx43 expression has been shown to cause 

an increase in R-R interval and decreases in intrinsic sinus rate [119, 156-159].  The regulation of 

Cx43 in different disease states is not well understood.  In the spontaneous hypertensive rat 

(SHR), Cx43 distribution appears altered compared to that seen in the normotensive animals  
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while Cx43 protein levels have been found to be increased, decreased, or unchanged in animals 

exhibiting heart failure and atrial fibrillation [157, 160-162].  In diabetic and ischemic hearts, Cx43 

levels are unchanged, however, the distribution of Cx43 is altered and its phosphorylation is 

increased [159, 163, 164].  Other data suggests that alterations in Cx43 expression may work in 

conjunction with other molecules to regulate cardiac 

  

FIGURE 2.3 

 

 

 

 

 

 

 

 

FIGURE 2.3: LOCATION AND STRUCTURE OF GAP JUNCTIONS IN THE CARDIOMYOCYTE 

MEMBRANE. (Photo credit: Landes Biosciences, 2004) 

 

conduction given the finding that the sodium channel (Nav1.5) expression appears to parallel 

changes seen in Cx43 [165].   

Similar to the differential regulation of Cx43 in different diseases, sex-associated 

differences in Cx43 have also been observed in aging males and female rats.  Cx43 expression has 
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been shown to be increased in female hearts compared to male hearts [166, 167].  Age-associated 

sex differences in Cx43 may be regulated, at least in part, by the levels of female and male 

hormones given that previous work has shown that estrogen increases and testosterone 

decreases Cx43 expression [135, 168, 169].  Thus far, very few studies have investigated the 

effects of hormones, ovariectomy, as well as natural menopause on Cx43 expression.  One study 

showed that estradiol administration increased Cx43 expression and phosphorylation during 

ischemia [170, 171].  These findings are consistent with the possibility that estradiol plays a role 

in the regulation of Cx43; however, no changes were found in Cx43 expression in the aged 

ovariectomized female rat heart [172].  Aging studies have also shown conflicting results with 

regards to the regulation of Cx43. Recent work has demonstrated that Cx43 expression is 

increased, decreased, or unchanged with aging [159, 173-175].    

 

CARDIAC OXIDATIVE STRESS AND ANTIOXIDANTS 

 Oxidative stress and reactive oxygen species (ROS) have been implicated in the 

pathogenesis of several different diseases including Alzheimer's disease, Parkinson's disease, 

cancer, aging, and CVD [176-181].  ROS are molecules that contain oxygen with an unpaired 

electron. There are several different species of ROS, including superoxide anions, hydroxyl 

radicals, superoxide, hydrogen peroxide, and peroxynitrite. 

           Oxidative stress can result from an increase in oxidant generation or a decrease in the levels 

of antioxidants. The main source of ROS in vivo is aerobic respiration.  ROS are also produced by 

the beta-oxidation of fatty acids, microsomal cytochrome P450 metabolism of xenobiotic 

compounds, stimulation of phagocytosis by pathogens or lipopolysaccharides (LPS), arginine 
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metabolism, and tissue specific enzymes [182].  Under normal conditions, ROS are cleared from 

the cell by the action of superoxide dismutase (SOD), catalase (Cat), or glutathione (Gpx) 

peroxidase [183].  If excessive, elevated cellular ROS can cause damage to cellular lipids, proteins, 

and DNA (Figure 2.4).    

 

FIGURE 2.4 

 

FIGURE 2.4:  THE MECHANISM OF REACTIVE OXYGEN-NITROSATIVE SPECIES PRODUCTION 

AND OXIDATIVE-NITROSATIVE DAMAGE.  

 

AGING RELATED CHANGES IN CARDIAC OXIDATIVE STRESS AND ROS-RELATED SIGNALING  

 Aging in the heart is associated with the accumulation of oxidative damage to lipids and 

proteins as well as decline in mitochondrial enzymes [184].  In addition, an increasing amount of 

mutations in mitochondrial DNA (mtDNA) have been gradually observed during aging [185].  The 

level of 8-OHDG mtDNA adducts and deletions increase exponentially with age [185].  In human 

and non-human primate muscle, liver, and brain tissue, complex IV and mitochondrial oxidative 
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phosphorylation enzyme activities decline with age.  This decline in function is correlated with 

the accumulation of mtDNA mutations, including deletions, and base substitutions [185].  De la 

Asuncion and colleagues found increased levels of oxidized mitochondrial glutathione with aging 

in rats and mice [186].  Similarly, aged male rat hearts exhibit an increase in superoxide, 4-HNE, 

and nitrosative stress levels which appear to be highly correlated to increases in left ventricular 

thickness [187].  The exact role that increased levels of oxidative stress may play in the 

development and progression of age-associated CVD remains to be determined.   

 Compared to that observed in females, the hearts of aging male rats exhibited increases 

in protein carbonylation, advanced oxidation protein products, nitrotyrosine, non-protein thiol, 

reduced glutathione, and iron levels [5].  Although aging is associated with increases in oxidative 

stress in both male and female hearts, female rat hearts exhibited lower mitochondrial hydrogen 

peroxide production, oxidative damage, and greater mitochondria differentiation compared to 

that seen in male animals [6].  It is thought that female rats have a higher mitochondrial 

differentiation which is a metabolic adaptation to increase energy efficiency as it is associated 

with their lower mitochondrial free radical production and oxidative damage [6].  In addition to 

differences with sex, it is also likely that ROS levels vary with animal strain as female Wistar and 

F344 rats exhibit lower ROS production and indices of oxidative damage than that seen in female 

Sprague Dawley rats which may help to explain their greater mean life-span [188-190].   

Reactive oxygen species are signaling molecules that activate signal transduction 

pathways.  One signaling pathway, MAPK signaling, that is involved in many of the age-associated 

physiological changes (oxidative stress, hypertrophy, and apoptosis) as well as other cardiac 

pathologies, is activated by ROS.  The MAPK cascades are evolutionary conserved 
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serine/threonine protein kinases that regulate several important cellular functions including 

proliferation, differentiation, development, cell cycle, and cell death [191].  The major MAPK 

signaling pathways are the extracellular signal-regulated protein kinase cascade (p44/42), c-Jun 

amino-terminal kinase/stress-activated protein kinase cascade (JNK/SAPK), and the p38 cascade. 

Stimuli that include stress or injury typically activate the JNK and p38 MAPK kinases, while the 

p44/42 MAPKs are stimulated by mitogenic and growth factors [192, 193].  Work investigating 

MAPK signaling in aging human hearts have demonstrated reduced p38 MAPK activity/signaling 

in heart failure and impaired activation of MAPK target genes following increase in oxidative 

stress [194-196].  In the rodent heart, aging has been found to diminish and increase p44/42-, 

p38-, and JNK-MAPK activation [197-200].  

It is well recognized that increases in cellular stress cause the upregulation of the heat 

shock proteins (Hsp) [201].  Hsp are also involved in cardiac hypertrophy, in response to vascular 

wall injury, ischemic preconditioning, and aging [202].  During aging there is an accumulation of 

damaged or misfolded proteins which may cause a burden on maintaining proteostasis [203-205].  

An important function of heat shock proteins is to protect against age-related protein misfolding 

[204-207]. Studies in C. elegans and Drosophila have suggested that the overexpression of heat 

shock proteins increases lifespan [203, 208, 209].  In aged male F344 rats (24-months) it appears 

that aging decreases Hsp70 upregulation following chronic exercise and heat stress [210-212].   

Similar to the MAPK proteins, the nuclear factor-κβ (NF-κβ) pathway is thought to play a 

role in cardiac remodeling, apoptosis, acute ischemia and reperfusion, unstable angina, as well 

as heart failure in both humans and rodents [213-218]. .  The NF-κβ family consists of RelA (p65), 

c-Rel (Rel), RelB, NF-κβ1 (p50), and NF-κβ 2 (p52) (Figure 2.5).  In the cytoplasm, p50 and p65 are 
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found as an inactive heterodimer due to the binding of the Iκβ kinase inhibitory proteins (Iκκα 

and Iκκβ).  Cellular stimuli known to activate the NF-κβ pathway include ROS, tumor necrosis 

factor alpha (TNF-α), interleukin-1β (IL-1β), and bacterial LPS [219].  It has been shown that the 

Iκβs must first become phosphorylated and degraded before p50/p65 activation can occur [220-

221].  

 

Figure 2.5 

 

 

FIGURE 2.5:  THE NF-ΚΒ SIGNALING PATHWAY.   

The NF-κβ signaling pathway induces the transcription of chemokines, cytokines, 

adhesion molecules, and anti-apoptotic factors in response to increased levels of ROS, TNF-α, IL-

1β, and LPS. 

 

p50/p65 when phosphorylated (activated) then translocates into the nucleus to induce the 

transcription of chemokines (IL-8, MCP-1), cytokines (TNF-α, IL-1, IL-2, IL-6), adhesion molecules 

(ICAM-1, VCAM-1, E-selectin), acute phase proteins, antimicrobial peptides, secondary 
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inflammatory enzymes (COX-2, iNOS, PLA2, MnSOD), and anti-apoptotic factors [222-224].  Upon 

termination of the NF-κβ stimuli, p50/p65 binds to new Iκβs and the complex is translocated back 

to the cytoplasm.  It is thought that the MAPK pathway works in concert with the NF-κβ pathway 

to increase transcription of inflammatory genes [222-223].  Recent work using transgenic mice 

has suggested that p50 deletion in increased cardiac inflammation and matrix metalloproteinase 

activity [225].  Conversely, other work has demonstrated that p50 deletion is associated with 

decreased matrix metalloproteinase expression and collagen deposition in cardiac tissue [226].  

How aging may affect the regulation of NF-κβ pathway signaling is not well understood.  

    

ACTIVATION OF ROS-RELATED SIGNALING IN THE FEMALE AGING HEART 

Although the effects of estrogen on MAPK signaling have been studied in several  

pathological processes, e.g. breast cancer, migraines, and polycystic ovarian syndrome, little is 

known regarding how this molecule affects MAPK signaling in the heart.  It is thought that 

differences in MAPK activation between male and females may be regulated, at least in part, by 

the influence of estrogen [227-229].  Estrogen has been shown to stimulate the activation of 

p44/42 MAPK and JNK MAPK in different model systems including cardiomyocytes, mammary 

cancer cells, pituitary tumor cells, tissue slices of the hippocampus, and endometriotic stromal 

cells [230-234].  In males as well as ovariectomized females where estrogen is removed, MAPK 

signaling is decreased after acute ischemia [227, 229]. In a model of cardiac pressure overload, 

estradiol treatment appeared to exhibit anti-hypertrophic effects by increasing the expression of 

atrial naturietic peptide (ANP) and inhibiting p38-MAPK activation [235].  Conversely, in 

ovariectomized female mice subjected to coronary ligation or transverse aortic constriction, 
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estradiol treatment had no effect on the activation of p38-MAPK [236].  How aging may affect 

MAPK signaling in the female heart has yet to be elucidated.   

In addition to the regulation of MAPK proteins, there is evidence to suggest that gender 

also has an effect on the Hsp response.  In hearts that were not exposed to increased cellular 

stress, male hearts have twice as less Hsp72 expression than that observed in the female heart.   

Conversely, ovariectomy was found to reduce Hsp72 levels in female hearts [237].  Estradiol 

treatment has also been found to increase Hsp27, Hsp70, Hsp72, and Hsp90 expression in the 

heart [238-242].  To our knowledge, no studies have looked at Hsp27, Hsp70, and Hsp90 in the 

aging female heart.  More research is needed in order to determine how aging and gender affect 

the regulation of heat shock proteins in the cardiovascular system. 

 Aging female and male hearts show increased apoptosis, inflammation, as well as age-

associated gender differences found in NF-κβ signaling [234, 243].  To our knowledge, only a few 

studies have investigated the changes in NF-κβ expression and activity in the aging female rat 

heart.  Recent data has suggested that nuclear NF-κβ binding is increased in the brain, heart, 

and kidney of aged male as well as female mice even though the levels of p50 and p65 protein 

were not changed [244-245].  Whether age-related changes in NF-κβ activity are related to 

increased cardiovascular risk is not yet clear.   

 

AGING HEART APOPTOSIS 

Apoptosis or programmed cell death is a highly conserved and regulated cell response to 

inhibit the abnormal proliferation of cells [246].  Cardiomyocytes are not capable of self-

regeneration and are terminally differentiated but can undergo apoptosis, necrosis, or autophagy 
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when unduly stressed [247].  Apoptosis is increased in many cardiovascular diseases such as 

dilated and ischemic cardiomyopathy, hypertrophic heart disease, and in arrhythmias [246, 248-

251].  Increased age has been shown to cause apoptotic susceptibility in the heart following 

oxidative injury [252, 197].  Aging in the F344xBN heart is characterized by increases in the 

amount of cytochrome c, apoptosis inducing factor (AIF), Bax, rate of permeability transition pore 

opening, and fragmented DNA [253].  The age-associated increase in apoptosis appears to be due 

not only to the activation of pro-apoptotic molecules but also by decreases in anti-apoptotic NF-

κβ, Bcl-xL, and Grx1 signaling [252].  Other work has demonstrated that the aging male F344xBN 

rat heart is characterized by increases in TUNEL positive nuclei, caspase-3 activation, caspase-

dependent cleavage of alpha-fodrin, and diminished phosphorylation of protein kinase B/Akt 

(Thr308) [254].  The increase of apoptosis in the aging male F344xBN was highly correlated to 

age-associated increases in oxidative-nitrosative stress.  Although not demonstrating cause and 

effect, these results suggest that the increased cellular ROS and cardiomyocyte apoptosis may 

play a role in age-related cardiac remodeling.          

The incidence of cells undergoing apoptosis in the heart has been shown to differ with sex 

in humans, primates, and rodents. In humans, a higher number of TUNEL positive myocytes 

(indice of apoptosis) is seen in young males compared to females [89, 121, 255]. Similar to 

humans, aging does appears to increase cardiac apoptosis in male monkeys; however, there was 

no gender difference in apoptosis in male and female B6 mice in addition to the F344 rat [121,188, 

190, 256, 257].  These results suggest differences in apoptosis regulation between species.  How 

aging may affect cardiomyocyte apoptosis in the aging female F344xBN rat has, to our knowledge, 

not been investigated.   
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EFFECTS OF AGING ON AORTA STRUCTURE AND FUNCTION 

 Vascular aging, especially the aging aorta, also markedly increases the risk of 

cardiovascular disease in the elderly population [258, 259].  The aorta, the largest artery in the 

body, consists of smooth muscle, endothelial cells, fibroblasts, and extracellular matrix which  

 

FIGURE 2.6 

 

 

 

 

 

 

 

 

FIGURE 2.6:  COMPOSITION OF THE THREE AORTIC LAYERS.   

The location and the composition of the three layers of the aorta (tunica intima, tunica 

media, and tunica adventitia) are shown using a hematoxylin and eosin stain (H&E). 

 

are distributed into three layers - the tunica adventitia, tunica media, and tunica intima (Figure 

2.6) [260].  The outer layer of the aorta, the tunica adventitia is composed of collagen, which 

surrounds the tunica media.  The tunica media is primarily composed of smooth muscle, elastic 

tissue, and extracellular matrix.  The inner layer, the tunica intima, consists of a layer of 
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endothelial cells.  Structural changes found in the aging vasculature include an enlarged lumen; 

intima-medial thickening; irregular shaped endothelial cells; migration and proliferation of 

VSMCs; increased deposition of extracellular matrix; increased expression of adhesion molecules; 

and alterations in the expression of metalloproteinases as well as cytokines [13, 42, 261-263].  

Functional changes with age in the vasculature consist of impaired distensibility, increased 

stiffness, increased endothelial permeability, attenuation of β2-adrenoceptor vasodilator 

response to agonists, and diminished response to adrenergic receptor stimulation [13, 264-267].  

Like humans, rodents also appear to exhibit several age-associated changes in vascular structure 

and function including changes in intimal thickening, elevations in inflammation-associated 

molecule expression, and increased evidence of oxidative stress [13, 268-270].     

Similar to that seen in other parts of the cardiovascular system, differences in aortic 

structure and function between genders have also been observed in the aging human and 

animals.  In males, aortic wall and intimal-medial thickness are greater during aging than that 

observed in women; however, stiffness was not different between men and women [271].  

Similarly, there were no differences in distensibility in the aging aorta between men and women 

[266].  Although the human aging aorta did not show increases in aortic stiffness, it has been 

documented that the increased vascular stiffness with aging is more prominent in male than 

female animal models [259, 272].  

 Abnormal proliferation and migration of VSMCs play important roles in the 

pathophysiology of atherosclerotic diseases [273, 274].  Previous studies have shown that VSMCs 

isolated from old animals replicate more actively than those obtained from young animals [274-

276]. Similarly, aging has been shown to be associated with an increased proliferative response 



  30 
 

of VSMCs after balloon angioplasty [277, 278].   

 

EFFECTS OF AGING ON AORTIC ENDOTHELIAL CELL FUNCTION  

Endothelial dysfunction is considered to be a common and early feature of vascular 

disease and impaired endothelium-dependent relaxation has been demonstrated in several 

animal models of hypertension, experimental diabetes, atherosclerosis, high salt diet, as well as 

aging [279-281].  The factors regulating endothelial dysfunction are likely complex and may vary 

between models and with aging.  Nitric oxide is a vasodilator that is produced by endothelial nitric 

oxide synthase (eNOS) that plays a crucial role in blood pressure regulation.  NO production is 

stimulated by shear stress, cyclic strain, acetylcholine (Ach), vascular endothelial growth factor, 

bradykinin, estrogen, sphingosine-1 phosphate (S-1P), hydrogen peroxide, and angiotensin II 

[282-285].  It is thought that eNOS activity is regulated by eNOS phosphorylation at Ser1177, 

Ser635, and Ser617 by phosphatidylinositol 3-kinase (PI3K)/Akt, adenosine monophosphate- 

activated protein kinase (AMPK), and cyclic AMP-dependent protein kinase (cAMPK) signaling 

[285, 286]. Given its important role in regulating vascular function it is not surprising that 

abnormalities in vascular NO production are thought to contribute to the pathogenesis of 

atherosclerosis and hypertension [287, 288].  Advanced age has also been found to be associated 

with impaired endothelial NO synthesis and endothelial dysfunction [289-292].  The mechanisms 

responsible for age-associated alterations in NO synthesis are not fully known but may include 

changes in activity or expression of eNOS; increased breakdown of NO due to oxidative 

stress/oxidative injury; changes in antioxidant defense systems; and decreased availability of 

eNOS substrate, L-arginine [293-299].  Although the activity of eNOS is generally thought to be 
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diminished with aging, the expression of eNOS has been shown to be decreased, increased, or 

not changed in the aorta [8, 300, 301, 302].  In addition to changes in eNOS activity, decreased 

NO availability during aging can also be caused by oxidative stress and alterations in eNOS 

structure [282, 291, 299, 300, 303-306].  The regulation of eNOS function during aging may also 

differ with sex.  In aging male but not female mice, eNOS-dependent aortic relaxation is impaired 

due to increased production of superoxide by nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase [307].  Whether estrogen may also play a role in modulating eNOS activity is 

currently unclear.  Although estrogen has been shown to activate eNOS, estrogen studies in 

animals have shown no effect or increased eNOS expression following estrogen treatment [8, 308, 

309-312].  Conversely, in humans, estrogen replacement appears to be largely ineffective as a 

means of decreasing CVD risk [309, 313-316]. To our knowledge no studies have investigated 

eNOS expression or function in the aging female F344xBN.  

 

SEX-RELATED DIFFERENCES IN AORTIC VSMCs WITH AGING 

In women, the incidence of vascular dysfunction is thought to be related, at least in part, 

to the cessation of ovarian hormone production [317, 318].  In VSMCs from young female Wistar 

Kyoto rats, estrogen inhibited VSMC proliferation following stimulation with fetal calf serum 

[319].  This effect was thought to be mediated by estrogen receptors [319].  Similar decreases in 

VSMC proliferation with estrogen treatment following cell stimulation by growth factors or 

mechanical stress have also been noted [317, 320, 321].  Like estrogen, progesterone is also 

thought to inhibit the proliferation of aortic VSMC, most likely via its ability to inhibit DNA 

synthesis [322].  Nonetheless, it should be noted that the effects of estrogen in vivo are likely 
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more complex than that seen in cell culture.  For example, in aortas from diabetic female rats, 

estrogen failed to reverse the impaired basal release of NO and the abnormal relaxation to 

histamine [323].  The importance of estrogen in the regulation of vascular smooth muscle cells 

has also been suggested in estrogen receptor knockout models as well as estrogen deficient 

rodent models.  In estrogen receptor knockout mice, there is a reduction in basal NO release as 

well as increased VSMC proliferation after injury [317, 324, 325].  In the estrogen-deficient 

aromatase-knockout [184] mouse, VSMCs exhibited abnormal proliferation and apoptosis in 

addition to slowed growth [317].   Although the effects of estrogen have begun to be investigated 

in animal models with different levels of estrogen, how alterations in estrogen levels during 

natural aging may affect aortic structure and function is not well understood.   

 

AGING AORTA SIGNALING 

The MAPK signaling pathways function regulates many processes in the aorta including 

VSMC proliferation, contraction, migration, differentiation, and cell survival [326-330].  Aging has 

also been shown to increase the activation (phosphorylation) of p44/42 and JNK MAPKs in the 

aorta while other work has shown that aging affects the ability of the aged aorta to activate p38 

and JNK MAPK signaling following mechanical loading [331, 332].  In aged animals, the activation 

of p44/42 MAPK in vascular smooth muscle was increased compared to young animals  [260, 273,  

274].   

 Similar to that observed for the heart, age-associated changes in the expression/activity 

of NF-κβ were found in the vascular smooth muscle cells of the aorta.  Aging has been found to 

increase the sensitivity of NF-κβ to glucose in aortic VSCM cells [333].  Other research has shown 
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that VSCM proliferation and NF-κβ activation stimulated by interlukin-1β was increased more in 

aged female rats than in young female rats [334].  In premenopausal women, receiving hormone 

treatment appeared to reduce NF-κβ activation [335] suggesting that estradiol reduces NF-κβ 

activation.  How estrogen may inhibit NF-κβ activity is currently unclear but may be related to 

increased Iκβ levels or decreased levels of circulating TNF-α [335, 336].    Whether age-related 

changes in estrogen affect the activity of NF-κβ in the aging female aorta remains unclear.   

 

CONCLUSION 

 The number one killer of women is CVD despite improved medical care and 

increased awareness/education [26, 43-47, 337-339].  Most cardiovascular deaths occur in 

women over 85 years of age [14, 36].  Aging is associated with an increased risk of developing 

cardiovascular disease such as myocardial infarction, stroke, atherosclerosis, peripheral occlusive 

disease, diabetes, and hypertension [340, 341].  Similar to that seen in humans, cardiovascular 

aging in rodents is characterized by cardiomyocyte loss, hypertrophy of the remaining 

cardiomyocytes, increased fibrosis, increased dilation of the lumen, thickening of the media and 

intima, increased stiffness, and endothelial dysfunction [13, 116, 117, 119, 339]. These structural 

changes adversely affect aging cardiovascular function by leading to systolic and diastolic 

dysfunction [114, 342].  In addition to structural and functional changes, there is also evidence 

that aging may also affect the regulation of several signaling pathways including the MAPK, NF-

κβ, eNOS, Hsp, and apoptotic signaling in the heart and aorta [332, 343-346].    It is thought that 

age-associated increase in oxidative-nitrosative stress and damage may be a possible mechanism 

to explain alterations in cardiovascular structure, function, and signaling pathways [184, 187].  
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The exact role that increased levels of oxidative stress may play in the development and 

progression of age -associated CVD remains to be determined.   

The effect of sex on cardiovascular risk has not been fully elucidated; however, data have 

suggested that pre-menopausal women have a decreased risk in CVD when compared to men of 

similar age [24, 69]. This cardio-protective benefit appears to be lost over time as the risk of 

developing CVD in post-menopausal women appears to be similar to that observed in men of a 

similar age [25].  Humans are the only species that undergo menopause.  In order to overcome 

the difficulties found in aging female human and non-human primate research models (ethics, 

cost, and long lifespan), rodents may provide the best animal model to investigate age-related 

changes in cardiovascular structure and function.  Although many studies have investigated 

cardiovascular aging in rodents, very few studies have investigated how aging may affect 

cardiovascular structure and function in an aged female rodent model (> 26-months) that does 

not exhibit an increased incidence of age-associated pathologies.  Methods of surgically-induced 

menopause may also complicate age-related research findings given the sudden loss of hormones 

that are characteristic of this procedure.  The NIA recommended male F344xBN rat model has 

been shown to exhibit many of the age-related changes in cardiovascular structure and function 

seen in the aged man; however, no study has investigated the age-associated alterations in the 

female F344xBN rat.  In order to distinguish between changes in the cardiovascular physiology 

and changes that occur with aging, menopause, and their interaction, a better understanding of 

aging in the cardiovascular system is needed in a natural aging animal model.  Whether aging in 

the female F344xBN rat is a fitting model for the age-related changes seen in human females is 

currently unclear and is the purpose of this dissertation research project. 
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CHAPTER 3 

 

THE EFFECTS OF AGING ON INDICES OF OXIDATIVE STRESS AND APOPTOSIS IN THE 

FEMALE F344xBN RAT 

 

Oxidative-nitrosative stress may play a role in age-associated cardiovascular disease as 

implied by recent studies. However, limited research has been conducted using aged female 

rodent models.  This chapter details the findings related to the age-associated alterations in 

cardiac ROS, oxidative-nitrosative damage, and apoptotic signaling outlined in Specific Aim 1.  

 

ABSTRACT 

Oxidative-nitrosative stress may play a role in age-associated CVD as implied by recent 

studies.  However, limited research has been conducted using aged female rodent models.  In this 

study, we examined hearts obtained from 6-, 26-, and 30-month old female F344xBN rats in order 

to examine how aging affects levels of cardiac oxidative-nitrosative stress and apoptosis.  

Oxidative (superoxide anion and 4-HNE) and nitrosative (protein nitrosylation) stress markers 

were increased 180 ± 17 %, 110 ± 3 %, and 14 ± 2 %, respectively in 30-month hearts compared 

to the hearts of 6-month female rats.  Coincident with these changes in oxidative-nitrosative 

stress, aging was also found to be associated with increases in the number of TUNEL-positive 

cardiomyocytes, alterations in the Bax/Bcl-2 ratio, and elevated cleavage of caspase-3.  

Regression analysis demonstrates significant correlation in the age-associated changes markers 

of oxidative–nitrosative stress with changes in apoptotic signaling.  The findings from this 

descriptive study imply that age-associated increases in mitochondrial-mediated apoptosis may 
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be associated with the increase in oxidative-nitrosative stress in the aging F344xBN female heart.     

    

INTRODUCTION 

Aging is thought to be a major risk factor for CVD, and is associated with a loss of 

cardiomyocytes by apoptosis, and increases in tissue fibrosis which can lead to systolic and 

diastolic dysfunction [89, 101, 116, 347, 348].  The effect of sex on cardiovascular risk has not 

been fully elucidated; however, data have suggested that pre-menopausal women have a 

decreased risk in CVD when compared to men of similar age [24, 69].  This cardio-protective 

benefit appears to be lost over time as the risk of developing CVD in post-menopausal women 

appears to be similar to that observed in men of a similar age [25].  The reason(s) for the increased 

risk of developing CVD following menopause is unclear but may be related to changes in estrogen 

levels.  Recent work has shown that pre-menopausal females appear to exhibit reduced levels of 

ROS [349].  Similarly, levels of oxidative-nitrosative stress are reduced in pre-menopausal rats  or 

estrogen treated rats due to increases in either antioxidant enzyme activity or increases in 

potential ROS scavenging [350].  Other studies have demonstrated that the mitochondria-

mediated pathway of apoptosis was activated in the heart in ovariectomized rats and this 

appeared to occur coincident with decreased antioxidant enzyme activity and increased indices 

of oxidative stress [83, 351].  Although these data are suggestive of estrogen playing a protective 

role in the cardiovascular system, how the natural loss of estrogen with aging affects cardiac ROS 

levels is not well known. 

Aging in the male F344xBN rat has been found to be associated with declines in cardiac 

function, increased markers of oxidative-nitrosative stress, and increased cardiomyocyte 
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apoptosis [187].  Whether these changes are also present in the aging female F344xBN heart is 

currently unclear.  Herein, we examine the effects of aging on indices of oxidative-nitrosative 

stress and apoptosis in 6-, 26-, and 30-month old female F344xBN rats.  Similar to that seen in the 

aging males, we hypothesized that aging in female F344xBN animals would be characterized by 

increases in oxidative-nitrosative stress and cardiomyocyte apoptosis.  The data presented in this 

descriptive report support this notion and are consistent with the possibility that age-related 

increases in oxidative-nitrosative stress in the female F344xBN heart could be responsible, at least 

in part, for the increased cardiomyocyte apoptosis observed in the aging heart. 

 

MATERIALS AND METHODS 

Materials 

Protein kinase B (Akt) Akt [#9272], phosphor-Akt(Ser473) [#9271], phosphor-Akt(Thr308) 

[#9275],  Bcl-2 (50E3) [#2870], caspase-12 [#2202], caspase-3 [#9662], cleaved caspase-3 Asp175  

[#9661], HSP27 [#2442], HSP90 (#4877), nitrotyrosine [#9691], GAPDH [#2118], 3T3 Control Cell 

Extracts [#9203], mouse secondary [#7076], rabbit secondary [#7074] and biotinylated protein 

ladder [#7727] were from Cell Signaling Technology (Beverly, MA).  The antibody for HSP70 [#sc-

1060], HeLa whole cell lysate [sc-2200], and L6 +IGF Cell Lysate [sc-24127] were purchased from 

Santa Cruz Biotechnology Inc. (Santa Cruz, CA).  Precast 10% and 15% PAGEr Gold Precast Gels 

were from Lonza (Rockland, ME), Precision Plus Protein Dual Color Standards [#161-0374] were 

obtained from Bio-Rad (Hercules, CA,) and ECL western blot detection reagent was from 

Amersham Biosciences (Piscataway, NJ). Restore western blot stripping buffer was purchased 

from Pierce (Rockford, IL), and the In Situ Cell Death Detection Kit was procured from Roche 
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Applied Science (Mannheim, Germany).  All other chemicals were obtained from Sigma (St. Louis, 

MO). 

 

Animals 

All animal procedures were conducted under the Animal Use Review Board of Marshall 

University using the criteria outlined by the Association for Assessment and Accreditation of 

Laboratory Animal Care (AALAC) as proclaimed in the Animal Welfare Act (PL89-544, PL91-979, 

and PL94-279).  Adult (6-months of age, n = 9), aged (26-months, n = 8), and very aged (30-

months, n = 8) female F344xBN rats were obtained from the NIA (Bethesda, MD).  Two rats per 

cage were housed in AALAC approved vivarium with a 12 h: 12 h light-dark cycle at 22 ± 2˚C.  Food 

and water were provided ad libitum (LabDiet 5001, PMI Nutrition International, LLC, Brentwood, 

MO).  Animals were allowed to recover from shipping for at least two weeks before 

experimentation and monitored daily. Rats were removed from the study if they demonstrated 

signs of failure to thrive such as precipitous weight loss, disinterest in environment, or unexpected 

gait alterations. 

 

Heart Collection 

 Rats were anesthetized with an intraperitoneal injection of ketamine (40 mg/kg) and 

xylazine (10 mg/kg) and supplemented as necessary for reflexive response.  Hearts were removed 

following midline laparotomy, placed in Krebs-Ringer bicarbonate buffer (118 mM NaCl, 4.7 mM 

KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM Mg SO4, 24.2 mM NaHCO3, and 10 mM a-D-glucose; 

pH 7.4; equilibrated with 5% CO2/95% O2 at 37°C), massaged to remove any remaining blood, and 

quickly weighed before snap freezing in liquid nitrogen.  
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Histological and Immunohistochemical Analysis 

Hearts were sectioned (8 µm) onto poly-lysine coated slides using an IEC Minotome 

Cryostat.  The oxidative fluorescent dye, hydroethidine, was used to visualize superoxide in situ 

as previously described [187].   Digitized images were used to determine average pixel intensity 

of six randomly positioned regions (1000 µm2) per cross section to calculate the intensity of 

fluorescent ethidium-stained nuclei.  Eight images per section were analyzed with ≥ 500 nuclei 

per section examined.   

 Nitrotyrosine immunoreactivity was visualized with immunofluorescence as detailed by 

the manufacturer.  Briefly, sections were washed three times using a phosphate buffered saline 

with 0.5% Tween 20 (PBS-T) at pH 7.5.  Sections were incubated in a humidified chamber at 24°C 

for 1 h in a blocking solution (5% bovine serum albumin (BSA) with the nitrotyrosine antibody 

(1:1000 in PBS-T) and then washed three times with PBS.  Immunoreactivity was visualized 

following additional incubation for 30 min with FITC labeled anti-rabbit IgG (1:200) and 

counterstaining with 4, 6-diamidino-2-phenylindole (DAPI; 1.5 µg/ml).  Images were recorded 

using an Olympus fluorescence microscope (Melville, NY) at 20X.  

 

In situ TUNEL Staining 

 Cross-sections (8 µm) were fixed with 4% paraformaldehyde, washed with PBS (pH 7.4), 

and then permeabilized using 0.1% Triton X and 0.1% sodium citrate for 2 min at 4°C before TUNEL 

staining.  Sections were counter-stained for dystrophin immunoreactivity to illuminate the muscle 

membrane as outlined previously [352].  Terminal deoxynucleotidyl transferase (TdT) and 
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fluorescein-dUTP (TUNEL reaction mixture) was added to the sections before incubation in a dark 

humidified chamber at 37°C for 60 min.  After rinsing with PBS, sections were mounted and 

counterstained with DAPI to visualize nuclei.  Three randomly selected regions from each cross-

section were digitally recorded with a CCD camera (Olympus, Melville, NY) to visualize TUNEL 

positive nuclei using an Olympus fluorescence microscope (Melville, NY) with a 20X objective.   

Control experiments performed in parallel using DNase 1 or without TdT were used to verify 

specificity of labeling. 

 

Isolation of Protein Isolates 

Heart samples were pulverized using a mortar and pestle in liquid nitrogen to a fine 

powder and weighed.  TPER Lysis Buffer (10 µL/mg tissue; Pierce, Rockford, IL, USA) containing 

protease (P8340, 10 µL/mL Sigma-Aldrich, Inc., St. Louis, MO, USA) and phosphatase inhibitors 

(P5726, 10 µL/mL, Sigma-Aldrich, Inc., St. Louis, MO, USA) was added to each sample and the 

samples homogenized for 45 s.  After incubation on ice (30 min), this procedure was repeated 

and the samples were then centrifuged at 14,000 x g at 4°C for 5 min.  After centrifugation, the 

supernatants were removed and the protein concentration of each sample was determined in 

duplicate using the Pierce Reagent Assay (Pierce, Rockford, IL).  Samples were diluted to a 

concentration of 1.5 µg/mL in SDS-loading buffer and boiled for 5 min. Thirty micrograms of 

protein from each sample were separated using 10% or 15% SDS-PAGE gels.   

   

Immunoblot Analysis 

Proteins were transferred using standard conditions onto Hybond nitrocellulose 
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membranes after electrophoresis [353].  Rapid Stain (G-Biosciences, St. Louis, MO) was used to 

verify the transfer of protein, equal protein loading between samples, and for normalization 

between gels.  Before incubation with primary antibody, membranes were blocked using 5% milk 

TBS-T for 1 hour, and then incubated with primary antibody overnight (1:1000).  After extensive 

washing in TBS-T, membranes were incubated with horseradish peroxidase-(HRP)-labeled IgG 

secondary antibodies for 1 h.  Protein bands were visualized with ECL western blotting detection 

reagent before densitometry using a flatbed scanner (Epson Perfection 3200 PHOTO) and the 

AlphaEaseFC imaging software. The integrated optical densities were kept within a linear and 

non-saturated range by adjusting the exposure time.   

  

Statistical Analysis 

Results are presented as mean ± standard error of the mean (SEM).  The SigmaStat 11.2 

statistical program was used to perform one-way analysis of variance (ANOVA) for overall 

comparisons as well as to determine group differences using the Student-Newman-Keuls post hoc 

test where applicable.  A (p < 0.05) was accepted as the level of significance. 

 

RESULTS 

Superoxide production, markers of ROS stress, and protein nitrosylation are increased with aging 
 

 Compared to 6-month old animals, body weight (BW) and heart weight (HW) were 

significantly higher in the 26- and 30-month old rat (p < 0.05) (Table 3.2).  Hydroethidine which 

emits fluorescence upon oxidation by superoxide to ethidium bromide, was used to 

semiquantitatively determine superoxide production in heart tissue sections from each age 
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group.  Compared to 6-month old animals, ethidium fluorescence was 239% and 180% higher in 

26- and 30-month female hearts, respectively (p < 0.05, Figure 3.1).  In a similar fashion, aging 

increased tyrosine nitration in the 26- and 30-month old animals (p < 0.05, Figure 3.2).  The 

modification of proteins due to lipid peroxidation was examined using 4-HNE, a lipid peroxidation 

metabolite.  Compared to 6-month old animals, 4-HNE levels were 71% and 110% higher in the 

26- and 30-month hearts (p < 0.05, Figure 3.3).   

  

Age-associated cardiomyocyte apoptosis in the female F344xBN heart was associated with 

caspase activation and changes in the Bax/Bcl-2 ratio 

Similar to previous work, TUNEL staining was performed to determine if aging was 

associated with evidence of increased DNA fragmentation which is suggestive of cellular 

apoptosis [197, 254, 354, 355].  Compared to that observed in the 6-month animals, the number 

of TUNEL positive nuclei appeared to be increased in 26- and 30-month hearts (Figure 3.4). 

Because caspase-3 activation is an important step in the initiation of DNA fragmentation / 

apoptosis, we next examined if aging was associated with increased caspase-3 cleavage. With 

aging, total caspase-3 expression was 19% and 29% lower in the 26-month and 30-month hearts, 

respectively (p < 0.05, Figure 3.5).  Consistent with these data, this decrease in total caspase-3 

levels was paralleled by increases in the amount of cleaved caspase-3 (19- and 17-kDa fragments) 

of 167% and 290% at 30-months (p < 0.05; Figure 3.5).  To confirm these findings, we next 

examined the ratio of Bax (pro-apoptotic) to Bcl-2 (anti-apoptotic).  It is thought that Bax 

promotes apoptosis by forming a homodimer, which becomes inserted into the mitochondrial 

membrane where it forms a pore that potentiates the release of cytochrome-C from the 
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mitochondria.  With aging, Bax expression was 15% higher at 30-months when compared to that 

observed in the 6- and 26-month old animals (Figure 3.6).  Conversely, the amount of Bcl-2 protein 

was 13% lower in the 26-month old animals (Figure 3.6).  As expected from these data, the 

Bax/Bcl-2 ratio was 19% higher in 30-month animals compared to that observed for the 6- and 

26-month age groups (p < 0.05, Figure 3.6).     

 

DISCUSSION 

The F344xBN rat exhibits less age-associated pathologies and an increased longevity in 

comparison to other rat models [10, 11].  Although previous data has demonstrated increased 

levels of apoptosis and oxidative stress are associated with aging in the male heart, to our 

knowledge this is the first investigation to examine if these phenomena occur in the naturally 

menopausal aging female rat model [187, 254].  Herein, we observed evidence of increased 

superoxide, protein nitrosylation, and lipid peroxidation with aging (Figures 3.1 – 3.3).  Why aging 

may increase ROS levels is not yet fully understood, however, recent data has suggested that 

alterations in enzymatic activity of the xanthine and NADPH oxidoreductases, the mitochondrial 

electron transport chain, nitric oxide synthase activity, and lipoxygenase/cyclooxygenase may 

function as potential contributors [356, 357].  In addition to ROS production, it is thought that the 

amount of ROS present in the cell at any one time is determined, at least in part, by the balance 

between ROS generation and breakdown.  The antioxidant enzymes, SOD, Cat, and Gpx, are 

thought to remove ROS thereby functioning to prevent excessive accumulation of ROS [183, 350, 

358].  Recent studies have found that antioxidant activity is increased or decreased with age in 

the rodent heart [359, 360].  Adding to the confusion, we did not find any age-associated 
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alterations in the messenger RNA (mRNA) expression of SOD1, SOD2, Cat, and Gpx in the female 

F344xBN heart (data not shown).  Whether age-associated dysregulation in the amount of ROS 

produced, decreases in the abundance of antioxidant enzyme expression, or a combination of the 

two are responsible for our findings of elevated indicators of ROS in the aging rat heart is currently 

not known.  Future studies designed to directly examine the regulation of some, or several of the 

ROS generating and buffering pathways will be required to extend our understanding of the 

relationship between aging and cardiac ROS regulation. 

Elevated levels of superoxide are oftentimes associated with increased nitrosative stress 

given that superoxide can react with nitric oxide to form peroxynitrite.  Peroxynitrite, in turn, can 

cause tyrosine nitration and the measurement of nitrosylated tyrosine residues is thought to be 

an established marker for nitrosative stress [361].  Similar to that seen in the aging male F344xBN, 

we found that aging in the female heart was associated with increased protein tyrosine 

nitrosylation (Figure 3.2) [187].  This latter finding is different from previous work using the female 

Long-Evans/Wistar rat, which found no change in 3-nitrotyrosine levels with cardiac aging [362].  

The reasons for differences between the current study and previous is not entirely clear but may 

be related to differences in the animal strain used and/or animal age as the Long-Evans/Wistar 

hybrid rats were only 24-month of age at time of sacrifice as opposed to the 26- and 30-month 

old animals used in the present study.    

Similar to our analysis of nitrosative stress, and like that seen in the aging male F344xBN, 

we also observed that aging was associated with increased 4-hydroxynonenal (4-HNE) reactivity 

(Figure 3.3) [187].  It is thought that 4-HNE levels are a marker of lipid peroxidation and that 

increased levels of 4-HNE can result in alterations in lipid signaling and enzyme inactivation [363].  
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Studies have shown that production of 4-HNE occurs primarily from the mitochondria, and that 

the mitochondria are the primary target for lipid peroxidation damage [364].  This damage to the 

mitochondria, if extensive, can lead to alterations in ROS production and the release of 

cytochrome-C from the mitochondria.  To investigate this possibility, we next examined if aging 

was associated with increased evidence of cellular apoptosis. Similar to that seen in the aging 

male F344xBN hearts, TUNEL staining suggested the possibility of increased DNA fragmentation 

with aging in the female F344xBN heart (Figure 3.4) [254].  In an effort to elucidate the mechanism 

of apoptosis, we next investigated the effects of aging on the expression of proteins involved in 

apoptotic signaling.  It is thought that the mitochondrial-mediated apoptotic pathway employs 

the activation of caspase-3 [365].  Here we demonstrate that caspase-3 cleavage was increased 

with age in the female F344xBN heart (Figure 3.5).   In a similar fashion, we also found an increase 

in Bax expression and the ratio of Bax/Bcl-2 with aging (Figure 3.6).  Taken together, and like that 

previously proposed in the aging male F344xBN heart, these data suggest that age-associated 

increases in cellular apoptosis are mediated, at least in part, by the mitochondrial pathway.   

To examine the degree of relationship between the different dependent variables, we 

calculated the correlation between age, heart weight, number of TUNEL positive cardiomyocytes, 

HE levels, nitrotyrosine, and 4-HNE.  Very high correlation was observed between aging as well as 

superoxide production, levels of nitrosative-stress marker, and nitrotyrosine (Table 3.2A).  

Although the exact mechanism(s) cannot be concluded from this data, these findings are 

consistent with the possibility that the age-associated increases in superoxide production may 

lead to increased oxidative-nitrosative damage that include elevations in the amount of proteins 

undergoing 4-HNE and nitrotyrosine modification.  Interestingly, we also found that age-
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associated increases in oxidative-nitrosative damage were highly correlated with activation of the 

mitochondrial-mediated pathway of apoptosis (Table 3.2B).  Whether increases in age-related 

oxidative damage, as suggested by our nitrotyrosine and 4-HNE data, are responsible for initiating 

cellular apoptosis is currently unclear and beyond the scope of the present study.  Nonetheless, 

the data of the present study demonstrate that aging in the female F344xBN heart is 

characterized by increased levels of oxidative stress and pro-apoptotic signaling (Figure 3.9).  

Whether these biochemical changes result in adaptations in cardiac function is currently unclear 

and is the focus of ongoing experimentation (Figure 3.7). 
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TABLE 3.1:  THE HEART AND BODY WEIGHTS OF AGING F344XBN FEMALES.   

An asterisk (*) and a cross (†) indicate significant differences from the adult (6-month) and aged 

(26-month) values respectively (p < 0.05), n = 8 or 9 hearts per age group.   

 

Group Body WT (g) Heart WT (g) HW/BW ratio (x100) 

        

6m 230.5 ± 5.3 0.76 ± 0.03 0.330 ± 0.009 

26m 274.0 ± 4.9* 0.95 ± 0.01* 0.334 ± 0.019 

30m 321.3 ± 7.2*† 1.12 ± 0.05*† 0.351 ± 0.011 
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TABLE 3.2A:  THE REGRESSION ANALYSIS OF EXPRESSION LEVELS OF SPECIFIC PROTEINS AND 

AGE, HE STAINING INTENSITY, PROTEIN NITROTYROSINE LEVELS, 4-HNE LEVELS, HEART 

WEIGHT, AND TUNEL STAINING INTENSITY OF 6-, 26-, AND 30-MONTH FEMALE F344XBN 

HEARTS.   The following symbols indicate (*) low correlation (p < 0.05), (**) moderate 

correlation (p < 0.05), (***) high correlation (p < 0.05).  P values are found in parentheses below 

R values.  Numbers within parentheses near name of protein indicate protein size in kDa.  N.T. 

(not tested).   

 Age Heart 
Weight 

TUNEL HE Nitro-
tyrosine 

4-HNE 

       

Independent 
Variable 

      

Age 
 

N.T. 0.899*** 
(<0.001) 

0.690 
(0.40) 

0.965*** 
(<0.001) 

0.849*** 
(0.004) 

0.969*** 
(<0.001) 

HE 
 

0.965*** 
(<0.001) 

0.802** 
(0.009) 

0.722* 
(0.028) 

N.T. 0.767* 
(0.016) 

0.905*** 
(<0.001) 

Heart Weight 
 

0.286 
(0.455) 

N.T. 0.478 
(0.193) 

0.802** 
(0.009) 

0.911*** 
(<0.001) 

0.448 
(0.226) 

TUNEL 
 

0.690 
(0.40) 

0.478 
(0.193) 

N.T. 0.722* 
(0.028) 

0.597 
(0.090) 

0.718* 
(0.029) 

Nitro-tyrosine 
 

0.849** 
(0.004) 

0.911*** 
(<0.001) 

0.597 
(0.09) 

0.767* 
(0.016) 

N.T. 0.907*** 
(<0.001) 

4-HNE 
 

0.969*** 
(<0.001) 

0.924*** 
(<0.001) 

0.718* 
(0.029) 

0.905*** 
(<0.001) 

0.907*** 
(<0.001) 

N.T. 
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TABLE 3.2B:  THE REGRESSION ANALYSIS OF EXPRESSION LEVELS OF SPECIFIC PROTEINS AND 

AGE, HE STAINING INTENSITY, PROTEIN NITRO-TYROSINE LEVELS, 4-HNE LEVELS, HEART 

WEIGHT, AND TUNEL STAINING INTENSITY OF 6-, 26-, AND 30-MONTH FEMALE F344XBN 

HEARTS.   The following symbols indicate (*) low correlation (p < 0.05), (**) moderate 

correlation (p < 0.05), (***) high correlation (p < 0.05).  P values are found in parentheses below 

R values.  Numbers within parentheses near name of protein indicate protein size in kDa.  N.T. 

(not tested).   

 Age Heart 
Weight 

TUNEL HE Nitro-
Tyrosine 

4-HNE 

       

Apoptotic Signaling       

Bax 
 

0.263 
(0.493) 

0.331 
(0.385) 

0.526 
(0.146) 

0.111 
(0.835) 

0.738 
(0.094) 

0.478 
(0.338) 

Bcl-2 
 

0.473 
(0.199) 

0.356 
(0.346) 

0.981** 
(0.009) 

0.862* 
(0.027) 

0.394 
(0.439) 

0.637 
(0.174) 

Casp-9 (51kDa) 
 

0.748 
(0.848) 

0.326 
(0.392) 

0.528 
(0.144) 

0.262 
(0.615) 

0.554 
(0.254) 

0.447 
(0.347) 

Casp-9 (40kDa) 
 

0.782* 
(0.013) 

0.651 
(0.058) 

0.676* 
(0.046) 

0.837* 
(0.038) 

0.640 
(0.171) 

0.847* 
(0.033) 

Casp-9 (38kDa) 
 

0.927*** 
(<0.001) 

0.811** 
(0.008) 

0.659 
(0.054) 

0.923** 
(0.009) 

0.705 
(0.118) 

0.924** 
(0.008) 

Casp-9 (17kDa) 
 

0.800* 
(0.01) 

0.820** 
(0.007) 

0.665 
(0.051) 

0.605 
(0.203) 

0.905* 
(0.013) 

0.865* 
(0.026) 

Casp-3 
 

0.878** 
(0.007) 

0.928*** 
(<0.001) 

0.537 
(0.136) 

0.940** 
(0.005) 

0.887* 
(0.019) 

0.974*** 
(<0.001) 

Casp-3 (19kDa) 
 

0.612 
(0.08) 

0.664 
(0.051) 

0.590 
(0.094) 

0.421 
(0.406) 

0.863* 
(0.027) 

0.737 
(0.094) 

Casp-3 (17kDa) 
 

0.683* 
(0.043) 

0.740* 
(0.023) 

0.598 
(0.089) 

0.511 
(0.301) 

0.894* 
(0.016) 

0.804 
(0.054) 

Akt 
 

0.409 
(0.275) 

0.899*** 
(<0.001) 

0.474 
(0.197) 

0.236 
(0.653) 

0.201 
(0.703) 

0.052 
(0.923) 

p-Akt(Ser473) 
 
 

0.560 
(0.117) 

0.336 
(0.337) 

0.690* 
(0.040) 

0.852* 
(0.031) 

0.372 
(0.467) 

0.634 
(0.176) 

 

Heat Shock Proteins       

Hsp70 
 

0.205 
(0.597) 

0.264 
(0.492) 

0.536 
(0.274) 

0.018 
(0.963) 

0.137 
(0.725) 

0.134 
(0.731) 

Hsp90 
 

0.094 
(0.809) 

0.084 
(0.830) 

0.132 
(0.803) 

0.145 
(0.710) 

0.117 
(0.764) 

0.058 
(0.883) 
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FIGURE 3.1 

 

FIGURE 3.1:  INCREASED SUPEROXIDE LEVELS IN THE AGING FEMALE F344XBN HEART.   

A. The detection of superoxide using the formation of dihydroethidium from 

hydroethidine staining in 6-, 26-, and 30-month female F344xBN rat hearts.  Scale bar = 100 µm.  

B.  Cardiac superoxide levels were quantified by the intensity of fluorescent Et-stained nuclei and 

these results were reported as the integrated optical density of pixel by micrometer.  Significant 

differences are indicated by an asterisk (*) and a cross (†) from the adult (6-month) value and 

aged (26-month) value, respectively (p < 0.01).   
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FIGURE 3.2 
 

 

FIGURE 3.2:  AGING INCREASES THE NITROSYLATION OF TYROSINE RESIDUES.   

A. Immunohistochemical staining of 6-, 26-, and 30-month female F344xBN hearts to 

determine the nitrosylation of tyrosine residues.  Scale bar = 100 µm.  B.  Immunoblot analysis of 

protein tyrosine nitration in the aging female F344xBN hearts.  Results were reported as fold 

change.  Significant differences are represented by an asterisk (*) and a cross (†) from the adult 

(6-month) value and aged (26-month) value, respectively (p < 0.05). 
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FIGURE 3.3

 

FIGURE 3.3:  LIPID PEROXIDATION INCREASES WITH AGE IN THE FEMALE HEART.  

A.  Immunohistochemical analysis of 4-HNE levels in the 6-, 26-, and 30-month female 

F344xBN heart.  Scale bar = 100 µm.  B.  The quantification of 4-HNE levels determined by 

immunoblotting.  The results were reported as fold change of the 6-month value.  Significant 

differences are represented by an asterisk (*) and a cross (†) from the adult (6-month) value and 

aged (26-month) value, respectively (p < 0.05). 
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FIGURE 3.4

 

 

FIGURE 3.4:  INDICES OF APOPTOSIS INCREASE IN THE AGING FEMALE HEART.    

All cardiomyocyte nuclei were stained with 4’, 6-diamidino-2-phenyllindole (DAPI) and 

nuclei with DNA fragmentation, an indice of apoptosis, were visualized with TUNEL staining.  The 

mouse monoclonal antibody dystrophin (C-terminus) was used to visualize cardiomyocyte 

borders.  Scale bar = 100 µm.   
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FIGURE 3.5 

 

FIGURE 3.5:  AGING ALTERS THE EXPRESSION AND ACTIVATION OF CASPASE-3 AND CASPASE-9.   

Expression of caspase-3 (a) and caspase-9 (b) in heart tissue of female F344xBN rats as 

determined by immunoblot analysis.  Caspase levels were normalized to amount of protein 

loaded into each lane.  Representative immunoblot images are shown for each group.  Data are 

reported as mean ± SEM.  (*) represents significant difference from 6-month age group (p < 0.05).  

(†) represents significant difference from 26-month group (p < 0.05).  
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FIGURE 3.6 

 

FIGURE 3.6:  AGING AFFECTS THE EXPRESSION AND/OR REGULATION OF APOPTOTIC 

REGULATORS BAX AND BCL-2.   

Bax and Bcl-2 expression of female F344xBN rat hearts with age as measured by 

immunoblot analysis.  Bax and Bcl-2 expression was normalized to amount of protein loaded into 

each lane.  Bax and Bcl-2 ratio is given for each group.  Representative immunoblot images are 

shown for each group.  Data are reported as mean ± SEM.  Significant differences from 6-month 

group (p < 0.05) are represented by an (*).  (†)  represents significant difference from 26-month 

group (p < 0.05).   
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FIGURE 3.7  

 

 

FIGURE 3.7:  SUMMARY OF FINDINGS IN THE AGING FEMALE F344XBN HEART.   

Aging in the female F344xBN heart involved increased oxidative-nitrosative stress and 

damage in addition to increased mitochondrial mediated apoptosis.   
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CHAPTER 4 

AGE-ASSOCIATED ALTERATIONS OF CARDIAC STRUCTURE AND FUNCTION IN THE 
FEMALE F344XBN RAT HEART 

  

 

In Chapter 3, the results showed that there was an age-associated increase in oxidative-

nitrosative stress and damage as well as apoptotic signaling.  According to the free radical theory 

of aging as well as previous studies, the accumulation of oxidative-nitrosative stress leads to 

cardiac dysfunction through alterations in cardiac structure and function.  This chapter 

investigated the age-associated alterations in cardiac structure and function in the female 

F344xBN outlined in Specific Aim II.  

 

ABSTRACT 

The F344xBN rat model exhibits an increased life span and fewer age-associated 

pathologies compared to commonly used F344.  How aging may affect cardiac structure and 

function in these animals, has to our knowledge, not been investigated.  Echocardiography was 

performed on female F344xBN rats at 6-, 26-, and 30-months of age using a Phillips 5500 

Echocardiography system.  Before sacrifice, electrocardiograms were measured in the female 

F344xBN in order to determine heart rhythm interval changes.  Aging was associated with an 

increase in heart to body weight ratio, cardiomyocyte CSA, posterior wall thickening, and left 

ventricle chamber dilatation.  Aging was associated with slight evidence of diastolic dysfunction.  

Alterations in heart rhythm intervals were associated with alterations in the spatial distribution 

of Cx43.  The incidence of arrhythmias was not different with age; however, valvular dysfunction 



  58 
 

was increased.  These data suggest that aging in the female F344xBN rat heart is associated with 

changes in cardiac structure as well as function. Further investigation regarding other parameters 

of cardiac biochemistry and function is needed to better understand the normal compensated 

cardiovascular aging process in the female F344xBN. 

 

INTRODUCTION 

Aging is associated with an increased risk of developing myocardial infarction, stroke, 

atherosclerosis, peripheral occlusive disease, diabetes, and hypertension [340, 341].  Similar to 

that seen in humans, aging in rodents is characterized by cardiomyocyte loss, hypertrophy of the 

remaining cardiomyocytes, and increased fibrosis [13, 116, 117, 119]. These structural changes 

adversely affect aging cardiac function by prolonging contraction and relaxation leading to systolic 

and diastolic dysfunction [114, 342].   

The F344xBN rat has been recommended by the NIA for aging studies due to its increased 

life span and the presence of fewer age-associated pathologies when compared to other rodent 

models [10, 11].  It has been demonstrated that male F344xBN animals undergo similar age-

associated changes in cardiac structure and function to those seen in humans.  Whether female 

F344xBN animals exhibit similar alterations has, to our knowledge, not been examined.  

Normal cardiovascular aging can lead to structural changes in addition to decreased Cx43 

expression or increased heterogeneity which can lead to electrical abnormalities by disrupting 

normal myofiber organization as well as slowing conductance [172, 366]. Such changes in 

electrical conductance, electrolyte imbalance, and altered ion channels have been linked to 

various forms of cardiac disease and rhythm disturbances [119, 367, 368].  These adaptations are 
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capable of resulting in secondary cardiac dysfunction, which can include alterations in cardiac 

rhythm.  To our knowledge such changes have not been investigated in the female F344xBN.  

These changes, if present, in a non-pathological model of female aging may provide insight into 

the normal compensated cardiovascular aging process within the female heart [10].  

The purpose of this study was to examine how aging affects the structure and function of 

the female F344xBN rat heart and to determine if changes in tissue structure and function, if 

present, are associated with changes in electrocardiographic measures and Cx43 heterogeneity 

of distribution.  We hypothesize that alterations in cardiac structure and Cx43 heterogeneous 

distribution in the female F344xBN heart will be associated with cardiac dysfunction and heart 

rhythm interval changes. 

 

MATERIALS AND METHODS 

Animals 

All procedures were performed in accordance with the Guide for the Care and Use of 

Laboratory Animals as approved by the Council of the American Physiological Society and the 

Animal Use Review Board of Marshall University.  All procedures were conducted in strict 

accordance with the Public Health Service Animal Welfare Policy.  Virgin adult (6-month), aged 

(26-month), and very aged (30-month) female F344xBN rats were obtained from the NIA and 

housed two per cage in an AAALAC approved vivarium.  Animal ages were chosen based on 

survivability curves from the National Institute of Aging to approximate females in the third, 

seventh, and eighth decade of life.  Given that previous data have demonstrated a complete loss 

of cyclicity at 16 months of age, the estrous phase was not monitored (PMID 17460359).  Housing 
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conditions consisted of a 12 h-12 h light-dark cycle and temperature was maintained at 22 ± 2˚C.  

Animals were provided with food and water ad libitum.  Rats were allowed to recover from 

shipment for at least two weeks before experimentation during which time the animals were 

carefully observed and weighed weekly.  Any of the rats showing signs of failure to thrive, such as 

precipitous weight loss, disinterest in environment, or unexpected gait alterations were excluded 

from the study.  

 

Echocardiographic procedures 

Rats (6-, 26-, and 30-month) were anesthetized using a cocktail of ketamine (40 mg/kg) 

and xylazine (10 kg/mg) which was injected into the intraperitoneal cavity in order to perform 

echocardiograms.  Echocardiographic procedures were done as previously described by Walker 

and colleagues [94].  In order to prevent disturbances of ultrasound waves, the ventral thorax was 

shaved and the rats were placed either on their backs or left side and covered with ultrasonic 

transmission gel.  A Phillips 5500 Echocardiographic system with a 12 MHz transducer was used 

to take two-dimensional echocardiographic measurements, two-dimensional guided motion 

mode (M-mode), Doppler M-mode, and parasternal long- and shot-axis views.  Parasternal long- 

and short-axis views were used to determine two-dimensional cardiac structural measurements.  

The echocardiographic views were then used to position the M-mode echocardiographic line.  

Valvular blood flow velocities were evaluated using pulse wave Doppler with the probe toward 

the apex (x-axis) and the depth along the y-axis (long axis procedure).  Positioning the probe 

toward the left ventricle and across the heart during short axis procedures made it possible to 

evaluate wall structure in order to calculate EF and FS during systole.  A digital echocardiographic 
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analysis system was used to analyze M-mode displays.  All echocardiography procedures and 

parameters were measured by the same echocardiogram technician to limit inter-observer 

variability.     

Left ventricular mass (LVM) was calculated according to the following equation on the 

basis of previous reports demonstrating a good correlation (r = 0.78, SEE = 0.124, P < 0.0001) 

between calculated and postmortem LVM [369, 370]. 

LVM= 1.04(IVSd+LVIDd+PWTd)3-LVIDd3 [371]  

 

Serum Collection 

 During tissue collection blood was collected by cardiac puncture into a BD Vacutainer 

serum collection tube.  The blood was centrifuged at 800 x g for 15 minutes to separate serum.  

The serum was collected and used to measure serum parameters using an Abaxis VetScan 

analyzer (Abaxis, Union City, CA).  The following parameters were determined: non-fasting serum 

glucose (GLU), alanine aminotransferase (ALT), alkaline phosphatase (ALP), blood urea nitrogen 

(BUN), albumin (ALB), calcium (Ca2+), creatinine (CRE), amylase (AMY), globulin (GLOB), 

potassium (K+), sodium (Na+), phosphorus (PHOS), total bilirubin (TBIL), and total protein [372]. 

  

Heart Collection 

Rats were anesthetized with an intraperitoneal injection of ketamine (40 mg/kg) and 

xylazine (10 mg/kg) and supplemented as necessary for reflexive response.  Before heart 

collection, a three lead EKG was performed on all animals using the Biopac Student Lab software 

(BIOPAC Systems, Inc., Microsoft).  After completion of the EKG, the heart was removed after a 
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midline laparotomy and placed in Krebs-Ringer bicarbonate buffer containing the following: 118 

mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 24.2 mM NaHCO3, and 10 

mM a-D-glucose (pH 7.4) equilibrated with 5% CO2/95% O2 and maintained at 37°C.  Isolated 

hearts were quickly massaged to remove any blood from the ventricles, cleaned of connective 

tissue, weighed, and immediately snap frozen in liquid nitrogen.   

 

Electrocardiographic analysis 

EKGs collected from the aging female rats were analyzed using BioPac Student Lab PRO 

software. All animals were evaluated for any electrical anomalies in all three leads. Lead II was 

used to evaluate changes in EKG parameters, a 6 rhythm section of the EKG was used to obtain 

data for comparison of ventricular acceleration time (VAT), heart rate, ST interval, T amplitude, 

QRS interval, QT interval, PR interval, T duration, T-T interval, R+S amplitude, S amplitude, R 

amplitude, Q amplitude, and P amplitude. Mean electrical axis was calculated from leads I and III 

after calibration of 2 cm/mV using the following formula derived by Singh and Athar [373, 374].  

tan𝜃 =
𝐼 + 2𝐼𝐼𝐼

√3𝐼
        

 

Heart rate was determined by the average intervals between R waves on lead II. 

 

Determination of myocyte cross sectional area and histological analysis 

An IEC Minotome Cryostat was used to section (8 µm) frozen hearts (n = 4) on poly-lysine 

coated slides.  To determine morphology, heart sections were stained with hematoxylin and eosin 

stain.  Picrosirius red staining (PSR) was employed to examine collagen.  The collagen area fraction 
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of the PSR-stained tissues was determined using Image J software. 

Immunostaining for dystrophin (NCL-DYS2, Novocastra Vector Laboratories, Burlingame, 

CA) and connexin-43 (Cell Signing Technology #3512, Danvers, MA) was visualized by 

immunofluorescence as outlined by the antibody manufacturer.   A phosphate-buffered saline 

(PBS) containing 0.5% Tween-20 (PBS-T) at pH 7.5 was used to wash sections three times before 

incubating for 30 min in a blocking solution (5% BSA).  The dystrophin antisera diluted in PSB-T 

(antibody dilution of 1:100) was added to sections for 1 h in a humidified chamber at 24°C.  After 

incubation the sections were washed three time with PBS, and incubated again for 30 min in a 

humidified chamber at 24°C with a secondary antibody solution containing a FITC anti-rabbit IgG 

(1:200) and DAPI (1.5 μg/ml) in order to visualize cell nuclei.  Sections were washed a final time 

with PBS before mounting.  The epifluorescence of specimens was visualized using an Olympus 

fluorescence microscope (Melville, NY, USA) fitted with a 40X objective.  Images were recorded 

digitally using A CCD camera and the Olympus MicroSuite™ Basic from Olympus America 

(Melville, NY, USA) were used to digitally record and analyze images, respectively.  The CSA of the 

cardiac myocytes was determined by measuring the area within the dystrophin positive staining.  

 

Statistics  

Results are given as mean ± SEM.  Statistical analyses were performed using Sigma Stat 

3.5 statistical software (Systat Software, Inc.).  Age comparisons between echocardiographic 

structural, functional parameters, and morphologic indices were evaluated by One Way ANOVA 

with the Student-Newman-Keuls post hoc test for parametric normally distributed data or 

Kruskal-Wallis One Way Analysis of Variance on Ranks with a Dunn's post hoc test for none 
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parametric distributions.  Linear regression analysis was performed with dependent variables 

against the independent variables age, correlation were ranked as low correlation (0.3 to 0.7), 

moderate correlation (0.5 to 0.7), high correlation (0.7 to 0.9), very high correlation (0.9 to 1) 

between parameters (supplemental data).    The level of significance accepted a priori was ≤ 

0.05.     

  

RESULTS 

Cardiac function is preserved in the aging female F344xBN rat 

Compared to 6-month old animals, heart and body weight was higher at 26-months (72 ± 

2 mg vs. 95 ± 2 mg, p < 0.001; 235.3 ± 1.7 g vs. 296.4 ± 6.5 g; p < 0.05) and 30-months (104 ± 4 

mg, p < 0.05); 235.3 ± 1.7 g vs. 315.6 ± 8.6 g; p < 0.05) (Table 4.1).  Compared to 6-month old 

animals, cardiac myocyte CSA was 20 ± 1.9 % and 28 ± 2.3 % higher in the 26- and 30-month old 

animals, respectively (p < 0.05) (Figure 4.2).  Histological analysis using picrosirius red staining 

demonstrated a significant age-related decrease in collagen reactivity (Figure 4.2, p < 0.05).  

Immunohistochemical staining of the aging female heart suggested alterations in Cx43 

localization from the cell ends to the lateral margins (Figure 4.3).  Alignment of the Cx43 staining 

appears to be uniform, localized, and linear within the 6 month tissues sections, as would be 

expected because of Cx43 localization along the intercalated disk.  The linearity of the staining 

appears to become less uniform and diffuse with aging which may indicate alteration in Cx43 

distribution within the cardiac myocyte.  In addition to changes in Cx43 immunoreactivity, aging 

also appeared to be associated with changes in cardiac rhythm.  In particular, aging appeared to 

be characterized by the presence of hyper-acute T waves, a long PR interval, a long P wave 
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duration, tall P waves, and significant Q waves (Figure 4.3, Table 4.4). No evidence of arrhythmias 

was observed in any age group.   

No age-associated changes in transmitral to mitral annular early diastolic velocity ratio (E-

E’) ratio was found in the female F344xBN rats.  Left ventricular IVRT was significantly higher in 

26-month old animals (0.036 ± 0.005 sec) compared to that seen in the 6-month old animals 

(0.015 ± 0.002 sec; p < 0.05).  Mitral valve deceleration time demonstrated no significant change 

with age.  Mitral valve Emax was significantly lower at 26- (61.5 ± 1.5 cm/sec) and 30-months 

(55.4 ± 1.4 cm/sec) when compared to that seen in the 6-month old animals (78.0 ± 3.3 cm/sec; 

p < 0.05).  Mitral valve Amax levels were lower at 30-months (35.1 ± 1.6 cm/sec) when compared 

to 6-months (41.5 ± 1.3 cm/sec; p < 0.05).  No significant changes were found in MV E/A ratio 

with age (Table 4.3). 

Compared to 6-month animals, EF was significantly higher at 26-months (82 ± 1.0 % vs. 74 

± 0.9 %; p < 0.05).    Fractional shortening was lower at 30-months (41.5 ± 1.7 %) when compared 

to that observed in 26-month old animals (45.6 ± 1.0 %; p < 0.05).  End systolic volume (ESV) was 

significantly lower at 26-months (0.082 ± 0.005 mL) when compared to 6-month old animals 

(0.143 ± 0.017 mL; p < 0.05).   However, heart rate was unaltered with age (Table 4.2). 

 

Aging increases septal and posterior wall thickness and valvular insufficiency in the female 

F344xBN heart 

Compared to 6-month old animals, left ventricular septal thickness (IVS) during systole 

was higher in 26-month old animals (0.193 ± 0.008 cm vs. 0.253 ± 0.003 cm; p < 0.05).  Left 

ventricular internal dimension during systole (LVIDs) significantly increased at 26-months (0.331 
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± 0.009 cm) compared to 6-month (0.378 ± 0.017 cm; p < 0.05).  During diastole LVID 

demonstrated no significant change.  Left ventricular posterior wall thickness (LVPW) during 

systole and diastole was significantly increased at 30-months (LVPWs: 0.288 ± 0.009 cm; LVPWs: 

0.189 ± 0.008 cm) compared to 6-months (LVPWs: 0.193 ± 0.002 cm; LVPWd: 0.153 ± 0.010 cm; p 

< 0.05).  No changes were found in right ventricular dimension (RVd) during diastole or left 

ventricular mass with age (Table 4.4). 

 The incidence of tricuspid, mitral, and pulmonary valve insufficiency was higher in 26- and 

30-month female hearts relative to that observed in 6-month animals. The presence of aortic 

insufficiency with age was only seen in the 30-month age group (Figure 4.5). 

 

Aging is associated with alterations in serum glucose and electrolytes in the female F344xBN rat  

In the aging female F344xBN non-fasting serum glucose levels were significantly 

decreased at 30-month (323.7 ± 13.3 mg/dl) compared to 6-month (372.8 ± 16.0 mg/dl) female 

F344xBN rat.  Serum levels of ALP, BUN, PHOS, and potassium (K+) significantly decreased at 26- 

and 30-months compared to that observed in the 6-month old animals.  TP, GLOB, and CRE 

increased significantly at 30-months (6.3 ± 0.1 g/dl; 2.12 ± 0.1 g/dl; 0.4 ± 0.03 mg/dl) compared 

to 6-months (5.8 ± 0.05 g/dl; 1.56 ± 0.12 g/dl; 0.3 ± 0.002 mg/dl).  In the 26-month old female 

F344xBN rat serum calcium (Ca2+, 11.2 ± 0.1 mg/dl) levels were significantly increased compared 

to 6-month female rats (10.7 ± 0.09 mg/dl).  No significant changes were found in serum ALB, ALT, 

sodium, and TBIL with age in the female F344xBN.  Significant increases of calcium to phosphate 

(Ca+/PHOS) and sodium to potassium (Na+/K+) ratios were observed in the 26- and 30-month age 

groups when compared to 6-month animals (p < 0.05).  Compared to 6-month animals, BUN/CRE 
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and the albumin to globulin (ALB/GLOB) ratios were lower in the 26- and 30-month age groups 

(Table 4.5, p < 0.05).  

 

DISCUSSION 

The purpose of this study was to examine how the aging process affects the cardiac 

structure and function in the female F344xBN rat.  Similar to previous work using male animals, 

our data indicated that aging in these animals is associated with an increase in the thickness of 

the septal and posterior walls between 6- and 30-months of age [94].  In addition to these 

changes, we also observed that aging was associated with increases in average cardiomyocyte 

muscle fiber CSA (Figure 4.2) and a trend towards increased left ventricular wall thickness (Table 

4.4).  These data, taken together, are consistent with the efforts of Boluyt and colleagues who 

noted an increase in thickness of septal and posterior walls at 30-months in the aging F344 model 

[2].  Unlike this study, previous echocardiography studies in humans, male F344xBN rats, and 

female F344 rats (at 30-months of age) have shown that LVM in female F344 rats is increased with 

age [26, 89, 94, 114].  Why discrepancies may exist between studies is currently unclear but may 

be related to differences in experimental design, differences across species, rat strain or in the 

time points chosen for examination. Future experiments perhaps using older female F344xBN 

rats may be useful for clarification. 

Aging is oftentimes associated with an increased risk of diastolic dysfunction which 

appears to exhibit a greater incidence in women compared to men [375].  Diastolic problems 

oftentimes, but not always, precede the development of systolic dysfunction [375].  In humans, 

diastolic dysfunction is defined by abnormal ventricular relaxation and filling that is characterized 
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by a low E wave velocity, a high A wave velocity, prolonged deceleration time, and prolonged IVRT 

[375].  In the present study, we observed age-related decrease in E’, increases in left ventricular 

relaxation time and a trend in MV decel time in the female F344xBN heart.  Nonetheless, we did 

not find any changes in the E/A ratio with age.  Conversely, Boluyt and colleagues, using aged 

female F344 animals, demonstrated increases in left ventricular IVRT, decreases in the E wave, 

and an increased A wave velocity [2].  Similar to previous findings by Boluyt and colleagues who 

used the aging female F344 model, we observed age-related increases in left ventricular 

relaxation time, decreased E’ wave velocity, and a trend in MV decel time but no change in the 

E/A ratio with aging in the female F344xBN heart [2].  Taken together, these data suggest that 

aging in the female F344 and F344xBN rats, like that seen in humans, is often characterized by 

alterations in diastolic function. 

Like prior work done in the F344 rat strain, aging in the female F344xBN rat did not appear 

to significantly impair systolic function [2, 118].  Similar to that observed in the aging F344 

animals, we also noted a slight increase in ejection fraction at 26-months although this parameter 

must be interpreted with caution since animals at this time point also exhibited increased 

evidence of valvular regurgitation [2].  Interestingly, work by Forman and colleagues reported that 

F344 males had a higher occurrence of mitral regurgitation (MR) than that seen in their female 

counterparts which may help explain the differences in function between the sexes [118].  This 

finding is consistent with previous work from our laboratory which demonstrated a higher 

percentage of MR with age in male F344xBN (unpublished data).  Why differences may exist 

between aged male and female F344xBN rats will require further investigation. 

Probabilities of survival curves generated by the NIA were used in the current study in an 
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effort to approximate aging humans in the 3rd, 7th, and 8th decade of life.  It is likely that aging in 

the female F344xBN does not closely mimic the changes seen in aging women at similar time 

points along the aging spectrum.  Why aging in female rodents might differ from that seen in 

humans is likely complex and poorly understood but may be related to dissimilarities in hormonal 

regulation during aging.  Previous data has demonstrated that the F344xBN estrous cycle ceases 

at 16 months of age which suggests that the 26- and 30-month old animals used in the present 

study are likely to represent animals that are moderate and late post-menopausal [376].  Unlike 

that seen in humans, this loss in function is characterized as persistent estrous with maintained 

levels of estrogen, lower levels of progesterone, the absence of LH surges, and ovulation.  This 

initial decline, in turn, is followed by the final stage where aged female rodents have low levels of 

plasma estradiol, progesterone, and (no or little) developing ovarian follicles [377].  Whether 

estrogen, if present, may have blunted the age-associated changes typically seen in male animals 

is currently unclear.      

 

Age-associated alterations in heart rhythm in the female F344xBN heart 

Unlike the aging male F344xBN rats, no evidence of arrhythmias were detected with age 

in the female F344xBN [94].  Nonetheless, our data suggest that aging in the female F344xBN is 

associated with changes in heart rhythm including increases in the VAT, ST interval, T amplitude, 

QRS interval, QT interval, T duration, Q amplitude, P amplitude, and a shift in the mean electrical 

axis with age (Table 4.2), increase in heart weight, myocyte CSA, and LVM.  Alterations in heart 

rhythm intervals such as increased PR interval, P wave amplitude, and QRS complex are 

oftentimes indicative of myocardial disease [378].  Previous studies have shown that aged male 
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rats (20-months) had no difference in R-R interval, P wave, as well as QRS length; however, PR and 

QT interval were increased with age [132].  Our current findings support the existence of 

alterations in cardiac conductance but provide little information as to the underlying mechanism. 

The elevation in VAT and QRS interval suggest that aging might not only affect depolarization but 

that it may also be associated with changes in the ability of the heart to undergo repolarization. 

Correlation analysis demonstrated a high correlation between heart weight to MV A max velocity 

(0.752 cm/sec) and MV A max velocity to CSA (0.827) (Table S-4.1- S-4.4).  Because the nature of 

correlation does not denote causation, it is important to note that further research is required to 

delineate the nature of these correlations and to better elucidate the causation of the age-

associated changes listed in this study.  Similarly, whether the changes in VAT and QRS interval we 

observed in the current study are due to differences in ion handling, ion channel density, 

alterations in how electrical signals may propagate through the myocardium or if they reflect age-

associated increases in myocyte CSA or chamber dimensions (Figure 4.2, Table 4.4) is currently 

unclear and will require additional experimentation.    

Heart rhythm propagation is dependent on cell to cell coupling between cardiomyocytes 

and this coupling is dependent, at least in part, on ion channels and gap junctions.  Previous 

studies have shown that age-related changes in impulse propagation may be related to 

abnormalities in the pattern of ventricular activation [119].  Recent data has suggested that 

alterations in heart rhythm intervals during aging may be associated with alterations in Cx43 

expression/activation/heterogeneity, fibrosis, and hypertrophy [119, 163-165, 379].  Other work 

examining Cx43 has demonstrated increases in atrial fibrillation in patients exhibiting increased 

heterogeneity of Cx43 distribution [368].  These possibilities appear to be consistent with our 
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data, where we observed qualitative alterations in Cx43 localization with aging in the female 

F344xBN heart (Figure 4.3).  Future experiments to directly investigate if or how changes in Cx43 

protein abundance and localization may affect cardiac rhythm in the aging female F344xBN rat 

model may be helpful in delineating whether Cx43 may play a role in the aging female heart.  

In addition, we also examined if age-related changes in heart rhythm were associated with 

alterations in blood chemistry.  It has been suggested that electrolyte disorders can affect the ion 

currents in the heart and that such changes might be related to the development of cardiac 

arrhythmias [367].  For example, previous studies have shown that decreased plasma sodium, 

potassium, and ionized calcium levels are associated with a higher risk of arrhythmias in 

hemodialysis patients [380, 381].  Although very little is known about the role of serum 

electrolytes in influencing cardiac function during aging, alterations in serum electrolytes have 

been associated with increased all-cause mortality among patients suffering from 

coronary heart disease [382].  For the most part, we found that age-related changes in blood 

chemistry appeared to be within the normal range.  Recent work has suggested that decreases in 

plasma potassium may be related to the development of tachyarrhythmias [383].  Whether the 

age-associated reduction in potassium levels seen in this study, although within the normal 

physiological range, might play a role in the changes seen in the EKG data will require further 

investigation.    

In conclusion, this study provides reference values for cardiac structure and function in 

the aging female F344xBN heart. Taken together, our data suggest that the female, unlike the 

male, F344xBN rat demonstrates subtle age-associated changes in cardiac structure, function, 

and conductance.  The age-associated increase in heart wall thickness in the absence of fibrosis 
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and increase heterogeneity of Cx43 distribution may partially explain the age-associated 

alterations in heart rhythm intervals.  The possibility of altered serum ion levels may also 

contribute to reduced conductance. Further study is needed to better understand the 

mechanistic basis of how aging may affect cardiac structure and function in the female F344xBN 

rat.  
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TABLE 4.1:  TOTAL BODY WEIGHT (BW) AND HEART WEIGHT (HW) IN FEMALE F344XBN RATS 

AT 6-, 26-, AND 30-MONTHS OF AGE (MEANS ± SEM).  6-month animal; 26-month animal; 30-

month animal; (*, p < 0.05) significant difference from 6-month animal; (†, p < 0.05) significantly 

different from 26-month animal. 

     

Groups 6-month 26-month 30-month 

N 4 22 10 

Heart Weight (g) 0.72 ± 0.02 0.95 ± 0.02* 1.0 ± 0.04*† 

Body Weight (g) 235.3 ± 1.7 296.4 ± 6.5* 315.6 ± 8.6* 

HW/BW Ratio (%) 0.317 ± 0.02 0.32 ± 0.01 0.33 ± 0.01 
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TABLE 4.2:  ELECTROCARDIOGRAPHIC EVALUATION OF CARDIAC CONDUCTION PARAMETERS 

IN AGING FEMALE F344XBN RATS (MEAN ± SEM).  6-month animal; 26-month animal; 30-

month animal; (*, p < 0.05) significant difference from 6-month animal; (†, p < 0.05) significantly 

different from 26-month animal. 

 

EKG Measurements 6-months 26-months 30-months 

Heart Rate 277.8 ± 4.67 277.6 ± 4.27 277.6 ± 6.45 

VAT 0.036 ± 0.0013 0.044 ± 0.0010* 0.046 ± 0.0007* 

ST Interval 0.055 ± 0.0035 0.080 ± 0.0018* 0.073 ± 0.0013* 

T Amplitude 0.090 ± 0.0065 0.123 ± 0.0071* 0.098 ± 0.0080† 

QS Interval 0.055 ± 0.0010 0.066 ± 0.0013* 0.070 ± 0.0005*† 

QT Interval 0.110 ± 0.0035 0.146 ± 0.0023* 0.143 ± 0.0012* 

PR Interval 0.035 ± 0.0027 0.033 ± 0.0015 0.032 ± 0.0010 

T Duration 0.055 ± 0.0035 0.080 ± 0.0018* 0.073 ± 0.0013* 

T-T Interval 0.217 ± 0.0034 0.217 ± 0.0032 0.218 ± 0.0050 

R + S Amplitude 0.321 ± 0.0105 0.280 ± 0.0161 0.276 ± 0.0247 

S Amplitude -0.009 ± 0.0061 -0.007 ± 0.0049 -0.029 ± 0.0121 

R Amplitude 0.035 ± 0.0027 0.033 ± 0.0015 0.032 ± 0.0010 

Q Amplitude -0.005 ± 0.0019 -0.014 ± 0.0024* -0.018 ± 0.0017* 

P Amplitude 0.006 ± 0.0052 0.037 ± 0.0018* 0.037 ± 0.0020* 

P Duration 0.035 ± 0.0027 0.033 ± 0.0015 0.032 ± 0.0010 

Mean Electrical Axis 34.41 ± 5.99 63.13 ± 4.86* 63.26 ± 3.72* 
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TABLE 4.3:  ECHOCARDIOGRAPHIC EVALUATION OF CARDIAC FUNCTIONAL PARAMETERS IN 

AGING FEMALE F344XBN RATS (MEAN ± SEM).  6-month animal; 26-month animal; 30-month 

animal; (*, p < 0.05) significantly different from 6-month animal. 

 
 

Groups 6-month 26-month 30-month 

EF (%) 74 ± 0.9 82 ± 1.0* 78 ± 1.8 

FS (%) 38 ± 0.7 46 ± 1.0 42 ± 1.7 

ESV (mL) 0.143 ± 0.017 0.082 ± 0.005* 0.114 ± 0.10 

EDV (mL) 0.535 ± 0.052 0.492 ± 0.20 0.523 ± 0.022 

Heart Rate (bpm) 281 ± 16.5 259 ± 8.8 278 ± 10.1 

E-E’ 20.8 ± 1.02 14.7 ± 0.64 21.9 ± 2.63 

LV IVRT (sec) 0.015 ± 0.002 0.036 ± 0.005* 0.030 ± 0.000 

MV Dec Time (sec) 0.053 ± 0.005 0.057 ± 0.002 0.063 ± 0.003 

MV Emax (cm/sec) 78 ± 3.3 62 ± 1.5* 55 ± 1.4* 

MV Amax (cm/sec) 42 ± 1.3 36 ± 0.9 35 ± 1.6* 

MV E/A 1.75 ± 0.03 1.60 ± 0.06 1.66 ± 0.10 
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TABLE 4.4:  ECHOCARDIOGRAPHIC EVALUATION OF CARDIAC STRUCTURAL PARAMETERS IN 

AGING FEMALE F344XBN RATS (MEAN ± SEM).  6-month animal; 26-month animal; 30-month 

animal; (*, p < 0.05) significantly different from 6-month animal. 

 
 

Groups 6-month 26-month 30-month 

IVSs (cm) 0.193 ± 0.008 0.253 ± 0.003* 0.239 ± 0.013 

IVSd (cm) 0.118 ± 0.012 0.151 ± 0.003 0.149 ± 0.004 

LVIDs (cm) 0.378 ± 0.017 0.331 ± 0.009* 0.356 ± 0.011 

LVIDd (cm) 0.610 ± 0.022 0.593 ± 0.009 0.606 ± 0.10 

LVPWs (cm) 0.193 ± 0.002 0.267 ± 0.007 0.288 ± 0.009* 

LVPWd (cm) 0.153 ± 0.010 0.166 ± 0.004 0.189 ± 0.008* 

RVDd (cm) 0.105 ± 0.016 0.138 ± 0.009 0.111 ± 0.006 

LVM (g) 0.487 ± 0.10 0.658 ± 0.09 0.646 ± 0.04 
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TABLE 4.5:  BLOOD PARAMETERS FOR THE AGING FEMALE F344XBN RAT (MEAN ± SEM).    6-

month animal; 26-month animal; 30-month animal; (*, p < 0.05) significantly different from 6-

month animal; n = 4 - 6 group. 

Parameters  6-month  26-month  30-month 

       

ALB (g/dL)  4.4 ± 0.03  4.4 ± 0.1  4.2 ± 0.1 

       

ALP (u/L)  217.9 ± 10.7  168.0 ± 9.6*   167.8 ± 7.4* 

       

ALT (u/L)  45.1 ± 2.2  57.6 ± 3.7  49.8 ± 2.4 

       

AMY (u/L)  551.1 ± 22.1  640.3 ± 29.6*  589.8 ± 18.0 

       
TBIL (mg/dL)  0.2 ± 0.02  0.2 ± 0.02  0.3 ± 0.03 

       
BUN (mg/dL)  17.5 ± 0.4  15.4 ± 0.6*  15.7 ± 0.5* 

       
Ca+2 (mg/dL)  10.7 ± 0.09  11.2 ± 00.13*  11.0 ± 0.1 

       
PHOS (mg/dL)  10.2 ± 0.4  8.1 ± 0.2*  7.8 ± 0.2* 

       
CRE (mg/dL)  0.3 ± 0.02  0.4 ± 0.02  0.4 ± 0.03* 

       
GLU (mg/dL)  372.8 ± 16.0  346.9 ± 10.3  323.7 ± 13.3* 

       
Na+ (mmol/L)  141.8 ± 0.9  142.0 ± 0.6  141.1 ± 0.5 

       
K+ (mmol/L)  7.12 ± 0.06  6.4 ± 0.14*  6.0 ± 0.11*  

       
TP (g/dL)  5.8 ± 0.05  6.4 ± 0.08*  6.3 ± 0.11* 

       
GLOB (g/dL)  1.56 ± 0.12  2.00 ± 0.10*  2.12 ± 0.11* 

       
Ca/P (ratio)  1.03 ± 0.12  1.39 ± 0.12*  1.44 ± 0.14* 

       
Na/K (ratio)  19.90 ± 0.66  22.40 ± 1.99*  23.58 ± 1.94* 

       
BUN/CRE (ratio)  68.96 ± 16.1  46.77 ± 16.9*  49.64 ± 17.6* 

       
A/G (ratio)  3.29 ± 0.68  3.32 ± 0.61*  2.14 ± 0.60* 
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FIGURE 4.1 

 

FIGURE 4.1:  STRUCTURAL DIAGRAM OF THE FEMALE F344XBN HEART.    

(Photo credit: Patrick J. Lynch, medical illustrator).   
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FIGURE 4.2 

 

  

FIGURE 4.2:  CSA, TISSUE MORPHOLOGY, AND FIBROSIS IN THE AGING FEMALE F344XBN 

HEART.   

(A) Immunohistochemical staining of cardiac tissue stained with dystrophin.  Bar = 100 

µm. (B) Cross-sectional area of cardiac myocytes as determined by dystrophin staining, (C) 

Hematoxylin and Eosin, and (D) Picrosirius red staining of 6-, 26-, and 30-month female 

F344xBN hearts. (*, p < 0.05) significantly different from 6-month animal.   
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FIGURE 4.3 

 

FIGURE 4.3:  AGE-ASSOCIATED CHANGES IN CONNEXIN 43 DISTRIBUTION IN THE AGING 

FEMALE F344XBN HEART.   

Distribution of connexin 43 in (A) 6-, (B) 26-, and (C) 30-month female F344xBN hearts.  

Bar = 50 µm.   
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FIGURE 4.4 
 

 
 

 
FIGURE 4.4:  EKG IN THE AGING FEMALE F344XBN HEART.   

(A) EKG interval diagram and (B) representative EKG tracing of leads I, II, and III obtained 

from 6- , 26, and 30-month females.    
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FIGURE 4.5 

 

FIGURE 4.5:  AGE-ASSOCIATED VALVE DYSFUNCTION IN THE FEMALE F344XBN HEART.  

Percentage of female F344xBN rats with valve dysfunction at 6-, 26-, and 30-months.   
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SUPPLEMENTAL DATA 

TABLE S-4.1:  REGRESSION ANALYSIS OF THE RELATIONSHIP BETWEEN HEART RHYTHM INTERVALS, AGE, BODY 

WEIGHT, HEART WEIGHT, CONNEXIN 43 EXPRESSION, CARDIOMYOCYTE CROSS SECTIONAL AREA, AND COLLAGEN 

STAINING INTENSITY OF 6-, 26-, AND 30-MONTH FEMALE F344XBN HEARTS.   The following symbols indicate:  (*) 

low correlation (p < 0.05); (†) moderate correlation (p < 0.05); (††) high correlation (p < 0.05); (†††) very high 

correlation (p < 0.05) between parameters.  P values are located within parentheses.  N.A. (not applicable) N.T. (not 

tested).   

 
 
 
 
 
 

Age (m) ALB(g/dl) ALP(u/l) ALT(u/l) AMY(u/l) TBIL(mg/dl) BUN(mg/dl) Ca+2(mg/dl) PHOS(mg/dl) CRE(mg/dl) GLU(mg/dl) Na+(mmol/l)

Age(m) N.T. 0.107  -0.073  0.127  0.389 * 0.216  -0.145  0.276  -0.551 † 0.209  -0.348 * -0.112  

ALB(g/dl) 0.107  N.T. 0.115  0.272  0.108  -0.539 † -0.516 † 0.072  0.000  0.294  0.271  -0.214  

ALP(u/l) -0.073  0.115  N.T. -0.184  0.193  0.039  -0.277  -0.462 * -0.182  0.060  -0.098  -0.037  

ALT(u/l) 0.127  0.272  -0.184  N.T. 0.449 * -0.231  -0.043  -0.069  -0.127  -0.329 * 0.076  -0.439 *

AMY(u/l) 0.389 * 0.108  0.193  0.449 * N.T. -0.071  -0.184  -0.284  -0.537 † 0.027  0.284  -0.663 †

TBIL(mg/dl) 0.216  -0.539 † 0.039  -0.231  -0.071  N.T. 0.399 * 0.033  -0.006  0.029  -0.232  0.151  

BUN(mg/dl) -0.145  -0.516 † -0.277  -0.043  -0.184  0.399 * N.T. -0.240  -0.217  0.109  -0.252  -0.103  

Ca+2(mg/dl) 0.276  0.072  -0.462 * -0.069  -0.284  0.033  -0.240  N.T. 0.477 * 0.146  -0.044  0.493 *

PHOS(mg/dl) -0.551 † 0.000  -0.182  -0.127  -0.537 † -0.006  -0.217  0.477 * N.T. -0.054  0.427 * 0.289  

CRE(mg/dl) 0.209  0.294  0.060  -0.329 * 0.027  0.029  0.109  0.146  -0.054  N.T. 0.262  -0.278  

GLU(mg/dl) -0.348 * 0.271  -0.098  0.076  0.284  -0.232  -0.252  -0.044  0.427 * 0.262  N.T. -0.559 †

Na+(mmol/l) -0.112  -0.214  -0.037  -0.439 * -0.663 † 0.151  -0.103  0.493 * 0.289  -0.278  -0.559 † N.T.

K+(mmol/l) -0.679 † -0.169  -0.074  -0.062  -0.378 * 0.102  -0.181  0.211  0.778 †† -0.184  0.258  0.342 *

TP(g/dl) 0.721 †† 0.551 † 0.109  0.143  0.339 * 0.045  -0.411 * 0.373 * -0.266  0.216  -0.127  -0.027  

GLOB(g/dl) 0.739 †† -0.143  0.070  -0.087  0.308 * 0.491 * -0.102  0.368 * -0.289  0.052  -0.327 * 0.116  

Ca/Phos 0.710 †† 0.036  0.034  0.111  0.518 † 0.055  0.113  -0.130  -0.915 ††† 0.072  -0.411 * -0.131  

Na/K 0.660 † 0.111  0.079  -0.045  0.248  -0.067  0.192  -0.140  -0.741 †† 0.148  -0.337 * -0.176  

E/E' 0.049  0.143  0.441 * -0.273  0.226  0.265  -0.269  -0.172  -0.249  -0.002  -0.077  0.195  

RVDd -0.022  0.129  -0.393 * 0.111  0.031  -0.031  0.100  0.217  0.068  -0.125  -0.173  0.048  

IVSD 0.468 * 0.209  0.285  0.419 * 0.298  -0.027  0.037  -0.062  -0.351 * -0.072  -0.489 * -0.102  

IVSs 0.473 * 0.172  -0.098  0.194  0.302 * -0.251  -0.136  0.062  -0.070  -0.012  0.221  -0.444 *

LVIDd 0.265  0.121  -0.664 † 0.443 * 0.312 * -0.252  -0.133  0.351 * 0.087  -0.231  0.260  -0.322 *

LVIDs -0.135  -0.239  -0.473 * 0.478 * 0.043  0.306 * 0.317 * 0.120  0.338 * -0.446 * 0.117  -0.199  

LVPWd 0.345 * -0.013  -0.068  0.373 * -0.049  0.248  0.291  0.139  -0.310 * -0.357 * -0.518 † 0.296  

LVPWs 0.747 †† 0.172  0.344 * -0.261  0.155  0.225  -0.275  0.031  -0.569 † 0.164  -0.371 * 0.174  

FS% 0.497 * 0.368 * -0.204  -0.031  0.284  -0.595 † -0.481 * 0.226  -0.334 * 0.182  0.093  -0.117  

EDV ml 0.270  0.151  -0.662 † 0.430 * 0.305 * -0.271  -0.162  0.373 * 0.115  -0.175  0.294  -0.336 *

ESV ml -0.203  -0.268  -0.496 * 0.439 * -0.035  0.282  0.305 * 0.089  0.381 * -0.469 * 0.131  -0.175  

EF% 0.540 † 0.402 * -0.135  0.008  0.360 * -0.588 † -0.502 † 0.240  -0.344 * 0.205  0.115  -0.152  

Tricuspid Dysfunction 0.693 † -0.064  0.343 * 0.047  0.197  0.592 † 0.061  -0.004  -0.545 † -0.038  -0.607 † 0.180  

Mitral Dysfunction 0.286  0.202  -0.517 † 0.083  0.213  -0.505 † -0.240  0.316 * 0.069  0.284  0.375 * -0.354 *

Aortic  Dysfunction 0.693 † -0.064  0.343 * 0.047  0.197  0.592 † 0.061  -0.004  -0.545 † -0.038  -0.607 † 0.180  

Pulmonary  Dysfunction 0.874 †† 0.000  0.206  0.084  0.290  0.493 * -0.017  0.110  -0.597 † 0.059  -0.557 † 0.078  

MV E max vel -0.842 †† -0.295  0.169  -0.246  -0.430 * -0.090  0.033  -0.231  0.442 * -0.352 * 0.236  0.329 *

MV A max vel -0.615 † -0.351 * -0.080  -0.357 * -0.182  -0.185  -0.151  0.235  0.598 † -0.061  0.366 * 0.250  

MV E/A -0.127  0.000  0.172  0.038  -0.350 * 0.194  0.373 * -0.683 † -0.555 † -0.268  -0.292  -0.009  

MV Dec time 0.214  -0.605 † -0.310 * -0.537 † -0.008  0.477 * 0.121  0.270  0.103  0.168  -0.011  0.116  

LV IVRT 0.830 †† 0.238  -0.341 * -0.076  0.242  -0.038  -0.265  0.403 * -0.328 * 0.213  -0.212  -0.025  

Body Weight 0.832 †† 0.147  0.066  0.335 * 0.707 †† -0.113  -0.450 * 0.055  -0.514 † -0.007  -0.108  -0.346 *

Heart Weight 0.899 †† 0.188  0.159  0.047  0.271  0.150  -0.235  0.046  -0.618 † 0.023  -0.388 * -0.057  

BW/HW 0.155  0.090  0.055  -0.261  -0.488 * 0.272  0.292  -0.031  -0.209  0.005  -0.392 * 0.298  

Electrical Axis 0.556 † 0.154  -0.582 † 0.242  0.212  0.292  0.213  0.423 * -0.093  -0.050  -0.007  -0.231  

Heart Rate -0.004  0.111  -0.009  -0.117  -0.554 † -0.033  0.260  -0.123  -0.079  0.290  -0.090  0.037  

VAT 0.720 †† 0.660 † 0.010  -0.108  0.279  -0.177  -0.260  0.389 * -0.474 * 0.467 * -0.314 * 0.055  

ST interval 0.673 † 0.307 * -0.303 * 0.071  0.232  -0.184  -0.274  0.371 * -0.136  -0.201  -0.351 * 0.073  

T amplitude 0.231  0.362 * -0.442 * 0.058  0.206  0.096  -0.416 * 0.585 † 0.234  -0.254  0.066  0.195  

QRS Interval 0.823 †† 0.630 † -0.084  -0.151  0.164  -0.095  -0.174  0.447 * -0.381 * 0.487 * -0.260  0.042  

QT Interval 0.823 †† 0.476 * -0.256  -0.008  0.239  -0.173  -0.270  0.450 * -0.252  0.047  -0.361 * 0.070  

PR Interval -0.223  -0.239  0.143  -0.224  -0.151  0.220  0.166  -0.123  0.303 * 0.397 * 0.521 † -0.206  

T duration 0.673 † 0.307 * -0.303 * 0.071  0.232  -0.184  -0.274  0.371 * -0.136  -0.201  -0.351 * 0.073  

T-T Interval 0.025  -0.111  0.000  0.145  0.593 † 0.048  -0.228  0.110  0.033  -0.281  0.091  -0.070  

R + S Amplitude -0.235  -0.230  0.489 * -0.162  0.114  -0.238  -0.327 * -0.264  0.165  -0.055  0.016  0.102  

S Amplitude -0.148  -0.181  -0.564 † 0.122  -0.252  0.468 * 0.416 * 0.063  0.084  -0.386 * 0.028  0.001  

R Amplitude -0.223  -0.239  0.143  -0.224  -0.151  0.220  0.166  -0.123  0.303 * 0.397 * 0.521 † -0.206  

Q Amplitude -0.634 † -0.661 † -0.215  -0.143  -0.529 † 0.260  0.532 † -0.322 * 0.368 * -0.165  0.259  -0.079  

P Amplitude 0.677 † 0.655 † 0.017  0.199  0.400 * -0.362 * -0.173  0.418 * -0.373 * 0.588 † 0.000  -0.194  

P Duration -0.223  -0.239  0.143  -0.224  -0.151  0.220  0.166  -0.123  0.303 * 0.397 * 0.521 † -0.206  

CSA Cardiac Myocytes 0.993 ††† 0.084  -0.007  0.120  0.374 * 0.290  -0.118  0.243  -0.577 † 0.178  -0.408 * -0.068  

fibrosis -0.338 * -0.204  0.512 † -0.089  -0.232  0.485 * 0.244  -0.325 * -0.039  -0.290  -0.351 * 0.354 *

LVM (gm) 0.510 † 0.156  -0.313 * 0.704 †† 0.321 * -0.099  0.081  0.189  -0.293  -0.329 * -0.257  -0.185  

E` -0.635 † -0.408 * -0.238  0.001  -0.405 * -0.242  0.373 * -0.097  0.414 * -0.181  0.254  -0.027  
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TABLE S-4.2 – S-4.5:  REGRESSION ANALYSIS OF THE RELATIONSHIP BETWEEN STRUCTURAL AND FUNCTIONAL 

ECHOCARDIOGRAPHIC PARAMETERS AGE, BODY WEIGHT, HEART WEIGHT, CARDIOMYOCYTE CROSS SECTIONAL 

AREA, AND COLLAGEN STAINING INTENSITY OF 6-, 26-, AND 30-MONTH FEMALE F344XBN HEARTS.  The following 

symbols indicate:  (*) low correlation (p < 0.05); (†) moderate correlation (p < 0.05); (††) high correlation (p < 0.05); 

(†††) very high correlation (p < 0.05) between parameters.  P values for correlations are located within parentheses.  

    

 

 

 

K+(mmol/l) TP(g/dl) GLOB(g/dl) Ca/Phos Na/K E/E' RVDd IVSD IVSs LVIDd LVIDs LVPWd

Age(m) -0.679 † 0.721 †† 0.739 †† 0.710 †† 0.660 † 0.049  -0.022  0.468 * 0.473 * 0.265  -0.135  0.345 *

ALB(g/dl) -0.169  0.551 † -0.143  0.036  0.111  0.143  0.129  0.209  0.172  0.121  -0.239  -0.013  

ALP(u/l) -0.074  0.109  0.070  0.034  0.079  0.441 * -0.393 * 0.285  -0.098  -0.664 † -0.473 * -0.068  

ALT(u/l) -0.062  0.143  -0.087  0.111  -0.045  -0.273  0.111  0.419 * 0.194  0.443 * 0.478 * 0.373 *

AMY(u/l) -0.378 * 0.339 * 0.308 * 0.518 † 0.248  0.226  0.031  0.298  0.302 * 0.312 * 0.043  -0.049  

TBIL(mg/dl) 0.102  0.045  0.491 * 0.055  -0.067  0.265  -0.031  -0.027  -0.251  -0.252  0.306 * 0.248  

BUN(mg/dl) -0.181  -0.411 * -0.102  0.113  0.192  -0.269  0.100  0.037  -0.136  -0.133  0.317 * 0.291  

Ca+2(mg/dl) 0.211  0.373 * 0.368 * -0.130  -0.140  -0.172  0.217  -0.062  0.062  0.351 * 0.120  0.139  

PHOS(mg/dl) 0.778 †† -0.266  -0.289  -0.915 ††† -0.741 †† -0.249  0.068  -0.351 * -0.070  0.087  0.338 * -0.310 *

CRE(mg/dl) -0.184  0.216  0.052  0.072  0.148  -0.002  -0.125  -0.072  -0.012  -0.231  -0.446 * -0.357 *

GLU(mg/dl) 0.258  -0.127  -0.327 * -0.411 * -0.337 * -0.077  -0.173  -0.489 * 0.221  0.260  0.117  -0.518 †

Na+(mmol/l) 0.342 * -0.027  0.116  -0.131  -0.176  0.195  0.048  -0.102  -0.444 * -0.322 * -0.199  0.296  

K+(mmol/l) N.T. -0.458 * -0.366 * -0.785 †† -0.982 ††† -0.015  0.114  -0.485 * -0.596 † -0.250  0.172  -0.365 *

TP(g/dl) -0.458 * N.T. 0.742 †† 0.463 * 0.447 * 0.151  0.263  0.279  0.299  0.250  -0.057  0.308 *

GLOB(g/dl) -0.366 * 0.742 †† N.T. 0.483 * 0.393 * 0.076  0.239  0.115  0.192  0.173  0.109  0.293  

Ca/Phos -0.785 †† 0.463 * 0.483 * N.T. 0.777 †† 0.336 * -0.042  0.337 * 0.110  0.055  -0.315 * 0.455 *

Na/K -0.982 ††† 0.447 * 0.393 * 0.777 †† N.T. 0.040  -0.154  0.452 * 0.554 † 0.190  -0.216  0.435 *

E/E' -0.015  0.151  0.076  0.336 * 0.040  N.T. -0.243  0.089  -0.394 * -0.409 * -0.395 * 0.087  

RVDd 0.114  0.263  0.239  -0.042  -0.154  -0.243  N.T. -0.132  -0.123  0.322 * 0.422 * -0.072  

IVSD -0.485 * 0.279  0.115  0.337 * 0.452 * 0.089  -0.132  N.T. 0.340 * 0.037  0.015  0.491 *

IVSs -0.596 † 0.299  0.192  0.110  0.554 † -0.394 * -0.123  0.340 * N.T. 0.408 * 0.070  0.138  

LVIDd -0.250  0.250  0.173  0.055  0.190  -0.409 * 0.322 * 0.037  0.408 * N.T. 0.622 † -0.017  

LVIDs 0.172  -0.057  0.109  -0.315 * -0.216  -0.395 * 0.422 * 0.015  0.070  0.622 † N.T. 0.166  

LVPWd -0.365 * 0.308 * 0.293  0.455 * 0.435 * 0.087  -0.072  0.491 * 0.138  -0.017  0.166  N.T.

LVPWs -0.613 † 0.596 † 0.544 † 0.694 † 0.666 † 0.494 * -0.348 * 0.355 * 0.307 * -0.236  -0.553 † 0.387 *

FS% -0.507 † 0.348 * 0.101  0.462 * 0.493 * 0.002  -0.109  0.058  0.398 * 0.436 * -0.430 * -0.160  

EDV ml -0.228  0.271  0.178  0.024  0.165  -0.449 * 0.332 * 0.002  0.419 * 0.996 ††† 0.600 † -0.062  

ESV ml 0.240  -0.136  0.042  -0.388 * -0.282  -0.429 * 0.422 * -0.060  0.032  0.610 † 0.991 ††† 0.088  

EF% -0.543 † 0.416 * 0.154  0.490 * 0.526 † 0.015  -0.142  0.115  0.455 * 0.413 * -0.445 * -0.106  

Tricuspid Dysfunction -0.421 * 0.604 † 0.745 †† 0.625 † 0.455 * 0.330 * -0.032  0.439 * 0.106  -0.313 * -0.148  0.638 †

Mitral Dysfunction -0.232  0.047  -0.110  0.008  0.168  -0.378 * 0.018  -0.046  0.398 * 0.712 †† 0.040  -0.447 *

Aortic  Dysfunction -0.421 * 0.604 † 0.745 †† 0.625 † 0.455 * 0.330 * -0.032  0.439 * 0.106  -0.313 * -0.148  0.638 †

Pulmonary  Dysfunction -0.564 † 0.707 †† 0.811 †† 0.717 †† 0.580 † 0.247  -0.031  0.488 * 0.260  -0.110  -0.155  0.576 †

MV E max vel 0.582 † -0.738 †† -0.637 † -0.519 † -0.504 † 0.203  -0.370 * -0.418 * -0.501 † -0.298  -0.008  -0.169  

MV A max vel 0.687 † -0.484 * -0.241  -0.568 † -0.649 † -0.177  0.084  -0.695 † -0.292  -0.087  -0.043  -0.580 †

MV E/A -0.301 * -0.190  -0.276  0.306 * 0.317 * 0.314 * -0.284  0.133  -0.195  -0.350 * -0.051  0.451 *

MV Dec time 0.156  -0.099  0.411 * -0.029  -0.140  -0.081  0.218  -0.445 * -0.002  0.088  0.053  -0.422 *

LV IVRT -0.546 † 0.614 † 0.524 † 0.503 † 0.528 † -0.028  0.217  0.258  0.569 † 0.382 * -0.175  0.083  

Body Weight -0.527 † 0.509 † 0.474 * 0.600 † 0.450 * 0.132  -0.105  0.496 * 0.474 * 0.382 * -0.142  0.056  

Heart Weight -0.770 †† 0.771 †† 0.736 †† 0.703 †† 0.785 †† 0.083  -0.043  0.422 * 0.486 * 0.192  -0.168  0.403 *

BW/HW -0.385 * 0.377 * 0.350 * 0.198  0.483 * -0.119  0.163  -0.022  0.064  -0.141  0.026  0.474 *

Electrical Axis -0.488 * 0.509 † 0.607 † 0.301 * 0.487 * -0.273  0.535 † 0.196  0.699 † 0.710 †† 0.468 * 0.456 *

Heart Rate -0.142  0.109  0.068  -0.050  0.187  -0.423 * -0.048  -0.344 * -0.200  -0.063  -0.001  -0.005  

VAT -0.704 †† 0.784 †† 0.627 † 0.709 †† 0.724 †† 0.323 * -0.012  0.346 * 0.252  0.167  -0.396 * 0.313 *

ST interval -0.458 * 0.403 * 0.320 * 0.317 * 0.451 * 0.133  0.251  0.524 † 0.554 † 0.618 † 0.159  0.218  

T amplitude 0.027  0.501 † 0.474 * -0.005  -0.038  0.195  0.522 † -0.085  -0.180  0.688 † 0.481 * -0.141  

QRS Interval -0.708 †† 0.819 †† 0.706 †† 0.607 † 0.735 †† 0.088  0.114  0.286  0.490 * 0.162  -0.322 * 0.366 *

QT Interval -0.618 † 0.622 † 0.516 † 0.474 * 0.624 † 0.133  0.230  0.499 * 0.604 † 0.517 † -0.015  0.309 *

PR Interval 0.474 * -0.195  -0.018  -0.460 * -0.501 † -0.307 * 0.213  -0.669 † -0.480 * -0.261  0.066  -0.614 †

T duration -0.458 * 0.403 * 0.320 * 0.317 * 0.451 * 0.133  0.251  0.524 † 0.554 † 0.618 † 0.159  0.218  

T-T Interval 0.110  -0.093  -0.048  0.103  -0.158  0.432 * 0.046  0.348 * 0.200  0.058  -0.004  0.046  

R + S Amplitude 0.429 * -0.505 † -0.529 † -0.295  -0.449 * 0.271  -0.375 * 0.159  -0.098  -0.538 † -0.464 * -0.398 *

S Amplitude -0.066  0.109  0.274  -0.049  0.085  -0.080  0.337 * -0.289  -0.339 * 0.557 † 0.647 † -0.001  

R Amplitude 0.474 * -0.195  -0.018  -0.460 * -0.501 † -0.307 * 0.213  -0.669 † -0.480 * -0.261  0.066  -0.614 †

Q Amplitude 0.416 * -0.632 † -0.407 * -0.609 † -0.409 * -0.615 † 0.144  -0.541 † -0.087  -0.069  0.394 * -0.312 *

P Amplitude -0.562 † 0.628 † 0.390 * 0.596 † 0.551 † 0.129  -0.242  0.387 * 0.206  0.128  -0.370 * 0.332 *

P Duration 0.474 * -0.195  -0.018  -0.460 * -0.501 † -0.307 * 0.213  -0.669 † -0.480 * -0.261  0.066  -0.614 †

CSA Cardiac Myocytes -0.669 † 0.737 †† 0.777 †† 0.731 †† 0.659 † 0.099  -0.025  0.485 * 0.433 * 0.179  -0.144  0.411 *

fibrosis 0.264  -0.084  0.069  -0.046  -0.200  0.313 * -0.016  0.020  -0.418 * -0.716 †† -0.033  0.422 *

LVM (gm) -0.534 † 0.261  0.427 * 0.412 * 0.501 † -0.613 † 0.651 † 0.433 * 0.652 † 0.479 * 0.641 † 0.128  

E` 0.288  -0.111  0.126  -0.548 † -0.257  -0.039  0.142  0.324 * -0.202  -0.715 †† -0.235  0.147  
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TABLE S-4.3:   

 

LVPWs FS% EDV ml ESV ml EF%

Tricuspid 

Dysfunction

Mitral 

Dysfunction

Aortic  

Dysfunction

Pulmonary  

Dysfunction MV E max vel MV A max vel MV E/A

Age(m) 0.747 †† 0.497 * 0.270  -0.203  0.540 † 0.693 † 0.286  0.693 † 0.874 †† -0.842 †† -0.615 † -0.127  

ALB(g/dl) 0.172  0.368 * 0.151  -0.268  0.402 * -0.064  0.202  -0.064  0.000  -0.295  -0.351 * 0.000  

ALP(u/l) 0.344 * -0.204  -0.662 † -0.496 * -0.135  0.343 * -0.517 † 0.343 * 0.206  0.169  -0.080  0.172  

ALT(u/l) -0.261  -0.031  0.430 * 0.439 * 0.008  0.047  0.083  0.047  0.084  -0.246  -0.357 * 0.038  

AMY(u/l) 0.155  0.284  0.305 * -0.035  0.360 * 0.197  0.213  0.197  0.290  -0.430 * -0.182  -0.350 *

TBIL(mg/dl) 0.225  -0.595 † -0.271  0.282  -0.588 † 0.592 † -0.505 † 0.592 † 0.493 * -0.090  -0.185  0.194  

BUN(mg/dl) -0.275  -0.481 * -0.162  0.305 * -0.502 † 0.061  -0.240  0.061  -0.017  0.033  -0.151  0.373 *

Ca+2(mg/dl) 0.031  0.226  0.373 * 0.089  0.240  -0.004  0.316 * -0.004  0.110  -0.231  0.235  -0.683 †

PHOS(mg/dl) -0.569 † -0.334 * 0.115  0.381 * -0.344 * -0.545 † 0.069  -0.545 † -0.597 † 0.442 * 0.598 † -0.555 †

CRE(mg/dl) 0.164  0.182  -0.175  -0.469 * 0.205  -0.038  0.284  -0.038  0.059  -0.352 * -0.061  -0.268  

GLU(mg/dl) -0.371 * 0.093  0.294  0.131  0.115  -0.607 † 0.375 * -0.607 † -0.557 † 0.236  0.366 * -0.292  

Na+(mmol/l) 0.174  -0.117  -0.336 * -0.175  -0.152  0.180  -0.354 * 0.180  0.078  0.329 * 0.250  -0.009  

K+(mmol/l) -0.613 † -0.507 † -0.228  0.240  -0.543 † -0.421 * -0.232  -0.421 * -0.564 † 0.582 † 0.687 † -0.301 *

TP(g/dl) 0.596 † 0.348 * 0.271  -0.136  0.416 * 0.604 † 0.047  0.604 † 0.707 †† -0.738 †† -0.484 * -0.190  

GLOB(g/dl) 0.544 † 0.101  0.178  0.042  0.154  0.745 †† -0.110  0.745 †† 0.811 †† -0.637 † -0.241  -0.276  

Ca/Phos 0.694 † 0.462 * 0.024  -0.388 * 0.490 * 0.625 † 0.008  0.625 † 0.717 †† -0.519 † -0.568 † 0.306 *

Na/K 0.666 † 0.493 * 0.165  -0.282  0.526 † 0.455 * 0.168  0.455 * 0.580 † -0.504 † -0.649 † 0.317 *

E/E' 0.494 * 0.002  -0.449 * -0.429 * 0.015  0.330 * -0.378 * 0.330 * 0.247  0.203  -0.177  0.314 *

RVDd -0.348 * -0.109  0.332 * 0.422 * -0.142  -0.032  0.018  -0.032  -0.031  -0.370 * 0.084  -0.284  

IVSD 0.355 * 0.058  0.002  -0.060  0.115  0.439 * -0.046  0.439 * 0.488 * -0.418 * -0.695 † 0.133  

IVSs 0.307 * 0.398 * 0.419 * 0.032  0.455 * 0.106  0.398 * 0.106  0.260  -0.501 † -0.292  -0.195  

LVIDd -0.236  0.436 * 0.996 ††† 0.610 † 0.413 * -0.313 * 0.712 †† -0.313 * -0.110  -0.298  -0.087  -0.350 *

LVIDs -0.553 † -0.430 * 0.600 † 0.991 ††† -0.445 * -0.148  0.040  -0.148  -0.155  -0.008  -0.043  -0.051  

LVPWd 0.387 * -0.160  -0.062  0.088  -0.106  0.638 † -0.447 * 0.638 † 0.576 † -0.169  -0.580 † 0.451 *

LVPWs N.T. 0.407 * -0.245  -0.606 † 0.453 * 0.747 †† -0.135  0.747 †† 0.811 †† -0.443 * -0.560 † 0.253  

FS% 0.407 * N.T. 0.451 * -0.436 * 0.990 ††† -0.137  0.744 †† -0.137  0.103  -0.351 * -0.095  -0.286  

EDV ml -0.245  0.451 * N.T. 0.591 † 0.430 * -0.329 * 0.739 †† -0.329 * -0.119  -0.325 * -0.062  -0.396 *

ESV ml -0.606 † -0.436 * 0.591 † N.T. -0.465 * -0.219  0.059  -0.219  -0.231  0.053  0.019  -0.036  

EF% 0.453 * 0.990 ††† 0.430 * -0.465 * N.T. -0.071  0.706 †† -0.071  0.165  -0.392 * -0.123  -0.315 *

Tricuspid Dysfunction 0.747 †† -0.137  -0.329 * -0.219  -0.071  N.T. -0.492 * 1.000 ††† 0.956 ††† -0.520 † -0.608 † 0.316 *

Mitral Dysfunction -0.135  0.744 †† 0.739 †† 0.059  0.706 †† -0.492 * N.T. -0.492 * -0.215  -0.272  0.101  -0.529 †

Aortic  Dysfunction 0.747 †† -0.137  -0.329 * -0.219  -0.071  1.000 ††† -0.492 * N.T. 0.956 ††† -0.520 † -0.608 † 0.316 *

Pulmonary  Dysfunction 0.811 †† 0.103  -0.119  -0.231  0.165  0.956 ††† -0.215  0.956 ††† N.T. -0.692 † -0.663 † 0.174  

MV E max vel -0.443 * -0.351 * -0.325 * 0.053  -0.392 * -0.520 † -0.272  -0.520 † -0.692 † N.T. 0.552 † 0.320 *

MV A max vel -0.560 † -0.095  -0.062  0.019  -0.123  -0.608 † 0.101  -0.608 † -0.663 † 0.552 † N.T. -0.571 †

MV E/A 0.253  -0.286  -0.396 * -0.036  -0.315 * 0.316 * -0.529 † 0.316 * 0.174  0.320 * -0.571 † N.T.

MV Dec time 0.030  0.041  0.106  0.084  -0.005  0.020  0.217  0.020  0.098  -0.193  0.397 * -0.462 *

LV IVRT 0.605 † 0.665 † 0.397 * -0.209  0.667 † 0.351 * 0.481 * 0.351 * 0.571 † -0.805 †† -0.389 * -0.312 *

Body Weight 0.551 † 0.680 † 0.381 * -0.192  0.729 †† 0.409 * 0.418 * 0.409 * 0.618 † -0.673 † -0.477 * -0.250  

Heart Weight 0.808 †† 0.501 † 0.193  -0.221  0.552 † 0.754 †† 0.057  0.754 †† 0.882 †† -0.715 †† -0.752 †† 0.161  

BW/HW 0.317 * -0.172  -0.140  0.017  -0.171  0.454 * -0.400 * 0.454 * 0.374 * -0.157  -0.443 * 0.517 †

Electrical Axis 0.272  0.229  0.704 †† 0.397 * 0.262  0.323 * 0.258  0.323 * 0.447 * -0.682 † -0.470 * -0.090  

Heart Rate -0.114  -0.091  -0.025  0.044  -0.124  -0.002  -0.002  -0.002  -0.003  0.071  -0.087  0.321 *

VAT 0.768 †† 0.738 †† 0.172  -0.471 * 0.798 †† 0.456 * 0.255  0.456 * 0.613 † -0.589 † -0.598 † -0.067  

ST interval 0.406 * 0.611 † 0.588 † 0.116  0.611 † 0.194  0.516 † 0.194  0.415 * -0.479 * -0.491 * -0.136  

T amplitude -0.139  0.244  0.673 † 0.474 * 0.199  -0.127  0.410 * -0.127  0.011  -0.059  -0.022  -0.326 *

QRS Interval 0.764 †† 0.634 † 0.181  -0.393 * 0.701 †† 0.560 † 0.244  0.560 † 0.727 †† -0.727 †† -0.595 † -0.092  

QT Interval 0.608 † 0.705 †† 0.503 † -0.076  0.732 †† 0.366 * 0.478 * 0.366 * 0.595 † -0.646 † -0.601 † -0.138  

PR Interval -0.572 † -0.470 * -0.206  0.119  -0.493 * -0.193  -0.016  -0.193  -0.225  0.226  0.644 † -0.279  

T duration 0.406 * 0.611 † 0.588 † 0.116  0.611 † 0.194  0.516 † 0.194  0.415 * -0.479 * -0.491 * -0.136  

T-T Interval 0.133  0.092  0.018  -0.054  0.130  0.036  -0.015  0.036  0.035  -0.091  0.057  -0.297  

R + S Amplitude -0.021  -0.089  -0.542 † -0.434 * -0.083  -0.132  -0.104  -0.132  -0.189  0.288  0.420 * -0.229  

S Amplitude -0.387 * -0.129  0.536 † 0.665 † -0.198  -0.257  0.143  -0.257  -0.237  0.218  -0.049  0.325 *

R Amplitude -0.572 † -0.470 * -0.206  0.119  -0.493 * -0.193  -0.016  -0.193  -0.225  0.226  0.644 † -0.279  

Q Amplitude -0.674 † -0.611 † -0.051  0.480 * -0.692 † -0.459 * -0.155  -0.459 * -0.579 † 0.372 * 0.471 * 0.148  

P Amplitude 0.507 † 0.624 † 0.144  -0.458 * 0.721 †† 0.345 * 0.340 * 0.345 * 0.519 † -0.484 * -0.461 * -0.225  

P Duration -0.572 † -0.470 * -0.206  0.119  -0.493 * -0.193  -0.016  -0.193  -0.225  0.226  0.644 † -0.279  

CSA Cardiac Myocytes 0.782 †† 0.413 * 0.181  -0.215  0.461 * 0.773 †† 0.172  0.773 †† 0.925 ††† -0.827 †† -0.643 † -0.055  

fibrosis 0.092  -0.760 †† -0.743 †† -0.047  -0.724 †† 0.444 * -0.999 ††† 0.444 * 0.161  0.313 * -0.067  0.528 †

LVM (gm) 0.236  0.618 † 0.408 * 0.270  0.977 ††† 0.243  0.255  0.378 * 0.378 * -0.613 † 0.059  -0.370 *

E` 0.388 * -0.274  -0.052  -0.667 † 0.156  -0.711 †† 0.574 † 0.517 † -0.711 †† -0.039  -0.579 † 0.597 †
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TABLE S-4.4: 

 

 

 

MV Dec time LV IVRT Body Weight Heart Weight HW/BW Electrical Axis Heart Rate VAT ST interval T amplitude QRS Interval QT Interval PR Interval

Age(m) 0.214  0.830 †† 0.832 †† 0.899 †† 0.155  0.556 † -0.004  0.720 †† 0.673 † 0.231  0.823 †† 0.823 †† -0.223  

ALB(g/dl) -0.605 † 0.238  0.147  0.188  0.090  0.154  0.111  0.660 † 0.307 * 0.362 * 0.630 † 0.476 * -0.239  

ALP(u/l) -0.310 * -0.341 * 0.066  0.159  0.055  -0.582 † -0.009  0.010  -0.303 * -0.442 * -0.084  -0.256  0.143  

ALT(u/l) -0.537 † -0.076  0.335 * 0.047  -0.261  0.242  -0.117  -0.108  0.071  0.058  -0.151  -0.008  -0.224  

AMY(u/l) -0.008  0.242  0.707 †† 0.271  -0.488 * 0.212  -0.554 † 0.279  0.232  0.206  0.164  0.239  -0.151  

TBIL(mg/dl) 0.477 * -0.038  -0.113  0.150  0.272  0.292  -0.033  -0.177  -0.184  0.096  -0.095  -0.173  0.220  

BUN(mg/dl) 0.121  -0.265  -0.450 * -0.235  0.292  0.213  0.260  -0.260  -0.274  -0.416 * -0.174  -0.270  0.166  

Ca+2(mg/dl) 0.270  0.403 * 0.055  0.046  -0.031  0.423 * -0.123  0.389 * 0.371 * 0.585 † 0.447 * 0.450 * -0.123  

PHOS(mg/dl) 0.103  -0.328 * -0.514 † -0.618 † -0.209  -0.093  -0.079  -0.474 * -0.136  0.234  -0.381 * -0.252  0.303 *

CRE(mg/dl) 0.168  0.213  -0.007  0.023  0.005  -0.050  0.290  0.467 * -0.201  -0.254  0.487 * 0.047  0.397 *

GLU(mg/dl) -0.011  -0.212  -0.108  -0.388 * -0.392 * -0.007  -0.090  -0.314 * -0.351 * 0.066  -0.260  -0.361 * 0.521 †

Na+(mmol/l) 0.116  -0.025  -0.346 * -0.057  0.298  -0.231  0.037  0.055  0.073  0.195  0.042  0.070  -0.206  

K+(mmol/l) 0.156  -0.546 † -0.527 † -0.770 †† -0.385 * -0.488 * -0.142  -0.704 †† -0.458 * 0.027  -0.708 †† -0.618 † 0.474 *

TP(g/dl) -0.099  0.614 † 0.509 † 0.771 †† 0.377 * 0.509 † 0.109  0.784 †† 0.403 * 0.501 † 0.819 †† 0.622 † -0.195  

GLOB(g/dl) 0.411 * 0.524 † 0.474 * 0.736 †† 0.350 * 0.607 † 0.068  0.627 † 0.320 * 0.474 * 0.706 †† 0.516 † -0.018  

Ca/Phos -0.029  0.503 † 0.600 † 0.703 †† 0.198  0.301 * -0.050  0.709 †† 0.317 * -0.005  0.607 † 0.474 * -0.460 *

Na/K -0.140  0.528 † 0.450 * 0.785 †† 0.483 * 0.487 * 0.187  0.724 †† 0.451 * -0.038  0.735 †† 0.624 † -0.501 †

E/E' -0.081  -0.028  0.132  0.083  -0.119  -0.273  -0.423 * 0.323 * 0.133  0.195  0.088  0.133  -0.307 *

RVDd 0.218  0.217  -0.105  -0.043  0.163  0.535 † -0.048  -0.012  0.251  0.522 † 0.114  0.230  0.213  

IVSD -0.445 * 0.258  0.496 * 0.422 * -0.022  0.196  -0.344 * 0.346 * 0.524 † -0.085  0.286  0.499 * -0.669 †

IVSs -0.002  0.569 † 0.474 * 0.486 * 0.064  0.699 † -0.200  0.252  0.554 † -0.180  0.490 * 0.604 † -0.480 *

LVIDd 0.088  0.382 * 0.382 * 0.192  -0.141  0.710 †† -0.063  0.167  0.618 † 0.688 † 0.162  0.517 † -0.261  

LVIDs 0.053  -0.175  -0.142  -0.168  0.026  0.468 * -0.001  -0.396 * 0.159  0.481 * -0.322 * -0.015  0.066  

LVPWd -0.422 * 0.083  0.056  0.403 * 0.474 * 0.456 * -0.005  0.313 * 0.218  -0.141  0.366 * 0.309 * -0.614 †

LVPWs 0.030  0.605 † 0.551 † 0.808 †† 0.317 * 0.272  -0.114  0.768 †† 0.406 * -0.139  0.764 †† 0.608 † -0.572 †

FS% 0.041  0.665 † 0.680 † 0.501 † -0.172  0.229  -0.091  0.738 †† 0.611 † 0.244  0.634 † 0.705 †† -0.470 *

EDV ml 0.106  0.397 * 0.381 * 0.193  -0.140  0.704 †† -0.025  0.172  0.588 † 0.673 † 0.181  0.503 † -0.206  

ESV ml 0.084  -0.209  -0.192  -0.221  0.017  0.397 * 0.044  -0.471 * 0.116  0.474 * -0.393 * -0.076  0.119  

EF% -0.005  0.667 † 0.729 †† 0.552 † -0.171  0.262  -0.124  0.798 †† 0.611 † 0.199  0.701 †† 0.732 †† -0.493 *

Tricuspid Dysfunction 0.020  0.351 * 0.409 * 0.754 †† 0.454 * 0.323 * -0.002  0.456 * 0.194  -0.127  0.560 † 0.366 * -0.193  

Mitral Dysfunction 0.217  0.481 * 0.418 * 0.057  -0.400 * 0.258  -0.002  0.255  0.516 † 0.410 * 0.244  0.478 * -0.016  

Aortic  Dysfunction 0.020  0.351 * 0.409 * 0.754 †† 0.454 * 0.323 * -0.002  0.456 * 0.194  -0.127  0.560 † 0.366 * -0.193  

Pulmonary  Dysfunction 0.098  0.571 † 0.618 † 0.882 †† 0.374 * 0.447 * -0.003  0.613 † 0.415 * 0.011  0.727 †† 0.595 † -0.225  

MV E max vel -0.193  -0.805 †† -0.673 † -0.715 †† -0.157  -0.682 † 0.071  -0.589 † -0.479 * -0.059  -0.727 †† -0.646 † 0.226  

MV A max vel 0.397 * -0.389 * -0.477 * -0.752 †† -0.443 * -0.470 * -0.087  -0.598 † -0.491 * -0.022  -0.595 † -0.601 † 0.644 †

MV E/A -0.462 * -0.312 * -0.250  0.161  0.517 † -0.090  0.321 * -0.067  -0.136  -0.326 * -0.092  -0.138  -0.279  

MV Dec time N.T. 0.359 * 0.114  0.019  -0.148  0.219  -0.188  -0.118  0.081  0.149  0.001  0.059  0.329 *

LV IVRT 0.359 * N.T. 0.682 † 0.683 † 0.071  0.677 † -0.260  0.676 † 0.763 †† 0.204  0.783 †† 0.876 †† -0.523 †

Body Weight 0.114  0.682 † N.T. 0.684 † -0.322 * 0.344 * -0.434 * 0.565 † 0.635 † 0.178  0.464 * 0.653 † -0.533 †

Heart Weight 0.019  0.683 † 0.684 † N.T. 0.463 * 0.501 † 0.158  0.761 †† 0.507 † 0.108  0.806 †† 0.699 † -0.444 *

BW/HW -0.148  0.071  -0.322 * 0.463 * N.T. 0.450 * 0.674 † 0.308 * -0.033  -0.030  0.476 * 0.170  0.020  

Electrical Axis 0.219  0.677 † 0.344 * 0.501 † 0.450 * N.T. -0.145  0.415 * 0.610 † 0.264  0.634 † 0.684 † -0.387 *

Heart Rate -0.188  -0.260  -0.434 * 0.158  0.674 † -0.145  N.T. 0.016  -0.375 * 0.004  0.117  -0.230  0.554 †

VAT -0.118  0.676 † 0.565 † 0.761 †† 0.308 * 0.415 * 0.016  N.T. 0.486 * 0.222  0.910 ††† 0.720 †† -0.415 *

ST interval 0.081  0.763 †† 0.635 † 0.507 † -0.033  0.610 † -0.375 * 0.486 * N.T. 0.589 † 0.509 † 0.939 ††† -0.531 †

T amplitude 0.149  0.204  0.178  0.108  -0.030  0.264  0.004  0.222  0.589 † N.T. 0.141  0.490 * 0.072  

QRS Interval 0.001  0.783 †† 0.464 * 0.806 †† 0.476 * 0.634 † 0.117  0.910 ††† 0.509 † 0.141  N.T. 0.773 †† -0.297  

QT Interval 0.059  0.876 †† 0.653 † 0.699 † 0.170  0.684 † -0.230  0.720 †† 0.939 ††† 0.490 * 0.773 †† N.T. -0.510 †

PR Interval 0.329 * -0.523 † -0.533 † -0.444 * 0.020  -0.387 * 0.554 † -0.415 * -0.531 † 0.072  -0.297  -0.510 † N.T.

T duration 0.081  0.763 †† 0.635 † 0.507 † -0.033  0.610 † -0.375 * 0.486 * 1.000 ††† 0.589 † 0.509 † 0.939 ††† -0.531 †

T-T Interval 0.173  0.263  0.447 * -0.140  -0.664 † 0.165  -0.998 ††† 0.005  0.362 * -0.024  -0.097  0.228  -0.561 †

R + S Amplitude 0.085  -0.171  0.094  -0.420 * -0.668 † -0.605 † -0.540 † -0.387 * -0.129  -0.380 * -0.443 * -0.271  0.015  

S Amplitude 0.003  -0.245  -0.261  -0.022  0.304 * 0.150  0.436 * -0.034  0.104  0.707 †† -0.122  0.028  0.208  

R Amplitude 0.329 * -0.523 † -0.533 † -0.444 * 0.020  -0.387 * 0.554 † -0.415 * -0.531 † 0.208  -0.297  -0.510 † 1.000 †††

Q Amplitude 0.322 * -0.472 * -0.712 †† -0.513 † 0.166  -0.127  0.379 * -0.776 †† -0.539 † 0.456 * -0.594 † -0.634 † 0.456 *

P Amplitude -0.357 * 0.399 * 0.512 † 0.501 † 0.049  0.199  0.109  0.805 †† 0.259  -0.746 †† 0.730 †† 0.482 * -0.148  

P Duration 0.329 * -0.523 † -0.533 † -0.444 * 0.020  -0.387 * 0.554 † -0.415 * -0.531 † -0.148  -0.297  -0.510 † 1.000 †††

CSA Cardiac Myocytes 0.191  0.788 †† 0.802 †† 0.919 ††† 0.212  0.543 † -0.004  0.715 †† 0.630 † -0.645 † 0.823 †† 0.792 †† -0.230  

fibrosis -0.225  -0.518 † -0.455 * -0.104  0.385 * -0.285  0.002  -0.287  -0.541 † -0.225  -0.282  -0.511 † 0.028  

LVM (gm) 0.332 * 0.140  0.465 * 0.093  0.672 † -0.105  0.343 * 0.593 † 0.288  -0.266  0.564 † -0.626 † 0.593 †

E` -0.100  -0.604 † -0.254  0.427 * -0.675 † -0.465 * -0.216  -0.604 † -0.586 † 0.098  -0.465 * -0.445 * -0.454 *
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TABLE S-4.5: 

 

 
 
 

T duration T-T Interval R + S Amplitude S Amplitude R Amplitude Q Amplitude P Amplitude P Duration

CSA Cardiac 

Myocytes fibrosis LVM (gm) E`

Age(m) 0.673 † 0.025  -0.235  -0.148  -0.223  -0.634 † 0.677 † -0.223  0.993 ††† -0.338 * 0.510 † -0.635 †

ALB(g/dl) 0.307 * -0.111  -0.230  -0.181  -0.239  -0.661 † 0.655 † -0.239  0.084  -0.204  0.156  -0.408 *

ALP(u/l) -0.303 * 0.000  0.489 * -0.564 † 0.143  -0.215  0.017  0.143  -0.007  0.512 † -0.313 * -0.238  

ALT(u/l) 0.071  0.145  -0.162  0.122  -0.224  -0.143  0.199  -0.224  0.120  -0.089  0.704 †† 0.001  

AMY(u/l) 0.232  0.593 † 0.114  -0.252  -0.151  -0.529 † 0.400 * -0.151  0.374 * -0.232  0.321 * -0.405 *

TBIL(mg/dl) -0.184  0.048  -0.238  0.468 * 0.220  0.260  -0.362 * 0.220  0.290  0.485 * -0.099  -0.242  

BUN(mg/dl) -0.274  -0.228  -0.327 * 0.416 * 0.166  0.532 † -0.173  0.166  -0.118  0.244  0.081  0.373 *

Ca+2(mg/dl) 0.371 * 0.110  -0.264  0.063  -0.123  -0.322 * 0.418 * -0.123  0.243  -0.325 * 0.189  -0.097  

PHOS(mg/dl) -0.136  0.033  0.165  0.084  0.303 * 0.368 * -0.373 * 0.303 * -0.577 † -0.039  -0.293  0.414 *

CRE(mg/dl) -0.201  -0.281  -0.055  -0.386 * 0.397 * -0.165  0.588 † 0.397 * 0.178  -0.290  -0.329 * -0.181  

GLU(mg/dl) -0.351 * 0.091  0.016  0.028  0.521 † 0.259  0.000  0.521 † -0.408 * -0.351 * -0.257  0.254  

Na+(mmol/l) 0.073  -0.070  0.102  0.001  -0.206  -0.079  -0.194  -0.206  -0.068  0.354 * -0.185  -0.027  

K+(mmol/l) -0.458 * 0.110  0.429 * -0.066  0.474 * 0.416 * -0.562 † 0.474 * -0.669 † 0.264  -0.534 † 0.288  

TP(g/dl) 0.403 * -0.093  -0.505 † 0.109  -0.195  -0.632 † 0.628 † -0.195  0.737 †† -0.084  0.261  -0.111  

GLOB(g/dl) 0.320 * -0.048  -0.529 † 0.274  -0.018  -0.407 * 0.390 * -0.018  0.777 †† 0.069  0.427 * 0.126  

Ca/Phos 0.317 * 0.103  -0.295  -0.049  -0.460 * -0.609 † 0.596 † -0.460 * 0.731 †† -0.046  0.412 * -0.548 †

Na/K 0.451 * -0.158  -0.449 * 0.085  -0.501 † -0.409 * 0.551 † -0.501 † 0.659 † -0.200  0.501 † -0.257  

E/E' 0.133  0.432 * 0.271  -0.080  -0.307 * -0.615 † 0.129  -0.307 * 0.099  0.313 * -0.613 † -0.039  

RVDd 0.251  0.046  -0.375 * 0.337 * 0.213  0.144  -0.242  0.213  -0.025  -0.016  0.651 † 0.142  

IVSD 0.524 † 0.348 * 0.159  -0.289  -0.669 † -0.541 † 0.387 * -0.669 † 0.485 * 0.020  0.433 * 0.324 *

IVSs 0.554 † 0.200  -0.098  -0.339 * -0.480 * -0.087  0.206  -0.480 * 0.433 * -0.418 * 0.652 † -0.202  

LVIDd 0.618 † 0.058  -0.538 † 0.557 † -0.261  -0.069  0.128  -0.261  0.179  -0.716 †† 0.479 * -0.715 ††

LVIDs 0.159  -0.004  -0.464 * 0.647 † 0.066  0.394 * -0.370 * 0.066  -0.144  -0.033  0.641 † -0.235  

LVPWd 0.218  0.046  -0.398 * -0.001  -0.614 † -0.312 * 0.332 * -0.614 † 0.411 * 0.422 * 0.128  0.147  

LVPWs 0.406 * 0.133  -0.021  -0.387 * -0.572 † -0.674 † 0.507 † -0.572 † 0.782 †† 0.092  0.236  0.388 *

FS% 0.611 † 0.092  -0.089  -0.129  -0.470 * -0.611 † 0.624 † -0.470 * 0.413 * -0.760 †† 0.618 † -0.274  

EDV ml 0.588 † 0.018  -0.542 † 0.536 † -0.206  -0.051  0.144  -0.206  0.181  -0.743 †† 0.408 * -0.052  

ESV ml 0.116  -0.054  -0.434 * 0.665 † 0.119  0.480 * -0.458 * 0.119  -0.215  -0.047  0.270  -0.667 †

EF% 0.611 † 0.130  -0.083  -0.198  -0.493 * -0.692 † 0.721 †† -0.493 * 0.461 * -0.724 †† 0.977 ††† 0.156  

Tricuspid Dysfunction 0.194  0.036  -0.132  -0.257  -0.193  -0.459 * 0.345 * -0.193  0.773 †† 0.444 * 0.243  -0.711 ††

Mitral Dysfunction 0.516 † -0.015  -0.104  0.143  -0.016  -0.155  0.340 * -0.016  0.172  -0.999 ††† 0.255  0.574 †

Aortic  Dysfunction 0.194  0.036  -0.132  -0.257  -0.193  -0.459 * 0.345 * -0.193  0.773 †† 0.444 * 0.378 * 0.517 †

Pulmonary  Dysfunction 0.415 * 0.035  -0.189  -0.237  -0.225  -0.579 † 0.519 † -0.225  0.925 ††† 0.161  0.378 * -0.711 ††

MV E max vel -0.479 * -0.091  0.288  0.218  0.226  0.372 * -0.484 * 0.226  -0.827 †† 0.313 * -0.613 † -0.039  

MV A max vel -0.491 * 0.057  0.420 * -0.049  0.644 † 0.471 * -0.461 * 0.644 † -0.643 † -0.067  0.059  -0.579 †

MV E/A -0.136  -0.297  -0.229  0.325 * -0.279  0.148  -0.225  -0.279  -0.055  0.528 † -0.370 * 0.597 †

MV Dec time 0.081  0.173  0.085  0.003  0.329 * 0.322 * -0.357 * 0.329 * 0.191  -0.225  0.332 * -0.100  

LV IVRT 0.763 †† 0.263  -0.171  -0.245  -0.523 † -0.472 * 0.399 * -0.523 † 0.788 †† -0.518 † 0.140  -0.604 †

Body Weight 0.635 † 0.447 * 0.094  -0.261  -0.533 † -0.712 †† 0.512 † -0.533 † 0.802 †† -0.455 * 0.465 * -0.254  

Heart Weight 0.507 † -0.140  -0.420 * -0.022  -0.444 * -0.513 † 0.501 † -0.444 * 0.919 ††† -0.104  0.093  0.427 *

BW/HW -0.033  -0.664 † -0.668 † 0.304 * 0.020  0.166  0.049  0.020  0.212  0.385 * 0.672 † -0.675 †

Electrical Axis 0.610 † 0.165  -0.605 † 0.150  -0.387 * -0.127  0.199  -0.387 * 0.543 † -0.285  -0.105  -0.465 *

Heart Rate -0.375 * -0.998 ††† -0.540 † 0.436 * 0.554 † 0.379 * 0.109  0.554 † -0.004  0.002  0.343 * -0.216  

VAT 0.486 * 0.005  -0.387 * -0.034  -0.415 * -0.776 †† 0.805 †† -0.415 * 0.715 †† -0.287  0.593 † -0.604 †

ST interval 1.000 ††† 0.362 * -0.129  0.104  -0.531 † -0.539 † 0.259  -0.531 † 0.630 † -0.541 † 0.288  -0.586 †

T amplitude 0.589 † -0.024  -0.380 * 0.707 †† 0.208  0.456 * -0.746 †† -0.148  -0.645 † -0.225  -0.266  0.098  

QRS Interval 0.509 † -0.097  -0.443 * -0.122  -0.297  -0.594 † 0.730 †† -0.297  0.823 †† -0.282  0.564 † -0.465 *

QT Interval 0.939 ††† 0.228  -0.271  0.028  -0.510 † -0.634 † 0.482 * -0.510 † 0.792 †† -0.511 † -0.626 † -0.445 *

PR Interval -0.531 † -0.561 † 0.015  0.208  1.000 ††† 0.456 * -0.148  1.000 ††† -0.230  0.028  0.593 † -0.454 *

T duration N.T. 0.362 * -0.129  0.104  -0.531 † -0.539 † 0.259  -0.531 † 0.630 † -0.541 † 0.126  -0.062  

T-T Interval 0.362 * N.T. 0.516 † -0.440 * -0.561 † -0.395 * -0.075  -0.561 † 0.028  0.013  0.139  0.297  

R + S Amplitude -0.129  0.516 † N.T. -0.698 † 0.015  -0.061  -0.254  0.015  -0.231  0.114  0.251  0.807 ††

S Amplitude 0.104  -0.440 * -0.698 † N.T. 0.208  0.207  -0.141  0.208  -0.173  -0.133  -0.626 † -0.428 *

R Amplitude -0.531 † -0.561 † 0.015  0.208  N.T. 0.456 * -0.148  1.000 ††† -0.230  0.028  -0.361 * 0.428 *

Q Amplitude -0.539 † -0.395 * -0.061  0.207  0.456 * N.T. -0.746 †† 0.456 * -0.639 † 0.185  0.400 * 0.613 †

P Amplitude 0.259  -0.075  -0.254  -0.141  -0.148  -0.746 †† N.T. -0.148  0.659 † -0.369 * -0.626 † -0.671 †

P Duration -0.531 † -0.561 † 0.015  0.208  1.000 ††† 0.456 * -0.148  N.T. -0.230  0.028  -0.172  -0.119  

CSA Cardiac Myocytes 0.630 † 0.028  -0.231  -0.173  -0.230  -0.639 † 0.659 † -0.230  N.T. -0.225  -0.266  0.098  

fibrosis -0.541 † 0.013  0.114  -0.133  0.028  0.185  -0.369 * 0.028  -0.225  N.T. -0.266  -0.119  

LVM (gm) 0.126  0.139  0.251  -0.626 † -0.361 * 0.400 * -0.626 † -0.172  -0.266  -0.266  N.T. -0.106  

E` -0.062  0.297  0.807 †† -0.428 * 0.428 * 0.613 † -0.671 † -0.119  0.098  -0.119  -0.106  N.T.
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CHAPTER 5 

AGE-ASSOCIATED ALTERATIONS OF MORPHOLOGY AND PROTEIN SIGNALING IN 

THE FEMALE F344XBN RAT AORTA 

 

 

Although the age-associated alterations in cardiac structure and function were found 

concurrently with increased oxidative-nitrosative stress, the direct relationship between the two 

remains unclear.  Similar to the heart, aging has been shown to alter aortic structure and function 

in men in addition to the aging male F344xBN rat [346].  This chapter details the findings in 

regards to alterations in aortic structure and signaling in the aging female F344xBN aorta as 

outlined in Specific Aim III.  

 

 

ABSTRACT 

The F344xBN male rat has been shown to undergo many of the same age-associated 

vascular changes seen in humans [346].  However, limited research has been done to determine 

if the female F344xBN rat is a good aging female rodent model to study age-associated changes 

in the vasculature.  Aortae from 6-, 26-, and 30-month female F344xBN rats were stained with 

hematoxylin and eosin, and a trichrome stain to determine intima-medial thickness and fibrosis, 

respectively.  Age-associated changes in expression and phosphorylation of proteins were 

measured by immunoblotting.  Aging in the female F344xBN rat was associated with an increase 

in aortic intima-medial thickness, activation of p44/42 MAPK and Hsp27 expression, in addition 



  89 
 

to decreased activation of NF-κβ p50.   Hsp90 expression decreased with age in the female 

F344xBN aorta.  There were no age-associated changes in activation of eNOS or Akt or expression 

of the apoptotic regulators Bax and Bcl-2.  Taken together, these data are consistent with the 

possibility that the female F344xBN rat may be an appropriate animal model to study age-

associated changes in the cardiovascular system.   

 

INTRODUCTION 

Cardiovascular disease remains the leading cause of death despite new discoveries in 

medical technology and increased awareness/education [337-339].  Aging in the human 

vasculature is associated with increased dilation of the lumen, thickening of the media and intima, 

increased stiffness, and endothelial dysfunction [339].  Sex may also play a role in age-associated 

alterations in vascular structure.  Lower incidences of CVD-associated morbidity and mortality in 

premenopausal women compared to age-matched men have been reported [384].  Currently, the 

NIA recommends the F344xBN rat as an aging model for various age associated pathologies 

including CVD.  This model has been shown to be excellent to study age-associated changes in 

the vasculature of male rats; however, no investigations have been performed to determine if 

age-associated changes are present in the female F344xBN rat [10, 11, 385] .             

  In addition to structural and functional changes, there is also evidence that aging may 

also affect the regulation of several signaling pathways including the MAPK, NF-κβ, eNOS, Hsp, 

and apoptotic signaling in the male rat aorta [332, 343-346].    The MAPKs are serine/threonine 

protein kinases that play a role in the regulation of cellular proliferation, differentiation, 

development, cell cycle, and cell death [191].  The major MAPK signaling pathways include the 
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extracellular signal-regulated protein kinase cascade (p44/42 cascade), c-Jun amino-terminal 

kinase/stress-activated protein kinase cascade (JNK/SAPK), and the p38-MAPK cascade.  Signaling 

through the MAPK pathways is activated by growth factors, cytokines, physical, and chemical 

stress which causes the activation of the upstream activator of MAPK kinase kinase [166] and the 

MAPK kinase (MKK) [166, 191].  The MKK then phosphorylates the downstream MAPK on serine 

and threonine residues leading to MAPK activation [191].  In the aorta, the MAPKs have been 

shown to participate in several different processes including VSMC proliferation, contraction, 

migration, differentiation, and cell survival following activation by oxidative-nitrosative stress 

[326-330].  Whether aging may affect the regulation of these pathways in the aging female rat 

aorta is currently unclear. 

The production of NO is stimulated by growth factors, mechanical forces, estrogen, 

hydrogen peroxide, and angiotensin II [282-285].  Endothelial nitric oxide synthase, like most 

enzymes, is regulated by phosphorylation as it is thought that eNOS phosphorylation by Akt and 

AMPK is associated with increased activity.  In addition to phosphorylation, eNOS is also indirectly 

regulated by calmodulin and Hsp90 which function to stabilize eNOS levels [386, 387].  It is 

thought that aging is associated with increased endothelial dysfunction that is characterized by 

decreased NO levels [387-390].  Whether the decreases in NO with aging are due to decreased 

NOS levels, NO production or increased NO scavenging is not entirely understood [293, 304, 305].  

The purpose, therefore, of this study was to examine if age-associated changes in structure and 

protein signaling are present in the aging female F344xBN aorta.  We hypothesized that aging 

female F344xBN, similar to that seen in humans, would be associated with increased intima-

medial thickness and alterations in the regulation of intracellular signaling pathways.      
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MATERIALS AND METHODS  

Animals 

All procedures were performed in accordance with the Guide for the Care and Use of 

Laboratory Animals as approved by the Council of the American Physiological Society, the Animal 

Use Review Board of Marshall University, as well as the Public Health Service Animal Welfare 

Policy.  Adult (6-month), aged (26-month), and very aged (30-month) female F344xBN rats were 

obtained from the NIA and housed two per cage in an AAALAC approved vivarium.  Animals were 

housed under the following conditions: 12 h-12 h light-dark cycle and temperature of 22 ± 2˚C; 

food and water were provided ad libitum.  Rats were allowed to recover from shipment for at 

least two weeks before experimentation, during which time the animals were carefully observed 

and weighed weekly.  Rats were removed from the study if they had signs of failure to thrive such 

as precipitous weight loss, disinterest in environment, or unexpected gait alterations. 

 

Materials 

Antibodies against p38 [#9212], p-p38 MAPK (T180/Y182) [#4631], p44/42 MAPK [#9102], 

p-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) [#4377], SAPK/JNK [#9252], p-JNK [#9251], AMPKα 

[#2532], p-AMPKα (Thr172) [#2535], eNOS [#9572], p-eNOS (Ser1177) [#9571], NF-κβ p65 

[#3987], p-NF-κβ p65 (Ser536) (93H1) [#3033], Hsp27 (rodent preferred) [#2442], Bcl-2 (50E3) 

[#2870], Akt [#9272], phospho-Akt(Ser473) [#9271], phospho-Akt(Thr308) [#9275], HSP90 

(C45G5) Rabbit mAB [#4877], GAPDH (14C10) Rabbit mAB [#2118], 3T3 Control Cell Extracts 

[#9203], biotinylated protein ladder [#7727], mouse and rabbit IgG antibodies [#7076, #7074] 
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were purchased from Cell Signaling Technology (Beverly, MA).  Antibodies against NF-κβ p50 [#sc-

8414], p-NF-κβ p50 [#sc-33022], HSP70 (K-20) [#sc-1060], HeLa Whole Cell Lysate [sc-2200], L6 

+IGF Cell Lysate [sc-24127], and Bax (N-20) [#sc-493] were purchased from Santa Cruz 

Biotechnology, Inc. (Santa Cruz, CA).  The following materials were acquired and used for 

immunoblotting procedures:  Precision Plus Protein Dual Color Standards (Bio-Rad, Hercules, CA, 

[#161-0374]); precast 10% and 15% PAGE r Gold Precast Gels (Lonza, Rockland, ME);  Amersham 

Hybond-enhanced chemiluminescence (ECL) membranes (Amersham Biosciences, Piscataway, 

NJ, [RPN2020D]); ECL western blot detection reagent (Amersham Biosciences, Piscataway, NJ); 

Restore western blot stripping buffer (Pierce, (Rockford, IL); and  albumin from bovine serum 

(minimum 98% electrophoresis, Sigma, St. Louis, MO).  All other chemicals were purchased from 

Sigma (St. Louis, MO). 

 

Aorta Collection 

Anesthetization of female F344xBN rats was achieved with an intraperitoneal injection of 

ketamine (40 mg/kg) and xylazine (10 mg/kg), supplemented as necessary for reflexive responses.   

A midline laparotomy was performed in order to remove the aorta from the left ventricle to the 

branching of the renal arteries.  The aortae were stored in a Krebs-Ringer bicarbonate buffer (118 

mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 24.2 mM NaHCO3, 10 mM 

α-D-glucose; pH 7.4) equilibrated with 5% CO2/95% O2 and maintained at 37°C as previously 

described by Rice and colleagues for the removal of blood and connective tissue.  Aortae were 

weighed before they were snap frozen in liquid nitrogen [166]. 
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Histological Analysis 

Frozen aortae (n = 4) were sectioned (8 µm) onto poly-lysine coated slides using an IEC 

Minotome Cryostat.  Aortic sections were stained using hematoxylin and eosin stain to determine 

morphology.  

 

Immunoblot Analysis 

 Aortic tissues were pulverized in liquid nitrogen and washed in ice cold PBS as previously 

published [345].  The samples were centrifuged at 4000 x g at 4°C for 20 minutes.  The pellet was 

resuspended in TPER buffer supplemented with 0.5 M EDTA, 0.1 M EGTA, 1.0 M MgCl2, 0.1 M 

NaVO3, 0.5 M PMSF, phosphatase inhibitor cocktail 3 (P0044, Sigma), and proteinase inhibitor 

cocktail (P8340, Sigma).  Samples were incubated on ice for 30 minutes and vortexed every five 

minutes during the incubation.  The samples were centrifuged at 4000 x g at 4°C for 20 minutes, 

after which the supernatants were then transferred into new tubes and stored at -80°C.  Protein 

concentration was measured using the Pierce 660 nm Protein Assay (Rockford, IL), following 

manufacturer's instructions.  Briefly, concentrations of triplicates of each sample and BSA as a 

standard were measured using a SpectraMax Plus 384 kinetic microplate reader (Molecular 

Devices, Sunnyvale, CA).  Each sample was diluted to 5 µg/µl using SDS-loading buffer and boiled 

for 5 minutes at 95°C.  Proteins were separated on 10% and 15% SDS-PAGE gels and transferred 

to nitrocellulose membrane in order to probe with primary and secondary antibodies as 

described previously [345].  Chemoluminescent images were captured using the FlourChemE 

system, and band intensity was determined using Alphaview software (Cell Biosciences, CA).  

GAPDH band intensity was used to normalize the band intensity of the signaling protein.     
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Statistical Methods 

Results are given as mean ± SEM.  The statistical software Sigma Stat 11.0 was used to 

perform statistical analyses.  Age comparisons between morphologic indices and protein 

expression were evaluated by One Way ANOVA, or Kruskal-Wallis One Way Analysis of Variance 

on Ranks with the Student-Newman-Keuls, or Dunn's methods as the post hoc test, respectively.  

Regression analysis was performed with dependent variables against the independent variables 

age and intima-medial thickness.    The level of significance accepted a priori was ≤ 0.05.     

 

RESULTS 

Aortic intima-medial thickness increases with age in the female F344xBN 

As reported previously, body weight was increased at 26- (274.0 ± 4.9 g) and 30-months 

(321.3 ± 7.2 g) compared to that observed in the 6-month female F344xBN rats (Chapter 3, Table 

3.2).  Aortic intima-medial thickness was higher at 26- (97.3 + 4.0 µm) and at 30-months (140.2 + 

2.0 µm) compared to that observed in the 6-month old animals (86.2 + 6.3 µm, Figure 5.1).  No 

apparent changes in structure were observed with trichrome staining. 

   

Phosphorylation of p44/42 MAPK is altered with aging but not AMPKα, p38 MAPK, or JNK MAPK 

No age-associated changes in expression or phosphorylation of AMPKα or total MAPK 

protein levels were observed with aging (Table 5.1, Figure 5.2).  Compared to that found in the 6-

month aortae, the phosphorylation (activation) of p44/42 MAPK at Thr202 and Tyr204 was 

increased 125% at 26-months and 187% at 30-months (Table 5.1, Figure 5.3).  The 
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phosphorylation of p38 and JNK MAPK activation did not change with age.   

 

No change in eNOS, Akt, or apoptosis in the aging female F344xBN aorta  

Immunoblotting was used in order to determine age-associated alterations in expression 

and/or activity of eNOS.  Aging was not associated with a significant change in the regulation of 

eNOS and Akt (Figures 5.4A - B; Table 5.1).  No significant difference was found in the expression 

of Bax, Bcl-2, or the Bax/Bcl-2 ratio with aging (Table 5.1, Figure 5.5).    

 

Differential regulation of heat shock proteins in the aging female aorta 

Hsp27 expression increased 32% at 30-months when compared to that observed in 6-

month aortae (Figure 5.6, Table 5.1).  Conversely, Hsp90 protein levels were decreased 59% and 

52% at 26- and 30-months (Figure 5.6, Table 5.1).  The expression of Hsp70 was unaltered with 

aging (Figure 5.6, Table 5.1).   

 

Activation of NF-κβ p50 is decreased with age 

 The protein levels of NF-κβ p50 and NF- κβ p65 did not change with age. The ratio of total 

to phosphorylated NF-κβ p50 was decreased 50% and 55% at 26- and 30-months, respectively, 

compared to that found in the 6-month old animals (Figure 5.7, Table 5.1).  

 

DISCUSSION 
 

 An increase in aortic intima-medial thickness has been shown to be correlated with the 

development of CVD [268].  Consistent with previous work from our laboratory using the  male 
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F344xBN model, we found that aging in the female F344xBN aorta is also characterized by 

increases in intima-media thickness [346].  To investigate the potential mechanism(s) responsible 

for this finding, we next examined the regulation of MAPK signaling.  The MAPK proteins play a 

role in several different signaling pathways and are involved in the control of cell growth, 

proliferation, survival, motility, and differentiation [274].  It is thought that the MAPKs participate 

in the pathogenesis of aortic dysfunction in several diseases [391].  In the male F344xBN aorta, 

the phosphorylation (activation) of p44/42, p38, and JNK MAPKs was reduced, increased, or 

slightly increased with age [332].  Conversely, in the female F334xBN aorta, the activation of 

p44/42 MAPK was significantly increased with age.  Previous studies have found that this age-

associated increase of p44/42 MAPK activation was associated with increases in VSMC 

proliferation and migration [260, 273, 274, 392].  Consistent with these findings, we also noted 

that elevations in p44/p42 MAPK phosphorylation appeared to be highly correlated with 

increases in intima-medial thickness (Figure 5.1, Table 5.2A).  Whether this increase in p44/p42 

MAPK phosphorylation is solely responsible for the aortic remodeling we observed in the current 

study is currently unclear and will require further investigation.   

 Age-associated endothelial dysfunction has been linked to changes in expression and 

activity of eNOS [298].  It is currently unclear how aging may affect eNOS expression and activity.  

In the current study, we found no significant change in total eNOS expression or phosphorylation 

(activation) with increasing age.  Consistent with this finding, we also found that expression and 

phosphorylation of Akt, which functions as an upstream regulator of eNOS, is also unchanged 

with aging.  Like Akt, Hsp90 also plays an important role in the regulation of eNOS and NO 

production. It is thought that association of Hsp90 with eNOS increases NO generation [393].  We 
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found a decrease in Hsp90 expression with increasing age (Figure 5.6).  This decreased expression 

may be associated with a reduction in NO production.  Whether this finding is associated with 

diminished aortic relaxation or alterations in animal blood pressure with aging will require 

additional study.  

Heat shock proteins are induced by cell stress and function to stabilize protein structure 

or to protect the cell from injury [394, 395].  Supporting this notion, with aging we found that 

Hsp27 expression was increased in the female F344xBN aorta (Figure 5.6).  Similar to our findings 

for p44/p42 MAPK, this increase in Hsp27 was also found to be highly correlated to increases in 

intima-medial thickness (Table 5.2B).  Previous data has suggested that decreased levels of Hsp27 

are associated with the pathogenesis of atherosclerosis [396].  Whether this increase in Hsp27 

levels is a compensatory response to aging or diminished estrogen levels to maintain aortic 

function with aging is currently unclear.  

 NF-κβ is an important proinflammatory transcription factor that induces transcription of 

chemokines, cytokines, adhesion molecules, secondary inflammatory enzymes, and anti-

apoptotic factors [223, 224].  Previous work in our laboratory demonstrated that aging was not 

associated with alterations in NF-κβ expression in the male F344xBN [187].  Conversely, in the 

present study we found that the phosphorylation (activation) of NF-κβ p50 was increased with 

age. Why aging might increase NF-κβ p50 activity levels is not yet clear, however, previous studies 

have demonstrated that increases in NF-κβ expression are regulated, at least in part, by ROS levels  

and that it may function in the control of VSMC proliferation [327-329, 397, 398].  Whether NF-

κβ p50 might functions in a similar manner in the aging F344xBN aorta will require further 

investigation.      
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 In conclusion, our data suggest that aging in the female F344xBN aorta is characterized by 

increases in intima-medial thickness, increased p44/42 MAPK activation, decreased Hsp90, 

increased Hsp27 protein levels, and increased activation of NF-κβ p50.  This combination of age-

associated signaling alterations may be a compensatory response by the aorta to mitigate the 

age-related loss in circulating estrogen.  Whether similar findings are also seen in aging women is 

currently unclear. Additional work is needed to more fully understand the underlying mechanisms 

of the age-associated changes in the aging female F344xBN aorta.   
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TABLE 5.1:  AORTIC TISSUE EXPRESSION FOR TOTAL AND PHOSPHORYLATED PROTEINS IN 

AORTA FROM 6-MONTH, 26-MONTH, AND 30-MONTH FEMALE F344XBN RATS.  Data are 

presented as changes of 6-month adult value ± SE.  Values for proteins were obtained from n = 5 

aortae per age group.  An asterisk (*) indicates significant difference from 6-month age group (p 

< 0.05). 

 

    
 6-month 26-month 30-month 

    
Metabolic    
AMPKα 100.0 ±  6.4 + 4.1 ± 11.2  -16.1 ±  3.5 
p-AMPKα 100.0 ± 10.8 +93.3 ± 33.1 +39.0 ± 30.8 
    

Signaling    
JNK 100.0 ± 13.3 +1.0 ± 6.6 +16.3 ± 5.1 
p-JNK 100.0 ±  9.9 -9.8 ± 4.2 +2.8 ± 24.4 
p38 100.0 ± 22.1 -38.2 ± 8.8 -22.7 ± 13.7 
p-p38 100.0 ±   9.7 +34.5 ± 17.0 +54.6 ± 22.0 
p44/42 100.0 ± 14.7 +8.9 ± 4.0 +14.9 ± 16.5 
p-p44/42 100.0 ±  6.4 +124.5 ± 28.4* +187.3 ± 47.6* 
eNOS 100.0 ±  7.3 +76.5 ± 15.9 +110.5 ± 39.9* 
p-eNOS (Ser1177) 100.0 ± 30.2 +125.3 ± 52.7 +23.8 ± 43.0 
Akt 100.0 ± 29.1 +34.4 ± 31.9 -1.5 ± 35.7 
p-Akt (Ser473) 100.0 ± 12.8 +27.5 ± 12.1 -7.5 ± 7.7 
p-Akt (Thr308) 100.0 ± 21.2 +69.2 ± 48.3 +35.6 ± 12.4 
    
Apoptotic Regulators    
Bax 100.0 ± 11.8 -34.7 ± 16.7 -41.9 ± 16.1 
Bcl-2 100.0 ± 29.1 -6.8 ± 13.3 -30.1 ± 14.3 
    

Heat shock proteins    
Hsp27 100.0 ± 6.8 +2.2 ± 3.5* +31.8 ± 6.2* 
Hsp70 100.0 ± 8.1 +55.5 ± 23.6 +19.7 ± 11.4 
Hsp90 100.0 ± 20.3 -59.4 ± 5.2* -52.0 ± 9.3* 
    
Transcription Factors    
NF-κβ p50 100.0 ± 13.1 +65.8 ± 40.9 +49.3 ± 17.7 
pNF-κβ p50 100.0 ±  8.6 -20.3 ± 5.6 -31.0 ± 4.4* 
NF-κβ p65 100.0 ± 10.3 +3.0 ± 19.9 -11.9 ± 28.8 
pNF-κβ p65 100.0 ± 11.9 +5.1 ± 9.4 

 
-2.9 ± 7.8 
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TABLE 5.2A:  REGRESSION ANALYSIS OF THE RELATIONSHIP BETWEEN SIGNALING PROTEINS 

TO AGE AND INTIMA-MEDIAL THICKNESS IN THE AORTAE OF 6-, 26-, AND 30-MONTH OLD 

FEMALE F344XBN RATS.  Values for proteins and thickness were obtained from n = 5 aortae for 

each age group.  The following symbols indicate: (*) low correlation (p < 0.05) and (**) 

moderate correlation (p < 0.05) between parameters.  P values are located within parentheses.  

N.T. (not tested). 

 

    
 Age Intima-medial Thickness  

    
Independent Variable    

Age 
 

N.T. 0.741* 
(0.022) 

 

Intima-medial 
thickness 

 

0.741* 
(0.022) 

N.T.  

Metabolic    
AMPKα 

 
0.326 

(0.391) 
0.690* 
(0.04) 

 

p-AMPKα 
 

0.555 
(0.121) 

0.067 
(0.864) 

 

Signaling    
JNK 

 
0.389 

(0.301) 
0.498 

(0.172) 
 

p-JNK 
 

0.044 
(0.91) 

0.024 
(0.952) 

 

p38 
 

0.547 
(0.128) 

0.082 
(0.834) 

 

p-p38 
 

0.740* 
(0.023) 

0.692* 
(0.039) 

 

p44/42 
 

0.364 
(0.336) 

0.204 
(0.589) 

 

p-p44/42 
 

0.888** 
(0.001) 

0.732* 
(0.025) 

 

eNOS 
 

0.837** 
(0.005) 

0.709* 
(0.032) 

 

p-eNOS (Ser1177) 
 

0.384 
(0.307) 

0.189 
(0.627) 

 

Akt 
 

0.132 
(0.736) 

0.214 
(0.581) 

 

p-Akt(Ser473) 
 

0.123 
(0.753) 

0.354 
(0.35) 

 

p-Akt(Thr308) 0.486 
(0.185) 

0.075 
(0.849) 
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TABLE 5.2B: REGRESSION ANALYSIS OF THE RELATIONSHIP BETWEEN SIGNALING PROTEINS TO 

AGE AND INTIMA-MEDIAL THICKNESS IN THE AORTAE OF 6-, 26-, AND 30-MONTH OLD 

FEMALE F344XBN RATS.  Values for proteins and thickness were obtained from n = 5 aortae for 

each age group.  The following symbols indicate: (*) low correlation (p < 0.05), (†) moderate 

correlation (p < 0.05), (††) high correlation (p < 0.05), and (†††) very high correlation (p < 0.05) 

between parameters.  P values are located within parentheses.  N.T. (not tested). 

 

    
 Age Intima-medial Thickness  

    
Independent Variable    
    
Apoptotic Regulators    

Bax 
 

0.725* 
(0.027) 

0.483 
(0.188) 

 

Bcl-2 0.377 
(0.317) 

0.579 
(0.102) 

 

    
Heat Shock Proteins    

Hsp27 
 

0.615 
(0.078) 

0.903††† 

(<0.001) 

 

Hsp70 
 

0.519 
(0.152) 

0.004 
(0.993) 

 

Hsp90 0.834†† 

(0.005) 

0.388 
(0.302) 

 

    
Transcription Factors    

NF-κβ p50 
 

0.851 
(0.004) 

0.701 
(0.035) 

 

p-NF-κβ p50 
 

0.617 
(0.077) 

0.329 
(0.387) 

 

NF-κβ p65 
 

0.120 
(0.758) 

0.159 
(0.682) 

 

p-NF-κβ p65 
 

0.001 
(0.999) 

0.032 
(0.934) 

 

    

 

 

 

  



  102 
 

FIGURE 5.1  

 
FIGURE 5.1:  AGING INCREASES INTIMA-MEDIAL THICKNESS IN THE FEMALE F344XBN AORTA.   

Hematoxylin and eosin staining of 6-, 26-, and 30-month female F344xBN aortae.  Bar 

indicates 100 µm.  n = 4 aortae per age group.  
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FIGURE 5.2 

 
 

FIGURE 5.2:  AGING DOES NOT ALTER THE EXPRESSIONS OF MAPKS AND AMPK-ΑLPHA IN THE 

F344XBN AORTA.  

Total levels of aortic AMPK-α as well as p38, p44/42, and JNK MAPKs were determined 

by immunoblotting in 6-, 26-, and 30-month female rats.  Results were normalized to GAPDH 

expression and expressed as fold change of the 6-month value.  n = 5 aortae per group.  
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FIGURE 5.3 

 
 

FIGURE 5.3:  PHOSPHORYLATION STATUS OF P44/42 MAPK IS INCREASED WITH AGE IN THE 

FEMALE RAT AORTA BUT NOT P38 MAPK, JNK MAPK, OR AMPK-ALPHA.  

Age-related changes in phosphorylated AMPKα in addition to p38, p44/42, and JNK 

MAPK expression were analyzed by immunoblotting in 6-, 26-, and 30-month female rat aortae.  

Results were normalized to GAPDH expression and expressed as fold change of the 6-month 

value.  An asterisk (*) indicates significance difference from the 6-month value, (p < 0.05) or 

less, n = 5 aortae per group. 
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FIGURE 5.4 

 
 

 
 
FIGURE 5.4: ENOS AND AKT ACTIVATION ARE NOT ALTERED WITH AGING IN THE FEMALE 

F344XBN AORTA.   

Immunoblotting was used to detect (A) the ratio p-eNOS(Ser1177) / total eNOS 

expression. (B) Akt, p-Akt (Ser473), and p-Akt (Thr308) in 6-, 26-, and 30-month female rat 

aortae.  Results were normalized to GAPDH expression and expressed as fold change of the 6-

month value, n = 5 aortae per group.   
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FIGURE 5.5 

 
FIGURE 5.5:  NO AGE-ASSOCIATED INCREASE IN APOPTOSIS WITH AGE IN THE FEMALE RAT 

AORTA.  

Protein expression of Bax and Bcl-2 were detected by immunoblotting in 6-, 26-, and 30-

month female rat aortae.  Results were normalized to GAPDH expression and expressed as fold 

change of the 6-month value.  n = 5 aortae per group. 
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FIGURE 5.6 

 
FIGURE 5.6:  DIFFERENTIAL REGULATION OF HSPS IN THE AGING FEMALE RAT AORTA.   

Age-related changes in Hsp27, Hsp70, and Hsp90 expression were analyzed by 

immunoblotting in 6-, 26-, and 30-month female rat aortae.  Results were normalized to GAPDH 

expression and expressed as fold change of the 6-month value.  An asterisk (*) indicates 

significant difference from the 6-month value (p < 0.05) or less.  (†) indicates significant 

difference from 26-month value (p < 0.05), n = 5 aortae per group. 
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FIGURE 5.7 

 
 
FIGURE 5.7:  ACTIVATION OF NF-ΚΒ P50 IS DECREASED WITH AGE.   

Transcriptional regulation in the 6-, 26-, and 30-month female F344xBN aorta was 

determined by analyzing the expression of NF-κβ p50, p-NF-κβ p50, NF-κβ p65, and p-NF-κβ 

p65.  Results were normalized to GAPDH expression and expressed as percent of the 6-month 

value.  An asterisk (*) indicates significance difference from the 6-month value (p < 0.05) or less, 

n = 5 aortae per group. 
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 
 

 

The number of elderly persons in the United States is projected to increase by more than 

20% by the year 2030.  This growth in the elderly population is expected to significantly test our 

already overloaded health care system due to the fact that aging is a primary risk factor for the 

development of CVD. The effect of sex on cardiovascular risk has not been fully elucidated; 

however, recent data suggests that premenopausal women have a decreased risk of CVD 

compared to men of comparable age [24, 69].  This cardio-protective benefit appears to be lost 

over time as the risk of CVD in postmenopausal women is similar to that seen in aged men [25].  

Whether aging in animal models induces many of the cardiovascular changes seen in humans is 

not well understood.  The primary purpose of this study was to investigate how aging affects 

cardiovascular structure and function in the female F344xBN rat. 

 

CARDIAC AGING IS ASSOCIATED WITH INCREASES IN OXIDATIVE STRESS AND APOPTOSIS IN 

THE FEMALE F344XBN RAT 

 Recent work has suggested that aging in the female Wistar, Fisher 344, and Sprague-

Dawley rats as well as B6 mice is associated with increased ROS levels [5, 6, 188-190].  How aging 

may affect the levels of oxidative-nitrosative stress in the aging female F344xBN rodent model 

has not been elucidated.  Similar to that observed in other aging models, the findings of this study 

suggest there is an increase in oxidative-nitrosative stress and apoptosis in the female F344xBN 
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heart.  Specifically, aging was found to be associated with increased levels of superoxide, 4-HNE, 

and nitrotyrosine.  It is thought that oxidative stress is typically caused by increases in ROS 

production, a decline in antioxidant buffering capacity, or some combination of both.  In this 

study, the mRNA expression of SOD1, SOD2, Cat, and Gpx were not altered with aging.  This 

suggests that the increase in oxidative-nitrosative stress is probably not due to a decrease in 

antioxidant buffering capacity.   

 

FIGURE 6.1 

 

FIGURE 6.1:  POTENTIAL MECHANISM OF AGE-ASSOCIATED OXIDATIVE-NITROSATIVE DAMAGE 

IN THE FEMALE F344XBN HEART.   

Solid arrows indicated findings from study.  Dotted arrows represent potential 

mechanism of oxidative-nitrosative damage. 
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OXIDATIVE-NITROSATIVE STRESS AND APOPTOSIS IN THE AGING MALE AND FEMALE F344XBN 

RAT HEART 

Cardiac aging is typically characterized by increases in oxidative-nitrosative stress in male 

rodent models [184, 187, 399].  Compared to that observed in females, the hearts of aging male 

rats exhibited increases in protein carbonylation, advanced oxidation protein products, 

nitrotyrosine, non-protein thiol, reduced glutathione, and iron levels [5].  Although aging is 

associated with increases in oxidative stress in both male and female hearts, female rat hearts 

exhibited lower mitochondrial hydrogen peroxide production and oxidative damage, as well as a 

greater mitochondria differentiation [6].  It is thought that females have a higher mitochondrial 

differentiation which is a metabolic adaptation to increase energy efficiency, as it is associated 

with their lower mitochondrial free radical production and oxidative damage [6].  Previous studies 

have shown that female Sprague Dawley, Wistar, and F344 rats have lower ROS production in 

addition to oxidative levels compared to males, which may explain the greater mean life-span 

[188-190].   

Similar to humans and other rodent models, aging in the male and female F344xBN rat 

was associated with increased superoxide production as well as oxidative-nitrosative stress as 

indicated by increased levels of lipid peroxidation and protein nitrosylation (Table 6.1).  Although 

antioxidant activity was not determined in this study, we did not observe differences in the 

antioxidant mRNA expression with aging in the female F344xBN heart.  Whether age is associated 

with alterations in antioxidant levels and activity in the male F344xBN heart is unknown.   

While indices of oxidative-nitrosative stress were increased in both male and female 

F344xBN rats, male animals appeared to exhibit greater levels of oxidative-nitrosative cardiac 
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damage [197].  One possible explanation could be sex-associated differences in ROS/RNS 

production as well as antioxidant expression/activity.  Indeed, previous research has suggested 

that ROS production is lower in aged female compared to male Wistar rats [189].  Similarly, other 

data has demonstrated that the aging female Fisher 344 rat exhibits lower ROS production and 

increased SOD2 and Gpx levels when compared to its male counterpart [189, 190, 400].  It is 

thought that hormones may be responsible, at least in part, for sex related differences as estrogen 

has been shown to increase the expression of antioxidant genes/activity [189, 401].  Conversely, 

other work has shown that estrogen levels are not predictive of antioxidant activity suggesting 

that estrogen levels alone may not be the sole determinant of ROS levels with aging [190, 402, 

403]. 

 

APOPTOSIS IN THE AGING MALE AND FEMALE F344XBN HEART 

Aged cardiomyocytes exhibit increased susceptibility to mitochondrial permeability 

transition pore opening which may be a cause of increased ROS production and apoptosis [404, 

405].  In addition to changes in oxidative stress, aging in the female F344xBN heart was also 

associated with an increase in the number of TUNEL positive nuclei and evidence of 

mitochondrial–mediated apoptosis.  Although mitochondrial-mediated apoptosis signaling was 

increased in both aging male and female F344xBN hearts, the magnitude of age-related change 

appeared to be less in the female animals [197] (Figure 3.5-7).  Consistent with this finding, Bax 

was increased with age in the male but unchanged in the female hearts.  In addition to Bax, we 

also observed differences in the regulation of Akt. Akt signaling is thought to be largely anti-

apoptotic given its proclivity to inactivate Bad and procaspase-9 by phosphorylation [406-409].  
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Akt exhibited decreased expression and activation with age in the male F344xBN hearts while the 

p-Akt/Akt ratio was increased in the aging female hearts (data not shown).  Whether these 

changes in signaling can fully explain the apparent differences in age-related cardiac apoptosis 

observed between male and female hearts is currently unclear and will require further 

investigation. 
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TABLE 6.1: AGE-ASSOCIATED ALTERATIONS IN OXIDATIVE-NITROSATIVE STRESS AND 

APOPTOTIC SIGNALING THE MALE AND FEMALE F344XBN HEART.  Age-associated comparisons 

of oxidative-nitrosative stress and protein signaling in female and male F344xBN rats.  Arrows 

indicate significant increase (↑) and decrease (↓) in parameters (p < 0.05) compared to 6-

month age groups within gender.  N.A. – not applicable.  N.C. - no change.  N.D. - not 

determined.  Parentheses indicate size of protein fragment in kilodaltons (kDa).     

  Female Female  Male Male 
  26m 30m  30m 36m 

       
Oxidative-Nitrosative 

Stress 
      

HE  ↑ ↑  ↑             ↑ 

Nitro-Tyrosine  ↑ ↑  ↑ ↑ 

4-HNE  ↑ ↑  ↑ ↑ 
       

Apoptotic Signaling       

TUNEL  ↑ ↑  ↑ ↑ 

Bax  N.C. N.C.  N.C. ↑ 

Bcl-2  ↓ ↑  ↑ ↑ 

Bax/Bcl-2  N.C. ↑  N.D. N.D. 

Casp-9  N.C. N.C.  N.C. ↑ 

Casp-9 (40kDa)  N.C. N.C.  N.C. ↑ 

Casp-9 (38kDa)  ↑ ↑  N.C. N.C. 

Casp-9 (17kDa)  ↑ ↑  N.D. N.D. 

Casp-3  ↓ ↓  ↑ ↓ 

Casp-3 (19kDa)  N.C. ↑  ↓ ↑ 

Casp-3 (17kDa)  N.C. ↑  N.D. N.D. 

Akt  N.C. N.C.  ↓ N.C. 

p-Akt (Ser473)  N.C. N.C.  ↓ N.C. 

p-Akt (Thr308)       N.D. N.D.  ↓       N.D. 

p-Akt(473)/Akt        ↑ ↑  N.D.       N.D. 

       
Heat Shock Proteins       

Hsp27  N.C. N.C.  ↑ ↑ 

Hsp70  N.C. N.C.  ↑ ↑ 
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CARDIAC STRUCTURE AND FUNCTION IS LARGELY PRESERVED IN THE AGING FEMALE F344XBN 

RAT 

 Aging in mammals is typically characterized by increased cardiomyocyte death, impaired 

contractility, and ventricular remodeling [221, 90].  Previous studies from our laboratory and 

others have demonstrated that aging in the male F344xBN is associated with left ventricle 

chamber dilatation, mild left ventricular hypertrophy, decrements in systolic function, and 

increased diastolic dysfunction [94].  Data from the current study suggest that aging in the female 

F344xBN heart is associated with cardiac hypertrophy (increase in posterior wall thickness and 

cardiomyocyte CSA), diastolic dysfunction (increase in LV IVRT), increased valvular dysfunction, 

and alterations in heart rhythm intervals.  These data are consistent with the previous work by 

Boluyt and colleagues using the aging female F344 rodent [2].  In their study, diastolic dysfunction 

in the female F344 was attributed to changes in the amount of collagen, increased collagen 

crosslinking, and a shift from alpha to beta myosin heavy chain [2, 4, 122, 123, 411].  Although 

we did not determine if aging in the F344xBN was associated with changes in myosin heavy chain 

isoform expression, we did find that collagen deposition did not appear to change appreciably.  

Whether this discrepancy between studies is due to differences in animal strain, age investigated, 

or other factors is currently unclear.  

Our data suggest that aging in the female F344xBN is characterized by changes in cardiac 

rhythm including an increased VAT, ST interval, T amplitude, QRS interval, QT interval, T duration, 

Q amplitude, P amplitude, and a shift in the mean electrical axis.  Previous studies have found 

that cardiac conduction is slowed during aging in humans and rats [130, 412-415].   To our 

knowledge, this is the first study to investigate alterations in heart rhythm intervals in the female 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329953/#B221
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329953/#B90
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F344xBN rat model.  Potential explanations for the slowing of cardiac conduction could include 

differences in cardiomyocyte excitability, cardiomyocyte structure, or alterations in 

cardiomyocyte orientation [41, 412, 416-419].  Specific to this study, the prolonged conduction in 

the aging female F344xBN heart might be related to cardiomyocyte hypertrophy as previous work 

has demonstrated that cardiomyocyte enlargement appears to be associated with slowed cardiac 

conduction [412].  The prolonged heart intervals in the aging female F344xBN rat heart may also 

be related to the alterations in the spatial distribution of Cx43 (Figure 4.3).  Additional study, 

perhaps examining Cx43 phosphorylation with aging, may be useful to determine what role, if 

any, Cx43 may play in the delayed cardiac conduction we observed.   

 

TABLE 6.2:  SUMMARY OF FINDINGS OF CARDIAC STRUCTURE AND FUNCTION IN THE AGING 

FEMALE F344XBN HEART.  ↑ and ↓ indicates increase and decrease respectively. 

 

 

 

COMPARISON OF AGING CARDIAC STRUCTURE AND FUNCTION IN THE MALE AND FEMALE 

F344XBN RAT 

Hypertrophy 
 

Recent studies have demonstrated that the aging heart exhibits an accumulation of 
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damaged, high-ROS producing mitochondria that may result in the activation of MAPK signaling 

which is important in the induction of cardiac hypertrophy [420-423].  Previous data has 

suggested that aging in the male F344xBN rat is associated with cardiac hypertrophy (increased 

heart weight to body weight ratio, LVM, and posterior wall thickening), increased ROS levels, and 

the activation of MAPK signaling [187].  In the aging female F344xBN heart, we did not find 

evidence of significant hypertrophy although cardiomyocyte CSA and posterior wall thickness was 

increased.  Whether this lack of hypertrophy in the aging female F344xBN is due to lower levels 

of oxidative-nitrosative stress is currently unclear and will require additional experimentation.  

 

Systolic Function 

 Systolic dysfunction is defined as impaired ventricular contraction which can be caused by 

alterations in cardiac signaling, increased blood pressure, as well as cardiac valve regurgitation.  

Previous data has demonstrated that aging in the male F344xBN is associated with increased end 

systolic volume suggesting decreased ventricular ejection [94].  Conversely, systolic function in 

the aging female F344xBN heart appeared to be largely conserved.  This absence of systolic 

dysfunction seems to fit well to that observed in other aging studies that employed healthy 

women and with our finding that aging in the female animals appeared to occur without the 

development of cardiac hypertrophy [466].   

 

Diastolic Function 

 Diastolic dysfunction, or impaired filling of the ventricles, has been shown to increase in 

aging women [424, 425].  While aging in both male and female F344xBN rats was associated with 
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evidence of diastolic dysfunction, the degree and mechanism of impairment appeared to differ.  

For example, aging in the male F344xBN rats was associated with a significant increase in the E/A 

ratio and evidence of increased cardiac fibrosis [94].  Conversely, in the female rats, we noted 

significant and progressive decreases in Emax and increasing trends in LV IVRT as well as MV decel 

time but no evidence of age-associated fibrosis.  It is thought that diastolic dysfunction can be 

caused by alterations in the re-uptake of calcium, decreased sarco/endoplasmic reticulum Ca2+ 

(SERCA)-2 protein expression, valvular dysfunction, as well as increases in the deposition of 

extracellular matrix (fibrosis) [426-428].  Similarly, increases in oxidative-nitrosative stress have 

also been shown to contribute to diastolic dysfunction by impairing SERCA2 function, increasing 

the phosphorylation of phospholamban, and altering ryanodine receptor channel function [429].  

In addition to increases in ROS levels, we also noted that aging in the female F344xBN heart was 

associated with increased incidence of mitral regurgitation.  Although not observed here, the 

accumulation of extracellular matrix can lead to increased fibrosis causing increased cardiac 

stiffness, decreased compliance, and alterations in myocardial excitation-contraction coupling 

[426, 427].  Whether further studies in addition to immunoblotting to assess calcium signaling 

would yield meaningful data is not yet clear.   

 

GENDER COMPARISON OF ARRHYTHMIAS IN THE F344XBN RAT 

Although previous data has demonstrated that aging in the male F344xBN is associated 

with increases in the number of premature ventricular contractions, we failed to find evidence of 

similar phenomena in the aging female rats.  Why the incidence of cardiac arrhythmia may differ 

between male and female animals is not clear but may be explained, at least in part, by 
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differences in the cardiac gap junction protein Cx43.  Kakarla and colleagues found that Cx43 

levels were decreased in the aging male F344xBN heart (unpublished data).  Paralleling this 

decrease in Cx43, they also observed that aging was associated with increased cardiac fibrosis 

[197].  In the aging female, neither Cx43 levels nor the degree of ventricular fibrosis appeared to 

change with aging.  Whether these two differences, alone, are responsible for the absence of 

arrhythmias we see in the aging female heart will require further investigation.  

Although we did not find evidence of arrhythmias, aging in the female F344xBN heart did 

appear to be associated with prolonged cardiac conduction.  Whether similar alterations in 

cardiac conduction also occur in the male F344xBN heart is, to our knowledge, unknown.  Why 

aging may slow cardiac conduction is not clear; however, we did note that the presence of 

conduction abnormalities appeared to be associated with alterations in the subcellular 

distribution of Cx43.  Other work has shown that the expression of Cx43 is significantly higher in 

female compared to male rats [167].  Whether this increased expression of Cx43 in the female 

F344xBN functions to attenuate the development of cardiac conduction abnormalities with aging 

is unclear.  

In summary, our data suggest that aging in the F344xBN rat, similar to that seen in 

humans, is associated with sex related differences in cardiac structure and function.  The male 

F344xBN exhibited progressive diastolic and systolic left ventricular chamber dilatation; mild 

diastolic and systolic left ventricular hypertrophy; progressive age-associated decrements in 

resting left ventricular systolic function; and mild diastolic dysfunction [94].  Aging in the female 

F344xBN was characterized by increased cardiomyocyte CSA, posterior wall thickening, left 

ventricle chamber dilatation, slight diastolic dysfunction, and alterations in heart rhythm intervals 
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that were associated with alterations in the spatial distribution of Cx43.  Whether additional 

changes or if the magnitude of existing alterations increases further with aging progression in 

female rat is unclear.  

 

TABLE 6.3:  COMPARISON OF CARDIAC STRUCTURE IN MALE AND FEMALE F344XBN RATS.  

Age-associated comparisons of cardiac morphology and structure in female and male F344xBN 

rats.  Arrows indicate significant (p < 0.05) increase (↑) or decrease (↓) in parameters 

compared to 6-month age groups within gender.  N.A. – not applicable. N.C. -- no change.  N.D. 

– not determined.  PVC- premature ventricular contractions.  (d) – diastole.  (s) – systole. 

 Female 
26m 

Female 
30m 

 Male 
30m 

Male 
36m 

      
Tissue Weights      

BW ↑ ↑  ↑ ↑ 

HW ↑ ↑  ↑ ↑ 

HW/BW N.C. N.C.  ↑ ↑ 

LVM 
 

N.C. N.C.  ↑ N.C. 

Cardiac structure      

IVS(d) N.C. N.C.  N.C. N.C. 

IVS(s) ↑ N.C.  ↑ ↑ 

LVID(d) N.C. N.C.  ↑ ↑ 

LVID(s) ↓ N.C.  ↑ ↑ 

LVPW(d) N.C. ↑  ↑ N.C. 

LVPW(s) N.C. ↑  ↑ N.C. 

RVDd 
 

N.C. N.C.  N.C. N.C. 

Histology      

Fibrosis N.C. N.C.  N.C. ↑ 

Loss of cardiomyocytes N.D. N.D.  N.C. ↑ 
Cross striations 

 
N.D. N.D.  N.C. ↑ 
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TABLE 6.4:  COMPARISON OF CARDIAC FUNCTION IN MALE AND FEMALE F344XBN RATS.  Age-

associated comparisons of cardiac function in female and male F344xBN rats.  Arrows indicate 

significant (p < 0.05) increase (↑) or decrease (↓) in parameters compared to 6-month age 

groups within gender.  N.A. – not applicable. N.C. -- no change.  N.D. – not determined.  PVC- 

premature ventricular contractions.  

 Female 
26m 

Female 
30m 

 Male 
30m 

Male 
36m 

      
Systolic Function      

EF ↑ N.C.  N.C. N.C. 
FS N.C. N.C.  N.C. N.C. 

ESV 
 

↓ N.C.  ↑ ↑ 

Diastolic Function      

MV Decel time N.C. N.C.  N.C. N.C. 
Emax ↓ ↓  ↑ ↑ 
Amax N.C. ↓  N.C. N.C. 
E/A 

 
N.C. N.C.  N.C. ↑ 

Heart Rhythms      

Arrhythmias None None  PVC (1/10) PVC (13/18) 

Conduction ↑ ↑  N.D. N.D. 
Cx43 Redistributed Redistributed  ↓ ↓ 

      
Valve Function      

Valve dysfunction ↑ ↑  N.D. N.D. 
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AORTIC AGING IN THE FEMALE F344XBN RAT IS ASSOCIATED WITH INCREASES IN MEDIAL 

THICKNESS 

 Alterations in vascular structure and function increase the risk for CVD [42, 258, 268].  Age-

associated alterations in aorta structure and function include intima-medial thickening, 

deposition of extracellular matrix, infiltration of leukocytes, endothelial dysfunction, impaired 

distensibility, and increased stiffness [13, 263, 264, 266, 268, 430].  In the male F344xBN aorta, 

previous data has suggested that aging is associated with increases in oxidative stress, apoptosis, 

and intima-medial thickness [271].  The data of the current study indicate that aging in the female 

F344xBN rat aorta is associated with an increase in intima-medial thickness and alterations in the 

p44/42 MAPK, NF-κβ p50, and Hsp27 expression.  Whether these alterations are due to increased 

levels of oxidative stress, as has been posited for the aging male F344xBN aorta cannot be 

determined as indices of oxidative-nitrosative stress were not measured in this study [345].  

 The MAPKs regulate many cellular processes including VSCM proliferation, contraction, 

migration, differentiation, and cell survival [14-18].  Although not investigated here, the 

increased phosphorylation (activation) of p44/42 MAPK observed in the present study may be 

due to the de-differentiation of the VSMCs to a more proliferative phenotype as noted by others 

[274].  Similarly, although not measured, age-related decreases in estrogen levels might also have 

contributed to the increased intima-medial thickness as estrogen is thought to inhibit VSMC 

proliferation [319].   

 Consistent with previous studies, we found no change in eNOS expression with age [8, 

300, 431].  Two important signaling molecules, Akt and Hsp90, which are involved in the 

activation of eNOS by estrogen, were also investigated in this study.  Recent work has suggested 
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that eNOS activation is dependent, at least in part, on Akt phosphorylation and that reduced 

expression of Akt might be a potential mechanism underlying endothelial dysfunction and the 

decreased NO bioavailability observed in aging endothelial cells [283, 292, 432].  The 

disassociation of Hsp90 and eNOS has also been shown to cause reduced NO bioactivity and 

endothelial dysfunction [393, 433-439].  In the current study, we did not find any changes in Akt 

expression; however, aging did appear to diminish Hsp90 expression.  More work is needed in 

order to determine how these age-associated changes in aortic structure and protein signaling 

are related to each other as well as their potential impact on aortic function.    

 

DIFFERENCES IN AORTIC AND CARDIAC AGING IN THE FEMALE F344XBN RAT 

It is thought that aging is associated with increased intima-medial thickness of the aorta 

[88, 89, 344, 346].  The thickness of the arterial wall, as indexed by the thickness of the intimal 

and medial layers, increases in a linear fashion nearly threefold between the ages of 20 and 90 

years, even in the absence of atherosclerotic plaques [440].  Similar to that seen in humans, we 

found that aging in the female F344xBN aorta is characterized by increases in the intima-medial 

thickness.  The factor(s) responsible for the increased wall thickness are currently unclear but 

may be related to VSMC proliferation.  Indeed, unlike cardiac muscle, VSMC appear to adopt more 

of a proliferative phenotype with increased aging [274, 441-443].  It has been hypothesized that 

the p44/42 MAPK signaling pathway contributes to the proliferative phenotype  and aging has 

been shown to be associated with increased p44/42 MAPK activation in the aorta [260, 273, 274, 

392, 444, 445,  446].  Consistent with these data, we also found that aging significantly increased 

p44/42 MAPK phosphorylation.  
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 The differential regulation of Hsp expression in the aging female F344xBN heart and aorta 

also indicate a tissue-specific response to stress.  Heat shock protein expression is normally 

induced with increased cellular stress [201].  No alterations in Hsp expression were observed in 

the aging female F344xBN heart although we did observe an age-associated increase in oxidative-

nitrosative stress.  Conversely, we found an increased expression of Hsp27 as well as a decreased 

expression of Hsp90 with aging in the aorta.  Decreases in Hsp27 expression appeared to be highly 

correlated to increases in intima-medial thickness, and have also been found in the progression 

of atherosclerosis [396].  Rayner and colleagues also found that Hsp27 is regulated by estrogen 

and is atheroprotective [239, 240, 447].  Although Hsp90 functions to help in the degradation of 

damaged proteins, it also plays an important role in NO production. The association of Hsp90 with 

eNOS increases NO generation.  Conversely, the disassociation of Hsp90 from eNOS leads to the 

increased production of superoxide in aortic endothelial cells [393].  We found that aging was 

characterized by decreased Hsp90 expression in the female F344xBN aorta.  This decreased 

expression may be associated with a reduction in NO production and eNOS stability.  Although 

correlation analysis suggested a high correlation between eNOS and Hsp90 expression and age, 

additional study is needed to determine cause and effect as well as physiological significance.  
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FIGURE 6.2 

 
 

FIGURE 6.2:  AGE-ASSOCIATED ALTERATIONS IN AORTIC STRUCTURE, FUNCTION, AND 

SIGNALING IN THE FEMALE F344XBN.   

With age the following was observed in the female F344xBN aorta: differential regulation 

of Hsps, activation of inflammatory signaling, intima-medial thickening, as well as no alterations 

in eNOS activity or apoptosis.  Solid lines indicate age-altered aortic cellular processes.  Dotted 

lines indicate laboratory results.  ↓ and ↑ indicate decrease and increase respectively. 
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TABLE 6.5:  COMPARISON OF AGE-ASSOCIATED ALTERATIONS IN THE FEMALE F344XBN HEART 

AND AORTA.  Age-associated comparisons of cardiac and aortic in morphology and signaling of 

female and male F344xBN rats.    Arrows indicate significant increase (↑) or decrease (↓) in 

parameters compared to 6-month values within gender.  N.A. -- not applicable.  N.C. – no 

change.  N.D. – not determined.     

 26m 
Heart 

30m 
Heart 

 26m 
Aorta 

30m 
Aorta 

      
Proliferation/Hypertrophy      

Intima-medial thickness N.A. N.A.  N.C. ↑ 
HW/BW N.C. N.C.  N.A. N.A. 

      
Akt Signaling      

Akt N.C. N.C.  N.C. N.C. 
p-Akt(473) N.C. N.C.  N.C. N.C. 
p-Akt(308) N.C. N.D.  N.C. N.C. 

p-Akt(473)/Akt ↑ ↑  N.C. N.C. 
      

Apoptosis Signaling      

Bax N.C. ↑  N.C. N.C. 
Bcl-2 ↓ N.C.  N.C. N.C. 

Bax/Bcl-2 N.C. ↑  N.C. N.C. 
      

Heat Shock Proteins      

Hsp27 N.C. N.C.  ↑ ↑ 
Hsp70 N.C. N.C.  N.C. N.C. 
Hsp90 N.C. N.C.  ↓ ↓ 
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CONCLUSION 

In conclusion, this study observed three aspects of cardiovascular aging in the female 

F344xBN rat: 1) age-associated increases in oxidative-nitrosative stress and evidence of 

mitochondrial-mediated apoptosis in the female F344xBN heart; 2) alterations in cardiac 

structure as well as Cx43 heterogeneity and spatial distribution that may contribute to age-

associated heart rhythm interval changes; and 3) that aortic aging in the female F344xBN is 

associated with increased activation of p44/42 MAPK and intima-medial thickness. 

Taken together, the data of the present study suggest that cardiovascular structure and 

function is, for the most part, remarkably conserved in the 30-month old female F344xBN rat. 

This finding is consistent with the notion that the female F344xBN rat model may be applicable 

for investigating the effects of increasing age in the absence of underlying pathology on the 

cardiovascular system.  Future research examining the potential effects of alterations in hormonal 

levels on cardiovascular structure and function may be warranted.  
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SUMMARY 
 

1.  Aging in the female F344xBN heart is associated with increases in posterior wall thickness 

and cardiomyocyte fiber CSA. 

2. Aging in the female F344xBN heart is characterized by increases in superoxide production, 

lipid peroxidation, and nitration of tyrosine residues. This age-associated increase of 

oxidative-nitrosative stress did not appear to be related to changes in antioxidant mRNA 

expression. 

3. Aging in the female F344xBN heart is characterized by increases in the number of TUNEL 

positive nuclei and activation of the mitochondrial-mediated pathway of apoptosis. 

4. Aging in the female F344xBN rat heart is associated with cardiac hypertrophy, diastolic 

dysfunction, and evidence of increased valvular dysfunction.    

5. Aging in the female F344xBN rat heart is associated with changes in the localization of 

Cx43 and alterations in heart rhythm intervals.     

6. Aortic intima-medial thickness was increased with age in the female F344xBN rat. 

7. Aging increased the activation of p44/42 MAPK in the female F344xBN aorta. 

8. Aging in the female F344xBN aorta did not appear to alter the expression or 

phosphorylation of eNOS and Akt. 
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FUTURE DIRECTIONS 
 

 The present study determined the age-associated alterations in cardiovascular structure, 

function, and signaling in the female F344xBN rat.  Future studies will investigate in detail the 

mechanisms of these findings with respect to the specific aims below.   

 

SPECIFIC AIMS 1 AND 2: NATURAL AGING VS. OVAARIECTOMIZED AGING IN FEMALE F344XBN 

RATS 

 

 Findings from the present study suggest that aging in the female F344xBN rat is associated 

with cardiac hypertrophy, diastolic dysfunction, and alterations in heart rhythm intervals.  The 

present study also suggests that aging is associated with increases in oxidative-nitrosative stress 

and apoptosis.  Future studies could investigate if the age-associated alterations occur in young, 

aged, and very aged ovariectomized female F344xBN rats to see whether the absence of estrogen 

has a role in the development of age-associated CVD in the female F344xBN rat.  It is anticipated 

that the results of such studies will provide insight as to how aging and the presence of hormones 

may play a role in cardiac dysfunction, oxidative stress, and apoptosis.     

 

SPECIFIC AIM 3:  AORTA AND OXIDATIVE STRESS 
 
 This investigation has shown that there is an increase in intima-medial thickness and 

p44/42 MAPK activation in the aging female F344xBN aorta.  Future studies will determine if 

these age-associated aortic alterations in young, aged, and very aged female F344xBN are due to 

increased oxidative stress. These results will provide valuable information regarding how aging 

and oxidative stress play a role in the regulation of VSMC proliferation and protein signaling.  
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LIMITATIONS 

 

1.  Although the F344xBN rats are genetically identical to one another, they still have alleles from 

each of the parental strain.  Due to the presence of different strain alleles as well as regulation 

of the X chromosome allele expression, it is difficult to control which allele is expressed in 

each individual using this model.   

2.  Echocardiogram and electrocardiogram parameters were measured under anesthetization 

with ketamine/xylazine for restraint in aging female rodents.   

3.  Age-associated alterations in some indices of cardiovascular structure and function can only 

be measured upon the death of the animal which prevents pre- and post-aging measurements 

from the same animal.  

4.  Rat ventricles are assumed to have the shape of a normal ventricle or with a non-uniform wall 

contraction.  Volumes determined by ECHO are estimates from changes in dimensions. 

5.  Only the EKG leads I, II, and III were used due to the small size of the rat. 

 6.  The cumulative effects of aging on the rat when comparing young to old age groups. 
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