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ABSTRACT 

THERAPEUTIC EFFICACY OF CERIUM OXIDE NANOPARTICLES AGAINST SEPSIS INDUCED 

MULTI-ORGAN DYSFUNCTION SYNDROME AND DEATH IN SPRAGUE DAWLEY RATS 

 

 Sepsis is a generalized term that signifies the presence of a pathogen in the blood 

stream to which the body responds by eliciting a systemic inflammatory response. Although 

sepsis is the leading cause of death in non-coronary intensive care units in United States, there 

are currently no FDA approved therapeutic drugs to treat this disorder. Cerium oxide 

nanoparticles (CeO2) have been shown to exhibit anti-oxidant, anti-inflammatory, and anti-

bacterial properties both in vitro and in vivo. Whether CeO2 nanoparticles can be used for the 

treatment of sepsis is currently unclear.  

 To investigate whether CeO2 nanoparticles can be used to treat moderate sepsis, twelve 

week old male Sprague Dawley rats were randomly divided into one of four different groups: 

control, CeO2 only, sepsis, and sepsis + CeO2. Moderate sepsis was induced by the 

intraperitoneal injection of cecal material (400mg/kg). The CeO2 nanoparticle treated animals 

received an intravenous injection of CeO2 nanoparticles (3.5mg/kg) at the time of sepsis 

induction. Treatment significantly decreased sepsis induced mortality. Treatment associated 

increases in animal survivability were associated with a significant decrease in serum IL-6, 

growth regulated alpha protein (KC/GRO), macrophage inflammatory protein-1 beta (MIP-1 β) 

macrophage derived chemokine (MDC), monocyte chemotactic protein-3 (MCP-3), myoglobin, 

macrophage inflammatory protein-3 beta (MIP-3β), eotaxin, leptin, macrophage inflammatory 

protein-2 (MIP-2), interferon gamma induced protein-10 (IP-10), tissue inhibitor of 
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metalloproteinases-1 (TIMP-1), plasminogen activator inhibitor-1 (PAI-1) and blood urea 

nitrogen (BUN).  

In an effort to further investigate whether there is a similar degree of response with 

smaller size and dose of CeO2 nanoparticles on the attenuation of severe sepsis, twelve week 

old male Sprague Dawley rats were randomly divided into one of four groups: control, CeO2 

only, sepsis and sepsis + CeO2. Severe sepsis was induced by the intraperitoneal injection of 

cecal material (600mg/kg). The CeO2 nanoparticle treated animals received an intravenous 

injection of CeO2 nanoparticles (0.5mg/kg) at the time of sepsis induction. Treatment with CeO2 

nanoparticles significantly decreased animal mortality and sepsis-induced hypothermia. 

Treatment associated increases in animal survivability were associated with evidence of 

diminished Erk 1/2 phosphorylation, Jak/Stat-3 activation, P-selectin levels and expression of 

vascular cell adhesion molecule-1 (VCAM-1) in the heart. Changes in cardiac signaling appeared 

to coincide with decreased serum IL-6, leukemia inhibitory factor, myoglobin and creatine 

kinase. In the liver, CeO2 nanoparticle treatment reduced sepsis-induced increases in hepatic 

superoxide levels, inducible nitric oxide synthase, and protein nitrosylation. Treatment 

associated increases in liver function were accompanied by diminished levels of serum reactive 

oxygen species (ROS) and several inflammatory markers. 

CeO2 nanoparticles were also found to attenuate sepsis-induced renal damage by 

preserving the renal brush border and attenuating the incidence of tubular dilatation. These 

changes in kidney morphology were accompanied by decreases in levels of serum β-2 

microglobulin, kidney injury molecule-1, cystatin-C, osteopontin, BUN, glucose, sodium, and 

potassium. At the cellular level, CeO2 nanoparticles attenuated the sepsis-induced activation of 
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Stat-3 and the cleavage of caspase-3. Taken together the data from this current study indicate 

that CeO2 nanoparticles can be used for the prevention of sepsis induced multi-organ 

dysfunction syndrome and death. Additional studies using other sepsis models or interventional 

time points may be warranted to determine the potential efficacy of using CeO2 nanoparticles 

to treat sepsis.  

 

 



Chapter 1  

Introduction 

 Sepsis is a pathological condition characterized by systemic inflammatory response 

syndrome (SIRS) that is triggered by host immune system as a countermeasure to an infectious 

agent in the blood [1]. Severe sepsis though curable when diagnosed early, can rapidly progress 

to a medical emergency, multi-organ dysfunction and death if not treated properly. Sepsis is 

not new. The term sepsis was first used by Hippocrates in the late 4th century BC to describe a 

process by which flesh rotted and lead to a foul smell [2]. In the late 1800’s Louis Pasteur 

discovered the link between microscopic organisms and infectious disease. Later on, Lister, 

Lennhartz, Asbough and others demonstrated that sepsis does not necessarily develop due to 

the presence of an infectious agent, but rather that it is the interaction between the host 

immune system and the agent that initiates the onset. As we have learned more about this 

disorder, the previously held notion of sepsis being primarily a disease of bacterial etiology has 

begun to expand to also incorporate the complex multi-factorial interaction of the host immune 

system.  

 Sepsis is the leading cause of death in non-coronary intensive care unit and ranks 

among the top ten mortality causing diseases in United States [3]. It is estimated that sepsis is 

responsible for ~60,000 deaths annually [4]. The costs for treating sepsis in 2008 alone were 

almost $15 billion and are expected to increase by >10% in each passing year [5].  Clearly new 

and better methods to treat this disorder are needed.  

 

Sepsis is the systemic reaction to an over-activated immune system 
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Sepsis usually arises as a secondary medical condition to an already existing localized 

infection of lungs, liver, kidney, or some other internal structure.  When the localized infection 

is left untreated, it can progress to the circulation and become systemic. A systemic infection 

occurs when the blood becomes contaminated with bacteria. Once this occurs, the immune 

system is set on high alert and may become over-activated which can result in the development 

of the systemic inflammatory response syndrome (SIRS). If not properly managed, SIRS can 

rapidly progress to sepsis, a state of multi-organ failure, sepsis shock and death. The molecular 

events which govern the transition from infection to SIRS, sepsis, and death are not yet 

understood although it is thought that the innate immune system may play a role.   

Upon invasion of the pathogens into the blood stream, host immune cells such as the 

circulating macrophages and neutrophils recognize the pathogen associated molecular patterns 

(PAMP’s) that are present on the cell surface which elicit the release of several inflammatory 

cytokines [6]. If this initial response overwhelms the invader, recovery usually ensues and there 

are no further problems. However, if the initial response is not sufficient, the immune system 

becomes further activated which can lead to the development of SIRS and sepsis.  

The inflammatory cascade is characterized by the early release of tumor necrosis factor 

–alpha and IL-1β that are thought to mediate the release of other pro-inflammatory cytokines 

including IL-6, IL-12, HMGB1 and prostaglandins [7]. In addition to these inflammatory 

mediators, the potent vasodilator nitric oxide is also released into circulation which can cause 

severe hypotension [8]. Decreases in pressure can lead to diminished blood flow velocity, which 

facilitates the interaction and binding of circulating macrophages and lymphocytes to 

endothelial selectins and extravasation into the extracellular matrix [9]. Increased extravasation 
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in turn, can lead to tissue edema and impaired tissue oxygenation, tissue hypoxia and organ 

dysfunction. 

The early and accurate diagnosis of sepsis is a goal that has yet to be met. Sepsis 

diagnosis is difficult due to the presence of several non-specific symptoms such as fever, rashes, 

anorexia and weakness that make it difficult to differentiate from diseases with similar 

symptoms until it is too late. The current first line treatment for sepsis is antibiotics but the 

effectiveness of these agents is often hindered by the presence of inflammatory cytokines. As 

such there is an immediate need for the development of new and better treatment modalities.  

Cerium oxide has a fluorite lattice structure with vacant electrons in its outermost 

orbital shells [10] which permits the cycling of ceria between its fully oxidized (Ce+4 ) and 

reduced (Ce+3) states [11]. Although cerium oxide is currently used in the manufacture of sun 

screens, polishing agents and as a fuel cell catalyst [12-14], recent studies have suggested that 

this molecule could also be utilized for biomedical applications.  For example,  studies have 

shown that CeO2 nanoparticles can protect cardiac progenitor cells from ROS induced oxidative 

stress [15] and normal human breast cells from radiation-induced apoptotic cell death invitro 

[16]. Similarly, others have shown that CeO2 nanoparticles can confer protection against carbon 

tetrachloride-induced oxidative stress in mice [17]. It has been also been shown that CeO2 

nanoparticles can act as an anti-bacterial agent by impairing the membrane integrity of E. coli 

[18, 19].  Whether CeO2 nanoparticles can help to prevent sepsis induced multi-organ 

dysfunction and death has to our knowledge, not been investigated.  
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Specific aims 

 Severe sepsis is characterized by a systemic inflammatory response that involves 

complex interactions between the host immune system and the pathological agent that usually 

results in a profound level of cellular damage to the host. Current treatment modalities are, 

unfortunately, not beneficial during the advanced stages of sepsis. Recent studies in vitro and in 

vivo have shown that CeO2 nanoparticles possess anti-bacterial, anti-inflammatory and anti-

oxidant properties [20-22]. Whether CeO2 nanoparticles can be used to prevent sepsis induced 

multi organ damage is not yet known. 

 The central focus of this current study is to determine whether CeO2 nanoparticles can 

attenuate sepsis induced organ damage and death in the laboratory rat. We hypothesize that 

CeO2 nanoparticle treatment will be associated with diminished sepsis-induced organ damage, 

which will result in improved animal survivability. This hypothesis will be tested by pursuing 

the following three specific aims:   

Specific Aim I: To determine whether CeO2 nanoparticles can attenuate the systemic 

inflammatory response syndrome during septic insult in male Sprague Dawley rats. 

Specific Aim II: To investigate if CeO2 nanoparticles can attenuate severe sepsis-induced 

inflammatory damage to the heart and liver during a septic insult in male Sprague Dawley 

rats. 

Specific Aim III: To determine whether CeO2 nanoparticles can attenuate severe sepsis-

induced inflammatory damage to the kidney during a septic insult in male Sprague Dawley 

rats.  
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Chapter 2  

2.1 Review of literature  

 A review of the pertinent literature concerning the present study will be 

presented in this chapter. The following areas will be addressed: 1. Etiology and epidemiology 

of sepsis, 2. Animal models of sepsis, 3. Pathophysiology of sepsis, and 4. Use of CeO2 

nanoparticles for biomedical application. 

 

2.2 Sepsis and systemic inflammatory response syndrome 

 Sepsis is characterized by a state of uncontrolled immune response to the presence of 

an infectious agent or their toxic metabolites [23]. Sepsis usually begins with the entry of 

pathogens or its toxins into the body. Upon entry, the host immune cells attempt to eliminate 

the infectious agent by direct ingestion and destruction or by the secretion of antibodies that 

bind to the pathogens making them targets to other host immune cells. During this process, the 

cells of immune system also release cytokines that act in autocrine or paracrine fashion to 

stimulate other cells. If the infection is not contained, cytokine release can proceed unabated 

giving rise to systemic inflammation or a systemic inflammatory response syndrome (SIRS) [24] 

(Figure 2-1). The diagnostic criteria for SIRS are: 

1. An increase in core body temperature above 38.0 °C or decrease in core body 

temperature below 36.0 °C. 

2. An increase in heart rate or tachycardia > 90 beats/minute. 

3. An increase in respiratory rate or tachypnea > 20 breaths/minute. 
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4. An increase in number of white blood cells (WBC) > 12x109 cells/L or decrease in WBC < 

4x109 cells/L. 

Although sepsis is characterized by SIRS, one should carefully evaluate the symptoms of 

disease as other pathological conditions including burns, cancer, pancreatitis can also give rise 

to the SIRS. As such, the important criterion for the diagnosis of sepsis is the documented 

presence of an infectious agent or its toxin.  

 

Figure 2-1. Progression of sepsis 

 

 

Source: https://my.vanderbilt.edu/sepsismonitor/progress-reports/ 

 

2.3 Etiology and epidemiology of sepsis 

Sepsis is a complex disease of multifactorial etiology that can result in death within a 

few hours to days depending on the immune status of the individual. Sepsis syndrome involves 

characteristics of several diseases including hemorrhagic/hypovolemic shock, and ischemia.  
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Although the occurrence of sepsis has been known for over 3000 years, the etiology and 

pathogenesis of sepsis is still not well understood [25].  

 Severe sepsis is one of the leading causes of death in United States and is the number 

one cause of death in non-intensive care coronary units [26].  According to a recent report from 

Center for Disease Control and Prevention, the incidence of sepsis has more than doubled over 

the last decade likely because of increase in aging population with chronic illness or greater 

increase in invasive surgical procedures, chemotherapy and immunosuppressive drugs. The 

costs for treating sepsis rose from almost $15 billion in 2008 to over $20 billion in 2011 making 

sepsis the most expensive disease to be billed to Medicare in 2011 [27]. Perhaps most telling, 

sepsis is thought to account for 60-80% of all deaths in developing countries, which is almost 6 

million deaths annually [28].  New and better methods to treat this disorder are clearly needed.  

 

2.4 Animal models of sepsis 

 Understanding the mechanism(s) of sepsis-induced MODS is of paramount importance 

to developing new therapeutic modalities. Unfortunately, the study of patients already in sepsis 

is oftentimes complicated by a lack of proper case history, the presence of existing comorbidity, 

and differences in septic stage. Moreover, people with sepsis are usually admitted to the 

hospital during the terminal stages of sepsis which can make it extremely difficult to tease out 

the mechanisms mediating sepsis progression. Given these and other ethical reasons, animals 

have been widely used to study this disorder. Although there are several animal models of 

sepsis currently in use, it should be noted that no one model adequately replicates the human 

condition. Animal models of sepsis include:  
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1. Lipopolysaccharide injection  

2. Injection of live bacteria  

3. Cecal ligation and puncture (CLP)  

4. Colon ascendens stent peritonitis (CASP)  

5. Polymicrobial sepsis model 

The injection of lipopolysaccharide (LPS) into animals to study the progression of sepsis 

and its underlying mechanisms was first documented in the early 1970’s with the isolation of 

endotoxin [29]. LPS is part of the outer membrane of gram-negative bacteria and is a primary 

cause of host toxicity. The LPS molecule (Figure 2-2) consists of three distinct subunits- a) 

outermost O-antigen b) a middle core region made of polysaccharide and c) an inner lipid A 

portion that is highly conserved and a key cause of bacterial toxicity [30]. While the use of LPS 

to understand the pathophysiology of sepsis has been vital to understanding SIRS, the LPS 

model as a whole does not fully model the sepsis seen in humans. First, LPS does not represent 

the whole bacteria and in addition, it does not explain why gram-positive bacteria, fungi, or 

viruses can also cause sepsis. Secondly, there is a vast difference in the degree of response to 

LPS between humans and animals. For example, studies have shown that the dosage of LPS in 

mice has to be, on average, two hundred and fifty fold higher to produce the same degree of 

cytokine response seen in humans [31]. Reasons for the discrepancy in the sensitivity to LPS to 

provide the same degree of immune response in humans and rodents might probably be 

attributed due to changes in balance of leukocyte subsets, NK inhibitory receptor families or 

the toll receptors [32]. Thirdly, the clinical course of sepsis progression in humans is much 

slower when compared with animal models [33].  
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Figure 2-2. Basic Structure of LPS 

 

Source: Doi:10.1038/nrmicro1068 

 

The injection of live bacteria into animals has paved the way for better understanding 

the mechanisms behind host-pathogen interactions. Experiments performed using different 

strains of bacteria, bacterial loads, loading types (bolus or slow and sustained release using 

infusion pumps), and routes of administration (intraperitoneal, intravenous or subcutaneous) 

where either one or several of these parameters were varied in different combinations have 

greatly added to our knowledge on progression of sepsis. Nonetheless, like the LPS model, this 

preparation has been widely criticized as it is thought that the injection of a single bacterial 

strain poorly mimics the polymicrobial infections seen in humans and secondly, because the 
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injected bacteria oftentimes fail to colonize the host as is seen with a natural infection. To 

overcome this barrier, studies employing polymicrobial agents have come into existence. 

 One of the first developed, and perhaps most common model of polymicrobial sepsis is 

the cecal ligation and puncture (CLP) procedure. The CLP model is currently regarded as the 

gold standard among all sepsis models [34]. This model involves ligation at ileocolic junction 

followed by a single or multiple punctures to the cecum to control the severity of sepsis (Figure 

2-3) [35]. This model of sepsis is highly favored among many investigators due to its ability to 

manifest the hemodynamic changes seen in clinical conditions [36]. In addition, this model is 

also thought to mimic the clinical presentation seen with abdominal trauma injuries. 

Nonetheless, one major downfall of this model is a lack of repeatability within and between 

different laboratories. 

 

Figure 2-3. Model of cecal ligation and puncture 

 

Source: DOI: 10.1016/j.ddmod.2011.10.002 

 

 A newer variation of the CLP model which is the colon ascendens stent peritonitis 

(CASP) (Figure 2-4) model of sepsis was developed by Zantl and collagues [37]. In this 

procedure, a stent is placed into the ascending colon which allows the passage of cecal 
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contents into the peritoneal cavity. One significant advantage of the CASP model over the CLP 

procedure is that this model is more rapid in eliciting an early and Toll like receptor -4 (TLR4) 

driven immune response than one that is driven by TNF-α. Whether this newly developed 

model will someday replace the older, and much more variable, CLP procedure as the model of 

choice for sepsis research is still unknown.  

  

Figure 2-4. Model of colon ascendens stent peritonitis 

 

Source: DOI: 10.1016/j.ddmod.2011.10.002 

 

 The third model of polymicrobial sepsis, and perhaps the newest of all, is the cecal 

inoculum procedure in which the cecal contents from a healthy donor animal are injected into 

three or more other animals to induce the sepsis response [38]. A major advantage over the LPS 

model is that this procedure uses a mixture of both gram positive and negative whole bacteria 

instead of just the LPS molecule. In contrast with CLP and CASP, the degree of variability is 
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minimized among animals as the amount of cecal material is fixed. Nonetheless, like all models, 

disadvantages also exist with the cecal inoculum procedure. In particular, the bolus injection of 

cecal contents creates a rapid immune response which differs from the presentation typically 

seen in clinical cases. 

  

2.5 Pathophysiology of sepsis 

The pathophysiology of sepsis is a very complex process that begins with the entry of 

the infectious agent into the body and its subsequent interaction with the host immune system 

which results in release of inflammatory mediators. Overt stimulation of immune system results 

in the excessive production of inflammatory mediators which include the cytokines, 

chemokines, prostaglandins and other vasoactive substances. This initial response, if excessive, 

can result in the systemic inflammatory response.  

Activation of the immune system begins with the binding of LPS to the 

lipopolysaccharide binding protein (LPS-BP) [39] which then binds to CD14, a 

glycosylphosphatidylinositol-anchored protein [40] that helps in recognition of the LPS by TLR4-

MD2 complex [41]. Upon recognition of LPS, the TLR4 undergoes oligomerization to propagate 

intracellular signaling via its adaptor proteins [42]. Downstream signaling is broadly divided into 

either MyD88 dependent (TIRAP pathway) or MyD88 independent (TRAM pathway) pathways 

(Figure 2-5). Upon stimulation of TLR4 by LPS, the Myd88 becomes activated and recruits IL-1 

receptor-associated kinase-4 (IRAK-4) [43]. IRAK-4 then activates its downstream protein TRAF6 

which forms a complex with ubiquitin conjugating enzymes and the subsequent activation of 

TAK1. It is thought that TAK1 is responsible for the phosphorylation and activation of 
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downstream IKK and MAPK proteins [44]. The activation of IKK leads to phosphorylation of IKB 

alpha that removes the inhibitory effect on nuclear transcription factor NF-kB [45] which allows 

it to translocate to the nucleus and cause the transcription of inflammatory cytokines [46]. 

 The MyD88 independent pathway [47] involves the activation of TRAM via the TLR4-LPS 

complex and the recruitment of downstream TRAF3 to IRF3. This recruitment is necessary for 

late phase activation of NF-kB and MAPK proteins [48]. In addition, activation of IRF3 is also 

necessary for the production of interferons [49] which are important defense mechanism 

against both virus and bacteria [50]. 

 

Figure 2-5. Mechanism of LPS induced production of inflammatory mediators 

 

Source: http://dx.doi.org/10.1016/j.cyto.2008.01.006 

 

It is thought that inflammatory mediators released through the activation of 

macrophages, neutrophils and other immune cells act in a paracrine and autocrine fashion on 
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different cell types [51]. Cytokines can increase the generation of intracellular levels of ROS 

through activation of NADPH oxidase or cause the synthesis of nitric oxide through induction of 

iNOS gene expression [52-54]. Reactive oxygen species (ROS) can lead to impaired cell function 

by activating or inhibiting proteins that are involved in cell signaling along with formation of 

advanced glycation end products [55-57]. ROS can also cause peroxidation of lipids that affect 

the integrity of cellular membranes [58] while nitric oxide reacts with superoxide and causes 

formation of peroxynitrite [59] and protein nitrosylation [60]. In addition, nitric oxide can also 

cause vessel vasodilation, hypotension, and marked circulatory impairment [61]. Although the 

effects of ROS and inflammatory mediators are systemic, the degree of insult oftentimes varies 

by organ. 

 

2.6 Multi-organ dysfunction syndrome 

The liver produces C-reactive protein, ceruloplasmin, ferritin, haptoglobin and 

coagulation and complement factors as part of the acute inflammatory phase [62]. These 

proteins are involved in xenobiotic opsonization, the entrapment of bacteria in blood clots and 

the inhibition of iron uptake leading to inhibition of bacterial replication [63]. Also involved in 

this acute response are the liver Kupffer cells which are responsible for a large portion of the 

cytokines produced during sepsis and the phagocytosis of bacteria [64]. This cytokine release, if 

excessive, can lead to impairments in glucose metabolism [65], decreased cytochrome p450 

activity, and hepatic dysfunction [66]. Histologically, hepatic failure is characterized by 

increased infiltration of polymorphonuclear (PMN) cells, centrilobular necrosis, sinusoidal 

dilation, and hepatocyte congestion [67]. Coincident with these changes in tissue morphology, 
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biochemical changes include increased levels of glutathione S transferase (GST), lactate 

dehydrogenase (LDH), aspartate transaminase (AST) and alanine transaminase (ALT) [68].    

While the liver is heavily involved in marshalling the acute response, the brunt of the 

insult is most likely felt most by the kidney as it is highly susceptible to the hypoxia oftentimes 

seen after changes in circulatory volume or severe vasodilation [69].  Within the kidneys, the 

proximal tubules are more susceptible to sepsis induced hypoxic damage than the distal tubules 

which can rely on glycolysis to provide energy [70]. Progressive renal failure is associated with 

increased blood levels of blood urea nitrogen (BUN) and creatinine that can lead to systemic 

organ failure [71]. Sepsis induced renal damage is histologically characterized by the loss of 

tubular brush border, increased tubular dilatation and vacuolization. In some instances, renal 

tubules also show the presence of sloughed endothelial cells. These changes result in 

intratubular obstruction that can progress to complete renal failure [72]. 

Along with the renal system, the lungs also exhibit signs of inflammatory damage 

through increased accumulation of neutrophils and monocytes that results in acute respiratory 

distress syndrome (ARDS) [73]. ARDS is physiologically characterized by pulmonary edema, 

arterial hypoxia and impaired excretion of carbon dioxide [74]. Accumulated PMN secrete 

inflammatory cytokines and vasodilators that result in decreased velocity of blood flow and 

impairment of the vascular endothelial barrier through the disruption of adherens junction 

proteins such as VE-cadherin [75].  
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Figure 2-6. Mechanism of sepsis induced cardiac failure 

 

Source: DOI: 10.1097/01.CCM.0000266683.64081.02 

 

Finally, during the advanced stage of sepsis there are marked cardiovascular 

complications including myocardial depression, impaired left ventricular diastolic function, and 

reduced ejection fraction (Figure 2-6) [76-78]. The underlying causes of sepsis-induced cardiac 

failure are multifactorial in nature but are usually attributed to the following: Increased 

cytokines which cause myofibrillar destruction, high nitric oxide levels which result in systemic 

hypotension, peroxynitrite formation and myofibrillar protein damage, infiltration of 

monocytes, impaired oxygenation due to failure of the coronary circulation, and increased 

prostaglandins which adversely affect coronary endothelial function. Histologically, sepsis 

induced cardiac failure is typically characterized by contraction band necrosis and the presence 

of increased sarcolemmal rupture [79]. 
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Figure 2-7. Schematic representation of sepsis induced multi-organ dysfunction 

 

Source: DOI: 10.1097/01.CCM.0000282072.56245.91 

 

 

2.6 Current therapies for sepsis 

 The clinical progression of sepsis in humans is usually characterized by an early 

hyperdynamic phase that later transitions to a hypodynamic phase.  The hyperdynamic phase is 

characterized by increased body temperature, respiratory rate and hyperglycemia. Conversely, 

the hypodynamic phase is associated with decreased body temperature, hypoglycemia and 

marked hypotension. The 2013 Guidelines from the International Surviving Sepsis Campaign 

suggest the following treatment strategy [80]: 

1. Recognize sepsis 
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2. Administer broad spectrum antibiotics and obtain blood and serum for microbial 

culture and estimation of lactate levels. 

3. Maintain blood pressure by administration of isotonic crystalloid fluids and achieve a 

urine output of 0.5ml/kg/hr. 

4. Administer vasopressor such as norepinephrine if the patient has not responded to 

early fluid administration and if there is still a marked hypotension. 

5. Finally measure patient’s blood oxygen saturation and try to identify the causes behind 

its alteration and restore them to base values. 

As a supportive treatment, a mild sedation without neuromuscular block can be indicated. 

Similarly, the administration of insulin is advised if subsequent glucose readings measure above 

180mg/dl and hemodialysis for renal failure patients are suggested [80]. While all the 

therapeutic agents are geared towards minimizing the alterations in normal homeostasis, none 

of them actually addresses the underlying causes for sepsis induced mortality.  

 

2.7 Nanotechnology 

 Nanotechnology can be described as the manipulation of matter at atomic or molecular 

scale to enhance its physical and chemical properties [81]. The word nanotechnology was first 

coined by Dr. Norio Taniguchi to describe processes related to manufacture of semiconductors 

[82]. The physical, chemical, and electro-magnetic properties of different substances can often 

vary considerably at the nanoscale [83]. Researchers and industrialists are now exploiting these 

properties for the design and manufacture of new therapeutic agents [84]. It is currently 

estimated that more than 800 products that utilize nanoparticles are being manufactured by 
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different companies [85]. Nanomedicine is an emerging branch of nanotechnology that is 

concerned with the development of therapeutic drugs for diseases such as cancer, diabetes and 

infectious diseases [86]. The most important contribution of nanomedicine is the development 

of therapeutic drugs that have enhanced permeation and retention (EPR) effects which allow 

them to successfully treat tumors that are inaccessible to commercial therapeutic agents [87]. 

In addition, recent animal studies have shown that the drugs designed through nanotechnology 

can be used to treat atherosclerosis, prevent age-associated macular degeneration and 

promote wound healing (Table 2-1) [88-90].  
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Table 2-1. List of FDA approved nanomedicines 

 

Source: http://www.uspharmacist.com/content/s/197/c/33020/ 

 

Currently, several types and formulations of nanoparticles are being investigated to 

effectively treat several different pathological conditions.  Nanoparticles made of gold, silver 

platinum and cerium oxide have been used to treat breast cancer, viral infections, and diabetes 

[91-93]. Multifunctional nanoparticles with increased stability, biocompatibility, and high 

intracellular penetration that can deliver therapeutic drugs are being used in preclinical trials to 
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treat cancer [94], for gene therapy [95], and for new types of multimodal imaging [96] (Figure 

2-8). Generally, nanoparticles such as iron oxide nanoparticles coated with specific antibody are 

used for targeted therapeutic approach as well as for diagnostic purposes. 

Figure 2-8. Schematic image of a multifunctional nanoparticle 

 

Source: Doi:10.1016/j.tibtech.2008.04.005 

 

2.8 Cerium oxide nanoparticles and its prospective applications in medicine 

 Cerium oxide (CeO2) is a rare earth metal oxide with a fluorite lattice structure that can 

cycle between oxidized (Ce+4) and reduced (Ce+3) states due to vacancies in the outermost 

orbital shells (Figure 2-9) [17]. It is thought that the ratio of Ce+3/ Ce+4 determines the ability of 

the CeO2 nanoparticles to act in the oxidation or reduction of other substances. One of the 

main qualities that distinguishes CeO2 nanoparticles from other elements in the lanthanoid 

series is the presence of partially filled subshells with electrons in orbitals 4f and 5d, which 

makes it a potential tool for biomedical applications [97].  At the nanoscale, CeO2 nanoparticles 

have increased chemical reactivity due to increase in surface to volume ratio. CeO2 

nanoparticles are used in the manufacture of cosmetics, polishing agents, diesel fuel additives, 
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and fuel cells [98-100]. Investigation into the use of CeO2 nanoparticles for biomedical 

applications is just beginning.  

Recent data has suggested that CeO2 nanoparticles can inhibit the progression of 

ovarian cancer by inhibition of angiogenesis without cytotoxic effects on different organs. 

[101]. Arya and coworkers have shown that CeO2 nanoparticle treatment can attenuate cellular 

ROS levels and protect primary cortical cells from apoptosis by acting to stabilize mitochondrial 

membrane potential [102].  Estevez and colleagues have shown that CeO2 nanoparticles can 

protect the mouse hippocampus from ischemic damage through reduction in levels of 

superoxide and nitric oxide [103]. Similarly, other studies have shown that CeO2 nanoparticles 

protect rodents from hypoxia induced oxidative stress [104] and that they can also protect 

endothelial cells, cardiac progenitor cells and pancreatic islets against H2O2 induced oxidative 

damage [15, 93, 100]. 

 

 Figure 2-9. Structure of Cerium oxide (CeO2) 

 

Source: http://en.wikipedia.org/wiki/Cerium(IV)_oxide 
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 Interestingly, researchers have also exploited the use of CeO2 nanoparticles as a potent 

anti-infectious agent. Thill and coworkers were among the first to formulate the idea of using 

CeO2 nanoparticles as an anti- bacterial agent against E.coli. In this work, they demonstrated 

that the nanoparticles are positively charged at neutral pH which allows the particles to bind to 

the negatively charged bacterial wall and induce bacterial cytotoxicity [18]. Independent studies 

by other researchers have demonstrated similar findings for B.subtilis [105]. In addition to its 

use as an anti-bacterial agent, other work has shown that CeO2 nanoparticles protect L929 cells 

from the vesicular stomatitis virus by inhibiting its replication [106]. Whether CeO2 

nanoparticles can function as an anti-infectious agent in vivo is still unclear and awaits 

investigation.   

 

2.9 Summary 

Severe sepsis is a life threatening disease with high mortality rate. The symptoms of 

sepsis are oftentimes confused with signs of general fever or flu making diagnosis difficult and 

delaying the initiation of medical intervention. Current sepsis treatments have failed to 

decrease the mortality rate as they are directed towards eliminating the bacteria but not the 

inflammatory mediators generated through host-bacterial interaction. In vitro and in vivo 

studies have shown that CeO2 nanoparticles exhibit potent anti-inflammatory, anti-oxidant and 

anti-infectious properties [22, 107, 108]. Whether CeO2 nanoparticles can be used to treat 

sepsis and its associated complications in vivo is not known. 
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Chapter 3  

The current chapter is focused on the hypothesis of this study and is set as three different 

papers each corresponding to a specific aim as stated in chapter-1. 

Paper-1  

The following paper corresponds to specific aim-1 and deals with the hypothesis whether CeO2 

nanoparticles can attenuate the systemic inflammatory response syndrome during septic insult 

in male Sprague Dawley rats. 
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Therapeutic applications of cerium oxide nanoparticles in treatment of polymicrobial sepsis 

induced systemic inflammatory response syndrome and associated mortality 

 

Running title- Treatment of sepsis induced systemic inflammatory response syndrome with 

CeO2 nanoparticles. 

Key words- Sepsis, cerium oxide nanoparticles, systemic inflammatory response syndrome, 

interleukin-6 
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Abstract 

Sepsis is a disease of medical emergency that is characterized by severe oxidative stress 

and system inflammation which leads to multi-organ failure and subsequent death. Cerium 

oxide nanoparticles (CeO2) have been shown to exhibit anti-oxidant and anti-inflammatory 

properties. This study tested whether administration of CeO2 nanoparticles could be beneficial 

in the treatment of sepsis. Male Sprague-Dawley rats received a septic insult by intraperitoneal 

injection of cecal inoculation (400 mg/kg). A single dose of CeO2 nanoparticles (3.5mg/kg) or 

vehicle was administrated to rats immediately after cecal inoculation. Treatment of sepsis 

animals with CeO2 nanoparticle significantly increased the survival rate along with decrease in 

major inflammatory cytokine, interleukin-6. Treatment associated increases in animal survival 

were associated with decreased serum KC/GROα, MIP1β, MDC, MCP3β, MIP3, Eotaxin, TIMP1, 

myoglobin and blood urea nitrogen. Taken together, the findings of this preliminary study 

indicate CeO2 nanoparticles may be useful as a therapeutic agent for treatment of sepsis. 
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Background 

Sepsis is associated with multiple-organ failure and is the leading cause of death in 

critically ill patients [109].  Despite decades of clinical research, the incidence of sepsis and the 

number of deaths resulting from sepsis continue to rise [110]. Current sepsis treatments are 

largely supportive in nature and consist of antibiotics, NSAIDS, intravenous fluids, and 

mechanical ventilator support where warranted [111]. Sepsis is characterized by a systemic 

inflammatory state due to the overproduction of reactive-oxygen species (ROS) that appears to 

be mediated, at least in part, by the activation of monocytes and macrophages. Indeed, it is 

thought that macrophage derived nitric oxide (NO), tumor necrosis factor (TNF-α), interleukin 

(IL)-1β and IL-6 play a major role in both the innate and acquired immune responses to bacterial 

infection [112, 113].  

Given the potential damaging effects of increased ROS on cellular structure and function 

some have hypothesized that anti-oxidant drugs may be useful for the treatment of sepsis [114, 

115]. To date, most in vivo interventional studies examining the effects of anti-oxidant 

therapies have focused on the use of traditional pharmacological treatments [116, 117]. 

Although promising for certain applications, pharmacological intervention can be hindered due 

to poor  bio-distribution and the requirement of multiple daily dosing since each antioxidant 

molecule is typically capable of scavenging only one free radical [118]. In an effort to overcome 

these limitations, some researchers have begun investigations into the use of nanomaterials for 

biomedical applications. Among the different nanomaterials under development, the use of 

cerium oxide (CeO2) nanoparticles may be of particular interest. Cerium oxide is a rare earth 

element of the lanthanide series which is widely used as an agent for ultraviolet absorption, 
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oxygen sensing and automatic catalytic converters [119]. Cerium oxide appears to exhibit the 

ability to transition between the Ce3+ and Ce4+ oxidative states which results in an auto 

regenerative redox cycling [120]. Although biomedical applications still await analysis of 

biocompatibility, recent data has indicated that these particles possess potent anti-bacterial 

activity, anti-oxidant activity [18, 105], and cytoprotective properties [121-124]. 

Whether CeO2 nanoparticles can be used for the treatment of sepsis has, to our 

knowledge, not been investigated.  Therefore the purpose of this study was to investigate the 

effect of CeO2 nanoparticle treatment on sepsis induced systemic inflammatory response 

syndrome and associated mortality in a laboratory model of severe sepsis. Our findings suggest 

that treatment with CeO2 nanoparticles may provide therapeutic benefit for the management 

of polymicrobial sepsis. 

 

Methods 

 

Characterization of CeO2 nanoparticles 

NanoActive CeO2 (99.9% purity as determined by ICP-MS; Lot #06-0118) was purchased 

from NanoScale corporation (Manhattan, KS, USA). The stock suspensions were prepared in 

deionized water by sonication using a Vibra Cell Sonicator (Sonics & Materials, Inc) at 600 W for 

2 min at room temperature. 

The hydrodynamic size and size distribution of CeO2 nanoparticles were evaluated in 

deionized water using a Particle Size Analyzer (HORIBA, Model-LB-550) equipped with a He-Ne 
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laser (633nm) using back scattered light.  Experiments were performed utilizing triplicate runs 

performed on three different days with freshly prepared samples.  

Particles were imaged in their native state using a MultiMode-8, Atomic Force 

Microscope (Bruker, Ewing, NJ) in the tapping mode. Briefly, a few drops of CeO2 nanoparticles 

were placed on freshly pealed mica substrate and allowed to dry in a petri dish floating in 

sonicator water bath (VWR, 50D, Radnor, PA) for 30 min at 240 W. Images were recorded in 

topography mode. Width and height measurements of adsorbed nanoparticles were made 

using the microscope’s section analysis software.  

For scanning electron microscopy, the particles were filtered with a 0.2 micron 

nucleopore filter.  The filters were then trimmed and one quarter was placed on an aluminum 

stub with double-stick carbon tape.  The sample was then sputter coated with gold/palladium 

and viewed on a Hitachi S4800 field emission scanning electron microscope. For transmission 

electron microscopy, the particles were diluted in double distilled filtered water and a drop was 

placed on a formvar-coated copper grid to dry.  The sample was viewed on a JEOL 1220 

transmission electron microscope. 

 

Induction of polymicrobial sepsis  

Ninety two male Sprague-Dawley rats weighing 390-440 g were obtained from Hill Top 

laboratories. Rats were housed two per cage and maintained in accordance with the guidelines 

provided by the Marshall University Institutional Animal Care and Use Committee (IACUC), and 

The Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) in a 

12:12- h dark-light cycle at a temperature of 22 ± 2oC. Animals were provided food and water 



30 
 

ad libitum, and acclimatized for at least 14 days prior to experimentation. The polymicrobial 

sepsis procedure was performed as outlined previously [38]. Briefly, animals were randomly 

assigned to one of four groups: sham control, CeO2 nanoparticle only, sepsis, and sepsis + CeO2 

nanoparticle groups. After being anesthetized with ketamine HCL: xylazine (45 mg/kg / 5 mg/kg 

i.p.) , the mid ventral surface is cleanly shaved and disinfected with 70% ethyl alcohol and a 

small 0.5 cm vertical midline abdominal incision was made. Animals in the sepsis and sepsis + 

CeO2 group received an i.p. injection of cecal inoculum (400mg cecal material/kg @ 5ml/kg in 

5% dextrose water). The cecal inoculum was prepared by mixing cecal contents obtained from 

donor rats. Fresh inoculum was prepared each day. The animals in control and sepsis group 

received sterile 5% dextrose water @ 5ml/kg i.p. All incisions were closed with interrupted silk 

sutures (3-0), and the abdomen was gently massaged to distribute the injectate. After the 

surgical procedure, animals in sham control and sepsis groups received 100 µl of sterile distilled 

water while animals in CeO2 and sepsis+CeO2 groups received 3.5 mg/kg of CeO2 nanoparticles 

in 100µl of sterile distilled water via tail vein injection. All rats were given free access to food 

and water after recovery from anesthesia. Animal survival was assessed for 14 days.  

In other experiments, animals were randomly assigned to one of the four groups as 

detailed previously. At 6 or 24 h after study initiation, animals were humanely sacrificed under 

anesthesia and blood was collected by cardiac puncture. Serum was separated and used for 

measuring various serum protein markers. 
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Enzyme linked immunosorbant assay and multiplex immunoassay 

ELISA was performed to determine the levels of serum IL-6. The cytokine interleukin-6 

(IL-6) was analyzed in different groups using a reagent kit from BD Bioscience (Franklin Lakes, 

NJ, USA)  as outlined by the manufacturer. Multiplexed serum protein markers were analyzed 

group wise by sending pooled samples to Rules-Based Medicine (Austin, TX, USA) using Rodent 

MAP® version 3.0 antigen analysis with a Luminex 100 instrument, as described previously 

[125].  

 

Estimation of serum biochemical markers 

Serum biochemical parameters were analyzed using an Abaxis VetScan® analyzer 

(Abaxis, Union City, CA, USA). Briefly, 100ul of serum was loaded into each vetscan cartridge 

and analyzed for changes in levels of serum albumin, alkaline phosphatase (ALP), alanine 

transaminase (ALT), amylase, BUN, calcium, phosphorus, glucose, sodium, potassium, globulin 

and total protein across different groups. 

 

Statistical analysis 

Results are presented as mean ± standard error of mean. For significant differences in 

survival curves, log-rank test (Mantel-Cox) was performed using Prism 5.0 software (GraphPad 

Software, La Jolla, CA). One-way analysis of variance (ANOVA) was used for comparison among 

different groups followed by Student Newman Keuls post hoc test to determine statistical 

significance using Sigmaplot 12 statistical software (Systat software Inc, San Jose, CA). A p-value 

of < 0.05 was considered to be statistically significant. 
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Results 

 

CeO2 nanoparticle characterization  

The mean hydrodynamic diameter of the CeO2 nanoparticles as determined by dynamic 

light scattering (DLS) was 140 ± 52.9 nm (Figure 3-1, Panel A). AFM analysis indicated an 

agglomerate size of 37.75 ± 3.8 nm width and 1.38 ± 0.28 nm height respectively (Figure 3-1, 

Panel B). SEM and TEM analysis of CeO2 nanoparticles determined the size of individual CeO2 

nanoparticles to be approximately  between 20-40nm (Figure 3-1, Panels C, D). 

 

CeO2 nanoparticles increased animal survivability in septic animals  

Compared to control animals, the animals inoculated with the cecal material exhibited 

several signs of shock including diarrhea, piloerection, and little or no spontaneous movement. 

However, sepsis animals that are treated with CeO2 nanoparticles showed significant 

improvement as seen by their alertness along with greater frequency in consumption of food 

and water when compared to sepsis group alone. Furthermore treatment of the septic animals 

with CeO2 nanoparticles increased animal survivability from ~25% to ~85% (Figure3-2). 

 

CeO2 nanoparticles treatment decreased sepsis-induced systemic inflammation 

Compared to controls, sepsis animals had increased serum IL-6 levels at 6 and 24 h 

(P<0.05). CeO2 nanoparticle treatment decreased serum IL-6 levels at 6h by 66% when 

compared with sepsis group (P<0.05) (Figure 3-3, Panel A). Although not significant, CeO2 

nanoparticles also attenuated the sepsis induced increase in serum IL-6 at 24h.  Similarly when 
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compared to controls, sepsis animals showed higher levels of growth regulated alpha protein 

(KC/GRO), macrophage inflammatory protein-1 beta (MIP-1 β) macrophage derived chemokine 

(MDC), monocyte chemotactic protein-3 (MCP-3), myoglobin, macrophage inflammatory 

protein-3 beta (MIP-3β), eotaxin, leptin, macrophage inflammatory protein-2 (MIP-2), 

interferon gamma induced protein-10 (IP-10), tissue inhibitor of metalloproteinases-1 (TIMP-1) 

and plasminogen activator inhibitor-1 (PAI-1) at 6 and 24 h (Figure 4A, 4B). However, treatment 

with CeO2 nanoparticle diminished the levels of KC/GRO, MIP-1β, MDC, MCP-3, myoglobin MIP-

3β, eotaxin, leptin  MIP-2, IP-10, and TIMP-1 by 1 – 3 fold (Figure 3-4, Panels A-D). 

The levels of several other analytes including macrophage colony stimulating factor-1 

(M-CSF-1), monocyte chemotactic protein-1 (MCP-1), stem cell factor (SCF), vascular 

endothelial growth factor A (VEGF-A), IL-1α, IL-7, Il-11 and lymphotactin exhibited a trend 

towards being increased with sepsis and decreased by at least one fold with CeO2 nanoparticle 

treatment (Figure 3-4, Panels E, F).  

 

CeO2 nanoparticles attenuated sepsis induced alterations in serum biochemical parameters 

 Sepsis is characterized by alterations in serum biochemical parameters such as BUN, 

sodium, potassium and phosphorus. Treatment with CeO2 nanoparticles attenuated sepsis 

induced increase in blood urea nitrogen and changes in sodium levels (Table 3-1) (p < 0.05). 

Although not significant, CeO2 nanoparticle also attenuated sepsis induced changes in serum 

alkaline phosphatase, amylase, phosphorus and potassium (Table 3-1). 
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DISCUSSION 

Despite decades of intensive investigation and significant advances in medical 

technology, management of patient care and antimicrobial therapy, the overall mortality rate in 

severe sepsis still remains unacceptably high [126]. The primary finding of this study was the 

observation that a single injection of CeO2 nanoparticles, in the absence of antibiotic treatment, 

fluid resuscitation, or other pharmacological intervention, was associated with a ~80% increase 

in animal survivability in the cecal inoculum model of severe sepsis (Figure 3-2).  

Previous studies have shown that the immune response to microbial insult is 

characterized by release of large amounts of pro-inflammatory cytokines which lead to multiple 

organ failure [127]. It is thought that elevations in serum IL-6 levels are highly correlated with 

the survival of the septic patient [128, 129]. Similar to other reports using this model, our in vivo 

studies showed that sepsis was associated with increased serum IL-6 levels [130] and 

importantly, that our nanoparticle based treatment significantly attenuated these increases 

(Figure 3-3). In addition to IL-6, it is also known that MODS is caused by other cytokines and 

chemokines such as eotaxins, MCP-1, MCP-3, etc. [131]. Consistent with previous data 

demonstrating that CeO2 nanoparticles can function as an antioxidant [132], the CeO2 

nanoparticle treatment also appeared to attenuate the expression of the serum cytokine and 

chemokine markers KC/GRO, MIP-1β, MDC, MCP-3β, myoglobin, MIP-3β, eotaxin, IP-10, and 

leptin (Figure 3-4). Given that many of these cytokines, are derived from the liver Kupffer cells 

these data suggest that our nanoparticle intervention is also capable of affecting macrophage 

function.   
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Sepsis is known to cause acute kidney injury (AKI) in about half of the infected 

individuals and has a very poor prognosis in comparison with the patients without AKI [133]. 

Previous studies have shown that sepsis induced AKI is characterized by increased serum levels 

of BUN and creatinine [134]. These changes are also accompanied by decreased sodium and 

increased potassium levels [135]. Consistent with previous work, we found that blood urea 

nitrogen (BUN) levels began to increase from 6 to 24 h, which is suggestive of kidney 

dysfunction. However, treatment with cerium oxide nanoparticles attenuated the increase in 

BUN at 6 h significantly (Table 3-1) (p<0.05). Although not statistically significant, cerium oxide 

nanoparticles appeared to attenuate sepsis induced increases in BUN, sodium potassium and 

phosphorus at 24 h time point. Similarly cerium oxide nanoparticles appear to increase serum 

amylase and glucose levels that were attenuated by sepsis at 24 h (Table 3-1).  

 

Conclusion 

Sepsis is a state of severe whole body inflammation that rapidly progress to MODS 

unless treated in time. Current therapeutic regime is largely ineffective in treating patients with 

sepsis mainly due to the increasing antibiotic resistance along with the lack of a specific anti-

inflammatory drug that could attenuate SIRS.  The main finding of the study is that a single dose 

of cerium oxide nanoparticles attenuated sepsis induced mortality and SIRS along with serum 

biochemical parameters in the absence of any supportive treatment. Future studies aimed at 

the molecular mechanism of action of cerium oxide nanoparticles at the cellular level against 

septic insult are warranted. 
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Figures 

Figure 3-1. Characterization of CeO2 nanoparticles. 

CeO2 nanoparticles are characterized by A) DLS B) AFM C) SEM D) TEM 
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Figure 3-2. CeO2 nanoparticles attenuated sepsis induced mortality.  

(n=8/group). 
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Figure 3-3. CeO2 nanoparticles attenuated sepsis induced increase in serum IL-6.  

“*”Significantly different from control group, “$” significantly difference from CeO2 group and 

“#” significantly difference from sepsis group (p˂0.05). (n=6/group) 
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Figure 3-4. CeO2 nanoparticles prevented sepsis induced SIRS by attenuating serum 

inflammatory proteins. 

 (n=6/group). 
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Tables 

Table 3-1. CeO2 nanoparticles attenuated sepsis induced changes in serum biochemical parameters. 

“*”Significantly different from control group, “$” significantly difference from CeO2 group and “#” significantly difference from sepsis 

group (p˂0.05). (n=6/group). 

Analyte 
6 h  

Control 

6 h 

Ceo2 

6h 

 Sepsis 

6h 

Sepsis+Ceo2 

24 h 

Control 

24 h  

Ceo2 

24h  

Sepsis 

24h 

Sepsis+Ceo2 

ALB 4.08±0.06 4.16±0.11 3.78±0.12$ 3.86±0.04 3.46±0.05 3.33±0.11 2.80±0.08*$ 2.78±0.08*$ 

ALP 195.00±19.96 196.25±20.78 160.88±15.22 176.13±25.47 265.88±22.02 238.13±36.40 91.29±4.83*$ 113.44±6.05*$ 

ALT 77.63±6.83 66.13±4.85 54.38±2.52* 55.13±3.96* 86.00±15.34 76.00±6.12 69.14±6.14 82.88±11.45 

Amylase 920.25±30.64 874.50±17.90 1003.50±57.40 972.25±32.65 863.63±17.89 889.25±66.22 561.71±58.26*$ 790.56±108.41 

BUN 25.00±1.83 29.25±2.86 39.13±1.38*$ 32.13±1.13*# 17.88±0.90 18.88±2.89 71.43±13.40*$ 41.22±5.60*$ 

Ca+ 10.75±0.26 10.60±0.22 10.91±0.22 10.478±0.18 10.50±0.14 10.50±0.19 10.19±0.08 10.11±0.21 

Phos 11.41±0.79 10.70±0.58 13.86±0.73$ 11.78±0.89 9.89±0.26 9.35±0.21 10.77±0.87 9.41±0.40 

Glu 376.88±12.44 362.75±16.26 312.88±66.71 283.75±40.21 341.63±11.36 267.63±22.30 101.86±11.88*$ 116.67±6.08*$ 

Na+ 142.00±0.82 144.25±10.13 140.88±1.39 138.50±0.66$ 143.75±0.73 143.75±1.01 145.00±1.23 140.378±1.15# 

K+ 7.16±0.25 7.46±0.23 6.98±0.23 6.79±0.16 7.59±0.28 7.63±0.21 8.29±0.25 7.64±0.23 

Glob 1.35±0.05 1.44±0.07 1.50±0.06 1.43±0.05 1.80±0.06 2.00±0.09 2.39±0.07*$ 2.34±0.07*$ 

TP 5.41±0.04 5.60±0.09 5.26±0.08$ 5.30±0.06$ 5.28±0.05 5.31±0.08 5.19±0.13 5.13±0.09 
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Paper-2  

The following paper corresponds to specific aim-2 and deals with the hypothesis whether CeO2 

nanoparticles can attenuate severe sepsis-induced inflammatory damage to the heart and liver 

during a septic insult in male Sprague Dawley rats. 
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Therapeutic applications of anti-oxidant and anti-inflammatory properties of cerium oxide 

nanoparticles in treatment of polymicrobial sepsis induced multi-organ failure 

 

Running title- Treatment of sepsis induced multi-organ failure with CeO2 nanoparticles. 

Key words- Sepsis, cerium oxide nanoparticles, cardiac failure, oxidative stress, inflammation 
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Abstract 

Sepsis is a life threatening disease that is associated with high mortality. Existing 

treatments have failed to improve survivability in septic patients. The purpose of the present 

study is to evaluate whether cerium oxide nanoparticles (CeO2) can prevent sepsis-induced 

mortality by preventing cardiac and hepatic dysfunction in male Sprague Dawley rats. 

Administration of a single dose (0.5mg/kg) of CeO2 nanoparticles intravenously to septic rats 

significantly improved survival rates and functioned to restore core body temperature towards 

baseline. Treatment-induced increases in animal survivability were associated with reduced 

hepatic oxidative stress, diminished serum cytokines, and decreased serum chemokine levels. 

Changes in serum inflammatory markers with treatment were accompanied by decreased 

vascular leak along with reduced serum creatine kinase activity and myoglobin levels.  In the 

heart, treatment diminished ERK 1/2 MAPK- Stat-3 signaling and endothelial activation. Taken 

together these data suggest that CeO2 nanoparticles can be used as a novel therapeutic agent 

for treatment of polymicrobial sepsis. 
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Introduction 

 Severe sepsis is a medical emergency that is caused by an excessive systemic 

inflammatory response to bacteria, fungi, or other xenobiotic. Although easily managed if 

caught early, diagnosis is often difficult due to non-specific symptoms which can result in 

delayed treatment and the development of multiple organ failure, septic shock and death.  

Standard treatment protocols advocate the administration of antibiotics in conjunction with 

supportive therapy which is largely ineffective once sepsis has developed.  

 The cardiovascular failure that characterizes the latter stages of sepsis has been largely 

attributed to the development of systemic hypotension due to severe vasodilatation and the 

microvascular leak caused by the derangement of the endothelial barrier. As this stage 

progresses, a state of depressed myocardial contractility occurs that oftentimes leads to 

irreversible myocardial damage [136].  

It is thought that much of the tissue damage seen in sepsis is caused by elevations in 

tissue reactive oxygen species (ROS) and reactive nitrogen species (RNS) subsequent to the 

increased release of cytokines that are a defining characteristic of the systemic inflammatory 

response syndrome (SIRS). Recent data has suggested that the liver Kupffer cells are the 

primary producer of the cytokines observed during SIRS [137]. Whether strategies designed to 

quickly attenuate cytokine release by the Kupffer cells can diminish serum cytokine levels and 

improve animal survivability following a lethal septic insult has, to our knowledge, not been 

investigated.  

 Cerium is a lanthanide metal that can undergo redox cycling from Ce4+ (oxidized) to Ce3+ 

(reduced) states and is usually found in a complex with oxygen as CeO2. In nanoparticle form, 
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CeO2 has been shown to function as a superoxide dismutase (SOD) mimetic [138], as a 

preventive measure to combat hypoxia-induced oxidative stress [104], and to protect different 

cell types against hydrogen peroxide-induced apoptosis [93, 100]. The use of CeO2 

nanoparticles to prevent sepsis-induced cardiovascular dysfunction has, to our knowledge, not 

been investigated.  

 

Materials and Methods 

 

Characterization of CeO2 nanoparticles 

Cerium oxide nanoparticles were purchased from US Research Nanomaterials, Inc 

(Houston, TX). Dynamic light scattering (DLS) was performed to estimate the mean size of CeO2 

nanoparticles in suspension using LB-550 DLS particle size analyzer (Horiba Scientific, Edison, 

NJ). Naked particle size of the CeO2 nanoparticles was characterized by transmission electron 

microscopy using JEOL JEM-2010 transmission electron microscope (TEM). X-ray diffraction 

(XRD) was performed by Scintag XDS 2000 powder diffractometer. Scanning transmission 

electron microscopy (STEM) images were acquired by the Aberration Corrected Analytical 

Electron Microscope (TEM/STEM JEOL JEM-ARM200CF, Japan) operated at 200 keV.  Electron 

energy loss spectroscopy (EELS) data for CeO2 nanoparticles were collected by Gatan Enfina.  

 

Induction of polymicrobial sepsis and therapeutic intervention 

One hundred twenty eight male Sprague Dawley rats aged 10 weeks were purchased 

from Hill-Top laboratories and housed in two-per cage at 22 ± 2°C with a 12:12 light-dark cycle 
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for 2 weeks prior to experimentation. Animals were fed with standard rodent chow and had 

access to food and water ad libitum. All surgical procedures were performed in accordance with 

the guidelines provided by the Marshall University Institutional Animal Care and Use 

Committee (IACUC), and The Association for Assessment and Accreditation of Laboratory 

Animal Care (AAALAC). Briefly, animals were anesthetized under isoflurane and a small mid 

ventral incision of 0.5 cm was made. Sham controls and CeO2 only groups were injected with 

5ml/kg of 5% sterile dextrose solution intraperitoneally and the incision was closed with 3-0 silk 

sutures. For the sepsis and sepsis+CeO2 groups, animals received a cecal inoculum of 600mg/kg 

BW in 5ml/kg BW of 5% sterile dextrose solution intraperitoneally. Cecal material was obtained 

from healthy rats and the material from each donor was used to induce sepsis in 4-5 rats. Sham 

control and sepsis groups received 200 µl of sterile distilled water intravenously via tail vein 

while the CeO2 and sepsis+CeO2 groups received CeO2 nanoparticles (0.5mg/kg) in 200 µl of 

sterile distilled water intravenously. Rectal temperature was recorded at 0, 3, 6, 12, 18, 24, and 

48h after receiving the cecal inoculum. Animals were observed for mortality for a period of 14 

days.  

 

Sample collection and estimation of organ ceria content  

Whole blood was collected by cardiac puncture and centrifuged at 5,000 x g for 10 min 

to collect serum at 3h and 18h time points. Animals were sacrificed under isoflurane anesthesia 

and the heart and liver were excised and washed in Krebs–Ringer bicarbonate buffer (KRB) to 

remove any blood, blotted to remove excess moisture, snap frozen in liquid nitrogen, and 

stored at -80°C for further analysis. 
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 Frozen hearts and livers were sent to Elemental Analysis Inc. (Lexington, KY) for 

estimation of ceria content by induction coupled plasma-mass spectrometry (ICP-MS) as 

described elsewhere [125]. 

 

Estimation of immune cell number and serum markers of inflammation  

The number of white blood cells (WBC), neutrophils, monocytes and lymphocytes were 

estimated in whole blood and peritoneal fluid collected at 3h and 18h time points using an 

Abaxis VetScan HM2 hematology analyzer (Abaxis, Union city, CA). Peritoneal fluid was 

obtained only from sepsis and sepsis and sepsis + CeO2 groups. Total serum ROS/RNS was 

measured using OxiSelect™ in vitro ROS/RNS assay kit (Cell Biolabs, Inc., San Diego, CA) as 

outlined by the manufacturer. Creatine kinase activity was measured in serum using a creatine 

kinase fluorometric assay kit (Cayman Chemical Company, Ann Arbor, MI) as directed by the kit 

instructions.  

 Serum and peritoneal fluid  samples from each of the different groups (n=6/group) 

collected at 3h and 18h time points were pooled and sent to Myriad RBM (Austin, TX) for the 

analysis of serum growth factors, cytokines and markers of inflammation using rodent MAP® V. 

3.0. Pooled samples were run in triplicate for statistical analysis.  

 

Liver histology and superoxide levels 

 Liver tissue was sectioned (4µm) using Leica CM1950 cryostat onto poly-L-lysine coated 

slides. Visualization of hematoxylin and eosin staining was performed to evaluate liver 

morphology using Evos XL microscope (Life technologies, Grand Island, NY). 
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 Levels of hepatic superoxide were estimated using dihydroethidium stain (Life 

technologies, Grand Island, NY). Briefly, liver sections were washed with PBS for 5 min and 

stained with 5µM solution of dihydroethidium for 1h at room temperature in the dark. Tissue 

sections were imaged using Evos FL microscope (Life technologies, Grand Island, NY) after PBS 

washing (3 x 5 min) and the levels of superoxide were estimated by image analysis using image 

J analysis software. 

 

SDS-PAGE and immunoblotting 

Approximately 100 mg of frozen tissue was taken and pulverized in liquid nitrogen and 

added to 900ul of T-PER (Pierce, Rockford, IL, USA) containing 1% protease and phosphatase 

inhibitors (P8340 and P5726, Sigma- Aldrich, St. Louis, MO, USA). Samples were homogenized 

and centrifuged at 13,000 rpm for 10 min at 4°C to collect the supernatant. Amount of protein 

in the samples was estimated through 660 nm assay (Pierce, Rockford, IL, USA) and normalized 

with T-PER and 4x Laemlli buffer to a final equal concentration across all samples. Equal amount 

of protein was loaded in 10% PAGEr Gold Precast gel (Lonza, Rockland, ME) and transferred to 

nitrocellulose membranes using standard protocol as detailed elsewhere [139]. Membranes 

were block with 5% milk in TBST for 1h at room temperature, washed thrice with TBST and 

probed for detection of ERK 1/2 MAPK , p-ERK 1/2 MAPK (Thr202/Tyr204), Stat-3, p-Stat-3 

(Tyr705), GAPDH (Cell Signaling Technology, Danvers, MA), P-selectin, VCAM-1, nitrotyrosine 

(Abcam, Cambridge, MA) and iNOS (Santa Cruz, Dallas, TX). Membranes were incubated with 

primary antibody overnight at 4°C, washed with TBST (3 x 5 min), and incubated with  

secondary anti-rabbit (Cell Signaling Technology, Danvers, MA) or anti-mouse antibody (Santa 
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Cruz, Dallas, TX) for 1 h at room temperature. Immunoreactive signal was visualized using 

Supersignal West Pico Chemiluminiscent substrate (Pierce, Rockford, IL, USA) and quantified 

using Fluorchem 9900 software (Protein Simple, Santa Clara, CA). Protein expression was 

normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). 

 

Statistical analysis 

Results are presented as mean ± SEM. The log-rank test (Mantel-Cox) was performed 

using Prism 5.0 software (GraphPad Software, La Jolla, CA) to determine differences in animal 

survivability between groups. A two way analysis of variance using Tukey’s multiple comparison 

was performed where appropriate to evaluate differences in core temperature amongst the 

different groups. Differences in groups with equal sample size were evaluated by  one way 

analysis of variance using Student Newman Keuls or Dunn’s post hoc analysis for samples with 

unequal size. A one way ANOVA by ranks with Kruskal Wallis post hoc analysis was used for 

samples with non-normal distribution and a simple t-test was performed where appropriate 

using Sigmaplot 12 statistical software (Systat software Inc., San Jose, CA)  to test for the 

presence of significant differences between groups. A probability value of P < 0.05 was 

considered to be statistically significant. 
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Results 

 

Characterization of CeO2 nanoparticles 

The mean hydrodynamic diameter of CeO2 nanoparticles as estimated through dynamic 

light scattering experiments was found to be approximately 90nm (Figure 3-5, Panel A). TEM 

and STEM –HAAF analysis determined the size of individual nanoparticles to be approximately 

between 10-30nm (Figure 3-5, Panels B, C). The high resolution image of the CeO2 nanoparticle 

shows that the atoms of CeO2 are highly ordered (Figure 3-5, Panel D) and the EELS data (Figure 

3-5, Panel F) confirms the existence of the Ce and O element.  XRD was used to demonstrate 

cubic fluorite structure of CeO2 nanoparticles as seen through typical peaks (Figure 3-5, Panel 

G). 

 

Effect of CeO2 nanoparticles on sepsis induced mortality and hypothermia 

 Nanoparticle treatment decreased sepsis mortality from 100% to ~25% (Figure 3-

6, Panel A, P < 0.05).  Improvement in survivability was associated with a significant 

improvement in core body temperature from 18h (Figure 3-6, Panel B, P < 0.05).  

 

Nanoparticle treatment increased liver ceria and decreases systemic oxidative stress 

Compared to untreated animals, liver ceria content was increased in the animals 

receiving nanoparticle injections (Table 3-2). Nanoparticle treatment decreased sepsis-induced 

increases in total serum ROS levels (Figure 3-6, Panel C, P < 0.05).  
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Nanoparticle treatment decreased sepsis induced hepatic damage, tissue ROS and iNOS levels 

 Histological analysis of the livers obtained from control animals revealed normal hepatic 

and sinusoidal morphology. Nanoparticle treatment diminished sepsis-induced sinusoidal 

dilatation and hepatocyte congestion (Figure 3-7, Panels A-D). Consistent with the histological 

findings, tissue superoxide levels were increased with sepsis and decreased with nanoparticle 

treatment (Figure 3-7, Panels E-I, P < 0.05).  In a similar fashion, nanoparticle treatment also 

decreased sepsis induced increases in hepatic iNOS (Figure 3-8, Panel A, P<0.05) and protein 

nitrosylation at 3h (Figure 3-8, Panel B, P < 0.05).  

 

Nanoparticle treatment modulated sepsis related cytokines, chemokines and growth factors  

Nanoparticle treatment reversed sepsis-induced changes in several inflammatory 

chemokines (Table 3-3), cytokines (Table 3-4), and other inflammation related proteins (Table 

3-5, P < 0.05). Consistent with these data, nanoparticle treatment also decreased sepsis 

induced increases in the hepatic damage markers GST-α and GST-Mu (Table 3-5, P < 0.05).  

 

CeO2 nanoparticles reduced cardiac Jak-Stat and endothelial cell activation 

Sepsis increased and nanoparticle treatment decreased the phosphorylation of ERK 1/2 

(Figure 3-9, Panel A, P < 0.05) and Stat-3 (Figure 3-9, Panel C, P < 0.05). These changes in 

protein phosphorylation were accompanied by treatment associated decreases in P-selectin 

(Figure 3-9, Panel E, P < 0.05) and VCAM-1 in the septic animals at 3 and 18 h respectively 

(Figure 3-9, Panel F, P < 0.05). 
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Nanoparticle treatment decreased indices of sepsis induced cardiac muscle damage  

Sepsis increased and nanoparticle treatment decreased serum creatine kinase activity at 

18 h (Figure 3-10, Panel A, P < 0.05). Similarly, nanoparticle treatment decreased sepsis induced 

increases in circulating myoglobin levels at 3 h and 18 h (Table 3-5, P < 0.05). 

 

Cerium oxide nanoparticles modulated the inflammatory response in the peritoneum by 

decreasing the recruitment of immune cells 

 The number of circulating WBC, lymphocytes, monocytes and granulocytes was not 

changed with sepsis or nanoparticle treatment. Conversely, nanoparticle treatment reduced 

sepsis induced increases in the number of peritoneal lymphocytes and monocytes at 18 h 

(Table 3-6, P < 0.05). 

 

Discussion  

Despite decades of extensive research the sepsis induced mortality rate remains 

unacceptably high. The primary aim of this work was to evaluate whether CeO2 nanoparticles 

are protective against sepsis induced organ damage and death in the Sprague Dawley rat. To 

test this possibility, we utilized a polymicrobial model of severe sepsis that is characterized by 

100% mortality. Compared to the untreated controls, we found that a one-time CeO2 

nanoparticle intervention was able to decrease the mortality rate to only 25% (Figure 3-6). 

To explore the mechanistic basis of this finding, we determined where the injected CeO2 

nanoparticles may accumulate. Previous work has shown that injected CeO2 nanoparticles 

exhibit a proclivity to preferentially collect in the spleen, liver, kidneys, and lungs [17]. 



54 
 

Consistent with these data, we found significantly higher amounts of CeO2 nanoparticles in the 

liver compared to that observed in the heart (Table 3-2). To examine if the CeO2 nanoparticles 

were able to protect the liver against a septic insult, we next examined if treatment was 

associated with improvements in liver morphology. Our histological studies demonstrated that 

sepsis caused hepatic sinusoidal dilatation and congestion of hepatocytes which appeared to be 

decreased with CeO2 nanoparticle treatment (Figure 3-7). At the cellular level, sepsis is 

characterized by an increase in ROS and RNS which leads to cellular protein damage through 

carbonylation, nitrosylation or formation of AGE products [140-142].  Studies have shown that 

CeO2 nanoparticles act as a free radical scavenger in addition to accelerating the decay of 

peroxynitrite which can induce protein nitrosylation [22, 143, 144]. As expected from our 

morphological analysis, we found that sepsis increased hepatic superoxide production, systemic 

ROS levels, and iNOS expression and importantly, that these changes were attenuated with 

nanoparticle treatment (Figures 3-7, 3-8).  

Given that the liver is thought to be the primary source for the excessive inflammatory 

state seen with sepsis [145], we next sought to determine if the morphological changes we 

observed were also associated with modulation of the hepatic inflammatory response. 

Interestingly, we found that the CeO2 nanoparticle treatment attenuated sepsis induced 

alterations in several different types of chemokines, cytokines, growth factors and 

inflammatory proteins (Tables 3-3, 3-4, 3-5). Of particular importance, we found that the CeO2 

nanoparticle treatment functioned to attenuate sepsis-induced increases in serum GST-α and 

GST-mu which are characteristic of hepatic damage (Table 3-5). In addition, we also found that 
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the levels of the inflammatory cytokine IL-6 and LIF were also significantly decreased with 

treatment (Table 3-4). 

 Previous studies have shown that IL-6 and LIF can bind to gp130 to cause activation of 

the Jak-Stat pathway [146, 147]. Other work has shown that the phosphorylation of ERK 1/2 can 

lead to activation of Stat-3 that can cause increased transcription of several inflammatory 

mediators [148, 149]. Here we show that sepsis led to activation of Jak-Stat pathway in the 

failing heart. Treatment with CeO2 nanoparticles attenuated the activation of the ERK 1/2-Jak-

Stat pathway (Figure 3-9).  Moreover, studies have shown that Stat-3 signaling in the heart can 

cause increased microvascular permeability by increasing the expression of ICAM-1 and VCAM-

1 [150]. It is thought that the increased expression of ICAM-1 and VCAM-1 on the endothelium 

is one of the priming events for recruitment of macrophages and neutrophils into myocardium 

which can lead to increased microvascular permeability [151]. Consistent with our finding of 

decreased ERK 1/2-Jak-Stat activation, we found that nanoparticle treatment attenuated sepsis 

induced increases in VCAM-1 expression (Figure 3-9). To explore the possibility that this 

treatment induced decrease in endothelial activation was associated with diminished vascular 

leakiness, we next examined the effect of the nanoparticle intervention on the accumulation of 

inflammatory cells in the peritoneal cavity. As expected, we found that the treated animals 

exhibited decreases in the number of peritoneal monocytes and lymphocytes (Table 3-6). 

Finally, we next asked if treatment might decrease sepsis induced cardiac muscle damage. 

Creatine kinase and myoglobin have been used in various pre-clinical and clinical studies as 

markers of cardiac damage [152-156]. We found that the treated animals had less serum 

creatine kinase activity and myoglobin levels than the untreated septic animals (Figure 3-10, 
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Table 3-5).  While this study provides mechanistic insight into how the administration of CeO2 

nanoparticles might protect against a septic insult further experiments examining other organs 

and organ systems are likely warranted. 

 

Conclusion 

Our data suggest that a single dose of CeO2 nanoparticles in the absence of antibiotics or 

fluid resuscitation, or other supportive treatment can significantly decrease animal mortality in 

a severe sepsis model. This increase in animal survivability was associated with modulation of 

the hepatic inflammatory response (Figure 3-11).  
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Figures 

Figure 3-5. Characterization of CeO2 nanoparticles. 

CeO2 nanoparticles are characterized by A) DLS B) TEM C) STEM-HAAF D&E) STEM F) EELS G) 

XRD 
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Figure 3-6. Nanoparticle treatment decreased sepsis induced mortality, animal hypothermia 

and total serum ROS levels. 

A) Survival curve. B) Temperature. Control (n=8), CeO2 (n=8), Sepsis (n=16), Sepsis+CeO2 (n=16). 

*P<0.05 compared to control group, # P<0.05 compared to sepsis group and $ indicates that 

the last known temperature of dead sepsis animal has been used in consecutive time points for 

statistical purposes. C) Effect of nanoparticle treatment on total serum ROS levels (n=6/group).  

*P<0.05 compared to control group, $ P<0.05 compared to CeO2 group and # P<0.05 compared 

to sepsis group 
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Figure 3-7. Effect of CeO2 nanoparticles on sepsis induced hepatic inflammatory damage. 

H&E staining of 18h time point liver sections imaged at 200X magnification A) Control B) CeO2 

C) Sepsis D) Sepsis+CeO2. Dihydroethidium staining of 18h time point liver sections imaged at 

200X magnification E) Control F) CeO2 G) Sepsis H) Sepsis+CeO2 and I) Quantification of 

superoxide levels in different groups. *P<0.05 compared to control group, $ P<0.05 compared 

to CeO2 group and # P<0.05 compared to sepsis group. (n=4/group). 
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Figure 3-8. Effect of CeO2 nanoparticles on sepsis induced hepatic nitrosative stress. 

A) Levels of iNOS as determined by western blotting and normalized to GAPDH. B) Levels of 

nitrotyrosine as determined by western blotting and normalized to GAPDH. *P<0.05 compared 

to control group, $ P<0.05 compared to CeO2 group and # P<0.05 compared to sepsis group. 

(n=6/group). 
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Figure 3-9. Effect of CeO2 nanoparticles on sepsis induced cardiac inflammation. 

A & B) Levels of phosphorylated and total ERK1/2 as determined by western blotting and 

normalized to GAPDH respectively. C & D) Levels of phosphorylated and total Stat-3 as 

determined by western blotting and normalized to GAPDH respectively. E) Levels of P selectin 

as determined by western blotting and normalized to GAPDH F) Levels of VCAM-1 as 

determined by western blotting and normalized to GAPDH. *P<0.05 compared to control group, 

$ P<0.05 compared to CeO2 group and # P<0.05 compared to sepsis group. (n=6/group). 
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Figure 3-10. Cerium oxide nanoparticles attenuated sepsis induced serum creatine kinase 

activity. 

*P≤0.05 compared to control group, $ P≤0.05 compared to CeO2 group and # P≤0.05 compared 

to sepsis group. (n=6/group). 
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Figure 3-11. Schematic representation of mechanism of action of CeO2 nanoparticles against 

polymicrobial sepsis induced MODS and death. 

 

 

 

 

 

 

 

 



65 
 

  Tables 

Table 3-2. Levels of ceria content in heart and liver as determined through ICP-MS. 

Results are presented as mean ± SEM. N=3/group. 

 

Organ 

 

Control 

3h 

 

CeO2 3h 

 

Sepsis 

3h 

 

Sepsis + 

CeO2 3h 

 

Control 

18h 

 

Ceo2 18h 

 

Sepsis 

18h 

 

Sepsis + CeO2 

18h 

Heart <LLOQ <LLOQ <LLOQ <LLOQ <LLOQ <LLOQ <LLOQ <LLOQ 

Liver <LLOQ 

12.00±0.76 

ppm <LLOQ 

9.07±0.08 

ppm <LLOQ 

10.67±0.17 

ppm <LLOQ 

12.00±0.28 

ppm 
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Table 3-3. Effect of CeO2 nanoparticles on sepsis induced serum chemokines. 

*P<0.05 compared to control group, $ P<0.05 compared to CeO2 group and # P<0.05 compared 

to sepsis group. (n=6/group). 
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Analyte 

Serum Peritoneal fluid 

Sham control 
3h CeO2 3h Sepsis 3h Sepsis + CeO2 3h 

Sham control 
18h CeO2 18h Sepsis 18h 

Sepsis + CeO2 

18h Sepsis 18h 
Sepsis + CeO2 

18h 

Eotaxin (pg/mL) 362.33±1.76 354.67±8.29 
1273.33±28.48

*

$
 

856.00±14.47
*$#

 808.33±41.79 349.33±5.55
*

 
1866.67±26.03

*$
 

1020.00±5.77
*$#

 
2636.67±71.72 

3716.67±131.70
#
 

Growth-Regulated 
Alpha Protein 

(ng/mL) 
0.06±0.00 0.04±0.00

*
 3.50±0.06

*$
 2.57±0.03

*$#
 Below LLOQ Below LLOQ 5.23±0.07 2.20±0.06

#
 23.33±0.33 16.67±0.33

#
 

Macrophage-
Derived Chemokine  

(pg/mL) 
938.00±18.56 995.67±27.42 

1483.33±26.03
*

$
 

1553.33±31.80
*$

 1039.67±32.46 711.00±5.20
*

 
4410.00±55.68

*$
 

2500.00±60.0

0
*$#

 

24433.33±896.
91 

21633.33±1039.
76 

Macrophage 
Inflammatory 

Protein-1alpha 
(ng/mL) 

Below LLOQ Below LLOQ 4.20±0.20 6.37±0.17
#

 Below LLOQ Below LLOQ 20.67±0.67 6.70±0.29
#

 1740.00±17.32 1413.33±71.26
#

 

Macrophage 
Inflammatory 
Protein-1 beta 

(pg/mL) 

268.67±16.15 261.67±9.13 
3003.33±92.07

*

$
 

4766.67±93.87
*$

#
 

199.00±30.83 128.33±7.97 
8486.67±225.8

6
*$

 

5896.67±61.7

3
*$#

 

416000.00±13
576.94 

493666.67±252
08.02 

Macrophage 
Inflammatory 

Protein-2 (pg/mL) 
25.67±1.20 20.67±1.33

*
 318.33±7.26

*$
 215.00±2.65

*$#
 23.33±2.33 Below LLOQ 654.33±10.71

*
 

257.00±6.08
*

#
 

43933.33±276
0.64 

32533.33±1502.

59
#
 

Monocyte 
Chemotactic 

Protein 1 (pg/mL) 
897.33±16.50 848.00±17.95 

2270.00±65.06
*

$
 

2240.00±75.06
*$

 1483.33±42.56 973.00±19.66
*

 
2903.33±121.7

0
*$

 

2650.00±45.0

9
*$#

 

179333.33±66
6.67 

169000.00±929
1.57 

Monocyte 
Chemotactic 

Protein 3 (pg/mL) 
723.00±21.00 655.67±17.05 2016.67±6.67

*$
 

1700.00±30.55
*$

#
 

1009.00±23.97 597.67±12.55
*

 
3600.00±34.64

*$
 

3333.33±14.5

3
*$#

 

125333.33±31
79.80 

146000.00±568

6.24
#
 

Monocyte 
Chemotactic 

Protein-5 (pg/mL)  
Below LLOQ Below LLOQ 3.70±0.17 1.98±0.42

#
 Below LLOQ Below LLOQ Below LLOQ Below LLOQ Below LLOQ Below LLOQ 

T-Cell-Specific 
Protein RANTES 

(pg/mL) 
1.10±0.00 1.04±0.06 2.50±0.06

*$
 2.10±0.06

#
 1.43±0.03 0.74±0.01

*
 2.30±0.00

*$
 1.60±0.00

*$#
 4.37±0.03 3.20±0.12

#
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Table 3-4. Effect of CeO2 nanoparticles on sepsis induced serum cytokines. 

*P<0.05 compared to control group, $ P<0.05 compared to CeO2 group and # P<0.05 compared to sepsis group. (n=6/group). 

Analyte 

Serum Peritoneal fluid 

Sham 
control 3h CeO2 3h Sepsis 3h Sepsis + CeO2 3h 

Sham 
control 18h CeO2 18h Sepsis 18h 

Sepsis + CeO2 

18h Sepsis 18h Sepsis + CeO2 18h 

Interferon gamma 
(IFN-gamma) (pg/mL) 

Below LLOQ Below LLOQ 102.33±5.78 67.00±8.00
#

 36.67±9.21 Below LLOQ 46.67±14.33 38.33±9.74 48.67±2.19 15.67±0.67
#

 

Interferon gamma 
Induced Protein 10 (IP-

10) (pg/mL) 
42.33±2.60 40.67±2.85 192.33±4.98

*$
 153.33±5.55

*$#
 48.33±3.71 28.33±0.67

*
 117.00±1.73

*$
 91.67±2.67

*$#
 22.67±0.88 16.33±0.33

#
 

Interleukin-6 (IL-6) 
(pg/mL) 

Below LLOQ Below LLOQ 7.50±1.00 4.97±0.27 
Below 
LLOQ 

Below LLOQ 5.27±0.67 Below LLOQ 36.33±1.76 13.67±0.33
#

 

Interleukin-12 Subunit 
p70 (IL-12p70) (ng/mL) 

0.13±0.03 0.12±0.02 0.28±0.02
*$

 Below LLOQ 
Below 
LLOQ 

Below LLOQ Below LLOQ Below LLOQ 0.09±0.01 0.06±0.01
#

 

Leukemia Inhibitory 
Factor (LIF) (pg/mL) 

Below LLOQ Below LLOQ Below LLOQ Below LLOQ 
Below 
LLOQ 

Below LLOQ 1520.00±30.00 Below LLOQ 12000.00±321.46 7616.67±141.93
#

 

Oncostatin-M (OSM) 
(ng/mL) 

0.37±0.01 0.32±0.01
*

 0.81±0.05
*$

 0.66±0.03
*$#

 0.42±0.04 Below LLOQ 0.94±0.03
*

 0.73±0.02
*#

 19.33±1.76 27.67±1.33
#

 

Tumor Necrosis Factor 
alpha (TNF-alpha) 

(ng/mL) 
0.10±0.02 Below LLOQ 0.22±0.01

*
 0.13±0.01$

#
 

Below 
LLOQ 

Below LLOQ 0.14±0.01 0.14±0.01 0.39±0.01 0.34±0.01
#
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Table 3-5. Effect of CeO2 nanoparticles on sepsis induced serum growth factors and other proteins related to inflammation. 

*P<0.05 compared to control group, $ P<0.05 compared to CeO2 group and # P<0.05 compared to sepsis group. (n=6/group). 

Analyte 

Serum Peritoneal fluid 

Sham 
control 3h CeO2 3h Sepsis 3h 

Sepsis + CeO2 

3h 
Sham control 

18h CeO2 18h Sepsis 18h Sepsis + CeO2 18h Sepsis 18h Sepsis + CeO2 18h 

Fibroblast 
Growth Factor 

9 (ng/mL) 
3.82±1.27 3.87±0.38 10.20±0.42

*$
 7.60±0.26

*$#
 5.37±0.47 2.52±0.54

*
 11.67±0.33

*$
 9.43±0.38

*$#
 2.90±0.12 1.83±0.20

#
 

Leptin (ng/mL) 0.44±0.02 0.43±0.02 0.75±0.01
*$

 0.68±0.02
*$#

 0.27±0.01 0.25±0.01 2.97±0.15
*$

 1.83±0.07
#

 10.00±0.00 10.00±0.00 

Myeloperoxida
se  (ng/mL) 

11.00±0.58 11.33±0.33 30.67±0.88
*$

 
24.00±0.58

*$

#
 

25.67±0.33 25.00±0.58 39.33±0.67
*$

 34.00±0.00
*$#

 
16433.33±970.

11 11600.00±305.51
#

 

Myoglobin 
(ng/mL) 

1153.33±12.
02 

1373.33±31.

80
*
 

3083.33±23.33
*$

 
1546.67±20.2

8
*$#

 
1086.67±31.80 

1186.67±17.
64 

6220.00±200.75
*$

 
3246.67±52.39

*$#
 1004.33±22.41 756.67±15.45

#
 

Glutathione S-
Transferase 

alpha  (ng/mL) 
54.00±2.00 30.33±1.67* 69.33±2.19*$ 

42.67±3.93*$
# 

62.67±2.60 35.00±1.53* 
2126.67±56.67*

$ 
147.00±1.53*$# 213.33±11.78 138.00±6.56# 

Glutathione S-
Transferase Mu  

(ng/mL) 

376.33±20.2
0 

Below LLOQ 228.33±37.44* 
173.33±25.43

* 
232.00±0.00 Below LLOQ 

14133.33±328.3
0* 764.67±40.53

#
 

10666.67±272.
84 5830±245.02

#
 

Vascular 
Endothelial 

Growth Factor 
A (pg/mL) 

Below LLOQ Below LLOQ Below LLOQ Below LLOQ Below LLOQ Below LLOQ 459.00±12.70 296.67±31.33
#

 
5563.33±149.4

8 
5763.33±79.65 
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Table 3-6. Effect of CeO2 nanoparticles on sepsis induced changes in immune cells. 

$ P<0.05 compared to CeO2 group, # P<0.05 compared to sepsis group. (n=5-9/group). 

Cell Type 

Whole Blood Peritoneal Fluid 

Control 3h CeO2 3h Sepsis 3h 
Sepsis + 
CeO2 3h 

Control 18h CeO2 18h Sepsis 18h 
Sepsis + 

CeO2 18h 
Sepsis 18h 

Sepsis + CeO2 

18h 

WBC (10
9
/L) 2.156±0.689 1.410±0.331 1.406±0.235 2.158±0.652 2.821±0.385 2.124±0.330 2.106±0.439 2.612±0.486 27.045±2.357 24.506±6.031 

Lymphocytes 
(10

9
/L) 

0.946±0.321 0.887±0.362 0.646±0.094 1.292±0.356 1.194±0.253 0.959±0.245 1.266±0.314 1.514±0.335 3.191±0.441 1.756±0.382
#

 

Monocytes (10
9
/L) 0.060±0.0193 0.0117±0.003 0.120±0.031 0.092±0.055 0.126±0.041 0.191±0.034 0.0256±0.010

$
 0.191±0.075 2.766±0.385 1.440±0.513

#
 

Granulocytes 
(10

9
/L) 

1.153±0.418 0.540±0.159 0.640±0.148 0.778±0.314 1.504±0.349 0.973±0.090 0.025±0.09 0.910±0.142 21.091±1.981 19.124±4.318 



71 
 

Paper-3  

The following paper corresponds to specific aim-3 and deals with the hypothesis whether CeO2 

nanoparticles can attenuate severe sepsis-induced inflammatory damage to the kidney during a 

septic insult in male Sprague Dawley rats.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

Cerium oxide nanoparticles attenuate polymicrobial sepsis induced acute kidney injury  

 

Running title- Treatment of sepsis induced AKI with cerium oxide nanoparticles 

 

Key Words- Cerium oxide nanoparticles, sepsis, kidney injury molecule-1, cystatin-C, oxidative 

stress 
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Abstract 

 Sepsis is the leading cause of death in non-cardiac intensive care units. Sepsis-induced 

acute kidney injury (AKI) is a complicating morbidity that is associated with poor prognosis. 

Herein, we examined whether treatment with cerium oxide (CeO2) nanoparticles can reduce 

AKI in a severe polymicrobial sepsis model that causes severe microvascular leak that leads to 

deficit in circulatory volume and subsequent development of AKI. Administration of a single 

dose of CeO2 nanoparticles (0.5mg/kg) to male Sprague Dawley rats attenuated sepsis-induced 

tubular dilatation and the loss of brush border. These changes in renal structure were 

accompanied by decreases in sepsis-induced renal oxidative stress, stat-3 phosphorylation, and 

caspase-3 cleavage which are suggestive of diminished kidney inflammation and apoptosis. At 

the systemic level, CeO2 nanoparticle treatment reduced sepsis-induced increases in serum 

levels of kidney injury molecule-1 (KIM-1), cystatin-C, osteopontin, β-2 microglobulin, vascular 

endothelial growth factor-A (VEGF-A), blood urea nitrogen (BUN), potassium, sodium, and 

circulating glucose levels. Taken together, these data suggest that CeO2 nanoparticles may help 

to prevent the development of AKI during severe sepsis.  
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Introduction 

Severe sepsis is characterized by an overwhelming immune response that is often 

associated with acute kidney injury (AKI). Sepsis-induced AKI is thought to be primarily caused 

by the increased levels of reactive oxygen species (ROS) that are typically seen during the 

systemic inflammatory response syndrome (SIRS) that proceeds the development of frank 

sepsis [157, 158]. AKI is associated with damage to renal tubular cells, cellular apoptosis, 

increased tubular permeability, the loss of brush border [159] and increased tubular dilatation 

[72]. AKI is a serious complication which is associated with increased morbidity and poor 

prognosis [133]. Despite improvements in medical technology, current treatment modalities 

are largely supportive in nature and do little to address underlying causes.   

 Recent advances in nanotechnology have allowed the development of new compounds 

that can effectively scavenge ROS [160-162]. One such compound is cerium oxide (CeO2) which 

when formulated in nanoparticle form, may be useful for the treatment of inflammation [163], 

diabetes [93, 164], cancer [165, 166], and ischemic stroke [103]. Herein, we examined the 

therapeutic efficacy of using CeO2 nanoparticles for the treatment of sepsis-induced AKI.  On 

the basis of previous data demonstrating that CeO2 nanoparticles can function to scavenge ROS, 

we hypothesized that CeO2 nanoparticle treatment would be associated with decreased renal 

oxidative stress and sepsis-induced damage.  
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Materials and Methods 

 

Characterization of CeO2 nanoparticles 

 CeO2 nanoparticles were commercially purchased from US Research Nanomaterials, Inc. 

(Houston, TX). Atomic force microscopy was performed to estimate the mean particle size. 

Briefly, 20 μl of CeO2 nanoparticles was placed on freshly cleaved mica (V1 mica, SPI Inc, West 

Chester, PA) incubated for 15 minutes, rinsed with deionized water and dried under nitrogen. 

Nanoparticles were imaged in noncontact mode at a frequency of 319 kHz and a scan speed of 

0.5 Hz using a Nano-R microscope (Pacific Nanotechnology Inc., Santa Clara, CA) equipped with 

a TM300A noncontact probe (SensaProbes, Inc., Santa Clara, CA). The size of the CeO2 particles 

was characterized by a JEOL JEM-2010 transmission electron microscope. 

 

Polymicrobial sepsis induction and CeO2 nanoparticle treatment 

 Seventy two male Sprague Dawley rats aged 10 weeks were purchased from Hill-Top 

laboratories and allowed to acclimatize for 2 weeks prior to experimentation. All surgical 

procedures were performed in accordance with the guidelines provided by the Marshall 

University Institutional Animal Care and Use Committee (IACUC), and The Association for 

Assessment and Accreditation of Laboratory Animal Care (AAALAC). Briefly, animals were 

anesthetized under isoflurane and a small mid ventral incision of 0.5 cm was made. Sham 

controls and CeO2 only groups were injected with 5ml/kg of 5% sterile dextrose solution 

intraperitoneally (i.p.) while sepsis and sepsis+CeO2 groups  received cecal inoculum of 

600mg/kg BW in 5ml/kg BW of 5% sterile dextrose solution i.p. Cecal material was obtained 
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from healthy rats that served as donors. Sham control and sepsis groups were injected with 200 

µl of sterile distilled water intravenously (i.v.) while the CeO2 and sepsis+CeO2 groups received 

CeO2 nanoparticles (0.5mg/kg) in 200 µl of sterile distilled water i.v. via the tail vein at the time 

of sham surgery or sepsis induction.  

 

Tissue collection 

 Animals from different sets were humanely sacrificed under isoflurane anesthesia at 3h 

and 18h after sepsis induction and the kidneys were excised, the capsule removed and were 

washed in Krebs–Ringer bicarbonate buffer (KRB) to remove any blood. Kidneys were frozen in 

liquid nitrogen and stored at -80°C for further analysis. Serum was obtained from whole blood 

through cardiac puncture by centrifugation at 5,000 x g for 10 min at room temperature. 

 

Renal histology and staining for F-actin 

 Frozen kidneys were sectioned (4µm) with a Leica CM1950 cryostat and transferred to 

poly-L-lysine coated slides. Hematoxylin and eosin staining was performed using a Histoperfect 

kit (BBC biochemical, Seattle WA) to assess kidney morphology and imaged using an Evos XL 

microscope (Life Technologies, Grand Island, NY). Renal sections were also stained for F-actin 

using rhodamine phalloidin (Life Technologies, Grand Island, NY) as detailed elsewhere [167]. 

Briefly, frozen sections were washed with PBS and then fixed in 4% methanol free 

formaldehyde for 10 min. After a PBS wash (3 x 5 min), sections were permeabilized with 0.3% 

Triton X-100 in PBS for 20 min, washed with PBS (3 x 5 min) and then blocked with 1% BSA for 

30 min. Actin was stained by incubation of the tissue sections with 0.165 µM rhodamine 
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phalloidin for 20 min in the dark. After washing (3 x 5 min in PBS), tissues were mounted and 

imaged using an Evos FL microscope (Life Technologies, Grand Island, NY) before quantifying 

the fluorescence intensity using Image J analysis software. 

 

Estimation of renal superoxide levels 

 Levels of superoxide in renal sections were estimated using dihydroethidium staining 

[168]. Superoxide indicator dihydroethidium exhibits blue fluorescence under normal 

conditions, but exhibits a bright red fluorescence when oxidized and intercalates with DNA. 

Briefly, sections were washed with PBS and incubated with 5mM dihydroethidium for 1 h at 

room temperature in the dark. Sections were washed with PBS (3 x 5 min) and imaged with an 

Evos FL microscope (Life Technologies, Grand Island, NY). Mean fluorescence intensity was 

determined using Image J analysis software. 

 

SDS-PAGE and immunoblotting 

 Approximately 100 mg of frozen kidney was pulverized to a fine powder and then 

homogenized in 900ul of T-PER (Pierce, Rockford, IL, USA) containing protease and phosphatase 

inhibitors. Homogenates were centrifuged at 5,000 g x 10 min at 4°C to collect the supernatant. 

The 660nm protein assay (Pierce, Rockford, IL, USA) was used to determine the amount of 

protein in each sample. Samples were equally diluted with 4x Laemlli buffer, separated using 

SDS-PAGE on 10% PAGEr Gold Precast gels (Lonza, Rockland, ME) and then transferred to 

nitrocellulose membranes as detailed elsewhere [139]. Membranes were blocked with 5% milk 

in TBST for 1 h before being probed with antibodies against p-Stat-3 (Tyr 705), Stat-3, cleaved 



78 
 

caspase 3 and caspase 3 (Cell Signaling Technology, Danvers, MA). After washing (3 x 5 min 

TBST), membranes were incubated with secondary anti-rabbit antibody (Cell Signaling 

Technology, Danvers, MA). Immunoreactivity was visualized using Supersignal West Pico 

Chemiluminiscent substrate (Pierce, Rockford, IL, USA) before quantification using Fluorchem 

9900 software (Protein Simple, Santa Clara, CA). 

 

Multiplex immunoassay and serum biochemical analysis 

 Serum samples from different animals in each group were pooled and sent to Myriad 

RBM (Austin, TX) for the analysis of KIM-1, cystatin-C, osteopontin, β-2 microglobulin and VEGF-

A using rodent kidney multiplex immunoassay (MAP). Pooled samples were run in triplicate for 

statistical analysis. Levels of glucose, BUN, sodium and potassium were determined in serum 

using an Abaxis VetScan® analyzer (Abaxis, Union City, CA, USA). 

 

Statistical analysis 

 Results are presented in the form of mean ± standard error of mean. Differences 

between groups were determined using a one way analysis of variance (ANOVA) with Student 

Newman Keul’s post hoc analysis, an ANOVA on ranks with Student Newman Keul’s post hoc 

analysis for non-normally distributed samples or the Students t-test where applicable. A 

probability value of P < 0.05 was accepted as statistically significant. 

 

Results 
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Characterization of nanoceria 

 CeO2 nanoparticle size as determined using AFM was approximately 30 nm (Figure 3-12, 

Panel A). Analysis by scanning electron microscopy and transmission electron microscopy 

demonstrated a particle size of 10 – 40 nm (Figure 3-12, Panels B, C). Energy dispersive X-ray 

spectroscopy analysis of ceria and oxygen content was 80.4% and 16.36%, respectively (Figure 

3-12, Panel D). 

 

Nanoparticle treatment decreased serum indices of renal failure during sepsis  

 Compared to the control animals, sepsis increased the levels of β-2 microglobulin at 3 h 

and 18 h. Similarly, sepsis was also associated with increased levels of KIM-1, cystatin-C, 

osteopontin, and VEGF-A at 18h. CeO2 nanoparticle treatment attenuated sepsis-induced 

increases in KIM-1 cystatin-C, osteopontin, β-2 microglobulin, and VEGF-A at the 18 h time 

point (Table 3-7, P < 0.05). In a similar fashion, treatment also decreased sepsis-induced 

increases in blood glucose, BUN, and potassium (Table 3-8, P < 0.05).  

 

Cerium oxide nanoparticles attenuated sepsis induced renal damage and breakdown of 

tubular F-actin 

 Sepsis-induced AKI was characterized by renal tubular dilatation, a loss of the brush 

border and damage to the glomerular capillary network. These alterations in renal structure 

were attenuated with treatment (Figure 3-13, Panels A-H). In addition to changes in gross 

morphology, sepsis was also associated with a marked loss of F-actin in the proximal tubular 
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cells (Figure 3-14, Panel C) which was attenuated with nanoparticle treatment (Figure 3-14 

Panels D, E,  P < 0.05).  

 

Cerium oxide nanoparticles attenuated sepsis induced oxidative stress, prevented Stat-3 

activation and cleavage of caspase 3 

 Nanoparticle treatment decreased sepsis-induced increases in renal superoxide levels 

(Figure 3-15, P < 0.05), Stat-3 activation (Figure 3-16 Panel A, P < 0.05) and the cleavage of 

caspase-3 at 18h (Figure 3-16, Panel B, P < 0.05). 

 

Discussion 

 Although increases in serum levels of creatinine have been considered to be a 

traditional biomarker for AKI, recent data has suggested that sepsis-induced AKI may exhibit a 

distinct pathophysiology from that seen in non-septic AKI [169]. One of the distinguishing 

features between non-septic AKI vs septic AKI is the presence of non-hemodynamic 

mechanisms of cellular injury as result of immunological, toxic and inflammatory factors in 

sepsis. On the basis of these data, and others demonstrating that sepsis-associated decreases in 

creatinine production may limit the use of this molecule as a marker for AKI [170], we chose to 

examine how sepsis may affect the regulation of KIM-1, β-2 microglobulin, cystatin-C, and 

osteopontin. Kim-1 was chosen as it is thought to be a biomarker for proximal tubular injury 

[171] while β-2 microglobulin was selected as it has been shown to be a reliable indicator of 

marker for functional status of proximal tubular cells [172]. Similarly, we also chose to examine 

cystatin-C as it has been shown to be a reliable surrogate for the assessment of glomerular 
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filtration rate [173] while osteopontin is thought to be a marker of macrophage and neutrophil 

infiltration [174]. Consistent with our histopathological findings, we found that sepsis-induced 

increases in the levels of β-2 microglobulin, KIM-1, cystatin-C and osteopontin were attenuated 

with CeO2 nanoparticle treatment (Table 3-7). 

 In addition to changes in renal structure, sepsis has also been shown to affect the serum 

content of several renal metabolites and ions. Increases in blood urea nitrogen levels are a 

byproduct of protein metabolism with subsequent decrease in renal function. With sepsis, BUN 

levels have been shown to be increased due to decrease in circulatory volume as a result of 

marked vasodilation and microvascular leak. Consistent with this, we also found that sepsis 

increased serum BUN levels and importantly that these increases were diminished with 

nanoparticle treatment (Table 3-8). Similarly, sepsis has also been found to cause elevations in 

serum glucose levels [175]. Although not fully understood, it has been postulated that the 

development of hyperglycemia is associated with increased insulin clearance along with 

elevation in plasma levels of cortisol and glucagon that promote hepatic gluconeogenesis [176]. 

While elevation in glucose levels is an adaptive response to meet metabolic demands of the 

body such as wound healing, it is also shown that hyperglycemia causes predisposition to 

multiple complications such as neuropathy and MODS [177]. Supporting our analysis of serum 

BUN, we also found significant increases in serum glucose in the septic animals and that 

treatment appeared to attenuate the serum glucose levels. In addition to alterations in serum 

metabolites it is known that sepsis can also affect the concentration of serum Na+ / K+ ions. 

Indeed, hyponatremia and hyperkalemia are generally found in acute renal failure with 

decreased renal tubular flow rate [135]. Similar to previous studies we found that sepsis caused 
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a decrease in serum levels of sodium [178] and increase in potassium, which were attenuated 

with CeO2 nanoparticle treatment (Table 3-8). 

 Sepsis-induced AKI is characterized by increases in tissue ROS which are thought to be 

the cause of the renal inflammation, tubular dilatation, vacuolization, and loss of brush border 

that characterize this disorder [179, 180]. We observed similar findings in the present study and 

importantly, also found that CeO2 nanoparticle treatment appeared to attenuate these changes 

in the kidney. Specifically, we found that CeO2 nanoparticles attenuated sepsis induced loss of 

brush border in proximal tubular cells and also attenuated tubular dilatation. Moreover, 

treatment with CeO2 nanoparticles also improved renal glomerular integrity when compared to 

sepsis group (Figure 3-13). 

 To extend upon these findings, we next sought whether CeO2 nanoparticles can protect 

the kidney against sepsis-induced decreases in F-actin. AKI is characterized by loss of F-actin 

that leads to disruption in cytoskeleton network and impairs renal structural and functional 

integrity [167].  Consistent with our other assessments of renal function and morphology, we 

found that sepsis caused a significant decrease in loss of F-actin and importantly that 

nanoparticle treatment appeared to attenuate these changes (Figure 3-14). Taken together 

with our analysis of renal function, these data suggest that the CeO2 nanoparticle treatment 

functioned to improve both kidney structure and function.  

 We next sought to understand how the CeO2 nanoparticles may have prevented sepsis-

induced changes at the molecular level. Sepsis is characterized by increases in oxidative stress 

that result in uncontrolled SIRS and multi-organ failure [181]. Studies have shown that CeO2 

nanoparticles are potent ROS scavengers and that they can function as catalase and SOD 
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mimetics [17]. To investigate this possibility, we next examined how sepsis and nanoparticle 

treatment affected renal superoxide levels. Consistent with the effects of treatment on renal 

structure and function, we found that CeO2 nanoparticle administration significantly decreased 

sepsis-induced elevations in renal superoxide oxide levels (Figure 3-15). 

 Given the role that inflammation plays in the pathogenesis of sepsis, we next evaluated 

the Janus kinase signal transduction (Jak-Stat) pathway. The Jak-Stat pathway is one of the 

principal signaling mechanisms for a wide variety of cytokines and growth factors that are 

thought to be important in regulating the renal remodeling and fibrosis [182-185]. Consistent 

with these data, we found that sepsis was associated with the activation of Stat-3 in the kidney 

at 18hand importantly, that this activation was attenuated with nanoparticle treatment (Figure 

3-16). Whether this decrease in Stat-3 phosphorylation is due to treatment induced decreases 

in the amount of circulating cytokines or increased activation of intracellular phosphatases is 

currently unclear and will require further investigation.  

 In addition to inflammation, a growing body of evidence suggests that the  apoptosis of 

renal tubular cells is a major causes for AKI in sepsis [186]. Studies have shown that the 

activation of Jak-Stat pathway in renal tubular cells results in tubular cell death through caspase 

3 activation [183]. Other studies have shown that cleavage of caspase-3 is also responsible for 

the activation of gelsolin which has F-actin severing properties [187].  It is thought that the loss 

of F-actin is associated with cytoskeletal derangement that can lead to apoptotic cell death and 

development of AKI [167]. Supporting our F-actin data, we observed that sepsis was associated 

with evidence of increased caspase-3 cleavage at 18h. Similar to our other data, this finding 

appeared to be abrogated following nanoparticle treatment (Figure 3-16).  
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Conclusion 

 Taken together, the results of the current study demonstrate that a single dose of CeO2 

nanoparticles confers protection against severe sepsis induced acute kidney injury. Although 

not fully understood, our data suggest that the protective effect of the CeO2 nanoparticles 

appears to be related to their ability to scavenge reactive oxygen species which prevents 

caspase-3 mediated loss of F-actin and renal tubular cell damage. Further investigation to 

better understand the pharmacological potential of CeO2 nanoparticles for the treatment of 

sepsis induced AKI may be warranted. 
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Figures 

Figure 3-12. Characterization of CeO2 nanoparticles. 

CeO2 nanoparticles are characterized by A) AFM, B) SEM, C) TEM, D) EDS 
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Figure 3-13. CeO2 nanoparticles attenuated sepsis induced renal damage. 

Hematoxylin and eosin staining of 18h time point kidney sections A) Control B) CeO2 C) Sepsis D) 

Sepsis+CeO2 (imaged at 200X magnification) E) Control F) CeO2 G) Sepsis H) Sepsis+CeO2 

(imaged at 400X magnification) (n=4/group). 
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Figure 3-14. CeO2 nanoparticles attenuated sepsis induced loss of F-actin. 

Rhodamine phallodin staining for F-actin of 18h time point kidney sections imaged at 200X 

magnification A) Control B) CeO2 C) Sepsis D) Sepsis+CeO2 and E) Relative fluorescence intensity 

as a measure of F-actin. *P<0.05 compared to control group, $ P<0.05 compared to CeO2 group 

and # P<0.05 compared to sepsis group. (n=3/group). 
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Figure 3-15. CeO2 nanoparticles attenuated sepsis induced renal superoxide levels. 

Dihydroethidium staining of 18h time point kidney sections imaged at 200X magnification A) 

Control B) CeO2 C) Sepsis D) Sepsis+CeO2 and E) Quantification of superoxide levels in different 

groups. *P<0.05 compared to control group, $ P<0.05 compared to CeO2 group and # P<0.05 

compared to sepsis group. (n=4/group). 
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Figure 3-16. CeO2 nanoparticles attenuated sepsis induced renal inflammation and apoptosis. 

A) Levels of phosphorylated to total Stat-3 as determined by western blotting. B) Levels of 

cleaved to total caspase 3 as determined by western blotting. *P<0.05 compared to control 

group, $ P<0.05 compared to CeO2 group and # P<0.05 compared to sepsis group. (n=6/group). 
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Tables 

Table 3-7. CeO2 nanoparticles attenuated sepsis induced increases in biomarkers of AKI. 

*P<0.05 compared to control group, $ P<0.05 compared to CeO2 group and # P<0.05 compared to sepsis group. (n=6/group). 

Analyte 

Serum 

Sham 
control 3h 

CeO2 3h Sepsis 3h 
Sepsis + 
CeO2 3h 

Sham 
control 18h 

CeO2 18h Sepsis 18h 
Sepsis + CeO2 

18h 

Beta-2-
Microglobulin  

(µg/mL) 

54.0 ± 3.0 49.7 ± 2.4 76.0 ± 1.5*$ 77.3 ± 1.8*$ 52.0 ± 3.5 32.7 ± 1.5* 128.0 ± 5.9*$ 78.3 ± 7.2*$# 

Cystatin-C  
(ng/mL) 

578.7 ± 14.3 633.0 ±30.6 686.0 ± 14.5 690.3 ± 42.1 699.7 ± 52.7 555.3 ± 41.6 1890.0 ± 62.5*$ 1093.3 ± 37.6*$# 

KIM-1 
(ng/mL) 

Below LLOQ Below LLOQ Below LLOQ Below LLOQ Below LLOQ Below LLOQ 3.3 ±0.13 2.5 ± 0.1# 

Osteopontin 
(ng/mL) 

10.8 ± 1.2 11.0 ± 0.6 11.0 ± 0.6 12.3 ± 0.3 9.7 ± 0.0 7.9 ± 0.2* 72.3 ± 4.8*$ 36.3 ± 1.8*$# 

VEGF-A 
(pg/mL) 

Below LLOQ Below LLOQ Below LLOQ Below LLOQ Below LLOQ Below LLOQ 459.0 ± 12.7 296.7 ± 31.3# 
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Table 3-8. CeO2 nanoparticles attenuated sepsis induced alterations in serum biochemical parameters. 

*P<0.05 compared to control group, $ P<0.05 compared to CeO2 group and # P<0.05 compared to sepsis group. (n=6/group). 

Analyte 

Serum 

Sham 
control 3h CeO2 3h Sepsis 3h 

Sepsis + CeO2 

3h 
Sham 

control 18h CeO2 18h Sepsis 18h 
Sepsis + 

CeO2 18h 

Glucose 284.0 ± 8.1 262.3 ± 10.1 
426.9 ± 
19.7*$ 

308.6 ± 22.6# 245.3 ± 13.3 290.6 ± 17.3* 105.5 ± 8.5*$ 125.3 ± 5.1*$ 

Blood urea 
nitrogen 

22.0 ± 1.1 21.0 ± 1.0 29.9 ± 2.0*$ 24.71±1.17# 19.2 ± 0.5 18.5 ± 0.9 71.3 ± 7.2*$ 57.4 ± 3.1$ 

Sodium 142.4 ± 0.7 142.9 ± 0.9 136.8 ± 1.4*$ 140.1 ± 0.5# 142.0 ± 1.2 141.6 ± 0.9 138.8 ± 0.8 140.6 ± 0.5 

Potassium 5.9 ± 0.4 5.4 ± 0.1 6.4 ± 0.3 6.3 ± 0.2 5.6 ± 0.2 5.8 ± 0.3 7.8 ± 0.2*$ 7.1 ± 0.2*$# 
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Chapter 4  

Discussion 

 Sepsis is the leading cause of death globally in spite of intense research efforts and 

recent advance in medical care [188]. The complex pathophysiology of sepsis in conjunction 

with growing antibiotic resistance is likely to further worsen the prognosis of septic patients.  

Although not fully understood, it is thought that the uncontrolled systemic inflammatory 

response that characterizes the transition from sepsis to multiple organ dysfunction syndrome 

(MODS) is the primary  cause of septic associated death [181]. 

 Over the past decade, the field of nanotechnology has seen immense growth and it has 

played a vital role in the continued growth of several different manufacturing sectors [84, 189]. 

More recently, nanotechnology has also begun to be used for biomedical applications where 

the unique properties of nanomaterials can be exploited for diagnostic and even therapeutic 

uses [190, 191].  As an example, and of particular relevance to this research, CeO2 nanoparticles 

are currently being tested for the detection of lactate levels and chronic inflammation [192], 

the treatment of radiation-induced damage [193], ovarian cancer [166] and stroke [194].  

The main objective of the current study is to evaluate whether CeO2 nanoparticles can 

be used to prevent sepsis induced MODS and death. To accomplish this objective, this study 

was divided into two different sub-projects. In the first, we examined whether CeO2 

nanoparticles could be used to protect Sprague Dawley rats from moderate sepsis induced SIRS. 

Once completed, we then undertook the second aspect of this study where we examined if 

CeO2 nanoparticles could be used to prevent against severe sepsis induced MODS. Our findings 

are summarized as follows: 
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 Effect of CeO2 nanoparticles on sepsis induced hypothermia and mortality 

Sepsis is characterized by high mortality rates that are closely associated with decreased 

core body temperature [195]. Previous studies have shown that the sepsis-induced cytokine 

response is associated with increased levels of TNF-α, IL-1β and prostaglandins which function 

to alter the hypothalamic set point causing hypothermia [196]. Coincident with the release of 

cytokines, other work has shown that sepsis also causes the release of the potent vasodilator 

nitric oxide which can cause the loss of heat from the peripheral circulation [197]. In the current 

study, we found that the induction of moderate sepsis in male Sprague Dawley rats results in 

mortality rate of 75% while severe sepsis results in 100% mortality rate. We also observed that 

decreases in core body temperature in the severely septic animals were closely associated with 

the death of the animal. Treatment with the CeO2 nanoparticles reduced the mortality rate to 

~17% in animals with moderate sepsis and to 25% in animals with severe sepsis. Treatment 

induced increases in survivability were found to be associated with the restoration of core body 

temperature towards baseline. 

 

Effect of CeO2 nanoparticles on sepsis induced systemic inflammatory response 

It was previously thought that the sepsis induced mortality was a result of direct 

microbial insult. More recently, additional data has suggested that sepsis-induced mortality is 

more likely to be caused by the uncontrolled immune response that characterizes the 

development of MODS [198]. Similar to previous studies, we found that both moderate and 

severe sepsis resulted in increased levels of serum and peritoneal fluid inflammatory cytokines, 

chemokines and growth factors. These increases in systemic inflammation were attenuated 
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with CeO2 nanoparticle treatment. Consistent with these data, other work has also suggested 

that CeO2 nanoparticles can also modulate cellular ROS levels / inflammation [199]. How 

treatment with CeO2 nanoparticles might function to decrease cellular ROS levels / 

inflammation in vivo is currently unclear and will require further study.  

 

Effect of CeO2 nanoparticles on sepsis induced multi-organ dysfunction syndrome 

  Previous studies have shown that the sepsis-induced inflammatory cytokine storm leads 

to MODS and death [200]. It is thought that much of the circulating cytokines seen during the 

cytokine storm are released by the resident macrophages, Kuppfer cells, of the liver [201]. 

Similar to other studies, we found that the intravenous injection of CeO2 nanoparticles lead to 

their highest accumulation in liver but not in other organs [17]. We next sought to evaluate 

whether CeO2 nanoparticles can modulate oxidative and nitrosative stress. As expected, CeO2 

nanoparticles attenuated sepsis-induced hepatic superoxide levels along with protein 

nitrosylation. In addition, CeO2 nanoparticles also attenuated GST-α and GST-mu which are 

hallmarks of hepatic damage. We next examined whether CeO2 nanoparticles can prevent 

sepsis induced cardiac failure and found that CeO2 nanoparticles attenuated serum myoglobin 

levels and creatine kinase activity along with attenuation in cardiac ERK1/2-Jak-Stat pathway 

and decreased expression of VCAM-1.  In addition, we also found that CeO2 nanoparticles 

attenuated sepsis-induced increases in renal damage markers BUN, KIM-1, cystatin C, 

osteopontin and β-2 microglobulin. Histologically, CeO2 nanoparticles attenuated sepsis-

induced tubular dilatation, the loss of brush border, and improved F-actin levels in the kidney. 

These changes were associated with decrease in Stat-3 activation and cleavage of caspase 3. 
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Taken together, the data from the current study suggest that CeO2 nanoparticles protect 

against sepsis-induced organ damage by modulating the hepatic inflammatory response.  

Summary 

1. CeO2 nanoparticles significantly improve survivability in male Sprague Dawley rats 

against moderate and severe septic insults. 

2. Improvement in survival rate is associated with the restoration of core body 

temperature towards baseline. 

3. CeO2 nanoparticles specifically accumulate in the liver and modulate the hepatic 

inflammatory response to septic insult. 

4. CeO2 nanoparticles attenuate hepatic damage by decreasing sepsis-induced oxidative 

and nitrosative stress which is associated with improvements in hepatic morphology. 

Modulation of the hepatic inflammatory response by CeO2 nanoparticles is associated 

with decreased levels of systemic inflammatory mediators. 

5. CeO2 nanoparticles in conjunction with decreased cytokine release from the liver appear 

to protect the heart during sepsis by attenuating the activation of the inflammatory ERK 

1/2-Jak-Stat pathway. 

6. Nanoparticle treatment is associated with evidence of decreased sepsis-induced cardiac 

damage and microvascular leak. 

7.  CeO2 nanoparticles attenuate sepsis-induced alterations in serum myoglobin and 

creatine kinase activity levels. 

8. CeO2 nanoparticles attenuate sepsis-induced AKI by preserving the structural integrity 

and F-actin. 
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9. CeO2 nanoparticles attenuate sepsis-induced increases in renal oxidative stress and 

apoptosis by inhibition of Stat-3 and cleavage of caspase 3. 

 

Figure 4-1. Schematic representation of mechanism of action of CeO2 nanoparticles against 

severe sepsis induced MODS and death. 
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Future directions 

 The present study provides a first glimpse detailing the potential protective effects of 

CeO2 nanoparticles against sepsis induced MODS and death. While the study is novel, the 

limitation of the study is that we tested the effects of the co-administration of CeO2 

nanoparticles at the time of sepsis induction. It is unlikely that this situation models a real-

world clinical situation where sepsis is diagnosed prior to the initiation of treatment.   Similarly, 

the animals used in this study did not suffer from comorbidities which is often seen in clinical 

settings. To address these shortcomings, further studies based on the following specific aims 

may be warranted. 

Specific Aim I: 

 Severe sepsis is a complex pathophysiological process in which the host immune system 

becomes deregulated leading to organ failure. Early stages of systemic septic insult are 

characterized by the activation of circulating macrophages and neutrophils that cause the 

release of pro-inflammatory mediators such as TNF- α and  IL-1β [202]. These cytokines then 

activate the resident macrophages such as Kupffer cells in liver, mesangial cells in kidney and 

dust cells in lungs. Because the liver is the primary organ for the synthesis of acute phase 

proteins and it also contains the largest number of resident macrophages, it may be useful to 

determine whether CeO2 nanoparticles can prevent cytokine induced activation of Kupffer cells. 

While the current study found that CeO2 nanoparticles accumulate in the liver, it is still unclear 

whether CeO2 nanoparticles modulate Kupffer cell activation. To specifically address this 

question, Kupffer cells from livers of animals injected with CeO2 nanoparticles could be isolated 

and analyzed for the presence of ceria content through ICPMS and electron microscopy. Finally 
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to determine whether CeO2 nanoparticles can inhibit Kupffer cell activation, the determination 

of mRNA expression for various inflammatory cytokines in Kupffer cells across different groups 

may be warranted. 

Specific Aim II: 

 The sepsis mortality rate is higher in neonatal children and the elderly due to an 

underdeveloped or compromised immune system [203]. The current study was performed in 

adult male Sprague Dawley rats where their innate and adaptive immune system has 

completely developed.  Whether CeO2 nanoparticles are efficacious for the treatment of the 

very young or the aged has not been investigated.  

 Previous studies in conjunction with this current study have demonstrated that CeO2 

nanoparticles exhibit the ability to scavenger ROS [11]. Unlike traditional anti-oxidants or anti-

inflammatory agents that are rapidly metabolized and eliminated, CeO2 nanoparticles do not 

undergo any metabolic change and may persist in the body for a long period of time [204]. In 

addition, the autocatalytic property of CeO2 nanoparticles is thought to allow repeated cycling 

of Ce+4 to Ce+3 which may allow the particles to scavenge ROS indefinitely [118]. As such, 

studies investigating a second septic insult weeks after the initial one is resolved in the absence 

of subsequent treatments may be useful to better understand the true potential of using CeO2 

nanoparticles to treat sepsis.  

Specific Aim III: 

 Findings from the current study demonstrate that CeO2 nanoparticles protect male 

Sprague Dawley rats against severe sepsis when administered at the time of sepsis induction. 

However, most cases of deaths are seen in people that are admitted to the hospital at late or 
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final stages of sepsis where most of the irreparable damage has already been done. As such, 

studies investigating the therapeutic potential of CeO2 nanoparticles by post-administration of 

nanoceria several hours after sepsis induction may be warranted. 

 Finally, another major drawback to the current therapeutic regime aimed for the 

treatment of sepsis is the presence of comorbidity. Studies have shown that patients with 

preexisting conditions such as chronic renal failure or heart failure have a poorer prognosis 

following sepsis induction than those that do not [205]. As such, it may be of use to explore if 

post-administration of CeO2 nanoparticles can prevent sepsis induced MODS and mortality in 

individuals that have pre-existing diseases. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

References 

1. Angus, D.C. and T. van der Poll, Severe sepsis and septic shock. N Engl J Med, 2013. 369(9): p. 
840-51. 

2. Marshall, J.C., Sepsis: rethinking the approach to clinical research. J Leukoc Biol, 2008. 83(3): p. 
471-82. 

3. Mayr, F.B., S. Yende, and D.C. Angus, Epidemiology of severe sepsis. Virulence, 2014. 5(1): p. 4-
11. 

4. Mayr, F.B., S. Yende, and D.C. Angus, Epidemiology of severe sepsis. Virulence, 2013. 5(1). 
5. Basu, R.K., et al., Identification of candidate serum biomarkers for severe septic shock-associated 

kidney injury via microarray. Crit Care, 2011. 15(6): p. R273. 
6. Mogensen, T.H., Pathogen recognition and inflammatory signaling in innate immune defenses. 

Clin Microbiol Rev, 2009. 22(2): p. 240-73, Table of Contents. 
7. Blackwell, T.S. and J.W. Christman, Sepsis and cytokines: current status. Br J Anaesth, 1996. 

77(1): p. 110-7. 
8. Boisrame-Helms, J., et al., Endothelial dysfunction in sepsis. Curr Vasc Pharmacol, 2013. 11(2): p. 

150-60. 
9. Lush, C.W. and P.R. Kvietys, Microvascular dysfunction in sepsis. Microcirculation, 2000. 7(2): p. 

83-101. 
10. Wang, Z., Z. Quan, and J. Lin, Remarkable changes in the optical properties of CeO(2) 

nanocrystals induced by lanthanide ions doping. Inorg Chem, 2007. 46(13): p. 5237-42. 
11. Lee, S.S., et al., Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal 

diameter and surface coating. ACS Nano, 2013. 7(11): p. 9693-703. 
12. Yabe, S. and T. Sato, Cerium oxide for sunscreen cosmetics. Journal of Solid State Chemistry. 

171(1–2): p. 7-11. 
13. Pearman, B.P., et al., The degradation mitigation effect of cerium oxide in polymer electrolyte 

membranes in extended fuel cell durability tests. Journal of Power Sources, 2013. 225(0): p. 75-
83. 

14. Hedrick, J.B. and S.P. Sinha, Cerium-based polishing compounds: discovery to manufacture. 
Journal of Alloys and Compounds, 1994. 207–208(0): p. 377-382. 

15. Pagliari, F., et al., Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative 
stress. ACS Nano, 2012. 6(5): p. 3767-75. 

16. Tarnuzzer, R.W., et al., Vacancy engineered ceria nanostructures for protection from radiation-
induced cellular damage. Nano Lett, 2005. 5(12): p. 2573-7. 

17. Hirst, S.M., et al., Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in 
mice. Environ Toxicol, 2013. 28(2): p. 107-18. 

18. Thill, A., et al., Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of 
the cytotoxicity mechanism. Environ Sci Technol, 2006. 40(19): p. 6151-6. 

19. Babenko, L.P., et al., Antibacterial activity of cerium colloids against opportunistic 
microorganisms in vitro. Mikrobiol Z, 2012. 74(3): p. 54-62. 

20. Horst, A.M., et al., An assessment of fluorescence- and absorbance-based assays to study metal-
oxide nanoparticle ROS production and effects on bacterial membranes. Small, 2013. 9(9-10): p. 
1753-64. 

21. Hirst, S.M., et al., Anti-inflammatory properties of cerium oxide nanoparticles. Small, 2009. 5(24): 
p. 2848-56. 

22. Ciofani, G., et al., Transcriptional profile of genes involved in oxidative stress and antioxidant 
defense in PC12 cells following treatment with cerium oxide nanoparticles. Biochim Biophys 
Acta, 2014. 1840(1): p. 495-506. 



101 
 

23. Lever, A. and I. Mackenzie, Sepsis: definition, epidemiology, and diagnosis. BMJ, 2007. 
335(7625): p. 879-83. 

24. Nystrom, P.O., The systemic inflammatory response syndrome: definitions and aetiology. J 
Antimicrob Chemother, 1998. 41 Suppl A: p. 1-7. 

25. Funk, D.J., J.E. Parrillo, and A. Kumar, Sepsis and septic shock: a history. Crit Care Clin, 2009. 
25(1): p. 83-101, viii. 

26. Melamed, A. and F.J. Sorvillo, The burden of sepsis-associated mortality in the United States 
from 1999 to 2005: an analysis of multiple-cause-of-death data. Crit Care, 2009. 13(1): p. R28. 

27. Rhee, C., S. Gohil, and M. Klompas, Regulatory mandates for sepsis care--reasons for caution. N 
Engl J Med, 2014. 370(18): p. 1673-6. 

28. Reinhart, K., et al., The burden of sepsis-a call to action in support of World Sepsis Day 2013. J 
Crit Care, 2013. 28(4): p. 526-8. 

29. Lynn, W.A., Anti-endotoxin therapeutic options for the treatment of sepsis. J Antimicrob 
Chemother, 1998. 41 Suppl A: p. 71-80. 

30. Alexander, C. and E.T. Rietschel, Bacterial lipopolysaccharides and innate immunity. J Endotoxin 
Res, 2001. 7(3): p. 167-202. 

31. Copeland, S., et al., Acute inflammatory response to endotoxin in mice and humans. Clin Diagn 
Lab Immunol, 2005. 12(1): p. 60-7. 

32. Mestas, J. and C.C. Hughes, Of mice and not men: differences between mouse and human 
immunology. J Immunol, 2004. 172(5): p. 2731-8. 

33. Esmon, C.T., Why do animal models (sometimes) fail to mimic human sepsis? Crit Care Med, 
2004. 32(5 Suppl): p. S219-22. 

34. Dejager, L., et al., Cecal ligation and puncture: the gold standard model for polymicrobial sepsis? 
Trends Microbiol, 2011. 19(4): p. 198-208. 

35. Toscano, M.G., D. Ganea, and A.M. Gamero, Cecal ligation puncture procedure. J Vis Exp, 
2011(51). 

36. Merx, M.W., et al., Statin treatment after onset of sepsis in a murine model improves survival. 
Circulation, 2005. 112(1): p. 117-24. 

37. Zantl, N., et al., Essential role of gamma interferon in survival of colon ascendens stent 
peritonitis, a novel murine model of abdominal sepsis. Infect Immun, 1998. 66(5): p. 2300-9. 

38. Chopra, M., et al., Modulation of myocardial mitochondrial mechanisms during severe 
polymicrobial sepsis in the rat. PLoS One, 2011. 6(6): p. e21285. 

39. Fenton, M.J. and D.T. Golenbock, LPS-binding proteins and receptors. J Leukoc Biol, 1998. 64(1): 
p. 25-32. 

40. Schumann, R.R., Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the 
receptor for LPS/LBP complexes: a short review. Res Immunol, 1992. 143(1): p. 11-5. 

41. Fitzgerald, K.A., D.C. Rowe, and D.T. Golenbock, Endotoxin recognition and signal transduction 
by the TLR4/MD2-complex. Microbes Infect, 2004. 6(15): p. 1361-7. 

42. Saitoh, S., et al., Ligand-dependent Toll-like receptor 4 (TLR4)-oligomerization is directly linked 
with TLR4-signaling. J Endotoxin Res, 2004. 10(4): p. 257-60. 

43. Wesche, H., et al., MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity, 
1997. 7(6): p. 837-47. 

44. Adhikari, A., M. Xu, and Z.J. Chen, Ubiquitin-mediated activation of TAK1 and IKK. Oncogene, 
2007. 26(22): p. 3214-26. 

45. Oeckinghaus, A. and S. Ghosh, The NF-kappaB family of transcription factors and its regulation. 
Cold Spring Harb Perspect Biol, 2009. 1(4): p. a000034. 

46. Carlson, D., et al., Antioxidant vitamin therapy alters sepsis-related apoptotic myocardial activity 
and inflammatory responses. Am J Physiol Heart Circ Physiol, 2006. 291(6): p. H2779-89. 



102 
 

47. Yamamoto, M., et al., Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling 
pathway. Science, 2003. 301(5633): p. 640-3. 

48. Yamamoto, M., et al., TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-
independent signaling pathway. Nat Immunol, 2003. 4(11): p. 1144-50. 

49. Honda, K. and T. Taniguchi, IRFs: master regulators of signalling by Toll-like receptors and 
cytosolic pattern-recognition receptors. Nat Rev Immunol, 2006. 6(9): p. 644-58. 

50. Pietras, E.M., S.K. Saha, and G. Cheng, The interferon response to bacterial and viral infections. J 
Endotoxin Res, 2006. 12(4): p. 246-50. 

51. Meydani, S.N., et al., Antioxidant modulation of cytokines and their biologic function in the aged. 
Z Ernahrungswiss, 1998. 37 Suppl 1: p. 35-42. 

52. Yang, D., et al., Pro-inflammatory cytokines increase reactive oxygen species through 
mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res, 2007. 85(4): p. 462-72. 

53. Adams, V., et al., Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB 
activation: an in vitro and in vivo study. Cardiovasc Res, 2002. 54(1): p. 95-104. 

54. Sheng, W., et al., Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell 
morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and 
microglia. J Neuroinflammation, 2011. 8: p. 121. 

55. Natarajan, V., et al., Reactive oxygen species signaling through regulation of protein tyrosine 
phosphorylation in endothelial cells. Environ Health Perspect, 1998. 106 Suppl 5: p. 1205-12. 

56. Goldman, E.H., L. Chen, and H. Fu, Activation of apoptosis signal-regulating kinase 1 by reactive 
oxygen species through dephosphorylation at serine 967 and 14-3-3 dissociation. J Biol Chem, 
2004. 279(11): p. 10442-9. 

57. Ramasamy, R., et al., Advanced glycation end products and RAGE: a common thread in aging, 
diabetes, neurodegeneration, and inflammation. Glycobiology, 2005. 15(7): p. 16R-28R. 

58. Mylonas, C. and D. Kouretas, Lipid peroxidation and tissue damage. In Vivo, 1999. 13(3): p. 295-
309. 

59. Beckman, J.S. and W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, 
and ugly. Am J Physiol, 1996. 271(5 Pt 1): p. C1424-37. 

60. Coffey, M.J., S.M. Phare, and M. Peters-Golden, Peroxynitrite-induced nitrotyrosination of 
proteins is blocked by direct 5-lipoxygenase inhibitor zileuton. J Pharmacol Exp Ther, 2001. 
299(1): p. 198-203. 

61. Hollenberg, S.M., et al., Increased microvascular reactivity and improved mortality in septic mice 
lacking inducible nitric oxide synthase. Circ Res, 2000. 86(7): p. 774-8. 

62. Castellheim, A., et al., Innate immune responses to danger signals in systemic inflammatory 
response syndrome and sepsis. Scand J Immunol, 2009. 69(6): p. 479-91. 

63. Gruys, E., et al., Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B, 2005. 
6(11): p. 1045-56. 

64. Ikarashi, M., et al., Distinct development and functions of resident and recruited liver Kupffer 
cells/macrophages. J Leukoc Biol, 2013. 94(6): p. 1325-36. 

65. Yu, W.K., et al., Influence of acute hyperglycemia in human sepsis on inflammatory cytokine and 
counterregulatory hormone concentrations. World J Gastroenterol, 2003. 9(8): p. 1824-7. 

66. Nicholson, T.E. and K.W. Renton, Role of cytokines in the lipopolysaccharide-evoked depression 
of cytochrome P450 in the brain and liver. Biochem Pharmacol, 2001. 62(12): p. 1709-17. 

67. Koskinas, J., et al., Liver histology in ICU patients dying from sepsis: a clinico-pathological study. 
World J Gastroenterol, 2008. 14(9): p. 1389-93. 

68. Nesseler, N., et al., Clinical review: The liver in sepsis. Crit Care, 2012. 16(5): p. 235. 
69. Legrand, M., et al., Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med, 

2008. 14(7-8): p. 502-16. 



103 
 

70. Heyman, S.N., et al., Cellular adaptive changes in AKI: mitigating renal hypoxic injury. Nephrol 
Dial Transplant, 2012. 27(5): p. 1721-8. 

71. de Geus, H.R., M.G. Betjes, and J. Bakker, Biomarkers for the prediction of acute kidney injury: a 
narrative review on current status and future challenges. Clin Kidney J, 2012. 5(2): p. 102-108. 

72. Doi, K., et al., Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest, 2009. 
119(10): p. 2868-78. 

73. The National Heart, L. and A.C.T.N. Blood Institute, Rosuvastatin for Sepsis-Associated Acute 
Respiratory Distress Syndrome. N Engl J Med, 2014. 

74. Matthay, M.A., L.B. Ware, and G.A. Zimmerman, The acute respiratory distress syndrome. J Clin 
Invest, 2012. 122(8): p. 2731-40. 

75. Broermann, A., et al., Dissociation of VE-PTP from VE-cadherin is required for leukocyte 
extravasation and for VEGF-induced vascular permeability in vivo. J Exp Med, 2011. 208(12): p. 
2393-401. 

76. Antonucci, E., et al., Myocardial depression in sepsis: From pathogenesis to clinical 
manifestations and treatment. J Crit Care, 2014. 

77. Merx, M.W. and C. Weber, Sepsis and the heart. Circulation, 2007. 116(7): p. 793-802. 
78. Hunter, J.D. and M. Doddi, Sepsis and the heart. Br J Anaesth, 2010. 104(1): p. 3-11. 
79. Fernandes, C.J., Jr. and M.S. de Assuncao, Myocardial dysfunction in sepsis: a large, unsolved 

puzzle. Crit Care Res Pract, 2012. 2012: p. 896430. 
80. Miller, J., Surviving sepsis: a review of the latest guidelines. Nursing, 2014. 44(4): p. 24-30; quiz 

30-1. 
81. Castranova, V., Overview of current toxicological knowledge of engineered nanoparticles. J 

Occup Environ Med, 2011. 53(6 Suppl): p. S14-7. 
82. Webster, T.J., IJN's second year is now a part of nanomedicine history! Int J Nanomedicine, 2007. 

2(1): p. 1-2. 
83. Horodecki, M. and J. Oppenheim, Fundamental limitations for quantum and nanoscale 

thermodynamics. Nat Commun, 2013. 4: p. 2059. 
84. Raj, S., et al., Nanotechnology in cosmetics: Opportunities and challenges. J Pharm Bioallied Sci, 

2012. 4(3): p. 186-93. 
85. Seaton, A., et al., Nanoparticles, human health hazard and regulation. J R Soc Interface, 2010. 7 

Suppl 1: p. S119-29. 
86. Kato, K., [Development trend of nanomedicines]. Yakugaku Zasshi, 2013. 133(1): p. 43-51. 
87. Azzopardi, E.A., E.L. Ferguson, and D.W. Thomas, The enhanced permeability retention effect: a 

new paradigm for drug targeting in infection. J Antimicrob Chemother, 2013. 68(2): p. 257-74. 
88. Psarros, C., et al., Nanomedicine for the prevention, treatment and imaging of atherosclerosis. 

Nanomedicine, 2012. 8 Suppl 1: p. S59-68. 
89. Ngwa, W., G.M. Makrigiorgos, and R.I. Berbeco, Gold nanoparticle enhancement of stereotactic 

radiosurgery for neovascular age-related macular degeneration. Phys Med Biol, 2012. 57(20): p. 
6371-80. 

90. Meddahi-Pelle, A., et al., Organ Repair, Hemostasis, and In Vivo Bonding of Medical Devices by 
Aqueous Solutions of Nanoparticles. Angew Chem Int Ed Engl, 2014. 

91. Kodiha, M., et al., Gold nanoparticles induce nuclear damage in breast cancer cells, which is 
further amplified by hyperthermia. Cell Mol Life Sci, 2014. 

92. Haggstrom, J., et al., Virucidal properties of metal oxide nanoparticles and their halogen adducts. 
Nanoscale, 2010. 2(4): p. 529-34. 

93. Hosseini, A., et al., Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in 
isolated rat pancreatic islets. Hum Exp Toxicol, 2013. 32(5): p. 544-53. 



104 
 

94. Vivek, R., et al., Multifunctional HER2-Antibody Conjugated Polymeric Nanocarrier-Based Drug 
Delivery System for Multi-Drug-Resistant Breast Cancer Therapy. ACS Appl Mater Interfaces, 
2014. 6(9): p. 6469-80. 

95. Han, Y., et al., Co-delivery of plasmid DNA and doxorubicin by solid lipid nanoparticles for lung 
cancer therapy. Int J Mol Med, 2014. 34(1): p. 191-6. 

96. Chen, Z.Y., et al., Advance of molecular imaging technology and targeted imaging agent in 
imaging and therapy. Biomed Res Int, 2014. 2014: p. 819324. 

97. Xu, C. and X. Qu, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for 
biological applications. NPG Asia Materials, 2014. 6(3): p. e90. 

98. Cassee, F.R., et al., Exposure, health and ecological effects review of engineered nanoscale 
cerium and cerium oxide associated with its use as a fuel additive. Crit Rev Toxicol, 2011. 41(3): 
p. 213-29. 

99. Chen, H.T., et al., Identifying the O2 diffusion and reduction mechanisms on CeO2 electrolyte in 
solid oxide fuel cells: a DFT + U study. J Comput Chem, 2009. 30(15): p. 2433-42. 

100. Chen, S., et al., Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by 
oxidative stress. Biol Trace Elem Res, 2013. 154(1): p. 156-66. 

101. Asati, A., et al., pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive 
fluorigenic detection of cancer biomarkers at neutral pH. Anal Chem, 2011. 83(7): p. 2547-53. 

102. Arya, A., et al., Cerium oxide nanoparticles prevent apoptosis in primary cortical culture by 
stabilizing mitochondrial membrane potential. Free Radic Res, 2014. 

103. Estevez, A.Y., et al., Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse 
hippocampal brain slice model of ischemia. Free Radic Biol Med, 2011. 51(6): p. 1155-63. 

104. Arya, A., et al., Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced 
oxidative stress and inflammation. Int J Nanomedicine, 2013. 8: p. 4507-20. 

105. Pelletier, D.A., et al., Effects of engineered cerium oxide nanoparticles on bacterial growth and 
viability. Appl Environ Microbiol, 2010. 76(24): p. 7981-9. 

106. Zholobak, N.M., et al., [Antiviral effect of cerium dioxide nanoparticles stabilized by low-
molecular polyacrylic acid]. Mikrobiol Z, 2010. 72(3): p. 42-7. 

107. Celardo, I., et al., Ce(3)+ ions determine redox-dependent anti-apoptotic effect of cerium oxide 
nanoparticles. ACS Nano, 2011. 5(6): p. 4537-49. 

108. Wang, Q., J.M. Perez, and T.J. Webster, Inhibited growth of Pseudomonas aeruginosa by 
dextran- and polyacrylic acid-coated ceria nanoparticles. Int J Nanomedicine, 2013. 8: p. 3395-9. 

109. Dahaba, A.A., et al., Procalcitonin for early prediction of survival outcome in postoperative 
critically ill patients with severe sepsis. Br J Anaesth, 2006. 97(4): p. 503-8. 

110. Martin, G.S., Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and 
outcomes. Expert Rev Anti Infect Ther, 2012. 10(6): p. 701-6. 

111. Claessens, Y.E. and J.F. Dhainaut, Diagnosis and treatment of severe sepsis. Crit Care, 2007. 11 
Suppl 5: p. S2. 

112. Chang, Y.C., et al., The therapeutic potential and mechanisms of action of quercetin in relation to 
lipopolysaccharide-induced sepsis in vitro and in vivo. PLoS One, 2013. 8(11): p. e80744. 

113. Kim, T.H., S.J. Yoon, and S.M. Lee, Genipin attenuates sepsis by inhibiting Toll-like receptor 
signaling. Mol Med, 2012. 18: p. 455-65. 

114. Villa, P. and P. Ghezzi, Effect of N-acetyl-L-cysteine on sepsis in mice. Eur J Pharmacol, 1995. 
292(3-4): p. 341-4. 

115. Zapelini, P.H., et al., Antioxidant treatment reverses mitochondrial dysfunction in a sepsis animal 
model. Mitochondrion, 2008. 8(3): p. 211-8. 

116. Rahman, I., Pharmacological antioxidant strategies as therapeutic interventions for COPD. 
Biochim Biophys Acta, 2012. 1822(5): p. 714-28. 



105 
 

117. Berger, M.M. and R.L. Chiolero, Antioxidant supplementation in sepsis and systemic 
inflammatory response syndrome. Crit Care Med, 2007. 35(9 Suppl): p. S584-90. 

118. Niu, J., K. Wang, and P.E. Kolattukudy, Cerium oxide nanoparticles inhibit oxidative stress and 
nuclear factor-kappaB activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J 
Pharmacol Exp Ther, 2011. 338(1): p. 53-61. 

119. Zholobak, N.M., et al., UV-shielding property, photocatalytic activity and photocytotoxicity of 
ceria colloid solutions. J Photochem Photobiol B, 2011. 102(1): p. 32-8. 

120. Karakoti, A.S., et al., Nanoceria as Antioxidant: Synthesis and Biomedical Applications. JOM 
(1989), 2008. 60(3): p. 33-37. 

121. Colon, J., et al., Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. 
Nanomedicine, 2009. 5(2): p. 225-31. 

122. Colon, J., et al., Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-
induced damage by reduction of reactive oxygen species and upregulation of superoxide 
dismutase 2. Nanomedicine, 2010. 6(5): p. 698-705. 

123. Das, M., et al., Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord 
neurons. Biomaterials, 2007. 28(10): p. 1918-25. 

124. Baulin, N.A., et al., [Selection of the method of plastic surgery of the abdominal wall in ventral 
hernia]. Khirurgiia (Mosk), 1990(7): p. 102-5. 

125. Nalabotu, S.K., et al., Intratracheal instillation of cerium oxide nanoparticles induces hepatic 
toxicity in male Sprague-Dawley rats. Int J Nanomedicine, 2011. 6: p. 2327-35. 

126. Dombrovskiy, V.Y., et al., Rapid increase in hospitalization and mortality rates for severe sepsis in 
the United States: a trend analysis from 1993 to 2003. Crit Care Med, 2007. 35(5): p. 1244-50. 

127. Singer, M., The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence, 
2014. 5(1): p. 66-72. 

128. Antonelli, M., et al., High IL-6 serum levels are associated with septic shock and mortality in 
septic patients with severe leukopenia due to hematological malignancies. Scand J Infect Dis, 
1995. 27(4): p. 381-4. 

129. Oda, S., et al., Sequential measurement of IL-6 blood levels in patients with systemic 
inflammatory response syndrome (SIRS)/sepsis. Cytokine, 2005. 29(4): p. 169-75. 

130. Xu, M., et al., Protective effects of the combination of sodium ferulate and oxymatrine on cecal 
ligation and puncture-induced sepsis in mice. Exp Ther Med, 2014. 7(5): p. 1297-1304. 

131. Punyadeera, C., et al., A biomarker panel to discriminate between systemic inflammatory 
response syndrome and sepsis and sepsis severity. J Emerg Trauma Shock, 2010. 3(1): p. 26-35. 

132. Wong, L.L. and J.F. McGinnis, Nanoceria as bona fide catalytic antioxidants in medicine: what we 
know and what we want to know. Adv Exp Med Biol, 2014. 801: p. 821-8. 

133. Majumdar, A., Sepsis-induced acute kidney injury. Indian J Crit Care Med, 2010. 14(1): p. 14-21. 
134. Yasuda, H., et al., Simvastatin improves sepsis-induced mortality and acute kidney injury via 

renal vascular effects. Kidney Int, 2006. 69(9): p. 1535-42. 
135. Doi, K., et al., Pre-existing renal disease promotes sepsis-induced acute kidney injury and 

worsens outcome. Kidney Int, 2008. 74(8): p. 1017-25. 
136. De Kock, I., C. Van Daele, and J. Poelaert, Sepsis and septic shock: pathophysiological and 

cardiovascular background as basis for therapy. Acta Clin Belg, 2010. 65(5): p. 323-9. 
137. Miller, A.M. and J.X. Zhang, Altered endothelin-1 signaling in production of thromboxane A2 in 

kupffer cells from bile duct ligated rats. Cell Mol Immunol, 2009. 6(6): p. 441-52. 
138. Heckert, E.G., et al., The role of cerium redox state in the SOD mimetic activity of nanoceria. 

Biomaterials, 2008. 29(18): p. 2705-9. 
139. Manne, N.D., et al., Altered cardiac muscle mTOR regulation during the progression of cancer 

cachexia in the ApcMin/+ mouse. Int J Oncol, 2013. 42(6): p. 2134-40. 



106 
 

140. Dalle-Donne, I., et al., Protein carbonylation in human diseases. Trends Mol Med, 2003. 9(4): p. 
169-76. 

141. Seija, M., et al., Role of peroxynitrite in sepsis-induced acute kidney injury in an experimental 
model of sepsis in rats. Shock, 2012. 38(4): p. 403-10. 

142. Baumann, M., Advanced glycation endproducts in sepsis and mechanical ventilation: extra or 
leading man? Crit Care, 2009. 13(4): p. 164. 

143. Dowding, J.M., S. Seal, and W.T. Self, Cerium oxide nanoparticles accelerate the decay of 
peroxynitrite (ONOO). Drug Deliv Transl Res, 2013. 3(4): p. 375-379. 

144. Dowding, J.M., et al., Cerium oxide nanoparticles protect against Abeta-induced mitochondrial 
fragmentation and neuronal cell death. Cell Death Differ, 2014. 

145. Bauer, M., A.T. Press, and M. Trauner, The liver in sepsis: patterns of response and injury. Curr 
Opin Crit Care, 2013. 19(2): p. 123-7. 

146. Greenhill, C.J., et al., IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via 
STAT3. J Immunol, 2011. 186(2): p. 1199-208. 

147. Zouein, F.A., M. Kurdi, and G.W. Booz, LIF and the heart: just another brick in the wall? Eur 
Cytokine Netw, 2013. 24(1): p. 11-9. 

148. Bueno, O.F. and J.D. Molkentin, Involvement of extracellular signal-regulated kinases 1/2 in 
cardiac hypertrophy and cell death. Circ Res, 2002. 91(9): p. 776-81. 

149. Xu, Q., et al., Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple 
oncogenic growth signaling pathways. Oncogene, 2005. 24(36): p. 5552-60. 

150. Lee, J.E., et al., Janex-1, a JAK3 inhibitor, ameliorates tumor necrosis factor-alpha-induced 
expression of cell adhesion molecules and improves myocardial vascular permeability in 
endotoxemic mice. Int J Mol Med, 2012. 29(5): p. 864-70. 

151. Gao, M., et al., Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial 
sepsis. Crit Care Med, 2012. 40(8): p. 2390-9. 

152. Ahmed, L.A., Protective effects of magnesium supplementation on metabolic energy 
derangements in lipopolysaccharide-induced cardiotoxicity in mice. Eur J Pharmacol, 2012. 
694(1-3): p. 75-81. 

153. Lodha, R., et al., Myocardial cell injury is common in children with septic shock. Acta Paediatr, 
2009. 98(3): p. 478-81. 

154. Iwaki, T., et al., A cardioprotective role for the endothelial protein C receptor in 
lipopolysaccharide-induced endotoxemia in the mouse. Blood, 2005. 105(6): p. 2364-71. 

155. Fukui, M., et al., Cell damage and liberation of nitric oxide synthase in rat heart induced by 
endotoxin administration. Nihon Ika Daigaku Zasshi, 1995. 62(5): p. 469-81. 

156. Arlati, S., et al., Myocardial necrosis in ICU patients with acute non-cardiac disease: a prospective 
study. Intensive Care Med, 2000. 26(1): p. 31-7. 

157. Schrier, R.W. and W. Wang, Acute renal failure and sepsis. N Engl J Med, 2004. 351(2): p. 159-69. 
158. Wang, Z., et al., Development of oxidative stress in the peritubular capillary microenvironment 

mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol, 
2012. 180(2): p. 505-16. 

159. Xu, C., et al., TNF-mediated damage to glomerular endothelium is an important determinant of 
acute kidney injury in sepsis. Kidney Int, 2014. 85(1): p. 72-81. 

160. Katsumi, H., et al., Pharmacokinetics and preventive effects of platinum nanoparticles as reactive 
oxygen species scavengers on hepatic ischemia/reperfusion injury in mice. Metallomics, 2014. 
6(5): p. 1050-6. 

161. Yang, X., et al., Antioxidative nanofullerol prevents intervertebral disk degeneration. Int J 
Nanomedicine, 2014. 9: p. 2419-30. 



107 
 

162. Chistyakov, V.A., et al., Possible mechanisms of fullerene C(6)(0) antioxidant action. Biomed Res 
Int, 2013. 2013: p. 821498. 

163. Chaudhury, K., et al., Mitigation of endometriosis using regenerative cerium oxide nanoparticles. 
Nanomedicine, 2013. 9(3): p. 439-48. 

164. Pourkhalili, N., et al., Biochemical and cellular evidence of the benefit of a combination of cerium 
oxide nanoparticles and selenium to diabetic rats. World J Diabetes, 2011. 2(11): p. 204-10. 

165. Gao, Y., et al., Cerium oxide nanoparticles in cancer. Onco Targets Ther, 2014. 7: p. 835-840. 
166. Alili, L., et al., Downregulation of tumor growth and invasion by redox-active nanoparticles. 

Antioxid Redox Signal, 2013. 19(8): p. 765-78. 
167. Park, S.W., et al., Human heat shock protein 27-overexpressing mice are protected against acute 

kidney injury after hepatic ischemia and reperfusion. Am J Physiol Renal Physiol, 2009. 297(4): p. 
F885-94. 

168. Wang, C., et al., Metabolic syndrome-induced tubulointerstitial injury: role of oxidative stress and 
preventive effects of acetaminophen. Free Radic Biol Med, 2013. 65: p. 1417-26. 

169. Zarjou, A. and A. Agarwal, Sepsis and acute kidney injury. J Am Soc Nephrol, 2011. 22(6): p. 999-
1006. 

170. Doi, K., et al., Reduced production of creatinine limits its use as marker of kidney injury in sepsis. 
J Am Soc Nephrol, 2009. 20(6): p. 1217-21. 

171. Lim, A.I., et al., Kidney injury molecule-1: more than just an injury marker of tubular epithelial 
cells? J Cell Physiol, 2013. 228(5): p. 917-24. 

172. Astor, B.C., et al., Serum beta2-microglobulin at discharge predicts mortality and graft loss 
following kidney transplantation. Kidney Int, 2013. 84(4): p. 810-7. 

173. Delanaye, P., et al., Detection of decreased glomerular filtration rate in intensive care units: 
serum cystatin C versus serum creatinine. BMC Nephrol, 2014. 15(1): p. 9. 

174. Vaidya, V.S., M.A. Ferguson, and J.V. Bonventre, Biomarkers of acute kidney injury. Annu Rev 
Pharmacol Toxicol, 2008. 48: p. 463-93. 

175. Maitra, S.R., M.M. Wojnar, and C.H. Lang, Alterations in tissue glucose uptake during the 
hyperglycemic and hypoglycemic phases of sepsis. Shock, 2000. 13(5): p. 379-85. 

176. Marik, P.E. and M. Raghavan, Stress-hyperglycemia, insulin and immunomodulation in sepsis. 
Intensive Care Med, 2004. 30(5): p. 748-56. 

177. Brierre, S., R. Kumari, and B.P. Deboisblanc, The endocrine system during sepsis. Am J Med Sci, 
2004. 328(4): p. 238-47. 

178. Hannon, R.J. and V.E. Boston, Hyponatraemia and intracellular water in sepsis: an experimental 
comparison of the effect of fluid replacement with either 0.9% saline or 5% dextrose. J Pediatr 
Surg, 1990. 25(4): p. 422-5. 

179. Pinto, C.F., et al., [The sepsis as cause of acute kidney injury: an experimental model]. Rev Esc 
Enferm USP, 2012. 46 Spec No: p. 86-90. 

180. Wu, L., N. Gokden, and P.R. Mayeux, Evidence for the role of reactive nitrogen species in 
polymicrobial sepsis-induced renal peritubular capillary dysfunction and tubular injury. J Am Soc 
Nephrol, 2007. 18(6): p. 1807-15. 

181. Bosmann, M. and P.A. Ward, The inflammatory response in sepsis. Trends Immunol, 2013. 34(3): 
p. 129-36. 

182. Chuang, P.Y. and J.C. He, JAK/STAT signaling in renal diseases. Kidney Int, 2010. 78(3): p. 231-4. 
183. Yang, N., et al., Blockage of JAK/STAT signalling attenuates renal ischaemia-reperfusion injury in 

rat. Nephrol Dial Transplant, 2008. 23(1): p. 91-100. 
184. Rawlings, J.S., K.M. Rosler, and D.A. Harrison, The JAK/STAT signaling pathway. J Cell Sci, 2004. 

117(Pt 8): p. 1281-3. 



108 
 

185. Hoeben, A., et al., Vascular endothelial growth factor and angiogenesis. Pharmacol Rev, 2004. 
56(4): p. 549-80. 

186. Kockara, A. and M. Kayatas, Renal cell apoptosis and new treatment options in sepsis-induced 
acute kidney injury. Ren Fail, 2013. 35(2): p. 291-4. 

187. Kothakota, S., et al., Caspase-3-generated fragment of gelsolin: effector of morphological 
change in apoptosis. Science, 1997. 278(5336): p. 294-8. 

188. Riley, C. and D.S. Wheeler, Prevention of sepsis in children: a new paradigm for public policy. Crit 
Care Res Pract, 2012. 2012: p. 437139. 

189. in Implications of Nanotechnology for Environmental Health Research, L. Goldman and C. 
Coussens, Editors. 2005: Washington (DC). 

190. Zhao, Z.X., et al., Cancer therapy improvement with mesoporous silica nanoparticles combining 
photodynamic and photothermal therapy. Nanotechnology, 2014. 25(28): p. 285701. 

191. Zhu, J., et al., Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated 
multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials, 2014. 35(26): p. 7635-46. 

192. Nesakumar, N., et al., Fabrication of lactate biosensor based on lactate dehydrogenase 
immobilized on cerium oxide nanoparticles. J Colloid Interface Sci, 2013. 410: p. 158-64. 

193. Wason, M.S., et al., Sensitization of pancreatic cancer cells to radiation by cerium oxide 
nanoparticle-induced ROS production. Nanomedicine, 2013. 9(4): p. 558-69. 

194. Kyle, S. and S. Saha, Nanotechnology for the Detection and Therapy of Stroke. Adv Healthc 
Mater, 2014. 

195. Tiruvoipati, R., et al., Hypothermia predicts mortality in critically ill elderly patients with sepsis. 
BMC Geriatr, 2010. 10: p. 70. 

196. Steiner, A.A., et al., The hypothermic response to bacterial lipopolysaccharide critically depends 
on brain CB1, but not CB2 or TRPV1, receptors. J Physiol, 2011. 589(Pt 9): p. 2415-31. 

197. Hiller, S., et al., alpha-Lipoic acid protects mitochondrial enzymes and attenuates 
lipopolysaccharide-induced hypothermia in mice. Free Radic Biol Med, 2014. 71: p. 362-7. 

198. Reinhart, K., et al., New approaches to sepsis: molecular diagnostics and biomarkers. Clin 
Microbiol Rev, 2012. 25(4): p. 609-34. 

199. Schanen, B.C., et al., Immunomodulation and T helper TH(1)/TH(2) response polarization by 
CeO(2) and TiO(2) nanoparticles. PLoS One, 2013. 8(5): p. e62816. 

200. Fry, D.E., Sepsis, systemic inflammatory response, and multiple organ dysfunction: the mystery 
continues. Am Surg, 2012. 78(1): p. 1-8. 

201. Koo, D.J., I.H. Chaudry, and P. Wang, Kupffer cells are responsible for producing inflammatory 
cytokines and hepatocellular dysfunction during early sepsis. J Surg Res, 1999. 83(2): p. 151-7. 

202. Schulte, W., J. Bernhagen, and R. Bucala, Cytokines in sepsis: potent immunoregulators and 
potential therapeutic targets--an updated view. Mediators Inflamm, 2013. 2013: p. 165974. 

203. Satar, M. and F. Ozlu, Neonatal sepsis: a continuing disease burden. Turk J Pediatr, 2012. 54(5): 
p. 449-57. 

204. Yokel, R.A., et al., Distribution, elimination, and biopersistence to 90 days of a systemically 
introduced 30 nm ceria-engineered nanomaterial in rats. Toxicol Sci, 2012. 127(1): p. 256-68. 

205. Nasa, P., D. Juneja, and O. Singh, Severe sepsis and septic shock in the elderly: An overview. 
World J Crit Care Med, 2012. 1(1): p. 23-30. 

 

 



109 
 

Appendix 

Letter from Institutional Research board 

 



110 
 

Nandini D.P.K. Manne 

Curriculum Vitae 

____________________________________________________________________________ 

manne@marshall.edu 
Ph.No: 304-730-9976 

 
 
Summary: 
 

 Research experience of 4 ½ years involving scientific design of projects and their 
implementation. 

 Highly motivated and enthusiastic to work on different research projects which gave 
me a broad range of knowledge on different subjects. 

 Skilled veterinarian with good experience in animal handling and sound knowledge in 
pathology, pharmacology and physiology of lab and small animals. 

 Designed and implemented a project involving treatment of sepsis using cerium oxide 
nanoparticles which is a novel idea. 
 

Career Objective  
 
To seek the position of an investigative pharmacologist in a pharmaceutical industry where I 
can utilize my skills and knowledge to perform pre-clinical drug testing. 
 
Education 
 
July 2011- Aug 2014 Ph.D. Biomedical Sciences (Toxicology and Environmental Health 

Sciences) Joan C Edwards School of Medicine, Marshall University, 
Huntington, WV  
 

Jan 2010-Jun 2011 MS, Biological Sciences, College of Science, Marshall University, 
Huntington, WV-25755 

 
Sep 2008-Dec2009  Research assistant in Department of Epidemiology and Preventive 

Medicine at Sri Venkateswara Veterinary University, Tirupati, Andhra 
Pradesh, INDIA 
 

Aug 2003-Aug 2008 B.V.Sc& A.H College of Veterinary Science, Sri Venkateswara Veterinary 
University, Tirupati, Andhra Pradesh, INDIA 

 
 
 
 
 

mailto:manne@marshall.edu
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Professional Experience 
 
2010-Present Graduate Research Assistant, Center for Diagnostic Nano systems, 

Marshall University, Huntington, WV 
 

 Devised and implemented research projects. 

 Designed and implemented academic research project to investigate the therapeutic 

activity of cerium oxide nanoparticles to treat polymicrobial sepsis. 

 Investigated the cancer cachectic mechanisms in the hearts of ApcMin+ mice which can 

be useful to design therapeutic drugs in preventing muscle loss.  

 Worked in other research projects involving therapeutic efficacy of acetaminophen and 

saxagliptin in treating diabetes. 

 Worked in project involving skeletal muscle ablation in Obese Zucker rats to understand 

the molecular mechanisms for diminished hypertrophy in diabetic animals. 

 Investigated the molecular mechanisms regarding regulation of iron related molecules 

in rat hippocampus. 

 Significant contribution to studies concerning toxicity as well as therapeutic properties 

of nanoceria. 

 Critical analysis of the data and publishing the manuscript in peer reviewed journals 

 Trained graduate and undergraduate students  

 Made successful collaboration with a research laboratory at University of South 

Carolina. 

 

Sep 2008-Dec2009 Research assistant in Department of Epidemiology and Preventive 
Medicine at Sri Venkateswara Veterinary University, Tirupati, Andhra 
Pradesh, INDIA 

 Professional work involved projects concerning molecular techniques for diagnosis and 
screening of Brucellosis and Leptospirosis in domestic animals. 

 Training undergraduates in various laboratory techniques. 
 Laboratory maintenance 

 

Feb 2008-Aug 2008 Intern Veterinary Doctor, Veterinary Poly Clinic, Visakhapatnam, AP, India 

 Responsibilities include treating small and large animals for various diseases. Organized 

campaigns for public awareness about various zoonotic diseases. Maintenance of drug 

and patient records. 
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Skills and Techniques 
 

 Lab animal handling and maintenance 

 Lab animal surgeries- Induction of sepsis in animals (survival surgery) and induction of 

brain ischemia through bilateral ligation of common carotid artery. 

 Small animal internal medicine and surgery 

 Biochemical and physiological monitoring of lab animals 

 Histopathology 

 Immunohistochemistry 

 Fluorescent microscopy 

 Immunoblotting 

 Cell culture 

 Nanomaterial handling and maintenance along with addressing safety issues. 

 Fabrication of microfluidic devices for studying the impact of nanomaterial toxicity in 

C.elegans. 

 Photolithography 

 Elisa 

 RT-PCR 

 

Familiar with 

 Echocardiography and electrocardiography of rodents 

 HPLC 

 MALDI-TOF Mass Spectrometry 

 FTIR Spectrometry 

 Confocal microscopy 

 

Patents  

1. Methods for treating sepsis (ref no-61978337) (pending). 

 
Publications  
 

1. Manne, N. D., M. Lima, R. T. Enos, P. Wehner, J. A. Carson and E. Blough (2013). "Altered 
cardiac muscle mTOR regulation during the progression of cancer cachexia in the 
ApcMin/+ mouse." Int J Oncol 42(6): 2134-2140. 
 

2. Wang, C., E. R. Blough, R. Arvapalli, X. Dai, S. Paturi, N. Manne, H. Addagarla, W. E. 
Triest, O. Olajide and M. Wu (2013). "Metabolic syndrome-induced tubulointerstitial 
injury: role of oxidative stress and preventive effects of acetaminophen." Free Radic Biol 
Med 65: 1417-1426. 
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3. Katta, A., S. Thulluri, N. D. Manne, H. S. Addagarla, R. Arvapalli, S. K. Nalabotu, M. 
Gadde, K. M. Rice and E. R. Blough (2013)."Overload induced heat shock proteins (HSPs), 
MAPK and miRNA (miR-1 and miR133a) response in insulin-resistant skeletal muscle." 
Cell Physiol Biochem 31(2-3): 219-229. 
 

4. Katta A, Kakarla SK, Manne ND, Wu M, Kundla S, Kolli M, Nalabotu SK, Blough ER. 
Diminished muscle growth in the obese Zucker rat following overload is associated with 
hyperphosphorylation of AMPK and dsRNA-dependent protein kinase. J Appl Physiol, 
2012 

 
5. Siva K. Nalabotu, Madhukar B. Kolli, William E. Triest, Jane Y. Ma, Manne ND, Anjaiah 

Katta, Hari S. Addagarla,  Kevin M. Rice,  and Eric R. Blough. Intratracheal instillation of 
cerium oxide nanoparticles induces hepatic toxicity in male Sprague dawley rats. Int J 
Nanomedicine. 2011;6:2327-35 

 
6. Thulluri S, Wu M, Blough ER, Manne ND, Litchfield AB, Wang B.Regulation of iron-

related molecules in the rat hippocampus: sex- and age-associated differences. Ann Clin 
Lab Sci, 2012. 42(2): p. 145-51. 
 

In Preparation 
 

1. Therapeutic applications of cerium oxide nanoparticles in treatment of polymicrobial 
sepsis. Nandini D.P.K. Manne, Selvaraj Vellaisamy and Eric.R. Blough 
 

2. Therapeutic applications of anti-oxidant and anti-inflammatory properties of cerium 
oxide nanoparticles in treatment of sepsis induced multi-organ failure. Nandini D.P.K. 
Manne and Eric.R. Blough 

 
3. Cerium oxide nanoparticles prevent sepsis induced renal failure by improving renal 

function and structural integrity in Sprague Dawley rats. Nandini D.P.K. Manne and 
Eric.R. Blough. 
 

4. Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular 
hypertrophy following pulmonary arterial hypertension. Madhukar B. Kolli, Nandini 
D.P.K. Manne and Eric R. Blough.  

 
 
 
Poster Presentations 

1. Nandini Manne, Ravikumar Arvapalli, Niraj Nepal, Geeta Nandyala, Kevin Rice, Asano 

Shinichi, and Eric Blough. Therapeutic efficacy of cerium oxide nanoparticles in 
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treatment of sepsis induced renal failure. Present at Experimental Biology conference, 

San-Diego, 2014. 

 

2. Nandini Manne, Eric Blough. Therapeutic potential of cerium oxide nanoparticles for the 

treatment of sepsis induced cardiac dysfunction. Presented at 3rd International 

conference on Naotek & Expo, Las Vegas, 2013 (Received award for best poster). 

 

3. Nandini Manne, Nalabotu SK, J. A. Carson, Srinivas Thulluri, Kevin M. Rice and Eric R. 

Blough. The regulation of mTOR signaling in cardiac muscle during the progression of 

cancer cachexia in the ApcMin/+ mouse. Presented at Marshall University Research day 

Huntington, WV, 2012. 

 

4. Wu M, Arvapalli R, Wang C, Paturi S, Manne ND, Dornon L, Wehner P, and Blough E. 

Acetaminophen reduces lipid accumulation and improves cardiac function in the obese 

Zucker rat. Presented at the American Association of Colleges of Pharmacy (AACP) 2012 

Annual Meeting; Kissimmee, FL. July, 2012. 

 

5. Wang C, Blough E,  Arvapalli R, Paturi S, Manne ND, and. Wu M . Protective Effect of 

Acetaminophen on Renal Dysfunction in the Obese Zucker Rat. Presented at the 

American Association of Colleges of Pharmacy (AACP) 2012 Annual Meeting; Kissimmee, 

FL. July, 2012.  

 

6. Akhtar O, Blough E, Yaqub A, Arvapalli R, Paturi S, Manne ND, Herndon P, and Wu M.  

Effect of dimethyl sulfoxide on bone hemostasis with obesity. Presented at the 

American Association of Clinical Endocrinologists (AACE) 2012 Annual Meeting; 

Philadelphia, PA. May 2012. 
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