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ABSTRACT 

A commonality among cancer types is the high frequency of mutations that inhibit or alter 

signaling of the p53 and pRb (Retinoblastoma) tumor suppressors.  These genes regulate 

processes vital for cancer suppression such as apoptosis, senescence, and cell cycle arrest among 

others.  Loss of both p53 and pRb promotes processes that support cancer progression and is 

associated with decreased patient survival and increased rates of tumor reoccurrence.  Although 

data points to the ability of p53 and pRb to collaborate and to inhibit tumorigenesis, it remains 

unclear how p53 and pRb cooperate toward this task.  Using RNA expression profiling, 179 p53 

and pRb cross-talk candidates were identified in normal lung fibroblasts (WI38) cells 

exogenously coexpressing p53 and pRb.  Regulator of G protein signaling 16 (RGS16) was 

among the p53 and pRb cross-talk candidates and reports suggest it inhibits the activation of 

several oncogenic pathways associated with proliferation, migration, and invasion of cancer 

cells.   

RGS16 is downregulated in pancreatic cancer patients with metastases compared to patients 

without metastasized pancreatic cancer.  The role of RGS16 in cancer cell metastasis is 

unknown; therefore I tested the hypothesis that RGS16 inhibits pancreatic cancer cell migration 

and invasion in vitro. Expression of RGS16 was decreased in the pancreatic cancer cell lines 

tested compared to control. Expression of RGS16 inhibited fetal bovine serum (FBS) and 

epidermal growth factor (EGF) induced migration of the BxPC-3 and AsPC-1 but not PANC-1 

pancreatic cancer cells. It also inhibited EGF induced invasion of BxPC-3 and AsPC-1 cells with 

no impact on cell viability. Although RGS16 inhibited cell migration and invasion of BxPC-3 

and AsPC-1 cells, there was no change in F-actin polymerization or the amounts of p-AKT, p-

ERK and the epithelial mesenchymal transition (EMT) marker vimentin proteins, but there was a 

slight increase in E-cadherin protein expression in BxPC-3 cells.  Our data suggests the 
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inhibitory effect of RGS16 on EGF induced pancreatic cancer cell migration is independent of 

the PI3K and MAPK pathways.  To our knowledge, for the first time, we performed analyses to 

identify p53 and pRb cross-talk candidates and demonstrated a role for RGS16 in suppressing 

EGF and FBS induced pancreatic cancer migration and invasion.  
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CHAPTER 1.  

INTRODUCTION 

SECTION 1.1: p53 AND pRb COLLABORATORS IN THE FIGHT 

AGAINST CANCER 

Background 

The two most commonly mutated signaling pathways in cancer are those associated with 

tumor protein 53 (p53) and retinoblastoma protein (pRb).  p53 and pRb are the first two tumor 

suppressors identified, however, years after identifying and cloning p53 (1979) and pRb (1986) 

we are still working to understand their function [1].  p53 and pRb regulate the same processes 

(such as; cell arrest, apoptosis, senescence, etc.) using different mechanisms and studies suggests 

these two tumor suppressors cooperate to inhibit cancer progression [2-5].  The ability of p53 

and pRb to communicate in regulating cellular functions and determining cellular fate could be a 

reason mutations in these pathways often occur in cancer.  The focus of this section is to give an 

overview of p53 and pRb functions and their regulation while presenting evidence and examples 

of the p53 and pRb cross-talk.   

Brief overview of p53 function and regulation 

The function of p53 has been extensively studied; this section will provide a brief 

overview of the function and regulation of p53.  Originally thought to function as an oncogene, 

p53 is now known to induce a variety of processes in cells that inhibit tumorigenesis such as: cell 

cycle arrest, apoptosis, DNA repair, and senescence (reviewed in [6-10]).  These processes aid in 

protecting the integrity of DNA supporting the use of p53’s nickname as “Guardian of the 

Genome”[11].  The ability of p53 to regulate a wide variety of processes is due in part to its 

functions as either a transcriptional activator or a repressor.  p53 forms a tetramer, binds to DNA, 
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and recruits co-activators inducing transcription of genes that are involved in DNA repair 

(p53R2, MLH1, XPC, PCNA, and DDB2), apoptosis (Bax, Noxa, Bid, APAF-1, DR4, DR5 and 

PUMA), senescence (plasminogen activator inhibitor 1: pai-1, p21), G1 (G1: BTG2, p21), and 

G2 cell cycle arrest (GADD45, 14-3-3 sigma, and MCG10) [12-15].  The p53 tumor suppressor 

promotes differentiation by repressing transcription of factors that promote pluripotency such as 

oct4 and nanog and inducing transcription of pRb to initiate myogenesis [16, 17].  In addition to 

its transcription regulatory activity,  p53 translocates to the mitochondria and interacts with the 

outer membrane leading to mitochondria permeabilization by activating the pro-apoptotic Bax 

and Bak proteins and inhibiting the pro-survival Bcl-2 and Bcl-xl proteins [13].  These actions 

initiate mitochondria membrane permeabilization, the release of cytochrome c, and activation of 

caspases that trigger apoptosis (Figure 1.1).     

In order to prevent the random induction of apoptosis and other p53-regulated processes, 

expression of p53 is normally sustained at low basal levels by the E3 ubiquitin ligase HDM2.  

HDM2 a transcriptional target of p53, binds and translocates p53 to the cytoplasm preventing 

p53 from binding to DNA and initiating transcription [12, 14].  HDM2 also poly-ubiquitinates 

p53 marking it for degradation by the proteasome. Stabilization of p53 occurs due to post-

translational modifications by factors activated when the cell is under stress such as: DNA 

damage, hypoxia, loss of normal cell contacts, and activity of oncogenes [12, 14].  Post-

translational modifications such as phosphorylation and acetylation stabilize p53 by preventing 

its poly-ubiquitination and degradation [12, 14]. The binding of p14ARF to HDM2 also leads to 

the stabilization of p53 preventing its polyubiquitination by HDM2.  Figure 1.1 contains a 

summary of the function and regulation of p53 demonstrating the complexity of p53 signaling.  
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Brief overview of pRb function and regulation 

Known for its ability to induce cell cycle arrest at the G1/S checkpoint, pRb also 

regulates apoptosis, DNA repair, senescence, and differentiation.  pRb is a transcription regulator 

that binds to co-factors and either functions as a co-repressor or co-activator of transcription.  

Classically, pRb is acknowledged for its role in binding to the cell cycle stimulatory E2F 

transcription factors and recruiting histone deacetylases and other transcription repressors and 

thereby inhibiting transcription of E2F target genes and initiating cell cycle arrest [18-20]. 

Figure 1.1: Schematic depicting regulation of p53 and downstream transcription 

targets.  p53 initiates a variety of responses through its ability to regulate transcription of 

targets that are involved in DNA repair, apoptosis, cell cycle arrest, senescence, and 

differentiation.  p53 expression is regulated by its own downstream transcriptional target, 

HDM2 which polyubiquitinates p53 marking it for degradation in the proteasomes.  p53 

expression is stabilized by signals initiated by DNA damaging, hypoxia, or overexpression 

of oncogenes.  p53 also initiates apoptosis by binding and interacting with mitochondria 

outer membrane and proteins located there. Pathway was constructed using Qiagen’s 

Ingenuity pathway Analysis (IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity) Pathway Designer tools.  Adapted from Levine, A. J. et al. 

2006  
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Cyclin-dependent kinases-4 and -6 phosphorylate pRb inhibiting binding of pRb with E2F 

resulting in the release of E2F to bind to DNA and its dimerization partner (DP2) resulting in the 

initiation of transcription of cell cycle stimulatory proteins [19, 21].  Activation of E2F 

transcription results in the expression of cyclin E, which binds to cyclin-dependent kinase 2 and 

functions in a negative feedback loop to promote phosphorylation and inactivation of pRb.  

Phosphorylation of pRb is inhibited by cyclin-dependent kinase inhibitors among which are the 

proteins p27, p16, and p21.  Figure 1.2 summarizes the regulation and function of pRb to inhibit 

activation of E2F target genes.   

The best known or studied function of pRb is its ability to act as a transcriptional 

repressor of E2F targets genes.  However, pRb can regulate cellular processes or suppress cancer 

progression irrespective of its ability to bind to E2F family members.   Studies using pRb 

mutants found E2F binding deficient pRb activated transcription and initiated differentiation and 

suppressed tumor progression in vitro and in vivo [22, 23].  pRb has been found to bind and 

enhance transcription of several transcription factors and nuclear receptors listed in Table 1.1.  

Enhanced transcriptional activity by pRb promotes differentiation and regulates hormone 

signaling (Table 1.1).  However, there is still not much known regarding pRb’s ability to 

function as a transcriptional co-activator indicating the need for more research to understand the 

full mechanisms of pRb suppression of cancer progression and promotion of differentiation 

processes.  

Studies have implicated pRb in having a divergent role in either promoting or inhibiting 

apoptosis.  pRb, like p53, can interact directly with the mitochondria mediating the induction of 

apoptosis triggered by tumor necrosis factor-α [24].  Ianari et al. found that pRb potentiates the 

induction of apoptosis triggered by genotoxic or oncogenic stress in proliferating cells [25].  The 
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ability of pRb to initiate apoptosis is context dependent, for example; in Ianari’s study, pRb 

bound to E2F, enhanced the induction of apoptosis initiated by stress in proliferating cells [25].  

However, in another study conducted using breast cancer cells, loss of pRb enhanced the 

activation of apoptosis mediated by E2F1 [26].  Furthermore, pRb inhibits induction of apoptosis 

by p53 in HeLa overexpressing exogenous p53 and pRb [27].   

Table 1.1: Transcription factors that are regulated by pRb 

Transcription Factor Effect Source 

MyoD Regulates muscle differentiation [28] 

C/EBP (CAAT/enhancer-binding protein) 

family 

Regulates adipocyte and 

monocyte differentiation 
[29, 30] 

c-Jun 
Regulates keratinocyte 

differentiation 
[31] 

AP-2 
Binds and initiates activation of 

E-cadherin bcl-2 promoter 
[32] [33] 

CBFA1 (Runx2) 
Regulates Osteogenic 

differentiation 
[34, 35] 

SP-1 Regulates differentiation [36, 37] 

Nuclear receptors (Glucocorticoid receptor;  

Androgen receptor; ERα & ERβ (Estrogen 

receptor α & β); HNF4 (hepatocyte nuclear 

factor-4); SF-1 (steroidogenic factor-1); 

and NGF1-B orphan nuclear receptor 

family members NGF1-B/Nurr 77/NR4A1, 

NOR1, & Nurr1) 

Initiates transcription of genes 

that regulate hormone signaling 

and differentiation 

 

[38-44] 
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p53 and pRb cross-talk 

Evidence of p53 and pRb Cross-talk 

The existence of a p53 and pRb cross-talk pathway is supported by evidence collected 

from tumor analyses and in vitro and in vivo experiments. Most tumors, including osteosarcomas 

and cancers of the breast, lung (small cell), cervix, and bladder [1, 4, 45, 46], have deficiencies in 

either the p53 or pRb pathway. Both p53 and pRb have a high frequency of mutations in 

osteosarcomas, lung (non-small cell), breast, and cervical carcinomas [1, 4, 46]. Approximately 

60% of osteosarcomas have loss of both functional p53 and pRb, which is vital for osteosarcoma 

Figure 1.2: Schematic depicting pRb regulation and function as a transcriptional 

repressor.  Pathway was constructed using Qiagen’s Ingenuity pathway Analysis (IPA®, 

QIAGEN Redwood City, www.qiagen.com/ingenuity) Pathway Designer tools.  
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(OS) development [1, 46].  Patients who have mutations in both TP53 and RB1 have increased 

tumor recurrence and decreased survival compared to patients with only one inactive tumor 

suppressor genes [45, 47].  Deletions or mutations in the p16 locus, and overexpression of 

HDM2 or cyclin-D can also interfere with p53 and pRb activity.  Table 1.2 describes examples 

(small representative) of mutations and alterations that prevent p53 and pRb activation.  

Table 1.2: Examples of alterations that can occur in cancers that alter p53 and pRb 

signaling 

 

Alteration Cancer Sources 

p16 deletions/mutations 

Pancreatic cancer, Head & Neck 

Squamous Cell Carcinomas 

(HNSCC), Non-Small Cell Lung 

Cancers (NSCLC), 

Glioblastomas (GBMs)- 

[48-51] 

Overexpression of HDM2 

Sarcomas (soft tissue and 

osteosarcoma), retinoblastoma, & 

esophageal carcinomas 

[52, 53] 

Overexpression of cyclin-D 

HNSCC, breast cancers, 

pancreatic cancers, and prostate 

cancers 

[54-57] 

Loss of both p53 and pRb promotes cancer by initiating tumorigenesis and increasing 

chromosome instability, and chemoresistance.  Binding of DNA tumor virus proteins associated 

with adenovirus, certain strains of human papilloma virus (HPV), and simian virus 40 (SV-40) to 

p53 and pRb with resultant loss of activity is vital for viral induced transformation [4, 58].   

Chromosome instability is associated with cancer initiation, promotion of tumor growth, and 

chemoresistance [59, 60].  In cell lines from two different cancer types, loss of both p53 and pRb 

synergizes to promote chromosome instability due to chromosome gains and losses during 

mitosis [60].  Loss of pRb leads to increased genetic alterations (gains or losses) and the loss of 

p53 cooperates to allow the continued proliferation of these cells [60].     
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A study examining p53 mediated responses to chemotherapy found a reduction in cellular 

response if there was a loss of pRb signaling [61].  Interestingly, inactivation of both p53 and 

pRb (through the use of a p53 dominant negative fragment and pRb siRNA) increased sensitivity 

of the cancer cells to chemotherapy compared to inactivation in p53 alone [61].  However, this 

was not seen in cells where p16 levels were decreased via siRNA, suggesting that p16 and p53 

mutations are more advantageous for cancer progression [61].  Another study found loss of both 

p53 and pRb can induce multidrug resistance prior to transformation [62].  Accordingly, patients 

diagnosed with breast cancer and treated with adjuvant chemotherapy had a better response if 

they had functional p53 and pRb [61].  

Several mouse models utilize inactivation of p53 and pRb to initiate tumor development 

that mimics the human disease.  For example, inactivation of both TP53 and RB1 genes in bone 

marrow mesenchymal stem cells or dermal connective tissue cells resulted in the development of 

osteosarcomas or soft tissue sarcomas respectively [63, 64].  Mutations in both tumor suppressor 

genes work synergistically to promote cancer progression.  Conditional inactivation of the RB1 

and TP53 genes in lung epithelial cells of mice, led to the development of aggressive small cell 

lung tumors [65].  Also p53
-/-

 mice  that were also  RB1
+/-

 developed more tumors than mice with 

single mutations; i.e. heterozygous TP53
+/-

 RB1
-/-

 or TP53 null mice [4].  Furthermore, 

inactivation of TP53 and RB1 genes in the prostate epithelium of mice led to the development of 

aggressive prostate cancers that were highly metastatic resulting in decreased survival compared 

to mice with only one in activated gene [5].  Likewise, inactivation of pRb by a fragment of the 

SV40 T-Antigen in mammary epithelium results in formation of adenocarcinomas that appear 

earlier in mice that are also TP53
+/- 

[66].   
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Loss of functional p53 and pRb signaling happens with a high frequency in cancers and 

promotes processes involved in tumor progression.  Loss of p53 or pRb promotes metastasis and 

both tumor suppressors inhibit processes such as migration and invasion needed for the spread of 

cancer [67-69, 70{Feakins, 2003 #7786]}.  However, there is a lack of studies investigating 

whether the concomitant loss of p53 and pRb promotes migration and invasion more than 

inactivation of just one pathway.  Although p53 and pRb are two of the most studied genes in 

cancer, there is a lack of understanding how they synergistically function to inhibit cancer 

formation and/or progression. 

Examples of p53 and pRb cross-talk 

Over the years evidence has accumulated painting a picture of the communication that 

exists between the p53 and pRb pathways.  Proteins known to be implicated in the p53 and pRb 

cross-talk include E2F-1, HDM2, p21, BTG2 and the INK4a locus.  Figure 1.3 is a schematic 

representing known examples of p53 and pRb cross-talk.  Briefly, through mechanisms of 

alternate splicing, the CDKN2A locus codes for two genes, p16/INK4a and p14/ARF [71].  p14 

binds to HDM2, inhibits p53 polyubiquitination its subsequent degradation by the proteasomes 

[71].  This allows p53 to initiate transcription of downstream target genes including p21, and 

BTG2 [72, 73].  The cyclin-dependent kinase inhibitors p16 and p21 together with BTG2 prevent 

the phosphorylation and inactivation of pRb and stop cell cycle progression [71-73].  Loss of 

pRb bound to E2F-1 due to inactivation of pRb or p16 can trigger p53 dependent apoptosis 

through E2F-1 stabilizing p53 by two methods, 1) activating proteins that phosphorylate or 

acetylate p53 thereby preventing HDM2 binding or by 2) inducing expression of p14 [74-78].   

p53 induces expression of HDM2 which functions in a negative feedback loop to inhibit p53.  

However, pRb can bind to HDM2 and p53 complexes leading to the stabilization of p53 [47, 79].  
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p53 complexed to HDM2 and pRb is unable to bind to DNA and regulate transcription, however 

it can induce apoptosis by directly acting on the mitochondria membrane [47, 79]. 

The previous examples of p53 and pRb cross-talk mostly highlight the use of protein-

protein interactions to determine cell fate.  However, p53 and pRb also cross-talk using 

transcriptional regulatory mechanisms, for example, p21 and BTG-2, both transcribed by p53, 

can inhibit inactivation of pRb, illustrating a pathway by which p53 and pRb coordinate  cell 

cycle arrest.  p53 also binds to the RB1 promoter and initiates transcription of pRb triggering 

pRb induced muscle differentiation [17]. Furthermore, both p53 and pRb bind to the promoter of 

the RNA polymerase III specific transcription factor, TFIIIB and suppress transcription of 

TFIIIB providing another example of how these proteins inhibit cell cycle progression [80].  

However, management of p53 and pRb controlled processes such as apoptosis, cell cycle arrest 

or development may require p53 and pRb to regulate gene expression in an opposing rather than 

cooperative manner.  Expression of an embryonic development gene, Placenta-specific 1 

(PLAC1) is down-regulated by p53 and up-regulated by pRb demonstrating how p53 and pRb 

can play contrasting roles to regulate cellular processes [81].   

Although proteins involved in the p53/pRb cross-talk have been identified, there is still a 

lack of information regarding how p53 and pRb communicate to regulate cell fate.  p53 and pRb 

co-regulated genes were investigated to expanding on the current knowledge of the p53 and pRb 

cross-talk.  We have identified 179 proteins co-regulated by p53 and pRb.  Transcriptional 

regulation of the same genes by p53 and pRb may function as a failsafe mechanism if one 

pathway is inactivated, the other is able to prevent the accumulation of additional mutations that 

results in the development of cancer.  Unraveling the complex interactions between p53 and pRb 
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will contribute to further understanding how p53 and pRb cooperate to prevent tumorigenesis, 

while also providing knowledge that can potentially be used to advance current cancer therapy. 

 

 

  

Figure 1.3: Schematic depicting proteins known to mediate p53 and pRb cross-talk.   

Pathway was constructed using Qiagen’s Ingenuity pathway Analysis (IPA®, QIAGEN 

Redwood City, www.qiagen.com/ingenuity) Pathway Designer tools.  

 

 



12 

 

SECTION 1.2. PANCREATIC CANCER  

Epidemiology and characterization 

Pancreatic ductal adenocarcinoma, also referred to as pancreatic cancer, accounts for 

2.8% of all new cancer cases and is the 4
th

 leading cause of cancer related death in the United 

States compared to the 8
th

 and 9
th

  cause of mortality for men and women respectively world-

wide [82].  The American Cancer Society estimates that approximately 46,420 individuals will 

be diagnosed with pancreatic cancer and 39,590 will die from this disease in 2014 [83]. The one-

year survival rate for all stages of pancreatic cancer is 20% and the five-year survival rate is 6% 

[83].  The percentage of cases and the five year survival rate are depicted in Table 1.3 for stage 

of cancer at time of diagnosis.  A majority of patients (53%) present with metastatic disease at 

time of diagnosis and have a dismal 5-year survival rate of 2.3%.  Only 9% of pancreatic cancer 

patients present with localized disease but their 5-year survival rate is still low at 25.8%.  Most 

patients newly diagnosed with pancreatic cancer present with highly progressed and/or 

metastatic cancer that is resistant to treatment [84, 85].  This data reflects the great need for 

methods to prevent, and therapeutics to treat advanced pancreatic cancer. 

 

Table 1.3: Percentages of survival and cases based on stage of cancer at time of diagnosis 

 

Stage % of Cases at Diagnosis % Survival 

Localized 9 25.8 

Regional (regional lymph node metastasis) 28 9.9 

Distant (metastasized) 53 2.3 

Unstaged (unknown) 11 4.4 

Information obtained from Howlader N et al.. SEER Cancer Statistics Review, 1975-2011, National Cancer 

Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2011/, based on November 2013 SEER data submission, 

posted to the SEER web site, April 2014. 

 

 

http://seer.cancer.gov/csr/1975_2011/
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Pancreatic cancer has a higher rate of incidence in industrialized areas and predominately 

affects individuals later in life with the average age of diagnosis being 71.  Smoking, age, and 

chronic pancreatitis have been established as risk factors; whereas, obesity, diabetes, and family 

history of pancreatic cancer are associated with increased risk [86].  Approximately 5 to 10% of 

pancreatic cancer patients have a family history of pancreatic cancer and less than 20% of those 

are due to germline mutations [86-89].   

Staging 

Pancreatic cancers are commonly referred to pancreatic ductal adenocarcinomas (85%) 

however; pancreatic cancers can be classified as acinar cell carcinoma, pancreatoblastoma, solid 

pseudopapillary neoplasm, serous cystadenoma, and pancreatic endocrine tumors [86].  These 

cancers mostly affect the exocrine portion of the pancreas that consists of acinar and duct cells 

that are responsible for secretion of digestion enzymes [86].  The head of the pancreas is a 

favored location of tumor development and allows rapid infiltration into surrounding tissue [85].  

There are four types of preneoplastic pancreatic lesions known as: pancreatic intraepithelial 

neoplasia (PanINs), mucinous cystic neoplasm, (MCN) and intraductal papillary mucinous 

neoplasm (IPMN) [85, 86].  PanINs are the most common preneoplastic lesion and can exist in 

three stages.  Stage III  PanINs develop into pancreatic cancer (pancreatic ductal 

adenocarcinomas) [86].   

 Pancreatic cancers are staged using the American Joint Committee on Cancer tumor-

node-metastasis (TNM) classification described in Figure 1.4 & Table 1.4  Unknown TNM 

tumor classifications are designated with a X, (TX, NX, or MX).  Tis designates carcinoma in 

situ or preneoplastic lesions.   
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Figure 1.4: Describes the American Joint Committee on Cancer Tumor-Node-Metastasis 

classification system.  Information adapted from the National Institute of Health  
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Table 1.4: Pancreatic Cancer Stages 

Stage Tumor Node Metastasis 

0 Tis N0 M0 

IA T1 N0 M0 

IB T2 N0 M0 

IIA T3 N0 M0 

IIB T1-3 N0 M0 

III T4 N0 or N1 M0 

IV Any T N0 or N1 M1 

Based on the American Joint Committee on cancer tumor-node-metastasis.  Information adapted from the National 

Cancer Institute (2014) 

Diagnosis and Treatment 

Pancreatic cancer is rarely diagnosed during the early stages of carcinogenesis because of 

the lack of noticeable and distinct symptoms [85].  Many of the symptoms such as abdominal 

pain, nausea, and jaundice are unspecific and can be equated with other illnesses.   Several 

imaging technologies including contrast enhanced multi-detector row computed tomography 

(MDCT), ultrasonography (US), endoscopic ultrasonography (EUS), and Magnetic resonance 

imaging (MRI) are used to diagnose pancreatic cancer [90].  Ultrasonograhy is often the first 

imaging modality used once a patient presents with jaundice or abdominal pain [90].  However, 

US is not the most reliable method for staging pancreatic cancer and can miss small pancreatic 

tumors (Tis and T1) [91].  Multi-detector row computed tomography is the most accurate and 

used method for diagnosing and staging pancreatic cancer [85, 90].  Endoscopic ultrasonography 

can be used to rule out pancreatic cancer as a diagnosis therefore eliminating the need to use 

other diagnostic methods and is often chosen to visualize tissue extraction for diagnosis [90, 91].  

Contrast enhanced MRI with magnetic cholangiopancreatography is often a secondary imaging 

tool that can more readily diagnose small pancreatic tumors and rule out other pancreatic 

abnormalities [90, 91].   
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Surgery, chemotherapy, and/or chemoradiation are the therapies used to treat pancreatic 

cancer.  Due to late stage of diagnosis less than 20% of patients are eligible for the only possible 

curative pancreatic resection (tumor staging T1-T3).  The presence of metastasis to the lymph 

nodes, peritoneal cavity, liver, or other sites is a negative prognostic factor [85, 92].  In fact 

patients who undergo surgery have decreased survival if there is presence of lymph node 

metastases.  Treatments used for pancreatic cancer are based on tumor staging (Table 1.5).  

Surgery is the first treatment option for patients with stage I & II pancreatic cancer followed by 

chemoradiation therapy.  Neoadjuvant therapy is controversial, however a recent study found 

that patients who underwent neoadjuvant therapy had increased survival and time to recurrence 

than those who underwent surgery first [93].  The majority of patients diagnosed with pancreatic 

cancer present with stage III or IV pancreatic cancer that is ineligible for surgery.  However, a 

portion of patients (8 to 30%) with stage III cancer undergoing neoadjuvant chemoradiation 

therapy become eligible for pancreatic resection and have survival rates similar to patients who 

first undergo surgery [84].  An analysis of the five-year survival rates for various cancers over a 

span of thirty years found that pancreatic cancer had the least improvement from 2% (1975-

1977) to 6% (2003 to 2009) [83].  The aggressive nature of pancreatic cancer, lack of early 

diagnosis, and therapy resistance of this deadly disease contribute to the lack of advancement in 

enhancing the survival rate [94]. 
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Table 1.5: Pancreatic cancer treatment broken down based on tumor stage.  

Tumor Stage Treatment 

I & II 

Surgery 

Postoperative chemoradiation  

(5-fluorouracil (5-FU) chemo and radiation therapy) 

Postoperative chemotherapy  

(gemcitabine or 5-FU/leucovorin)  

III 

Chemoradiation 

1. Chemoradiation followed by chemotherapy 

2. Chemotherapy followed by chemoradiation  

(patients w/o metastasis) 

Chemotherapy 

(gemcitabine; gemcitabine & erlotinib; gemcitabine and nab-

paclitaxel; or 5-FU, leucovorin, irinotecan, & oxaliplatin 

(FOLFIRINOX) 

IV 

Palliative therapy 

(pain relieving procedures and supportive care) 

Chemotherapy 

(gemcitabine; gemcitabine & erlotinib; or (FOLFIRINOX) 

Information adapted from National Cancer Institute (2014) 

Mutations and altered signaling pathways in pancreatic cancer 

Pancreatic cancer is a heterogeneous disease that contains on average 63 genetic 

mutations affecting a set core of 12 pathways [95].  At least one of four genes listed in Table 1.6 

is commonly mutated in pancreatic cancer and aids in proliferation, survival, migration, 

epithelial mesenchymal transition (EMT), and invasion.  K-Ras mutations are the most common 

genetic alteration and occur early in low grade PanIN 1A lesions.  K-Ras is commonly mutated 

at codon G12 and with less frequency, codons G13 and Q61.  These mutations result in the 

constitutive activation of K-Ras [96].  Expression of mutant K-Ras (G12D) in mice induces 

PanIns that develop into pancreatic cancer [97].  K-Ras mutations promote pancreatic cancer 

proliferation, survival, invasion, migration and metastasis  and exerts its cancer promotion via 

modulation of the Raf/Mek/Erk, PI3K/AKT, and Ral-A and Ral-B pathways [96].  K-Ras/PI3K 

signaling is critical for the initiation, progression, and maintenance of pancreatic cancer in mice 
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[98].  Activation of the Raf/ERK MAPK pathway using mice with conditional knock-in 

BrafV
600e

 in the pancreas induced PanIns that later developed into pancreatic cancer [99].  K-Ras 

activates the Ral guanine nucleotide exchange factor (RalGEFs) leading to the subsequent 

activation of Ral-B and Ral-A that are linked to pancreatic cancer growth (Ral-A) and metastasis 

(Ral-B) [100].    

Inactivating mutations in CDKN2A (affecting predominantly INK4a/p16 and to a lesser 

extent, ARF/p14), p53, and Smad4 occur in moderate or advanced PanIns suggesting they are 

late events [101].  CDKN2A is the most targeted tumor suppressor gene for mutations in 

pancreatic cancer and, as highlighted in section 1.1, it codes for the p16/INK41 and p14ARF 

proteins. However, most of the mutations decrease p16 expression, thereby negating its ability to 

inhibit proliferation and induce cell cycle arrest through preventing the phosphorylation and 

inhibition of pRb.  The importance of p16 inactivation in pancreatic cancer can be seen in 

genetically modified mice.  The conditional concomitant mutation knock-in of mutant K-Ras
G12D

 

and knock-out of CDKN2A
flox/flox 

in the pancreas of mice induces more aggressive and metastatic 

pancreatic cancers than K-Ras
G12D

 (only) mice models [102].  Mutations in p53 occur at a high 

frequency and aid in suppression of apoptosis and cell cycle arrest, while also increasing 

metastasis, proliferation and genomic instability [103].  Similar to p16 knock-out mice, knock-in 

mutations of mutant p53
R172H 

and K-Ras
G12D 

 in the pancreas of mice decreases the time for 

tumor development and subsequent metastasis compared to mice with only mutant K-Ras
G12D 

 

[104].  Smad4 is activated by transforming growth factor-β (TGF-β) and mediates some of its 

downstream signaling [86, 101].  TGF-β has both tumor promoting and suppressing mechanisms.  

Mutations affecting Smad4 expression results in the loss of TGF-β mediated cell cycle arrest and 
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cell motility[105].  Loss of Smad4 decreases migration and increases chemoresistance, and 

expression of EGFR and VEGF promoting pancreatic cancer progression [105-107].    

Other genetic alterations result in the overexpression of the epithelial growth factor 

receptor (EGFR), AKT2, and RhoC in pancreatic cancers [108-110].  AKT2 is overexpressed in 

10% of pancreatic cancers and promotes growth and invasion that was inhibited by the use of 

antisense AKT RNA [109].  RhoC is overexpressed in pancreatic cancers with the highest 

expression seen in tumors from patients who had the presence of metastasis [108]. EGFR and its 

fellow family member HER2/erbB2 are overexpressed in 85% or 10% respectively, of pancreatic 

cancers.  EGFR activates a variety of pathways (see following section) that are responsible for 

proliferation, EMT, migration and survival. 

 

Table 1.6: Common genetic mutations in pancreatic cancer and incidence 

Gene Effect of mutation 

% Pancreatic 

Cancers with 

mutation 

Source 

K-Ras 

↑ proliferation; ↓ apoptosis;  

↑ migration; ↑ metastasis & evasion of 

immune response 

>  90 [96] 

CDKN2A 

(p16/INK4a) 
↓ cell cycle control; ↑ proliferation; 85 [51, 101] 

p53 

↓ apoptosis; ↓ cell cycle arrest;  

↑ metastasis; ↑ proliferation;  

↑ genomic instability 

50 to 70 [86, 103, 111] 

SMAD4/DPC4 
↑ epithelial mesenchymal transition 

(EMT); ↑ invasion; ↓cell cycle arrest; 
50 

[86, 101, 105, 

112] 
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Epidermal Growth Factor (EGF) Signaling  

There are four receptors in the EGF family designated as EGFR/erbB1/HER1, 

erbB2/HER2, erbB2/HER3, and erbB4/HER4.  EGFR/erbB1 is overexpressed in pancreatic 

cancer and promotes metastasis, proliferation, angiogenesis, and survival [110, 113, 114].  

Knockdown of EGFR inhibits the epithelial mesenchymal transition in pancreatic cancer and 

EGFR is needed for K-Ras induced pancreatic tumorigenesis [115, 116].  EGFR activity is 

stimulated by the binding of its ligands (epidermal growth factor (EGF), transforming growth 

factor-α (TGF-α), and amphiregulin), which initiate receptor hetero- or homo- dimerization and 

autophosphorylation [110, 113, 114].  As a result of this receptor modification adapter proteins 

are recruited, leading to the activation of PI3K/AKT, Ras/MAPK, and phospholipase Cγ (PLC-γ) 

pathways [110, 113, 114].  Figure 1.5 depicts four downstream pathways stimulated by EGFR 

signaling and the biological effects mediated by these pathways such as metastasis, migration, 

invasion, proliferation and chemoresistance [110, 113, 114, 117-122].  Ras pathway can also 

activate Rho GTPases and PI3K demonstrating cross-talk between these signaling pathways 

[123].   
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Metastasis 

Metastasis accounts for 90% of cancer related deaths and involves a series of steps that 

can be targeted for cancer therapy [124]. Table 1.7, describes the various steps, processes, and 

molecular signals involved for a cancer cell to metastasize.  Briefly, a tumor cell needs to 

disassociate from the tumor and surrounding environment.  Detachment is facilitated by the 

epithelial mesenchymal transition (EMT) in which cells adopt a mesenchymal phenotype [106, 

125].  EMT results in a change in cell morphology,  acquisition of motility and increased 

secretion of proteases [126].  A hallmark of EMT is the loss of E-cadherin and an increase in the 

expression of the mesenchymal markers N-cadherin, vimentin, fibronection, and αvβ6 integrin 

Figure 1.5: Summary of EGFR signaling and downstream effects upon cancer 

progression.  Pathway was constructed using Qiagen’s Ingenuity pathway Analysis (IPA®, 

QIAGEN Redwood City, www.qiagen.com/ingenuity) Pathway Designer tools. Adapted from 

Robert Roskoski Jr. (2014) 
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[106, 125].  N-cadherin forms weaker cell-cell interactions than E-cadherin allowing the 

dissociation of the cancer cells [106, 125].  Growth factors [EGF, TGF-β, tumor necrosis factor-

α (TNF-α), hepatocyte growth factor (HGF), and insulin-like growth factor-1 (IGF-1)] , secreted 

by stromal cells in the tumor microenvironment, act on the tumor cells to initiate EMT [125].  

After acquisition of a mesenchymal phenotype cancer cells can disassociate, migrate and 

invade through surrounding tissues and, intravasate into the lymph or blood system [124].  

Intravasation is a complex process mediated by multiple mechanisms including cell migration 

and invasion.  Proteases are secreted, breaking down the extracellular matrix, creating a path for 

cells to migrate [127].  Once in the lymphatic or blood system, cells need to survive stresses that 

can induce apoptosis such as shear force, lack of adherence, and hypoxia [128].  Once the cell 

has migrated to a distant site, it extravasates out of the lymphatic or blood system.  The migrated 

cell will divide to form a secondary tumor of up to 2 mm in diameter before initiating 

angiogenesis and other processes it needs to colonize the distant location [124, 129].  

Angiogenesis provides the micro-metastasis with the nutrients it needs to further grow beyond 2 

mm of diameter.  Angiogenesis is promoted by the secretion of vascular endothelial growth 

factor (VEGF), platelet derived growth factor, (PDGF), chemokines, and cytokines by the tumor 

and stromal cells [129, 130].    
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Table 1.7 : Steps, processes and molecular signals involved in the metastasis of cancer cells  

Steps of metastasis Process Molecular signals involved 

Disassociation 

EMT: cells obtain phenotype of 

mesenchymal cells that aids in 

metastasis. (↓ E-cadherin, ↑ N-

cadherin, ↑ vimentin, ↑ fibronectin, ↑ 

αvβ6 integrin) 

EGF, TGF-β, tumor necrosis 

factor-α (TNF-α), hepatocyte 

growth factor (HGF), and  

insulin-like growth factor-1 

(IGF-1) 

Intravasation 

& 

Extravasation 

Cancer cells migrate and invade 

surrounding tissue and intravasate into 

lymph or blood vessels and 

extravasate into a new site.  

Intravasation and extravasation 

involve the ability of cancer cells to 

migrate and invade surrounding tissue 

and vessels. 

Migration mediated by activation 

of Rho GTPases: RhoA, Cdc-42, 

Rac-1 (also associated with 

EMT). 

Invasion mediated by secretion 

of proteases that break down 

ECM: Matrix Metalloproteinases 

(MMP), urokinase plasminogen 

activator (uPA), and 

plasminogen. 

Survival 

Cells need to avoid cell death evoked 

by loss of cellular attachments and 

survive in vasculature 

Activation of survival signals 

(Ras, AKT, & ERK) inhibition of 

apoptotic suppressors (p53, Bim) 

and upregulation of apoptosis 

inhibitors (BCL-2, BCL-XL) 

Angiogenesis 

Generation of blood vessels to supply 

metastasized cell(s) with nutrients 

needed to grow 

Secretion of Vascular endothelial 

growth factor (VEGF), Platelet 

derived growth factor PDGF, 

chemokines, and cytokines. 

Sources: [106, 124, 125, 127-129, 131] 
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SECTION 1.3. RGS16: EXPRESSION, REGULATION, AND FUNCTION 

Background 

The regulator of G protein coupled receptor (GPCR) signaling (RGS) family is comprised 

of 37 RGS proteins that regulate GPCR signaling [132].  GPCRs are the largest family of 

receptors, encoded by more than 2% of the genome [133].  GPCRs are overexpressed in cancer 

and promote proliferation, migration, metastasis, and angiogenesis [133].  GPCRs mediate 

cancer progression through activation and downstream signaling of small G proteins [133]. In 

their inactive state small G proteins consist of a heterotrimeric subunit complex (Gαβγ). 

Stimulation of GPCRs by ligand binding initiates the exchange of GDP to GTP on Gα by 

guanine nucleotide exchange factors (GEFs).  Now in its active state, Gα dissociates from the 

Gβγ subunits and both Gα and Gβγ activate downstream signaling events.  GPCR signaling is 

terminated by the hydrolysis of GTP to GDP on the Gα subunit.  In the stimulated state the 

GTPase activity in G is lower than what is needed to mediate GPCR signals.  RGS proteins 

function as GTP accelerating proteins (GAPs) by binding to Gα and enhancing the hydrolysis of 

GTP to GDP [132, 134].  All RGS proteins contain a ~120 amino acid conserved region called 

the RGS box that is responsible for accelerating GTPase activity of Gα proteins [132, 134]. 

RGS proteins are divided into 8 subfamilies based on homology and function.  The R4 

subfamily contains the highest number of members and consists of the smallest (molecular 

weight) RGS proteins.  The R4 proteins contain one RGS box domain and a small number of 

amino acids on its N- and C- terminals.  With the exception of RGS2 (Gαq only) R4 members 

modulate Gαi and Gαq proteins [132, 134].  The other subfamilies contain domains that assist in 

the stability, localization, and protein-protein interactions (reviewed [132, 134]). The induction 

of p53 levels through DNA damage was used to identify RGS16, an R4 family member, as a 

target gene in several cancer cell lines [135].  We have identified RGS16 as a p53 and pRb cross-
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talk candidate using RNA expression profiling (Chapter 2) and expression of RGS16 inhibited 

the migration and invasion activity in several pancreatic cancer cell lines (Chapter 3).  In this 

next section we will explore the expression, regulation, and function of RGS16.   

RGS16 Expression 

RGS16 expression is seen in a wide variety of normal and cancerous tissues as shown in 

Table 1.  RNA tissue array analysis found RGS16 mRNA to be highly expressed in the kidney, 

brain, and lung; moderately expressed in the pancreas, colon, and small intestines, and ovaries; 

and weakly expressed in the skeletal muscle, liver, and heart [135].  Animal studies have also 

found wide spread expression of this G protein regulator corresponding to expression patterns 

seen in human tissue (Table 1.8).  Recently aberrant expression of RGS16 has been found in 

colon (higher), breast (lower), metastatic pancreatic (lower), Burkitt’s lymphomas and pediatric 

high hyperdiploid acute lymphoblastic leukemias (higher) (Table 1.8).  Although RGS16 has 

been found to be aberrantly expressed in several cancer types, there are few reported studies 

focused on the function of RGS16 in cancer progression.      
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Table 1.8: Expression of RGS16 in normal and cancer tissue 

Tissue with expression of RGS16 Species Sources 

Normal tissues 

Expressed in: kidney, brain, lung, pancreas, colon, small 

intestine, ovary, skeletal muscles, liver, and heart by RNA 

tissue array. 

Human [135] 

Expressed in immune system: T-lymphocytes, auto immune B-

cells,  
Mouse [136-138] 

Expressed in Liver: periportal hepatocytes Mouse [139] 

Expressed in progenitor cells: progenitor pancreatic cells during 

development and expression initiated in type I and II diabetes 

models and megakaryocytes 

Mouse (pancreas) 

Human 

(megakaryocytes)  

[140, 141] 

Expressed in brain: superchiasmatic nucleus (SCN) and 

hypothalmus 
Mouse [142] 

Expressed highly in retina Mouse [143] 

Expressed in the heart myocardial myocytes Rat [144, 145] 

Cancer 

Central neurocytomas: upregulated Human [146] 

Burkitt’s lymphomas and pediatric high hyperdiploid acute 

lymphoblastic leukemias: upregulated 
Human [147] 

Colorectal cancers: upregulated Human [148] 

Metastatic pancreatic cancer: downregulated Human [149] 

Breast cancers with chromosomal breakpoints, promoter 

methylation, and allelic imbalances: downregulated 
Human [150] 

 

RGS16 Regulation 

RGS16 expression is modulated by GPCR signaling pathways and other stimuli 

In the previous section, expression of RGS16 was shown to be widely expressed in 

several tissue types.  But what regulates RGS16 expression?  This section will highlight 

pathways and stimuli that induce expression of RGS16 and post-translational modifications that 

modulate its activity.  RGS16 is upregulated by a variety of compounds including doxorubicin, 

retinoic acid, fetal bovine serum (FBS) and several ligands and signaling mediators of GPCRs 

(Table 1.9).  The binding of Lysophosphatidic acid (LPA), Endothelin-1 (ET-1), and 

Sphingosine 1-phosphate (S1P) to their respective GPCRs increases transcription and expression 

of RGS16.  Upregulation of RGS16 by ET-1 and SP-1 is dependent on RhoA and Rac-1 
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signaling respectively [145].  The transcription regulator Yin Yang inhibits transcription of 

RGS16 by induced by FBS, ET-1, and S1P [145].   

Upregulation of RGS16 by PKC is hypothesized to induce increase expression of tumor 

necrosis factor- α (TNF-α) in an ERK dependent manner.  TNF-α then signals through its 

receptor and upregulates RGS16.   It is hypothesized that upregulation of RGS16 regulates the 

GPCRs responsible for T-cell response during inflammation [151].  Doxorubicin, retinoic acid, 

or histone deacetylase inhibitor (Vorinostat) plus lysine-specific demethylase1 (LSD1) 

knockdown induce expression of RGS16 in cancer cells.  Doxorubicine increases expression of 

RGS16 through a p53 dependent mechanism, demonstrating for the first time that RGS16 is a 

transcriptional target for p53 [135]. 

Post translational modification regulate RGS16 activity and localization 

RGS16 transcription is up-regulated by a variety of stimuli; however other mechanisms 

such as post-translational modification and proteasomal degradation regulate RGS16 activity and 

protein half-life.  Palmitoylation, the addition of palmitic acid to a cysteine residue in the N-

terminal domain of RGS16, is integral to the localization and activity of RGS16.  Loss of the N-

terminal region inhibits RGS16 localization to the membrane and as a consequence the Gα 

GTPase activity [152, 153].  RGS16 contains two palmitoylation sites at cysteines 2 and 12 of 

the N-terminus.  Mutational studies inhibiting palmitoylation at either site impaired RGS16 GAP 

activity and prevented RGS16 localization to lipid rafts [154, 155].  Localization of RGS16 to 

lipid rafts promotes the palmitoylation of cysteine 98 in the RGS box by a protein acyltransferase 

resulting in the acceleration of RGS16 GAP activity demonstrating the necessity of 

palmitoylation for RGS16 function [155, 156].   
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RGS16 activity is also regulated by phosphorylation.  Prevention of EGFR induced 

phosphorylation of Tyr168 in RGS16 diminished its GTPase activity by 30% [157].  

Furthermore phosphorylation of RGS16 by Src inhibited RGS16 degradation [158].  However 

phosphorylation of RGS16 can also impair its function in regulating GPCRs.  Phosphorylation of 

mouse RGS16 on Ser 58 and Ser194 subsequent to GPCR stimulation prevented its ability to 

accelerate hydrolysis of GTP [159]. 

RGS16 contains a destabilizing N-terminal residue called N-degron which targets RGS16 

for degradation by the N-end rule pathway [160].  The N-end rule was developed to calculate a 

protein’s half-life based upon its N-terminal amino acid sequence [161].  Recognition of the N-

degron by the E3 ubiquitin ligases N-recognins marks RGS16 for degradation by the 

proteasomes [160, 161]. Degradation of RGS16 by the N-end rule pathway demonstrates another 

layer of RGS16 regulation. 
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Table 1.9: Regulation of RGS16 transcription 

Protein / Stimulus Effect on RGS16 Sources 

Doxorubicin/p53 activation Increases transcription [135] 

Retinoic acid 
Increases expression 

(Neuroblastoma cell lines) 
[162] 

Concomitant treatment HDAC 

(Vorinostat) inhibitor and LSD1 

(lysine-specific demethylase1) 

knockdown 

Increased transcription 

(Triple negative breast cancer cells) 
[163] 

Carbachol 
Increases transcription  

(Mouse fibroblast cells) 
[135] 

Fasting 
Increases RGS16 transcription (in mouse 

liver) 
[139] 

IL-17 
Increases transcription 

(Mice autoimmune B cells) 
[138] 

Lysophosphatidic acid (LPA) 
Increases RGS16 transcription 

(MCF-7 breast cancer cells) 
[164] 

Endotoxin (LPS) 
Increases transcription 

(Rat myocardial myocytes) 
[144, 165] 

FBS 
Increases transcription 

(Rat myocardial myocytes) 
[135, 145] 

Sphingosine 1-phosphate (S1P) 
Increases transcription 

(Rat myocardial myocytes) 
[145] 

Endothelin-1 (ET-1) 
Increases transcription 

(Rat myocardial myocytes) 
[145] 

Yin Yang 

Inhibits transcription induced by FBS, S1P, 

and ET-1 

(Rat myocardial myocytes) 

[145] 

Runx2 
inhibits transcription 

(mouse calvariae progenitors) 
[166] 

 

RGS16 Function 

Pathways regulated by RGS16  

There are 16 known Gα proteins that mediate GPCR signaling.  The Gα proteins are 

broken down into four subfamilies based on function designated as Gαi/o, Gαq, Gα12/13 and Gαs 

[167].  RGS16 regulates GPCR signaling mediated by Gαi/o and Gαq/11 proteins by accelerating 

GTPase activity [134].  Gαi/o proteins are so named because they inhibit adenyl cyclase 

activation preventing generation of cAMP [167].  These proteins activate phospholipase Cβ 
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(PLCβ) which hydrolyzes PIP2 (phosphoinositide 4,5-bisphospate) to DAG (diacyl glycerol) and 

IP3 (inositol 1,4,5 triphosphate) [167].  DAG and IP3 activation results in activation of PKC-ε 

(protein kinase C-ε) and mobilization of Ca
2+

 respectively [167].  However, the Gβγ complex 

also mediates downstream signaling that is deactivated by the hydrolysis of GTP on Gα by 

RGS16 [135]. An example of this is the loss of MAPK activation induced by Gβγ of M1 and M2 

muscarinic receptors due to RGS16 GAP activity [135].  

RGS16, as seen in Table 1.9, is regulated by mitogenic signals and analogous to other 

RGS proteins, functions in a negative feedback loop to inhibit GPCRs that induce their 

expression.  Examples of this negative regulatory process can be seen for the GPCRs of LPA and 

ET-1 ligands.  Binding of LPA to its receptor (LPA1) increases expression of RGS16 which then 

inhibits activation of RhoA and serum response element dependent transcription induced by LPA 

[164].  ET-1 was previously shown to induce expression of RGS16, however this increased 

expression inhibits activation of PLCβ by ET-1 [145, 165].  Table 1.10 contains on overview of 

RGS16 targets and effects on cell signaling.   

Table 1.10: Effect of RGS16 on downstream events 

Target of RGS16 Effect Sources 

LPA 
↓ RhoA activation &  

↓ transcription of Serum response element 
[164] 

ET-1 ↓ activation of PLCβ [165] 

Platelet Activating Factor ↓ activation of p38 MAPK [168] 

GPR39 
↓ of survival & ↓ pigment epithelium-derived 

growth factor (PEDF) 
[169] 

Muscarinic receptor ↓ activation of ERK/MAPK [135] 

Chemokines 

(CxCR4, CCR10, CCR3, 

CCR5, and CCR4) 

↓ migration in megakaryocytes, B cells,  

and T-lymphocytes 

[136, 137, 141, 

170] 

EGF/EGFR 
↓ proliferation &  

↓ activation of PI3K/AKT pathway 
[171] 
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Non-canonical functions of RGS16 

RGS proteins also have non-canonical functions, ergo, regulation of cell signaling 

independent of the RGS box (Reviewed in [172]).  Two examples of RGS16 functioning in a 

non-canonical fashion are the regulation of LPA induced activation of RhoA and inhibition of 

EGF/EGFR phosphorylation and activation of PI3K.  LPA, as previously mentioned, stimulates 

expression of RGS16, which with a negative feedback loop inhibits LPA induced activation of 

RhoA.  LPA is a GPCR that mediates its signaling through Gα12/13, which is not a target for 

RGS16 regulation.   

RGS16 regulates LPA signaling events by binding to Gα13 independently of its RGS box 

and sequestering this subunit to the lipid rafts.  The exile of Gα13 by RGS16 inhibits Gα13 

mediated activation of RhoA and serum response elements [164].   

RGS16 can also inhibit EGF/EGFR signaling.  Knockdown of RGS16 in breast cancer 

cells increased proliferation induced by EGF or FBS and increased expression of RGS16 

inhibited EGF and FBS induced proliferation [171].  RGS16 binds to the p85α subunit of PI3K 

preventing recruitment of PI3K to adapter proteins attached to EGFR thereby inhibiting PI3K 

mediated phosphorylation and activation of AKT [171].  GPCRs can activate tyrosine kinase 

receptors such as EGFR and together these two proteins  induce MAPK activation [173].   

Regulation of EGFR signaling by RGS16 is another mechanism by which RGS16 inhibits 

mitogenic signals initiated by GPCRs.   

RGS16 and cell migration 

Several studies have shown a role for RGS16 in inhibiting cell migration.  Trafficking or 

migration of T lymphocytes, B cells, and megakaryocytes induced by chemokine GPCRs are 

inhibited by RGS16 [136, 137, 141, 170].  RGS16 inhibits migration of megakaryocytes and 
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activation of MAPK and AKT by the SDF-1/CxCR4 chemokine pathway [141].  Expression of 

RGS16 in the lymphocytes of a transgenic mice inhibited CxCR4, CCR3, and CCR5 allergen 

induced migration to the lung parenchyma [137].  Conversely, in RGS16 knockout mice there 

are decreases in T helper type 2 and 17 cell trafficking through regulation of CCR4 and CCR10 

chemokine pathways [136].  These studies also show the importance of RGS16 in immune 

response and trafficking.  Several studies have used knockout mice to delineate the function of 

RGS16, but it should be noted that there is no observable phenotype for mice lacking RGS16 

[174].   

RGS16 and Cancer 

RGS16 is aberrantly expressed in some cancer types (Table 1.8).  However, the role of 

RGS16 in cancer progression remains unclear.  RGS16 is upregulated in colon, central 

neurocytomas, Burkitt’s lymphomas, and pediatric high hyperdiploid acute lymphoblastic 

leukemia (Table 1.8).  Upregulation of RGS16 is due to mitogenic signals.  The question remains 

whether RGS16 is a reporter for GPCR signaling or does it indeed have a cancer promoting 

function in these cancer types?  Studies investigating the function of RGS16 in these cancer 

types will determine if it promotes cancer progression or if post-translational modifications can 

affect its function.  Furthermore post-translational modifications can affect the function of 

RGS16 and should also be investigated in these cancer types.  

Recent research suggests RGS16 may specifically have tumor suppressor function in 

breast and pancreatic cancer.  Figure 1.6 depicts the signaling pathways that RGS16 can regulate 

demonstrating its potential as a tumor suppressor.  As previously mentioned RGS16 inhibited 

EGF and FBS induced cell proliferation by blocking the PI3K/AKT pathway.  RGS16 knockout 

breast cancer cells are more resistant to tyrosine kinase inhibitor treatments [171].  Loss of 
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RGS16 occurs in metastatic pancreatic cancer and is associated with decreased patient survival 

suggesting RGS16 may inhibit the metastatic process [149].  We have found in our in vitro 

studies that RGS16 is co-regulated by p53 and pRb and inhibits pancreatic cancer cell migration 

and invasion (Chapters 2 & 3 and [175]).  Furthermore, increased expression of RGS16 is 

induced by retinoic acid and the down regulation of RGS16 with another retinoic regulated 

protein (DUSP6) disrupted retinoid inhibition of neuroblastoma growth [162].  Combined 

treatment of triple negative breast cancer cells with a HDAC inhibitor and knockdown of LSD1 

induced RGS16 expression that was vital for HDAC induced cytoxicity, downregulation of NF-

κB, and expression of E-cadherin, ING1, and CDKN1C, all of which have tumor suppressor 

function [163].  

Several of the GPCRs regulated by RGS16 (Table 1.10) have been implicated in 

promoting angiogenesis, proliferation, and metastasis including M1 and M2 muscarinic 

receptors, Platelet-activating factor (PAF),  LPA, CxCR4, and ET-1 [133, 176, 177].  These 

pathways are prime targets for future research regarding the role of RGS16 in cancer and will aid 

in identifying possible tumor suppressive functions of RGS16.   
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Figure 1.6: Known RGS16 regulation targets and downstream events that promote 

cancer progression. These pathways can be activated by a variety of signals including 

through EGFR which can also be regulated by RGS16.  CxCR4 is a prototypical 

representation of a GPCR that is involved in promoting cancer and is regulated by RGS16.  

Pathway was constructed using Qiagen’s Ingenuity pathway Analysis (IPA®, QIAGEN 

Redwood City, www.qiagen.com/ingenuity) Pathway Designer tools.  
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CHAPTER 2.  

EXPRESSION PROFILING ANALYSIS OF WI38 NORMAL LUNG 

FIBROBLASTS FOLLOWING CO-EXPRESSION OF p53 AND pRb
1
 

SUMMARY 

Mutations in p53 or RB1 (Retinoblastoma) genes, their upstream regulators, or 

downstream effectors have been found in almost all human malignancies.  Evidence suggests 

that p53 and pRb cooperate to suppress tumorigenesis, but does not elucidate the extent to which 

p53 and pRb cross-communicate to regulate cellular functions.  RNA expression profiling was 

performed on normal human lung fibroblast WI38 cells following overexpression of p53 and/or 

pRb, to identify genes co-regulated and involved in mediating p53 and pRb tumor suppressor 

processes.  The goals of the analyses were to investigate the cross-talk between p53 and Rb 

proteins and to find downstream effectors regulated by these two tumor suppressor genes. This 

knowledge might be used in the development of novel anti-cancer treatments.  Microarray 

analyses performed on WI38 cells overexpressing p53, pRb, or both p53 and pRb identified 294-

p53, 650-Rb, and 514-p53/Rb differentially regulated transcripts compared to vector control.  By 

examining the intersecting genes, we generated lists of p53 and pRb cross-talk candidates. 

Several of the cross-talk candidates are known to be regulated by p53 and/or pRb.  Five 

differentially expressed transcripts were chosen for validation by quantitative Real-Time PCR 

(qRT-PCR) in WI38 cells and in the p53 negative and RB1 mutated SAOS-2 cells.  Ingenuity 

Pathway Analysis (IPA) identified an enrichment of transcripts involved in cellular movement, 

development, cellular growth and proliferation among others in the WI38 cells overexpressing 

                                                 
1
 A portion of this work has been submitted and accepted for publication in the journal Genes 

and Cancer (see Appendix for draft) or [175].. 
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p53 and pRb. To our knowledge, this is the first time microarray analyses have been used to 

identify putative p53 and pRb cross-talk candidate genes.   The identity of these genes can be 

used in future studies on specific cancer types to better understand how p53 and pRb regulate 

cellular functions to prevent tumorigenesis.  Deeper knowledge of the p53 and pRb cross-talk 

pathway may aid in identifying new molecular targets, developing better therapies for cancer, 

and providing more information on the coordination of tumor suppressor mechanisms by p53 

and pRb. 

INTRODUCTION 

The p53 and pRb tumor suppressors are two signaling molecules that are frequently 

altered during cancer progression. Mutations that disrupt the p53 and pRb function can occur in 

the gene sequences or in their upstream regulators and/or downstream effectors [178].  Both 

tumor suppressor genes are inactivated in a variety of malignancies including osteosarcoma, 

small cell lung, breast, and bladder carcinomas [1, 4, 45, 46].  Furthermore, alterations in 

expression or activity of proteins involved in p53 and pRb signaling pathways have been 

identified in retinoblastoma and cancers of the pancreas, colon, and head and neck among others 

[49, 51, 52, 111].  The large number of cancers that have defects in the p53 and pRb pathways 

demonstrates the importance of these signaling modules in preventing cancer development and 

progression.  

Both p53 and pRb regulate processes vital for the suppression of cancer progression, such 

as cell cycle arrest, apoptosis, senescence, and differentiation [4, 73, 179].  Existing data 

suggests that p53 and pRb cooperate to prevent tumor progression.  Examples of this cooperative 

interaction have been shown in various studies using human primary cancer samples and mouse 

models.  Patients who have mutations in both p53 and RB1 genes have increased tumor 



37 

 

recurrence and decreased survival compared to patients with a mutation in either p53 or RB1 [45, 

47, 180].  Studies conducted in primary tumor samples and established cell lines found that 

inactivation of both p53 and pRb signaling pathways promotes processes that support cancer 

progression such as chromosome instability, chemoresistance, and the Epithelial Mesenchymal 

Transition (EMT) [60, 62, 181]. Mice that are p53-/-  and also heterozygous for RB1 developed 

more tumors than mice with single mutations; i.e. heterozygous p53 or RB1 null or p53 null with 

w.t. RB1 [4].  In another study, mice with conditional inactivation of both p53 and RB1 in 

prostate epithelium developed highly metastatic tumors and had decreased survival time 

compared to mice with single inactivation of either p53 or RB1 [5]. The accumulated evidence 

suggests p53 and RB1 gene products have cooperative or synergistic effects for cancer 

suppression. 

Considering the network of communication that exists within a cell, the rate of mutation 

of p53 and RB1, and the cellular processes these two proteins regulate, a natural hypothesis is 

that these two genes and respective gene products cross-communicate in order to determine 

cellular fate and prevent carcinogenesis. Over the years, data have accumulated that paints a 

picture of the communication that exists between the p53 and pRb pathways. The cell cycle 

stimulating transcription factor E2F protein provides a prime example of the link between the 

p53 and pRb pathways.  In its hypophosphorylated form pRb binds to E2F family members 

(E2F1, E2F2, or E2F3) and acts as a transcriptional repressor to inhibit the transcription of genes 

needed for the continuation of the cell cycle [18-20]. Cyclin-dependent kinases-4 and -6 

phosphorylate pRb resulting in the release of E2F from pRb binding thus allowing this factor to 

stimulate the transcription of genes encoding cell cycle stimulatory proteins [19, 21]. An 

increased amount of unbound E2F due to loss of RB1 or alteration in the pRb pathway can 
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trigger a p53-dependent apoptotic response [74, 78].  The interaction between E2F1 and p53 to 

initiate apoptosis demonstrates a protective mechanism employed by the cell to prevent cancer 

development when pRb regulation is lost.  E2F1 is not the only protein known to be involved in 

the convergent signaling between the p53 and pRb pathways; other proteins known to be 

implicated in p53 and pRb cross-talk are Hdm2, p21, and the INK4a locus (reviewed in [3, 47, 

182]).  Although several proteins that are involved in the p53 and pRb pathways have been 

identified, the full extent in which these two tumor suppressors interact along their pathways to 

regulate cellular fate is still unknown. Current data and analyses have only begun to elucidate the 

proteins involved between p53 and pRb mediated cancer suppression. The focus of this study 

was to identify signaling molecules involved in the p53 and pRb cross-talk pathway and to 

provide leads to the nature of downstream effector molecules responsible for inducing p53 and 

pRb mediated cancer suppression. Identification of p53 and pRb downstream effectors will 

provide new targets for future anti-cancer therapies. 

Materials and Methods 

Cell culture and virus transductions  

The human lung fibroblast WI38 cell line and the osteosarcoma cell line SAOS-2 (p53 

null and truncated RB1) were purchased from the American Type Culture Collection (Manassas, 

VA, USA).  WI38 cells were grown in Hyclone MEM/EBSS (ThermoFisher Scientific, 

Waltham, MA) media supplemented with 10% research grade fetal bovine serum (FBS) 

(ThermoFisher Scientific, Waltham, MA)  and 1% Penicillin Streptomycin (Corning, Corning, 

NY) and SAOS-2 cells were grown in Hyclone High Glucose DMEM  (ThermoFisher Scientific, 

Waltham, MA) supplemented with 10% FBS and 1% Penicillin Streptomycin.  Cells were 

cultured at 37°C in a humidified 5% CO2 incubator.   
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Ad.CMV (adenovirus with CMV promoter) and Ad.CMV.p53 (Adenovirus containing 

wild-type p53 gene under control of CMV promoter) viral vectors were generated using the 

AdEasy system (Carlsbad, CA). The Ad.CMV.pRb (Adenovirus containing RB1 gene cDNA 

under control of CMV promoter) vector was provided by Dr. Juan Fueyo (M.D. Anderson 

Cancer Center, The University of Texas).  Viruses were amplified and tittered as previously 

described [183-185].   

Microarray expression profiling  

For expression profiling, WI38 cells were transduced with each of the following vectors 

or vector combination:  (1) adenovirus vector with no insert (Adenoviral CMV-vector ctrl), (2) 

Ad.CMV.p53, (3) Ad.CMV.pRb, and (4) both Ad.CMV.p53 and Ad.CMV.pRb.  Vectors were 

added at a multiplicity of infection (MOI) of 50 to confluent WI38 cells (500,000 cells / 100mm 

plate) in MEM/EBSS media supplemented with 2% heat-inactivated FBS.  Culture media were 

replaced with 10% FBS and 1% Penicillin/Streptomycin supplemented MEM/EBSS medium 16 

hours after vector addition; cells were collected after 48 hours.  Four biological replicates were 

performed for each of the four expression studies.  Immunoblots were used to verify increased 

expression of p53 and/or pRb in the WI38 samples prior to microarray analysis. 

Total RNA was isolated from transduced WI38 cells using TRIzol reagent (Invitrogen, 

Carlsbad, CA) according the manufacturer’s protocol.  Using a universal reference design, two 

RNAs (transduced WI38 cells + Agilent (Santa Clara, CA) human universal reference RNA) 

were hybridized to Agilent 44K whole human genome expression arrays. Total RNAs were 

labeled with either cyanine (Cy)-3-CTP and Cy5-CTP (Perkin Elmer, Waltham, MA) using 

Agilent QuickAmp cRNA labeling kits. Following purification, Cy3- and Cy5-labeled cRNAs 
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were combined and hybridized for 17 hours at 65ºC in an Agilent hybridization oven. 

Microarrays were then washed and scanned using Agilent DNA Microarray Scanner. 

Statistical Analysis of Expression Profiling Data 

Lowess-normalized feature intensities were extracted from the scanned image using 

Feature Extraction (Agilent). These data were exported as tab-delimited files (one file per 

sample) to Microsoft Excel® for filtering.  For each feature, data were removed if both channels 

reported values not well-above background according to default Feature Extraction Criteria.  For 

each comparison, log base-2 ratios of each sample to universal reference RNA were collated into 

a single table.  Features for which fewer than 50% of all samples had a present value were 

removed from further analysis.   

The resulting tables were imported into Multiple Experiment Viewer (MEV) v4.3.  Log 

base 2 ratios were compared between each of three sample sets (p53 overexpressed samples.  

RB1 overexpressed samples and p53 and RB1 overexpressed samples) and the adenovirus vector 

control samples by Significance Analysis of Microarrays [186].  We used a conservative 

threshold whereby only genes for which MEV reported a false discovery rate of 0% were 

considered significantly differentially expressed. 

Data extracted using Feature Extraction was uploaded to the NCBI’s Gene Expression 

Omnibus (GEO) public database and is available via access number GSE59660.   

Ingenuity Pathway Analysis 

 The functional analyses were generated through the use of QIAGEN’s Ingenuity 

Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity). The accession 

number and fold change of differentially expressed mRNA identified by RNA expression 

profiling were uploaded into Ingenuity Pathway Analysis (IPA) software for functional analysis.  
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The gene transcripts identified in the microarray were categorized based on their molecular and 

cellular function in order to identify pathways that are being altered or enriched by p53 and pRb 

signaling, however, information regarding disease and physiological system development were 

also reported (Doc. SI2 or Doc. SI3).  Benjamini-Hochberg multiple correction p-values were 

computed for the null hypotheses that genes with altered mRNA levels are independent of 

molecular and cellular functions, and functions with a corrected p-value less than 0.05 were 

considered statistically significant.  Pathways examining known relationships between the cross-

talk candidates and p53, pRb, and E2F1-3 were generated using IPA Knowledge Base and 

Pathway designer tools (grow and connect).     

Quantitative Real-time PCR analysis 

Total RNA was isolated from cells using TRIzol reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s protocol.  Total RNA (2ug) was reverse transcribed into cDNA 

using the High Capacity cDNA Reverse Transcription kit from Applied Biosystems (Foster City, 

CA) according to the manufacturer’s protocol.   Real-Time PCR was performed using the 

Applied Biosystems TaqMan Gene Expression Assays in the ABI 7000 detection system (Foster 

City, CA). TaqMan probes were purchased from Applied Biosystems (Foster City, CA) IL-6 

(HS00197982_m1), BCL2L11 (BCL2L11) (HS00197982_m1), RGS16 (HS00892674_m1), 

BTG2 (HS00198887), STAT4 (HS00231372_ml) and GAPDH (HS02758991). The relative fold 

change for each marker was calculated using the 2
-ΔΔCT

 analysis according to Livak et.al and 

statistical significance was determined using a one way ANOVA with a Dunnett’s post-hoc test, 

using Prism V6.0c (GraphPad Software, Inc., La Jolla, CA) [187].    
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Western blot analysis 

WI38 or Saos-2 cells were lysed in whole cell lysis buffer containing 50mM Tris-HCl 

(pH7.4), 5mM EDTA 250mM NaCl, 50mM NaF, 0.1mM Na3VO4, 0.1% Triton X-100 and 

protease inhibitors (Pierce Protease inhibitor Tablets 88661; Thermo Scientific, Rockford, IL).  

Protein extracts (50ug, measured using Bradford protein assay) were loaded onto 8% 

polyacrylamide gels and proteins were separated using sodium dodecyl sulphate-polyacrylamide 

gel electrophoresis (SDS-PAGE).  Blots were blocked 1 hour in 5% dry non-fat milk diluted in 

Tris-buffered saline solution containing 0.1% Tween-20 pH 7.6  (TBS-T). Membranes were 

probed overnight at 4°C with mouse anti-p53 (SC-DO1, 1: 1000) or mouse anti-pRb (SC-IF8, 

1:500) antibodies from Santa Cruz Biotechnology (Dallas, TX).  Following primary antibody 

incubation the membranes were washed using TBS-T (three times; 5 minutes) and probed with 

Horseradish peroxidase (HRP)-conjugated goat anti-mouse (1:5000) secondary antibodies 

(Rockland, Gilbertsville, PA) for 1 hour at room-temperature.  Primary and Secondary antibodies 

were diluted in TBS-T.  Blots were washed 5 minutes in TBS-T three times and Amersham ECL 

prime western blotting detection reagent was added in order visualize the protein bands (RPN 

2232, GE Life Sciences, Pittsburgh, PA).  Western blot images were captured using 

FOTODYNE FOTO/Analyst FX (Hartland, WI) imaging camera.   Membranes were normalized 

using mouse anti-actin (1:1000).  

RESULTS 

Identification of p53 and pRb cross-talk candidates in WI38 cells following exogenous 

expression of p53 and/or pRb.   

Studies have shown that p53 and pRb cooperate to prevent tumorigenesis.  Currently, the 

molecules that function in the p53 and pRb cross-talk pathway to regulate cellular fate are not 
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known thus expression profiling by microarray was performed to find genes co-regulated by p53 

and pRb. Normal human lung WI38 fibroblast cells were transduced with adenoviral vectors 

expressing the p53 and/or RB1 genes under the control of a cytomegalovirus (CMV) promoter. 

The WI38 cell line was used because it is from non-cancerous tissue and lacks mutations or viral 

transformations that could disrupt the p53 and pRb pathways. Four experimental conditions were 

used in which WI38 cells were transduced with adenovirus vector control (cond. 1, Adenoviral 

CMV-vector control, Ad.CMV.p53 (cond. 2), Ad.CMV.pRb (cond. 3), or both Ad.CMV.p53 and 

Ad.CMV.pRb (cond. 4).  RNA and protein from WI38 cells was collected 48 hours after 

adenoviral infection. Immunoblots verified increased expression of p53 (fold change compared 

to Ad.CMV control = 2.80, 1.54, and 2.77) and/or hypophosphorylated (active form) pRb 

(hypophosphorylated/total pRb fold change compared to Ad.CMV control = 0.94, 5.48, 5.02) in 

the WI38 cells treated with adenoviruses containing p53, pRb, or both p53 and pRb respectively 

(Figure 2.1A).  Fold change values for p53 and hypophosphorylated pRb coincided with 

previously reported results in experiments that activated endogenous p53 and pRb [30, 31].  

Microarray data from the adenovirus vector control (empty vector with CMV promoter) was 

used as a reference to determine genes that were differentially expressed as a consequence of 

p53, pRb, and p53 + pRb expression. Analysis of the microarray data identified 294-p53, 650-

pRb, and 514-p53 + pRb differentially expressed genes (Figure 2.1B). Of the differentially 

expressed genes, 294/294 genes were upregulated in cells with p53 expression, 427/650 genes 

were upregulated in cells with pRb expression, and 319/514 genes were up-regulated in cells 

with p53 + pRb coexpression (Figure 2.1B). Consistent with protein measurements, increased 

expression of p53 and/or RB1 mRNAs were also found in the appropriate groups (data not 

shown).   
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A Venn diagram shows the number of differentially expressed genes shared between the 

experimental groups (Figure 2.1B). By looking at the common genes between the three 

experimental groups, we were able to generate two lists of genes that may be involved in the p53 

and pRb cross-talk pathway. The first list of cross-talk candidates (designated as the p53 and pRb 

common gene set) consisted of 39 genes found to be commonly up-regulated in cells expressing 

either p53 or pRb. The second list of possible cross-talk members (designated as the p53 and 

pRb interaction gene set) contained 140 genes that were found to be differentially expressed only 

when p53 and pRb were overexpressed together (see Addendum for Chapter 2 for p53 and pRb 

interaction gene set).  Thirty-two of the 39 common gene set cross-talk candidates were found to 

be up-regulated in the interaction gene set, while the remaining 7 were commonly up-regulated 

in cells that overexpress either p53 or pRb (Table 2.1).  By focusing on the common and 

interaction gene sets, we were able to remove transcripts that were up- or down-regulated by 

only p53 or pRb and focus on candidates that may be involved in the p53 and pRb cross-talk 

pathway.   
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  Figure 2.1: Identification of differentially expressed transcripts in WI38 cells 

overexpressing p53 and/or pRb.  WI38 cells were transduced with adenoviruses carrying the 

transgenes p53, or RB1/p105; a MOI of 50 was used in each case.  A) Western blot analysis 

was used to test for p53 and pRb expression prior to microarray analysis.  B) Fold change of 

protein expressions compared to CMV control.  C) A Venn diagram shows the differentially 

expressed transcripts and intersects identified during the microarray analysis.  The numbers in 

red denote transcripts that were up-regulated due to p53, pRb, or p53 and pRb expression. 

. 
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Table 2.1: Fold change of p53 and pRb common gene set cross-talk candidates 

 
Gene Symbol Name FC-p53 FC-Rb FC-p53+Rb 
LOC387763 hypothetical LOC387763 30.62 159.25 297.07 

A_24_p775812 Unknown 15.65 199.36 252.80 

RGS16 Regulator of G-protein signaling 16 18.84 30.82 149.75 

AREG Amphiregulin 8.15 46.41 81.91 

CCL3 Chemokine (c-c motif ligand 3) 3.78 8.18 56.12 

TNFSF15 Tumor necrosis factor (ligand) superfamily, member 15 10.68 69.61 53.34 

IL-1B Interleukin-1 beta 4.82 22.53 43.79 

OLFM2 Olfactomedin 2 10.60 37.76 27.31 

NR4A1 Nuclear receptor subfamily 4 group A member 1 11.56 20.73 27.08 

POSTN Periostin 2.91 21.051 25.66 

D4S234e D4S234e (NSG1; neuron specific gene family member 1) 21.20 7.86 22.06 

IL-6 Interleukin-6 6.04 12.37 21.99 

DMN Desmuslin 4.57 27.42 21.25 

EPPK1 Epiplakin 32.06 8.27 20.04 

IQSEC3 IQ motif and Sec7 domain 3 7.29 20.37 19.95 

PLAC2 Placenta specific 2 21.60 4.63 19.00 

L3MBTL2 Lethal(3)malignant brain tumor-like protein 2 18.33 11.82 16.00 

LHX6 LIM homeobox 6 10.11 7.11 15.15 

AKR1B10 Aldo-keto reductase family 1 member B10 11.61 13.92 13.30 

RRAD Ras associated with diabetes 5.98 7.80 12.61 

c10orf58 chromosome 10 open reading frame 58 4.86 9.20 11.74 

BCL2L11 Bcl2-like 11 (apoptosis facilitator) 9.58 6.50 11.34 

COL7A1 Collagen, type VII, alpha 1 5.97 10.65 10.94 

JUP Junction plakoglobin 7.60 16.61 9.92 

VCAN Versican proteoglycan 5.61 9.17 9.73 

CRISPLD2 Cystein-rich secretory protein 11 10.11 5.38 9.55 

STOX2 Storkhead-box 2 14.48 8.70 9.33 

BTG-2 B-cell translocation gene 2 3.85 5.07 7.46 

P2RY2 purinergic receptor P2Y, G-protein coupled, 2 2.38 19.53 6.91 

TSKU Tsukusi,small leucine rich proteoglycan 5.28 5.42 5.97 

C4B Complement component 4B 3.38 7.64 2.22 

RTN4R Reticulon 4 receptor 8.01 6.19 N/A 

STAT4 Signal transducer and activator of transcription 4 5.98 7.80 N/A 

AK124344 cDNA FLJ42353 fis, clone UTERU2007520 5.21 7.13 N/A 

KLHL20 Kelch like 20 4.88 4.46 N/A 

NOTCH3 Notch homolog 3 4.68 3.96 N/A 

KSR1 Kinase suppressor of RAS 3.86 4.08 N/A 

GDF15 Growth/differentiation factor 15 3.24 3.40 N/A 

LOC654346 similar to galectin 9 short isoform (LOC654346) 2.81 4.77 N/A 

FC = Fold change 

N/A= Fold change not available.  Gene was not found to be significantly differentially expressed in WI38 cells overexpressing p53 and 

pRb. 
 

 

  

http://getentry.ddbj.nig.ac.jp/getentry/na/AK124344/?filetype=html
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qRT-PCR validation of microarray data in WI38 and SAOS-2 cells 

 The ultimate goal in performing the microarray analysis was to determine molecules 

involved in the p53 and pRb cross-talk pathway in order to identify and study downstream 

effector molecules that can be expressed to induce a p53 and/or pRb tumor suppressive function.  

Because of our interest in identifying downstream effector molecules, we chose five mRNA 

transcripts (IL-6, BTG-2, STAT4, RGS16, BCL2L11) from the set of 39 commonly up-regulated 

transcripts by p53 and pRb for validation via qRT-PCR.  IL-6, BTG-2, STAT4, RGS16, and 

BCL211 were chosen for validation because of vaying function, known regulation by p53 and 

pRb, and fold change values of the expression profiling assay.  WI38 cells were plated and 

transduced with adenoviral expression vectors via the same methods used for the microarray 

analysis.  Relative fold change was calculated for IL-6, BTG-2, STAT4, RGS16, and BCL2L11 

in WI38 cells expressing p53 and/or pRb as shown in Figure 2.2. Statistically significant up-

regulation of all transcripts tested except BCL2L11 was found in WI38 cells expressing p53 and 

pRb confirming the microarray results. Expression of p53 and pRb in WI38 cells increased 

mRNA expression for some of the transcripts (for example, RGS16 and BTG-2) to a greater 

extent than single expression of either p53 or pRb. This suggests p53 and pRb are working 

together resulting in an additive (i.e. BTG-2) or synergistic (i.e. RGS16) effect on mRNA 

expression for some of the transcripts.  

To further support the RNA expression profiling results, we repeated the expression of 

p53 and pRb in a p53 null, RB1 mutant osteosarcoma cell line (SAOS-2) and performed qRT-

PCR analysis of IL-6, BTG-2, STAT4, RGS16, and BCL2L11. The expression of all five 

transcripts including IL-6 and BCL2L11 were found to be significantly increased by one-way 

ANOVA compared to vector control in SAOS-2 cells expressing p53 and/or pRb (Figure 2.3). 
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Dunnett’s test for multiple comparison found BCL2L11 expression to be significantly increased  

in cells expressing p53, pRb, and both p53 and pRb and IL-6 was found to be significantly 

increased in cells expressing pRb and p53+pRb. Expression of IL-6 was not found to be 

statistically significant in SAOS-2 cells expressing p53 due to variation between replicates (fold 

change= 2.86).  All five transcripts were found to be up-regulated when p53 and/or pRb were 

expressed in the microarray analysis and qRT-PCR analysis showed similar results in WI38 and 

SAOS-2 cells.   
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Figure 2.2: Validation of microarray data using qRT-PCR in WI38 cells.   
Five transcripts RGS16, BCL2L11, BTG2, IL-6 and STAT4 from the p53 and pRb intersect were 

chosen for validation by qRT-PCR in WI38 cells overexpressing p53, pRb, or both p53 and pRb.  

The vector control (Ad.CMV) was used to calculate the fold change for each transcript.  One-way 

ANOVA with Dunnett’s test for multiple comparison were used to test for statistical significance * 

p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-value < 0.0001.   
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Figure 2.3: Validation of microarray data using qRT-PCR in SAOS-2 cells.  
Five transcripts RGS16, BCL2L11, BTG2, IL-6 and STAT4 from the p53 and pRb intersect 

were chosen for validation by qRT-PCR in SAOS-2 cells overexpressing p53, pRb, or both p53 

and pRb.  The vector control (Ad.CMV) was used to calculate the fold change for each 

transcript.  One-way ANOVA with Dunnett’s test for multiple comparison were used to test for 

statistical significance * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-

value < 0.0001.   
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Ingenuity Pathway Analysis of differentially expressed transcripts in WI38 cells following 

overexpression of p53 and/or pRb. 

The web-based Ingenuity Pathway Analysis software (IPA) was used to perform 

functional analysis on the WI38 expression profiles. Differentially expressed mRNA transcripts 

with known functions are eligible for IPA analysis.  Eligible transcripts for each overexpression 

were as follows: p53: 263/294, pRb: 533/650, and p53 + pRb: 441/514). These gene sets were 

loaded into IPA for global functional analysis to predict biological functions that may be 

activated or inhibited due to p53 and pRb signaling. Lists of the significant molecular and 

cellular functions found to be statistically overrepresented by p-value (Benjamini-Hochberg 

correction after Fisher’s exact test) due to overexpression of p53, pRb, and both p53 and pRb 

based on IPA annotations are shown in Figures 2.4-2.6.  Cellular development was the top 

overrepresented molecular and cellular function in WI38 cells overexpressing p53 followed by 

cellular movement and cell-to-cell signaling and interaction (Figure 2.4).  Transcripts associated 

with cell cycle regulation functions such as cell cycle, cellular assembly and organization, and 

DNA replication, recombination, and repair were enriched in WI38 cells overexpressing pRb 

(Figure 2.5). WI38 cells overexpressing both p53 and pRb showed enrichment in transcripts 

associated with cellular growth and proliferation, cell cycle, cell death and survival, and 

development (Figure 2.6). Similar cell and molecular functions were found to be overrepresented 

in WI38 cells overexpressing p53, pRb, and p53 + pRb. Transcripts involved in cellular 

development, cellular growth and proliferation, cell death and survival, and cellular movement 

were found to be differentially expressed in all three experimentally conditions with differences 

in order of significance between groups. Genes involved in DNA replication, recombination and 

repair biological functions were not found to be significantly differentially expressed in WI38 
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cells overexpressing p53 but were significantly enriched in cells overexpressing pRb and p53 + 

pRb. There was also enrichment in genes involved in cell cycle regulation in all three 

experimental conditions, however, in WI38 cells overexpressing p53, cell cycle was the twelfth 

significant biological pathway. The differences in biological functions found to be enriched by 

IPA highlights the various pathways regulated by p53 or pRb.     

Because of my interest in discovering p53/pRb cross-talk mechanisms, IPA functional 

analysis was also performed on IPA-eligible genes from both cross-talk candidate gene subsets 

(p53 and pRb common (36/39) and interaction (104/140) gene sets combined and separately) 

identified by RNA expression profiling.  IPA functional analysis on all cross-talk candidates 

(combined cross-talk gene subsets) revealed statistically significant enrichment in functions 

involved in cellular growth and proliferation, cellular development, cell death and survival, 

cellular movement, and cell cycle (Figure 4.7). Interestingly, when examining the cross-talk gene 

sets separately; different functions are significantly enriched between groups. Only annotations 

associated with cellular growth and proliferation, cell cycle, and cellular development were 

found to be statistically significant in the interaction gene set (Figure 4.8).  In the common gene 

set, 25 functions were found to be statistically overrepresented including cellular movement, 

cellular development, cellular growth and proliferation, cell cycle, and lipid metabolism (Figure 

4.9).   

Each category of cell and molecular functions is broken down into subcategories.  

Analysis of these sub categories in combination with examination of the top annotations 

associated with disease in IPA, revealed an enrichment of transcripts involved in immune 

response (not a category for cell and molecular function) in cells expressing p53, pRb, and p53 + 

pRb.  Interestingly, annotations associated with immune response were among the top 
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statistically significant functions in the IPA analysis of p53 and p53 + pRb common gene sets. 

Biological processes associated with inflammation of organ (2.29E-03), development of 

leukocytes (2.29E-03), accumulation of leukocytes (2.75E-03), and movement of lymphocytes 

(1.10E-02) were found to be statistically significant in WI38 cells that overexpress p53 (Data not 

shown).  Generation of T lymphocytes (3.04E-04), inflammation of organ (6.41E-04), TH1 

immune response (5.36E-03), development of TH17 cells (5.70E-03), and mobilization of 

phagocytes (8.25E-03) among others were statistically significant in the p53 and pRb common 

gene set (data not shown).  Annotations associated with immune response were also statistically 

enriched in the other gene sets (WI38 overexpressing pRb, p53 + pRb, collective cross-talk 

candidates).  These data demonstrate an increase in proteins associated with immune response. 
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Figure 2.4: Cell and molecular functions statistically overrepresented in WI38 cells 

overexpressing p53.   
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Figure 2.5: Cell and molecular functions statistically overrepresented in WI38 cells 

overexpressing pRb.   
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Figure 2.6: Cell and molecular functions statistically overrepresented in WI38 cells 

overexpressing p53 + pRb.   
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Figure 2.7: Cell and molecular functions statistically overrepresented in collective p53 

and pRb common and interaction cross-talk candidates.   
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Figure 2.8: Cell and molecular functions statistically overrepresented in the 

interaction gene set p53 and pRb cross-talk candidates  
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Figure 2.9: Cell and molecular functions statistically overrepresented in the common 

gene set p53 and pRb cross-talk candidates.   
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IPA pathway generation of known interactions between p53, pRb, E2F family members 

(E2F1-3), and cross-talk candidates identified by RNA expression profiling 

By using RNA expression profiling, we were able to identify transcripts that may be co-

regulated by p53 and pRb and involved in regulating tumor progression.  In order to gain more 

understanding of p53 and pRb cross-talk, pathways were generated examining known direct and 

indirect relationships between the cross-talk candidates and p53, pRb, and E2F1-3 using IPA’s 

Ingenuity Knowledge Base (Ingenuity Systems).  The p53 and Rb common and interaction cross-

talk candidate gene sets were loaded into IPA and pathways were generated using the Ingenuity 

Knowledge Base and IPA pathway tools (“Grow, Connect, and Pathway Designer”) to examine 

upstream and downstream relationships between p53, pRb, E2F1-3 (E2F family members 

regulated by pRb) and the differentially expressed cross-talk gene sets (Figure 2.10-2.12). A 

pathway comprised of known interactions between all of the cross talk candidates (designated as 

the collective p53 and pRb cross-talk candidate pathway) made using the p53 and pRb common 

and interaction gene sets is depicted in Figure 2.12.  Separate pathways for each cross-talk gene 

set, designated as p53 and pRb common gene set and interaction gene set pathways, respectively, 

were also generated (Figures 2.10-2.11).  Pathway generation by IPA identified the common 

gene set candidates RGS16, D4s234e/NSG1, BTG-2, GDF-15, VCAN, AKR1B10 and AREG 

and the interaction gene set candidates: F11R, TNFRSF10C, CERS6, HDM2, SESN1, RBM38 

and PMAIPI/NOXA as targets of p53 transcriptional activation (Figures 2.10-2.12).  The 

interaction gene set cross-talk candidates BUB1, CDT1, and MCM3 are targets for 

transcriptional repression by p53, whereas, VRK1, MCM3, and CDT1 are known to be down-

regulated by pRb (Figure 2.11-2.12).  Interactions between E2F and the cross-talk candidates 

were assessed because of regulation of E2F gene expression by pRb.  IPA identified FGFR3, 
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MCM3, and KRT14 interaction gene set candidates as transcriptional targets of E2F1-3 family 

members (Figures 2.11-2.12).  Interestingly, IPA’s database identified only 17 out of 39 of the 

p53 and pRb common and 26 out of 140 of the interaction cross-talk candidates as having known 

up- or down-stream relationships with p53, pRb, or E2F1. The low number of cross-talk 

signaling molecules known to have a direct and indirect relationship with p53 and pRb highlights 

the need for more research to understand the functions of these tumor suppressors. 

Known interactions between the p53 and pRb cross-talk candidates are also depicted.  

Connections can be seen between cross-talk members that are centrally located in the IPA 

pathway.  In the common gene set pathway, IL-1β, IL-6, BCL2L11, STAT4, BTG-2, and 

NR4A1 all have multiple connections (4 or more) with p53, pRb, E2Fs, or other cross-talk 

candidates (Figure 2.10).  Centrally located signaling molecules or nodes are also present in the 

p53 and pRb interaction pathway and consist of HDM2, BMP-2, and IL-12A (Figure 2.11). 

Furthermore, the same cross-talk candidates (IL-1β, IL-6, BCL2L11, STAT4, BTG-2, NR4A1, 

HDM2, BMP-2, and IL-12A) appear to function as signaling nodes in the collective cross-talk 

pathway signifying their possible role in mediating p53 and pRb functions.   
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Figure 2.10: Known interaction network of common gene set cross-talk candidates 

with p53, pRb, and E2F1-3.   IPA Ingenuity Knowledge base pathway tools and pathway 

designer were used to generate a pathway showing known direct (solid lines) and indirect 

(dashed lines) relationships between the p53 and pRb common gene set and p53, pRb, and 

E2F1-3.  Each shape represents a different type of signaling molecule.  Color intensity is 

associated with the degree in which the transcripts were up- (red) or down-regulated 

(green).   

 



63 

 

 
 

  
Figure 2.11: Known interaction network of p53 and pRb interaction gene set cross-talk 

candidates with p53, pRb, and E2F1-3.    IPA Ingenuity Knowledge base pathway tools and 

pathway designer were used to generate a pathway showing known direct (solid lines) and 

indirect (dashed lines) relationships between the p53 and pRb interaction gene set cross-talk 

candidates and p53, pRb, and E2F1-3.  Each shape represents a different type of signaling 

molecule.  Color intensity is associated with the degree in which the transcripts were up- (red) 

or down-regulated (green).   
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Figure 2.12: Known interaction network of colectiveollective p53 and pRb cross-

talk candidates with p53, pRb, and E2F1-3.  IPA Ingenuity Knowledge base 

pathway tools and pathway designer were used to generate a pathway showing known 

direct (solid lines) and indirect (dashed lines) relationships between all of the p53 and 

pRb cross-talk candidates and p53, pRb, and E2F1-3.  Each shape represents a different 

type of signaling molecule.  Color intensity is associated with the degree in which the 

transcripts were up- (red) or down-regulated (green).    
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DISCUSSION 

Significance of investigating p53 and pRb cross-talk  

Historically, investigations of p53 and pRb regulated transcription have focused on 

identifying the individual downstream targets of p53 and pRb. However, cell fate is not 

determined solely by one signaling pathway but by many pathways that communicate through a 

network of signaling molecules.  Cross-communication between pathways allows the integration 

of the exogenous and endogenous signals in a cell to aid in the determination of cell fate.  Co-

expression of p53 and pRb in cancer cells with compromised p53 and pRb activity inhibited p53 

mediated apoptosis and promoted cell cycle arrest suggesting that p53 and pRb cross-talk to 

regulate cellular fate [188, 189].  Furthermore, data from previous studies suggests p53 and pRb 

may also cooperate to inhibit cancer progression. Patients diagnosed with breast cancer and 

treated with adjuvant chemotherapy had a better prognosis to adjuvant chemotherapy if they had 

functional p53 and pRb [61].  

To our knowledge this is the first study that examined altered gene expression when p53 

and pRb are overexpressed together or separately with the purpose of finding genes co-regulated 

by both tumor suppressor genes.  How p53 and pRb cross-communicate to regulate cellular 

functions or cooperate to inhibit cancer progression still remains largely unknown.  The p53 and 

pRb pathways are commonly altered during tumorigenesis. The study of genes dually regulated 

by p53 and pRb will provide a valuable insight into the collaborative cancer preventative 

properties of these two tumor suppressor proteins.   

Transcriptional regulation may be one method used by p53 and pRb to coordinate cellular 

functions.  For example, the cyclin kinase inhibitor p21 is a down-stream target gene of p53 that 

inhibits phosphorylation and inactivation of pRb [25]. Transactivation of p21 demonstrates a 

mechanism by which p53 can coordinate with pRb to initiate cell cycle arrest.  During 
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myogenesis, p53 increases the expression of Rb (mRNA and protein), which later leads to pRb 

and MyoD initiation of muscle differentiation [17]. This provides an example by which p53 

directly enhances pRb expression leading to muscle differentiation. However, this one example 

is likely an indicator of large number of interactions that regulate complex cellular programs.   

Change in RNA expression profiles of WI38 cells overexpressing both p53 and pRb 

compared to expression of p53 or pRb alone and identification of cross-talk candidates. 

In this study, we identified genes that may be regulated by p53 and pRb and compiled 

two lists of p53 and pRb cross-talk candidates by overexpressing p53 and/or pRb in WI38 cells.  

Although p53 has transcriptional repression activity, our microarray analysis did not detect any 

down-regulated transcripts in the WI38 cells overexpressing p53 [190, 191].  The deficit of p53 

down-regulated transcripts in our microarray analysis compared to previous work, could be due 

to our method of p53 activation, cell type, or p53 levels, which have previously been found to 

induce a distinct p53 response with a small set of overlapping genes [192, 193]. Our expression 

profiling analyses were conducted in normal lung fibroblasts cells instead of cancer epithelial 

cells.  Lack of p53 down-regulated genes in the p53 overexpressing WI38 cells could also be 

attributed to the ability of p53 and pRb to alter each other’s transcriptional activation or 

repression functions. Previous studies that discovered p53 down-regulated targets using 

expression profiling were done in cancer cells with mutated or null p53 and wild-type RB1 such 

as PC-3, HCT116, and H1299 cells [190, 194].   

There were 319 upregulated transcripts when p53 and pRb were expressed together 

compared to 427 and 295 in the WI38 cells expressing pRb and p53 respectively. The change in 

upregulated genes suggests p53 and pRb can alter one another’s ability to regulate gene 

expression.  Management of p53 and pRb processes may require these transcription factors to 



67 

 

regulate gene expression in an opposing manner. Expression of an embryonic development gene, 

Placenta-specific 1 (PLAC1), has recently been found to be down-regulated by p53 and up-

regulated by pRb demonstrating how p53 and pRb can play contrasting roles to regulate cellular 

processes [81].   

pRb is most associated with transcriptional repression of E2F target genes. However, 

binding of E2F by pRb is not needed to promote transcription, suppress tumor growth and induce 

cellular differentiation or senescence [22, 23].  In fact, pRb acts as a co-activator for several 

transcription factors including Sp-1, RUNX-2, MyoD, and several nuclear receptors (including 

NR4A1) resulting in cellular differentiation [22, 39].  We found more upregulated transcripts in 

WI38 cells overexpressing pRb demonstrating its function as a transcription co-activator. There 

is still a lack of information regarding pRb regulation, therefore, this study could contribute to 

identifying genes up-regulated by pRb and understanding the function of pRb as a transcriptional 

co-activator.  

Candidates for the p53 and pRb cross-talk pathway were chosen based on whether (1) the 

transcripts were differentially expressed in both WI38-p53 overexpressing cells and WI-38-pRb-

overexpressing cells (the common gene set), or (2) only in WI38 cells that simultaneously 

overexpress p53 and pRb (interaction gene set). By focusing on the p53 and pRb common and 

unique genes, we were able to remove from our analysis genes regulated by p53 or pRb alone.  

RNA expression profiling validation  

Validation of microarray data was performed using qRT-PCR for five (RGS16, 

BCL2L11, BTG-2, IL-6 and STAT4) of the p53 and pRb common gene set cross-talk candidates.  

Up-regulation of all transcripts tested except BCL2L11 was found to be statistically significant 

in WI38 cells overexpressing p53 and pRb confirming the microarray results.  The analysis was 
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performed using a normal cell line in order to avoid any mutations that could be present up- or 

downstream of p53 and pRb that could hinder identification of downstream targets of both genes.  

Although p53 and pRb were expressed using adenoviruses in normal cells, the fold change of 

p53 and hypophosphorylated pRb proteins compared to CMV control were equivalent to or less 

than fold change values in WI38 cells incubated in serum free media to induce quiescence (fold 

change p53 after 24 hours in serum free media = 5.5) or MCF7 cells undergoing confluence 

induced cell growth arrest (fold change hypophosphorylated pRb/total pRb = 6.00) [195, 196]. 

This data suggests the concentration of virus used did not induce protein expression exceeding 

endogenous protein expression of p53 and the active hypophosphorylated form of pRb.  The use 

of a normal cell line with wild-type p53 and RB1 could make it difficult to identify cross-talk 

molecules due to possible interactions between endogenous and exogenous p53 and pRb.  

Expression of RGS16, BCL2L11, BTG-2, IL-6, and STAT4, were measured using qRT-PCR in 

the p53 null and pRb mutated osteosarcoma cell line SAOS-2 to investigate if exogenous and 

endogenous p53 and pRb interactions could influence expression profiles. Expression of all 

transcripts in the p53 and pRb overexpressing SAOS-2 cells was found to be increased with 

differences in magnitude of expression similar to the WI38 microarray data and qRT-PCR 

results.   Differential expression of BCL2L11 was not statistically significant in WI38 cells but 

was in SAOS-2 cells overexpressing p53, pRb, or p53 + pRb. Replication of the qRT-PCR 

analysis in SAOS-2 cells provided additional information that supports the hypothesis that the 

chosen transcripts are involved in the p53 and pRb cross-talk pathway.  Interestingly, in the 

microarray data, STAT4 was found to be differentially expressed in WI38 cells overexpressing 

p53 or pRb but not in cells that overexpressing both genes.  However, qRT-PCR analysis found a 

statistically significant increase in STAT4 expression in WI38 and SAOS-2 cells overexpressing 
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p53 and pRb.  The statistical analyses of expression profiling data or the sensitivity of microarray 

signal detection could account for the failure to observe differential expression of STAT4 in 

WI38 cells overexpressing p53 and pRb.    

IPA functional analysis identified enriched cell and molecular functions in p53 and/or pRb 

overexpressed WI38 cells 

p53, pRb, and p53 + pRb overexpressing cells 

Co-expression of p53 and pRb in bladder and cervical cancer cells with mutations or 

inactivation of both proteins induced cell cycle arrest and inhibited p53 induced apoptosis [188, 

189].  The ability of pRb to inhibit p53-mediated apoptosis suggests co-expression of both genes 

can alter gene regulation and ultimately cellular fate. IPA functional analysis was performed on 

all three experimental groups plus cross-talk candidate gene sets to determine if co-expression of 

p53 and pRb would differentially induce expression of transcripts associated with different 

biological functions compared to cells with overexpression of either p53 or pRb. IPA software 

cross-references genes and expression changes against Ingenuity Knowledge Base to identify 

known connections, diseases, and biological functions associated with a large dataset. The 

biological functional analysis information provided by IPA is broken down into molecular and 

cellular functions and physiological system development and functions.  In the analysis, I was 

interested in the biological functional analysis information pertaining to molecular and cellular 

functions enriched due to overexpression of p53 and/or pRb.  Interestingly, IPA found significant 

enrichment in molecular and cellular functions such as cellular development, cellular movement, 

cell death and survival, and cellular growth and proliferation in WI38 cells overexpressing p53 

and/or pRb with differences in order of significance between groups.  Furthermore, cell cycle 

regulation and DNA replication recombination and repair did not make the top significant 
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molecular cellular functions in cells overexpressing p53 but did in the pRb and p53 + pRb 

groups. Also noteworthy, biological functions overrepresented in cells overexpressing p53 + pRb 

are a cross between the results obtained from the cells overexpressing p53 or pRb suggesting 

activation of both p53 and pRb alters gene expression and cellular fate more than if one tumor 

suppressor was activated. This data supports the hypothesis that p53 and pRb coordinate to 

regulate cellular functions.  

Cross-talk candidate gene sets  

Both cross-talk candidate gene sets are differentially expressed when p53 and pRb are 

overexpressed together suggesting these candidates could interact with one another.  Because of 

the possible interaction between the p53 and pRb common and interaction gene sets, we 

performed IPA analysis collectively on all of the cross-talk candidate gene sets and separately to 

identify enriched cell and molecular functions.  Even though it was the larger gene set, IPA 

analysis of the interaction gene set, using Benjamini-Hochberg multiple testing correction p-

value, yielded only three IPA annotations significantly enriched (cellular growth and 

proliferation, cell cycle, and cellular development) compared to 25 significantly enriched 

biological functions in the common gene set.    Collective IPA analysis of all of the cross-talk 

candidates increased the amount of cell and molecular functions found to be statistically 

significant compared to separate IPA analyses performed on common and interaction gene sets.  

In summary IPA identified a significant enrichment in transcripts responsible for development, 

cell cycle, apoptosis, and immune response in WI38 cells overexpressing p53 and/or pRb and in 

the cross-talk gene sets.  Enrichment in similar biological functions in all three experimental 

conditions and in the cross-talk gene sets supports the hypothesis that p53 and pRb communicate 

to regulate cell outcomes.  This study provides information regarding the p53 and pRb cross-talk 
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that can be used to better understand how p53 and pRb regulate processes that inhibit cancer 

progression and are those vital for organism development. 

 

IPA pathway generation 

 Identification of known interaction of cross-talk candidates with p53, pRb, and 

E2F1-3  

IPA pathway tools were used to construct pathways to aid in identifying known up- and 

down-stream interactions (i.e. expression, regulation, activation, and protein-protein interaction) 

between the cross-talk candidates, p53, pRb, and E2F1-3.  These interactions were chosen 

because of pRb’s known function as a transcriptional repressor of E2F target genes and the 

known involvement of E2F-1 in p53 and pRb cross-talk [18].  From the IPA derived pathways 

we were able to 1) determine which cross-talk candidates have previously been found to be 

regulated by p53 or pRb, and 2) uncover known interactions between the cross-candidates.  

Using IPA software we were able to identify which of the cross-talk candidates were previously 

found to be regulated by p53 or pRb, providing a validation of the microarray results [135, 193, 

197-205].  Only a few of the downregulated p53 and pRb cross-talk candidates have previously 

been found by other studies to be downregulated by p53 (MCM3, BUB1, and CDT1) or pRb 

individually (VRK1, MCM3, and CDT1) [190, 206-209].  There are no down-regulated p53 and 

pRb commonly expressed cross-talk candidates due to lack of p53 down-regulated transcripts in 

the microarray data.  Although several of the p53 and pRb cross-talk candidates have previously 

been found to be regulated by p53, regulation of these transcripts by pRb has not been reported.  

In fact, very few of the p53 and pRb cross-talk candidates have been identified as down-stream 

targets of pRb regulation by the IPA database. This lack in knowledge regarding pRb 
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transcriptional control can be attributed to lack of studies on the ability of the Rb protein to act as 

a transcriptional co-factor.  Furthermore, function and regulation of several of the cross-talk 

candidates in the common and interaction gene sets remains unknown demonstrating the need for 

more research to understand the function of these unknown genes. 

Identification of possible signaling nodes in WI38 cells overexpressing p53 and pRb 

Also of interest, several cross-talk candidates were found to be centrally located in the 

IPA pathways denoting relationships with other cross-talk candidates and the transcription 

factors of interest (p53, pRb, or E2F1-3).  This observation suggests these candidates may 

function as signaling nodes to mediate p53 and pRb downstream effects.  The cross-talk 

candidates IL-1β, IL-6, BCL2L11, IL12A, STAT4, BTG-2, NR4A1, HDM2, and BMP-2 were 

all found to have a number of interactions between other cross-talk candidates or p53, pRb, or 

E2F1-3.  NR4A1, STAT4, and BTG-2 all have transcription regulation activities and are 

involved in controlling processes such as differentiation, immune response, and cell cycle arrest 

[72, 210, 211].  

 Several of the signaling nodes (IL12A, IL-1β, and IL-6) are known to play a role in 

regulation of immune responses and have been linked to cancer [212, 213].  Contrary to the 

expression profiling and qRT-PCR findings, the cytokine IL-6 is transcriptionally repressed by 

p53 and pRb in HeLa cells and is usually associated with aiding cancer progression [214].  

Despite its role in cancer promotion, IL-6 has also been found to inhibit phosphorylation of pRb 

and to aid in cell cycle arrest in growth-sensitive hematopoietic cells [215]. Furthermore, RB1 

negative murine fibroblasts have decreased expression of chemokines and cytokines including 

IL-6 [216].  With these functions in mind, the role of IL-6 in cells overexpressing p53 and/or 

pRb is unclear.  Expression of IL-6 and other immune associated factors could be due to p53 and 



73 

 

pRb induced senescence [217]. Senescence induced by these two tumor suppressors causes an 

immune response through secretion of factors collectively referred to as the senescence 

associated secretory phenotype (SASP) [218, 219].  In fact several of the immune regulatory p53 

and pRb cross-talk candidates upregulated in the microarray data (IL-6, IL-1β, CCL3, and 

AREG) are associated with SASP and their expression could be due to the increased levels of 

p53 and pRb. [217].  

CONCLUSIONS 

p53 and pRb are two of the most studied tumor suppressors and function to regulate 

many of the same processes.  Therefore, it is not surprising similar cell and molecular functions 

are enriched in cells overexpressing p53 and pRb.  The different order of significance when both 

genes are overexpressed suggests that the combination of p53 and pRb alters outcome of the cell 

compared to activation of only one tumor suppressor.   

By utilizing microarray expression profiling, p53 and pRb regulated candidates or genes 

involved in coordinating cancer suppression processes and determining cell fate were identified.  

p53 and pRb are not the only pathways involved in cancer suppression and determination of cell 

fate, but they are currently the most targeted for mutations in cancer.  The investigation of p53 

and pRb cross-talk focused on transcriptional regulation as a mechanism for p53 and pRb to 

coordinate cell functions and provides a frame work to study the cooperation between p53 and 

pRb in determining cell fate. Further studies are required to identify new molecular targets that in 

turn could lead to the development of more effective anti-cancer therapies.  
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Addendum for Chapter 2 

 

p53 and pRb Interaction Significant Differentially Expressed Gene Set 

Systematic 

Name 
Gene Name Description 

Average 

Fold 

Change  

AI911302 AI911302 

AI911302 wd14e10.x1 

Soares_NFL_T_GBC_S1 Homo sapiens 

cDNA clone IMAGE:2328138 3', mRNA 

sequence [AI911302] 

86.74 

 

NM_002632 PGF 

Homo sapiens placental growth factor, 

vascular endothelial growth factor-related 

protein (PGF), mRNA [NM_002632] 

46.762 

 

NM_018965 TREM2 CYP4F2 24.856  

A_24_P878366 A_24_P878366 Unknown 21.512  

NM_198173 GRHL3 

Homo sapiens grainyhead-like 3 

(Drosophila) (GRHL3), transcript variant 2, 

mRNA [NM_198173] 

21.126 

 

NM_017565 FAM20A 

Homo sapiens family with sequence 

similarity 20, member A (FAM20A), 

mRNA [NM_017565] 

20.308 

 

THC2668267 THC2668267 

Q3MAK1_ANAVT (Q3MAK1) 

Phosphoglucomutase/phosphomannomutase  

partial (4%) [THC2668267] 

19.498 

 

THC2565393 THC2565393 

Q5VT28_HUMAN (Q5VT28) Family with 

sequence similarity 27, member B (Family 

with sequence similarity 27, member A) 

(Family with sequence similarity 27, 

member C), partial (81%) [THC2565393] 

19.246 

 

A_32_P168727 A_32_P168727 Unknown 17.802  

BC073976 BC073976 
Homo sapiens cDNA clone IMAGE: 

6018774, partial cds. [BC073976] 
17.16 

 

NM_002590 PCDH8 
Homo sapiens protocadherin 8 (PCDH8), 

transcript variant 1, mRNA [NM_002590] 
16.226 

 

CD511705 CD511705 

AGENCOURT_14360862 NIH_MGC_187 

Homo sapiens cDNA clone 

IMAGE:30405414 5', mRNA sequence 

[CD511705] 

16.062 

 

NM_138344 C14orf152 

Homo sapiens chromosome 14 open 

reading frame 152 (C14orf152), mRNA 

[NM_138344] 

15.977 
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NM_001080468 SYCN 
Homo sapiens syncollin (SYCN), mRNA 

[NM_001080468] 
15.905 

 

NM_021571 ICEBERG 

Homo sapiens ICEBERG caspase-1 

inhibitor (ICEBERG), mRNA 

[NM_021571] 

14.305 

 

NM_001082 CYP4F2 

Homo sapiens cytochrome P450, family 4, 

subfamily F, polypeptide 2 (CYP4F2), 

mRNA [NM_001082] 

12.569 

 

NM_000729 CCK 
Homo sapiens cholecystokinin (CCK), 

mRNA [NM_000729] 
12.407 

 

NM_001200 BMP2 
Homo sapiens bone morphogenetic protein 

2 (BMP2), mRNA [NM_001200] 
11.436 

 

NM_133177 PTPRU 

Homo sapiens protein tyrosine phosphatase, 

receptor type, U (PTPRU), transcript 

variant 2, mRNA [NM_133177] 

11.168 

 

THC2642537 THC2642537 

Q2Q5T5_MOUSE (Q2Q5T5) Embryonic 

stem cell-and germ cell-specific protein 

ESGP, complete [THC2642537] 

10.941 

 

NM_023067 FOXL2 
Homo sapiens forkhead box L2 (FOXL2), 

mRNA [NM_023067] 
10.62 

 

NM_003991 EDNRB 

Homo sapiens endothelin receptor type B 

(EDNRB), transcript variant 2, mRNA 

[NM_003991] 

10.585 

 

NM_004428 EFNA1 
Homo sapiens ephrin-A1 (EFNA1), 

transcript variant 1, mRNA [NM_004428] 
10.517 

 

NM_004387 NKX2-5 

Homo sapiens NK2 transcription factor 

related, locus 5 (Drosophila) (NKX2-5), 

mRNA [NM_004387] 

10.47 

 

NM_000526 KRT14 

Homo sapiens keratin 14 (epidermolysis 

bullosa simplex, Dowling-Meara, Koebner) 

(KRT14), mRNA [NM_000526] 

10.436 

 

NM_003841 TNFRSF10C 

Homo sapiens tumor necrosis factor 

receptor superfamily, member 10c, decoy 

without an intracellular domain 

(TNFRSF10C), mRNA [NM_003841] 

10.17 

 

NM_000142 FGFR3 

Homo sapiens fibroblast growth factor 

receptor 3 (achondroplasia, thanatophoric 

dwarfism) (FGFR3), transcript variant 1, 

mRNA [NM_000142] 

10.133 

 

NM_152404 UGT3A1 

Homo sapiens UDP glycosyltransferase 3 

family, polypeptide A1 (UGT3A1), mRNA 

[NM_152404] 

10.083 
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NM_152670 C2orf51 
Homo sapiens chromosome 2 open reading 

frame 51 (C2orf51), mRNA [NM_152670] 
9.5914 

 

NM_005268 GJB5 
Homo sapiens gap junction protein, beta 5 

(GJB5), mRNA [NM_005268] 
9.5447 

 

NM_000422 KRT17 
Homo sapiens keratin 17 (KRT17), mRNA 

[NM_000422] 
9.5142 

 

NM_033120 NKD2 

Homo sapiens naked cuticle homolog 2 

(Drosophila) (NKD2), mRNA 

[NM_033120] 

8.9252 

 

BC063385 TRAα 

Homo sapiens T cell receptor alpha locus, 

mRNA (cDNA clone MGC:71411 

IMAGE:4853814), complete cds. 

[BC063385] 

8.706 

 

NM_015879 ST8SIA3 

Homo sapiens ST8 alpha-N-acetyl-

neuraminide alpha-2,8-sialyltransferase 3 

(ST8SIA3), mRNA [NM_015879] 

8.6842 

 

NM_005523 HOXA11 
Homo sapiens homeobox A11 (HOXA11), 

mRNA [NM_005523] 
8.521 

 

NM_024989 PGAP1 
Homo sapiens GPI deacylase (PGAP1), 

mRNA [NM_024989] 
8.3487 

 

NM_018558 GABRQ 

Homo sapiens gamma-aminobutyric acid 

(GABA) receptor, theta (GABRQ), mRNA 

[NM_018558] 

8.2783 

 

AK125985 AK125985 
Homo sapiens cDNA FLJ43997 fis, clone 

TESTI4021456. [AK125985] 
8.1169 

 

CB852325 CB852325 

UI-CF-FN0-afp-n-21-0-UI.s1 UI-CF-FN0 

Homo sapiens cDNA clone UI-CF-FN0-

afp-n-21-0-UI 3', mRNA sequence 

[CB852325] 

7.8293 

 

NM_002392 MDM2 

Homo sapiens Mdm2, transformed 3T3 cell 

double minute 2, p53 binding protein 

(mouse) (MDM2), transcript variant 

MDM2, mRNA [NM_002392] 

7.8157 

 

ENST000003775

25 

ENST00000377

525 

Protein FAM27E1. 

[Source:Uniprot/SWISSPROT;Acc:Q5T7N

7] [ENST00000377525] 

7.7762 

 

NM_004755 RPS6KA5 

Homo sapiens ribosomal protein S6 kinase, 

90kDa, polypeptide 5 (RPS6KA5), 

transcript variant 1, mRNA [NM_004755] 

7.7329 

 

NM_015404 DFNB31 

Homo sapiens deafness, autosomal 

recessive 31 (DFNB31), mRNA 

[NM_015404] 

7.657 
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NM_153268 PLCXD2 

Homo sapiens phosphatidylinositol-specific 

phospholipase C, X domain containing 2 

(PLCXD2), mRNA [NM_153268] 

7.6269 

 

AF334945 FKSG43 
Homo sapiens FKSG43 (FKSG43) mRNA, 

complete cds. [AF334945] 
7.4397 

 

NM_005755 EBI3 
Homo sapiens Epstein-Barr virus induced 

gene 3 (EBI3), mRNA [NM_005755] 
7.3997 

 

NM_014759 PHYHIP 

Homo sapiens phytanoyl-CoA 2-

hydroxylase interacting protein (PHYHIP), 

mRNA [NM_014759] 

7.3405 

 

NM_017495 RBM38 

Homo sapiens RNA binding motif protein 

38 (RBM38), transcript variant 1, mRNA 

[NM_017495] 

7.3358 

 

NM_002581 PAPPA 

Homo sapiens pregnancy-associated plasma 

protein A, pappalysin 1 (PAPPA), mRNA 

[NM_002581] 

7.2992 

 

THC2532504 THC2532504 

Q9BX12_HUMAN (Q9BX12) GTP 

binding protein 2 (Fragment), partial (26%) 

[THC2532504] 

7.0938 

 

BC085019 GDF5OS 

Homo sapiens hypothetical LOC554250, 

mRNA (cDNA clone MGC:99835 

IMAGE:6650156), complete cds. 

[BC085019] 

6.7892 

 

AF140675 ADAMTS7 

Homo sapiens zinc metalloprotease 

ADAMTS7 (ADAMTS7) mRNA, complete 

cds. [AF140675] 

6.4441 

 

NM_004097 EMX1 

Homo sapiens empty spiracles homeobox 1 

(EMX1), transcript variant 1, mRNA 

[NM_004097] 

6.4091 

 

NM_033393 KIAA1727 
Homo sapiens KIAA1727 protein 

(KIAA1727), mRNA [NM_033393] 
6.2283 

 

NM_014872 ZBTB5 

Homo sapiens zinc finger and BTB domain 

containing 5 (ZBTB5), mRNA 

[NM_014872] 

6.0517 

 

ENST000003270

26 

ENST00000327

026 

coiled-coil domain containing 57 

[Source:RefSeq_peptide;Acc:NP_932348] 

[ENST00000327026] 

6.0306 

 

NM_017434 DUOX1 
Homo sapiens dual oxidase 1 (DUOX1), 

transcript variant 1, mRNA [NM_017434] 
5.9386 

 

NM_007021 C10orf10 

Homo sapiens chromosome 10 open 

reading frame 10 (C10orf10), mRNA 

[NM_007021] 

5.8409 

 

NM_144503 F11R 
Homo sapiens F11 receptor (F11R), 

transcript variant 4, mRNA [NM_144503] 
5.7322 
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NM_182608 ANKRD33 
Homo sapiens ankyrin repeat domain 33 

(ANKRD33), mRNA [NM_182608] 
5.7262 

 

NM_152361 EID2B 

Homo sapiens EP300 interacting inhibitor 

of differentiation 2B (EID2B), mRNA 

[NM_152361] 

5.7078 

 

NM_021176 G6PC2 

Homo sapiens glucose-6-phosphatase, 

catalytic, 2 (G6PC2), transcript variant 1, 

mRNA [NM_021176] 

5.7053 

 

NM_018897 DNAH7 
Homo sapiens dynein, axonemal, heavy 

chain 7 (DNAH7), mRNA [NM_018897] 
5.6555 

 

NM_014454 SESN1 
Homo sapiens sestrin 1 (SESN1), mRNA 

[NM_014454] 
5.5047 

 

NM_080647 TBX1 
Homo sapiens T-box 1 (TBX1), transcript 

variant C, mRNA [NM_080647] 
5.4698 

 

NM_203463 LASS6 

Homo sapiens LAG1 homolog, ceramide 

synthase 6 (S. cerevisiae) (LASS6), mRNA 

[NM_203463] 

5.4147 

 

BU602485 BU602485 

AGENCOURT_10015118 NIH_MGC_142 

Homo sapiens cDNA clone 

IMAGE:6496567 5', mRNA sequence 

[BU602485] 

5.2332 

 

NM_148959 HUS1B 

Homo sapiens HUS1 checkpoint homolog b 

(S. pombe) (HUS1B), mRNA 

[NM_148959] 

5.2101 

 

NM_006290 TNFAIP3 

Homo sapiens tumor necrosis factor, alpha-

induced protein 3 (TNFAIP3), mRNA 

[NM_006290] 

5.1853 

 

NM_203286 PVRL1 

Homo sapiens poliovirus receptor-related 1 

(herpesvirus entry mediator C; nectin) 

(PVRL1), transcript variant 3, mRNA 

[NM_203286] 

5.0026 

 

NM_002283 KRT85 
Homo sapiens keratin 85 (KRT85), mRNA 

[NM_002283] 
4.9741 

 

ENST000002927

29 
USP41 

Ubiquitin carboxyl-terminal hydrolase 41 

(EC 3.1.2.15) (Ubiquitin thioesterase 41) 

(Ubiquitin-specific-processing protease 41) 

(Deubiquitinating enzyme 41) (Fragment). 

[Source:Uniprot/SPTREMBL;Acc:Q3LFD5

] [ENST00000292729] 

4.8886 

 

BP871540 BP871540 

BP871540 Sugano cDNA library, 

embryonal kidney Homo sapiens cDNA 

clone HKR00303, mRNA sequence 

[BP871540] 

4.6823 

 

A_24_P767699 A_24_P767699 Unknown 4.5259  



79 

 

NM_004443 EPHB3 
Homo sapiens EPH receptor B3 (EPHB3), 

mRNA [NM_004443] 
4.03 

 

NM_021127 PMAIP1 

Homo sapiens phorbol-12-myristate-13-

acetate-induced protein 1 (PMAIP1), 

mRNA [NM_021127] 

3.9596 

 

THC2660977 THC2660977 Unknown 3.9263  

NM_017654 SAMD9 

Homo sapiens sterile alpha motif domain 

containing 9 (SAMD9), mRNA 

[NM_017654] 

0.2496 

 

NM_139067 SMARCC2 

Homo sapiens SWI/SNF related, matrix 

associated, actin dependent regulator of 

chromatin, subfamily c, member 2 

(SMARCC2), transcript variant 2, mRNA 

[NM_139067] 

0.232 

 

NM_001280 CIRBP 
Homo sapiens cold inducible RNA binding 

protein (CIRBP), mRNA [NM_001280] 
0.2308 

 

NM_182616 C15orf38 

Homo sapiens chromosome 15 open 

reading frame 38 (C15orf38), mRNA 

[NM_182616] 

0.2277 

 

NM_004627 WRB 
Homo sapiens tryptophan rich basic protein 

(WRB), mRNA [NM_004627] 
0.2273 

 

NM_020422 TMEM159 
Homo sapiens transmembrane protein 159 

(TMEM159), mRNA [NM_020422] 
0.2263 

 

NM_022071 SH2D4A 
Homo sapiens SH2 domain containing 4A 

(SH2D4A), mRNA [NM_022071] 
0.2172 

 

NM_004759 MAPKAPK2 

Homo sapiens mitogen-activated protein 

kinase-activated protein kinase 2 

(MAPKAPK2), transcript variant 1, mRNA 

[NM_004759] 

0.2136 

 

THC2586959 THC2586959 

1PK0_D Chain D, Crystal Structure Of The 

Ef3-Cam Complexed With Pmeapp. {Homo 

sapiens} (exp=-1; wgp=0; cg=0), partial 

(70%) [THC2586959] 

0.212 

 

NM_033219 TRIM14 

Homo sapiens tripartite motif-containing 14 

(TRIM14), transcript variant 2, mRNA 

[NM_033219] 

0.211 

 

NM_003130 SRI 
Homo sapiens sorcin (SRI), transcript 

variant 1, mRNA [NM_003130] 
0.21 

 

NM_007203 
PALM2-

AKAP2 

Homo sapiens PALM2-AKAP2 protein 

(PALM2-AKAP2), transcript variant 1, 

mRNA [NM_007203] 

0.2083 

 

NM_181719 TMCO4 

Homo sapiens transmembrane and coiled-

coil domains 4 (TMCO4), mRNA 

[NM_181719] 

0.2044 
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THC2638360 THC2638360 

Q6STG2_HUMAN (Q6STG2) DNA 

polymerase-transactivated protein 3, partial 

(13%) [THC2638360] 

0.2044 

 

AF256215 ARNTL2 
Homo sapiens cycle-like factor CLIF 

mRNA, complete cds. [AF256215] 
0.2043 

 

NM_030928 CDT1 

Homo sapiens chromatin licensing and 

DNA replication factor 1 (CDT1), mRNA 

[NM_030928] 

0.2038 

 

NM_001008224 UACA 

Homo sapiens uveal autoantigen with 

coiled-coil domains and ankyrin repeats 

(UACA), transcript variant 2, mRNA 

[NM_001008224] 

0.2023 

 

A_24_P927230 A_24_P927230 Unknown 0.2015  

NM_020964 KIAA1632 
Homo sapiens KIAA1632 (KIAA1632), 

mRNA [NM_020964] 
0.1988 

 

NM_024808 C13orf34 

Homo sapiens chromosome 13 open 

reading frame 34 (C13orf34), mRNA 

[NM_024808] 

0.1938 

 

NM_003384 VRK1 
Homo sapiens vaccinia related kinase 1 

(VRK1), mRNA [NM_003384] 
0.1937 

 

NM_002388 MCM3 

Homo sapiens MCM3 minichromosome 

maintenance deficient 3 (S. cerevisiae) 

(MCM3), mRNA [NM_002388] 

0.1906 

 

AB040957 KIAA1524 
Homo sapiens mRNA for KIAA1524 

protein, partial cds. [AB040957] 
0.1875 

 

AK055915 AK055915 
Homo sapiens cDNA FLJ31353 fis, clone 

MESAN2000264. [AK055915] 
0.1793 

 

NM_203284 RBPJ 

Homo sapiens recombination signal binding 

protein for immunoglobulin kappa J region 

(RBPJ), transcript variant 4, mRNA 

[NM_203284] 

0.1661 

 

NM_014857 RABGAP1L 

Homo sapiens RAB GTPase activating 

protein 1-like (RABGAP1L), transcript 

variant 1, mRNA [NM_014857] 

0.1656 

 

NM_004695 SLC16A5 

Homo sapiens solute carrier family 16, 

member 5 (monocarboxylic acid transporter 

6) (SLC16A5), mRNA [NM_004695] 

0.1612 

 

NM_004494 HDGF 

Homo sapiens hepatoma-derived growth 

factor (high-mobility group protein 1-like) 

(HDGF), mRNA [NM_004494] 

0.1605 

 

NM_198969 AES 

Homo sapiens amino-terminal enhancer of 

split (AES), transcript variant 1, mRNA 

[NM_198969] 

0.1605 
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NM_032294 CAMKK1 

Homo sapiens calcium/calmodulin-

dependent protein kinase kinase 1, alpha 

(CAMKK1), transcript variant 1, mRNA 

[NM_032294] 

0.1596 

 

AK090664 AK090664 
Homo sapiens cDNA FLJ33345 fis, clone 

BRACE2003713. [AK090664] 
0.1593 

 

NM_012140 SLC25A10 

Homo sapiens solute carrier family 25 

(mitochondrial carrier; dicarboxylate 

transporter), member 10 (SLC25A10), 

mRNA [NM_012140] 

0.1588 

 

NM_052853 ADCK2 
Homo sapiens aarF domain containing 

kinase 2 (ADCK2), mRNA [NM_052853] 
0.1581 

 

NM_003243 TGFBR3 

Homo sapiens transforming growth factor, 

beta receptor III (TGFBR3), mRNA 

[NM_003243] 

0.1574 

 

AK021837 AK021837 
Homo sapiens cDNA FLJ11775 fis, clone 

HEMBA1005891. [AK021837] 
0.156 

 

NM_016052 RRP15 

Homo sapiens ribosomal RNA processing 

15 homolog (S. cerevisiae) (RRP15), 

mRNA [NM_016052] 

0.1462 

 

ENST000003076

62 
SYNPO 

Synaptopodin. 

[Source:Uniprot/SWISSPROT;Acc:Q8N3V

7] [ENST00000307662] 

0.144 

 

D14041 RBPJ 
Homo sapiens mRNA for H-2K binding 

factor-2, complete cds. [D14041] 
0.1431 

 

NM_173636 WDR62 
Homo sapiens WD repeat domain 62 

(WDR62), mRNA [NM_173636] 
0.1393 

 

ENST000003592

36 
FLJ20674 

CDNA FLJ20674 fis, clone KAIA4450. 

[Source:Uniprot/SPTREMBL;Acc:Q9NWQ

7] [ENST00000359236] 

0.1383 

 

NM_018199 EXDL2 
Homo sapiens exonuclease 3'-5' domain-

like 2 (EXDL2), mRNA [NM_018199] 
0.1366 

 

THC2607337 THC2607337 Unknown 0.1354  

ENST000003748

51 
C9orf125 

Uncharacterized protein C9orf125. 

[Source:Uniprot/SWISSPROT;Acc:Q9BRR

3] [ENST00000374851] 

0.1276 

 

NM_175709 CBX7 
Homo sapiens chromobox homolog 7 

(CBX7), mRNA [NM_175709] 
0.1259 

 

NM_000916 OXTR 
Homo sapiens oxytocin receptor (OXTR), 

mRNA [NM_000916] 
0.1242 

 

A_32_P171043 A_32_P171043 Unknown 0.1202  

NM_024827 HDAC11 
Homo sapiens histone deacetylase 11 

(HDAC11), mRNA [NM_024827] 
0.1186 
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A_32_P36709 A_32_P36709 Unknown 0.1158  

NM_024693 ECHDC3 

Homo sapiens enoyl Coenzyme A 

hydratase domain containing 3 (ECHDC3), 

mRNA [NM_024693] 

0.1099 

 

AK125077 AK125077 
Homo sapiens cDNA FLJ43087 fis, clone 

BRTHA3019105. [AK125077] 
0.1041 

 

NM_007331 WHSC1 

Homo sapiens Wolf-Hirschhorn syndrome 

candidate 1 (WHSC1), transcript variant 8, 

mRNA [NM_007331] 

0.103 

 

NM_152913 TMEM130 
Homo sapiens transmembrane protein 130 

(TMEM130), mRNA [NM_152913] 
0.1005 

 

NM_017915 C12orf48 

Homo sapiens chromosome 12 open 

reading frame 48 (C12orf48), mRNA 

[NM_017915] 

0.0998 

 

THC2677783 THC2677783 Unknown 0.0937  

NM_005498 AP1M2 

Homo sapiens adaptor-related protein 

complex 1, mu 2 subunit (AP1M2), mRNA 

[NM_005498] 

0.0867 

 

NM_024490 ATP10A 
Homo sapiens ATPase, Class V, type 10A 

(ATP10A), mRNA [NM_024490] 
0.0818 

 

NM_133468 BMPER 
Homo sapiens BMP binding endothelial 

regulator (BMPER), mRNA [NM_133468] 
0.0763 

 

NM_145251 STYX 

Homo sapiens serine/threonine/tyrosine 

interacting protein (STYX), mRNA 

[NM_145251] 

0.0724 

 

NM_000882 IL12A 

Homo sapiens interleukin 12A (natural 

killer cell stimulatory factor 1, cytotoxic 

lymphocyte maturation factor 1, p35) 

(IL12A), mRNA [NM_000882] 

0.0702 

 

BC047636 BC047636 
Homo sapiens cDNA clone 

IMAGE:4822429. [BC047636] 
0.0677 

 

NM_000891 KCNJ2 

Homo sapiens potassium inwardly-

rectifying channel, subfamily J, member 2 

(KCNJ2), mRNA [NM_000891] 

0.0657 

 

NM_016448 DTL 
Homo sapiens denticleless homolog 

(Drosophila) (DTL), mRNA [NM_016448] 
0.0554 

 

NM_004336 BUB1 

Homo sapiens BUB1 budding uninhibited 

by benzimidazoles 1 homolog (yeast) 

(BUB1), mRNA [NM_004336] 

0.0461 
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CHAPTER 3.  

IDENTIFYING THE ROLE OF RGS16 IN PANCREATIC CANCER CELL 

MIGRATION AND INVASION
2
 

SUMMARY 

Pancreatic cancer is ranked as the fourth highest cause of cancer-related deaths in the United 

States with a five-year survival rate <5%.  Pancreatic cancer is associated with early systemic 

dissemination resulting in the majority of newly diagnosed patients having aggressive non-

localized cancer and non-eligibility for curative treatments.  New therapies are needed to inhibit 

and treat metastatic pancreatic cancer.  A study aimed at identifying markers for pancreatic 

cancer metastasis found that Regulator of G protein Signaling 16 (RGS16) is downregulated in 

patients with lymph node metastases compared to patients with non-lymph node metastasized 

pancreatic cancer.  RGS16 belongs to a large family of proteins that play a role in swiftly 

shutting down G protein-coupled receptor pathways and is implicated in turning off signaling of 

several oncogene pathways that are involved in proliferation, migration, and invasion of cancer 

cells.  Currently, the role of RGS16 in pancreatic cancer is unknown.   

We found that the expression of RGS16 mRNA was downregulated in established pancreatic 

cancer cell lines compared to mRNA extracted from normal human pancreatic tissue.  We 

exogenously expressed RGS16 and/or GFP (control) using adenoviral vectors in established 

pancreatic cancer cell lines (BxPC-3, PANC-1, or AsPC-1) and measured the impact of RGS16 

expression on cell migration, invasion and cell viability. Expression of RGS16 inhibited 

migration and invasion of BxPC-3 and AsPC-1 cells but did not modify PANC-1 cell migration.  

                                                 
2
 A portion of this work has been submitted and accepted for publication in the journal Genes 

and Cancer (see Appendix for draft) or [175]. 
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RGS16 expression did not alter BxPC-3, PANC-1, or AsPC-1 cell growth stimulated by FBS or 

EGF (epidermal growth factor). Experiments investigating the mechanism behind RGS16 

suppression of migration and invasion found no change in the levels of phosphorylated AKT and 

ERK suggesting RGS16 inhibits pancreatic migration and invasion independent of the 

PI3K/AKT and MAPK pathways.   

For the first time we have shown that RGS16 inhibits EGF induced migration and invasion of 

pancreatic cancer cells.  Further studies are needed to elucidate the mechanism(s) used by 

RGS16 to inhibit pancreatic cancer cell migration and invasion.        

INTRODUCTION 

In 2014, the American Cancer Society estimates that approximately 46,420 individuals will 

be diagnosed with pancreatic cancer and 39,590 will die from this disease [83]. The one-year 

survival rate for all stages of pancreatic cancer is 20% and the five-year survival rate is 6% [83].  

An analysis looking at the five-year survival rates of various cancers over a span of thirty years 

found that pancreatic cancer had the least improvement from 2% (1975-1977) to 6% (2003 to 

2009) [83].  The majority of patients newly diagnosed with pancreatic cancer present with highly 

progressed and/or metastatic cancer that is resistant to treatment [84, 85].  Due to the late stage 

of diagnosis and the aggressive nature of this disease, less than 20% of pancreatic cancer patients 

are eligible for the potentially curative surgery [85, 220].  Therefore, there is a great need for 

more effective drugs aimed at treating or preventing metastatic pancreatic cancer.  

The presence of lymph-node metastases is regarded as a negative prognostic factor for 

patients who have undergone pancreatic surgery [85, 92].  In order to find biomarkers for lymph 

node metastasis to aid in patient prognosis, cDNA microarrays were used to analyze gene 

expression in local vs. lymph-node metastasized pancreatic cancer [149].  Microarray analysis 
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revealed decreased expression of Regulator of G-protein signaling 16 (RGS16) in pancreatic 

tumors with lymph-node metastases compared to non-metastasized pancreatic cancer [149].  

Immunohistological analysis revealed only 5.7% (1 out of 17) of the pancreatic tumors with 

lymph-node metastases had expression of the Regulator of G-protein signaling 16 (RGS16) 

compared to 70.6% (12 out of 17) of pancreatic tumors with non-metastasized pancreatic cancer 

[149]. Furthermore, decreased expression of RGS16 was associated with poor pancreatic cancer 

patient survival indicating the potential of RGS16 as a pancreatic cancer prognostic marker 

[149].   

RGS16, a signaling molecule we identified as a p53 and pRb cross-talk candidate belongs to 

a large family of proteins that play a role in swiftly shutting down G protein-coupled receptor 

(GPCR) signaling pathways [134, 135].  RGS16 is a GTPase activating protein (GAP) that 

enhances GTPase activity of the α-subunit of G proteins associated with G-protein coupled 

receptors (GPCR). RGS16 has been implicated in negatively regulating the MAPK, AKT/PI3K, 

RhoA, and SDF-1/CxCR4 oncogene pathways in normal or cancer cell lines [135, 141, 164, 

171].  These oncogene pathways have been implicated in cancer progression processes (such as: 

proliferation, survival, chemoresistance, migration, invasion, and metastasis) in a variety of 

malignancies including pancreatic cancer [221-225].  

Few reports have been published that describe the impact of RGS16 on cancer cell signaling 

and progression.  Among these are: increased expression of RGS16 in pediatric high 

hyperdiploid acute lymphoblastic leukemia (ALL) and colon cancer; however, functional 

analysis has not been performed to identify any oncogenic function of RGS16 in these cancers 

[147-149].   Functional and expression analysis of RGS16 has been performed in breast cancers.  

The RGS16 promoter is located at a site that is vulnerable to allelic imbalances that can result in 
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promoter methylation of RGS16 in 10% of breast cancers with these genomic instabilities [150].  

Liang et al. (2009) found that RGS16 overexpression in breast cancer cell lines decreased EGF 

induced proliferation and AKT activation by binding to the p85-alpha subunit of PI3K 

preventing the phosphorylation of AKT [171]. RGS16 has also been associated with the anti-

proliferative effect of retinoic acid in neuroblastoma cells and the cytotoxity effect of the histone 

deacetylase inhibitor Vorinostat and lysine-specific demethylase 1 knock-down in triple negative 

breast cancers [162, 163].  The current data suggest RGS16 plays a role in cancer signaling, 

however, more research is needed to delineate the function of RGS16 in cancer cells. 

Due to pre-existing data on RGS16 expression and function, we hypothesized that exogenous 

expression of RGS16 would inhibit migration and proliferation of pancreatic cancer cells in 

vitro.  We chose to focus our investigations on EGF induced migration and invasion because 1) 

RGS16 inhibits EGF signaling in breast cancer cells, and 2) the epidermal growth factor receptor 

(EGFR/ERBB-1) is overexpressed in ~85% of pancreatic cancers, and is linked with 

development, invasion, and decreased survival in this deadly disease [110, 115, 226, 227]. 

Currently, RGS16 has not been linked with inhibition of cancer cell metastasis nor has its 

function been investigated to understand the consequences of its downregulation in metastasized 

pancreatic cancer. 
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MATERIALS AND METHODS 

Cell culture and virus transductions 

The pancreatic cancer cell lines BxPC-3, AsPC-1, MIA PaCa-2, and PANC-1 (described in 

Table 4.1) were purchased from the American Type Culture Collection (Manassas, VA, USA).  

BxPC-3, AsPC-1, MIA PaCa-2 and PANC-1 cells were grown in complete media (RPMI 

supplemented with 10% fetal bovine serum (FBS) (PAA Laboratories, Dartmouth, MA) and 1% 

Penicillin Streptomycin (P/S) (Mediatech, Inc. A Corning Subsidiary, Manassas, VA), RPMI 

supplemented with 15% FBS and 1% P/S or DMEM with 10% FBS and 1% P/S respectively). 

All cell lines were cultured at 37°C in a humidified 5% CO2 incubator.   

Ad.GFP (adenovirus containing GFP) and Ad.GFP.RGS16 (Adenovirus containing 

RGS16 and reporter gene GFP) viruses were purchased from Vector Biolabs (Philadelphia, PA).  

Viruses were amplified and tittered as previously described [183-185]. For each type of virus, 

concentration of 50 MOI (multiplicity of infection) were added to pancreatic cancer cells in 

media supplemented with 2% heat-inactivated Hyclone FBS (GE Healthcare Life Sciences, 

Pittsburgh, PA).   

Quantitative Real-time PCR analysis 

Total RNA was isolated from cells using TRIzol reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s protocol.  Total RNA (2ug) was reverse transcribed into cDNA 

using the High Capacity cDNA Reverse Transcription kit from Applied Biosystems (Foster City, 

CA) according to the manufacturer’s protocol.  Real-Time PCR was performed using the 

Applied Biosystems TaqMan Gene Expression Assays in the ABI 7000 detection system. 

TaqMan probes were purchased from Applied Biosystems [RGS16 (HS00892674_m1), and 

GAPDH (HS02758991)]. The relative fold change for each marker was calculated using the 2
-

ΔΔCT
 analysis according to Livak et.al and statistical significance was determined using a one 
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way ANOVA with a Tukey’s post-hoc test using Prism V6.0c (GraphPad Software, Inc., La 

Jolla, CA)  [187].    

Wound Healing Assay 

Pancreatic cancer cells (BxPC-3, AsPC-1 and PANC-1) were placed in a 6 well plate at 

approximately 70% confluency.  The following day, 50 Multiplicity of Infection (MOIs) of 

Ad.GFP (control) or Ad.GFP.RGS16 were added to the cells in media containing 2% heat-

inactivated FBS and incubated for 24 hours.  The media was then changed to complete media 

(10% FBS for BxPC-3 and PANC-1 or 15% for AsPC-1) and cells incubated for 24hrs.  Forty 

eight hours after the addition of the virus the media was changed from complete media to media 

supplemented with 0.5% FBS and 1% P/S and the cells incubated for additional 24-hours.  The 

media was replaced with PBS and three wounds or scratches were made per well using a p200 

pipette.  The cells were washed three times with PBS and incubated for 16-24 hours in complete 

media or media supplemented with 100ng/ml of EGF.  EGF was added to induce cell migration 

at a concentration previously described in [228-230]. Wound widths were measured and images 

taken at 0, 16, or 24 hrs after addition of media supplemented with FBS or EGF at 100x 

magnification using an Olympus DP71 microscope (Center Valley, PA).  Efficacy of virus 

transduction was confirmed using fluorescent microscopy to examine GFP expression prior to 

the start of the experiment.  Percent wound healing was determined using the following equation; 

% wound-healing = ([initial scratch width – final scratch width]/ initial scratch width) X 100.  

Three independent replicates were performed for each cell line.   
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MTT Assay 

BxPC-3, AsPC-1, and PANC-1 cells (5,000) were plated in quadruplicate in a 96 well 

tissue culture dish and incubated for 24 hours at 37 ֯C.  The pancreatic cancer cells were treated as 

described in the wound healing assay section. After the cells were serum starved (media 

supplement with 0.5% FBS and 1% P/S) for 24-hours complete media or media supplemented 

with 100ng/ml of EGF were added to the cells. A 1:10 dilution of MTT (thiazolyl blue 

tetrazolium bromide; MP Biomedicals; Santa Ana, CA) stock solution (5mg/ml diluted in PBS), 

was added to the media of the cells followed by a 2 hour incubation at 37 ֯C. The media was 

removed and DMSO was added to the cells to solubilize the purple formazan crystals. 

Absorbance (560nm) was determined at 0, 24, 48, and 72 hours after addition of supplemented 

media using the SpectraMax M2
e 
Molecular Devices

 
(Sunnyvale, CA).  Cell viability fold change 

was calculated using the average absorbance for each treatment group at 24, 48, or 72 hours 

divided by the initial absorbance at time zero. Percent viability was calculated using the average 

absorbance for each treatment divided by the average absorbance for the cells not treated with 

virus and multiplied by 100.  Statistical significance was assessed using Student’s t-test by Prism 

V6.0c.  The experiment was repeated 3 independent times.   

Invasion Assay 

BD Bio Coat Matrigel coated polycarbonate invasion chambers (Bedford, MA) 

containing membranes with 8um pores were used to assess the ability of RGS16 to inhibit 

pancreatic cancer cell migration and invasion.  BxPC-3 cells were plated into 6-well dish at 70% 

confluency, 24 hours later 50 MOIs of Ad.GFP or Ad.GFP.RGS16 virus were added to the cells 

followed by 24 hour incubation in complete media and 24 hours in low-serum media as 

described in the wound-healing section.  Chambers were re-hydrated in RPMI containing 1% P/S 
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and 0.1 % Bovine serum albumin (BSA, Fisher Scientific, Waltham, MA) for 2 hours at 37°C.  

BxPC-3 and AsPC-1 cells were collected and 25 x 10
4 

cells were added to the top of the 

chambers in RPMI supplemented with 1% P/S and 0.1% BSA.  RPMI supplemented with 

100ng/ml EGF, 1% P/S, 0.1% BSA was added to lower portion and the chambers were incubated 

for 18- (AsPC-1) or 20- (BxPC-3) -hours at 37°C.  Time points were determined by literature 

and previous preliminary experiments to optimize conditions of the assay.  The non-migrating 

cells were removed using a cotton swab and the invaded cells were fixed using 100% methanol 

(MeOH) for 5 minutes and stained using 0.5% crystal violet plus 20% MeOH (10-15 mins).  

Invaded cells were counted using 200x magnification with 12 different views.  Percentage of 

invasion compared to GFP control was calculated for each cell line [(# of invaded cellstreated / # of 

invaded cellcontrol) x 100].  Three replicates were performed for each cell line.    

Western Blot Analysis 

AsPC-1 and BxPC-3 cells were treated to express GFP and/or RGS16 using adenoviruses 

as described in the wound healing assay section.  Cells were collected after 0 min, 15 mins, 1 

hour and 24 hours after addition of EGF.  Cells were lysed in RIPA (Radioimmunoprecipitation 

assay) buffer plus protease inhibitors (Pierce Protease inhibitor Tablets 88661; Thermo 

Scientific, Rockford, IL).  Protein extracts (35-60ug) were loaded onto 10% or 12% 

polyacrylamide gels and proteins were separated using sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE).  Blots probed with mouse anti-panAKT (40D4, 1:2000), rabbit 

anti-phospho-AKT (p-AKT, S473 D9E, 1:2000), rabbit anti-phospho-p44/42 MAPK (p-ERK1/2, 

Thr202, Tyr204, D13.14.4E, 1:2000), rabbit anti-p44/42 MAPK (total-ERK1/2, 137F5, 1:1000) 

antibodies from Cell Signaling Technology (Danvers, MA) were blocked  in 5% BSA in Tris-

buffered saline solution pH 7.6 containing 0.1% Tween-20 (TBS-T).   Blots probed in rabbit 
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anti-E-cadherin (Santa Cruz Technologies, Dallas, TX, 1:1000), rabbit anti-RGS16 (Proteintech, 

Chicago, IL, 1:250-1:500, band detected at 23kDa) mouse anti-GAPDH (Chemicon 

International, Temecula, CA, 1:1000) or mouse anti-vimentin (AF-14b, 1:500)  were blocked an 

hour in 5% dry non-fat milk diluted in TBS-T.  The anti-vimentin (AMF14b), monoclonal 

antibody developed by Fulton, A.B. was obtained from the Developmental Studies Hybridoma 

Bank, created by the NICHD of the NIH and maintained at The University of Iowa, Department 

of Biology, Iowa City, IA 52242. Membranes were probed in primary antibody overnight at 4°C 

on a rocker. Following primary antibody incubation the membranes were washed and probed 

with Horseradish peroxidase (HRP)-conjugated goat anti-mouse (1:5000) or goat anti-rabbit 

(1:10000) secondary antibodies (Rockland, Gilbertsville, PA) for 1 hour at room-temperature.  

Primary and Secondary antibodies were diluted in TBS-T. Amersham ECL prime western 

blotting detection reagent was added to visualize the protein bands (RPN 2232, GE Life 

Sciences, Pittsburgh, PA).  Western blot images were captured using a FOTODYNE 

FOTO/Analyst FX (Hartland, WI) imaging camera.  Densitometry was performed using 

TotalLab Quant software (TotalLab Ltd, UK). 

Phalloidin F-actin staining 

BxPC-3 and AsPC-1 cells were plated into a six well dish at 70% confluency for 

adenovirus treatment and after 24 hours the cells were treated with 50 MOIs of Ad.GFP or 

Ad.RGS16 for 24 hours.  Cells were washed with PBS and plated into a Lab-TekII chamber slide 

system (Thermo Fisher Scientific, Waltham, MA) with a concentration of 50,000 cells/well and 

incubated for 24 hours in complete media.  Cells were then incubated in low serum (0.5% FBS) 

supplemented media for 24 hours.  Media supplemented with EGF (100ng/ml) was added to the 

cells for 15 min (BxPC-3) or 30 min (AsPC-1) to induce cytoskeleton rearrangement. Time 
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points were determined by literature and previous preliminary experiments to optimize 

conditions of the assay.   Cells were fixed in 4% paraformaldehyde in PBS (Fisher Scientific) for 

15 min and permeabilized using 0.1% Triton X-100 in PBS containing 1% BSA at room 

temperature.  Cells were blocked for 30 min in PBS containing 1% BSA at room temperature 

followed by 30 min incubation of a final concentration of 50nM of Acti-stain 555 Fluorescent 

Phalloidin (Cytoskeleton, Inc., Denvir, CO) at room-temperature in a dark humid chamber.  Cells 

were washed 3x in PBS + 1% BSA for 5 minutes and the nuclei were stained with 300nM DAPI 

for 2 min and the cells washed 3x in PBS + 1% BSA for 5 minutes.  F-actin was visualized at 

400x and 1000x using an Olympus DP71 microscope with a mercury fluorescent light source U-

LH100HG (Center Valley, PA).  The staining for phalloidin was performed three independent 

times in the AsPC-1 cells.     

Statistical Analysis 

All data were expressed as the mean ± SEM and represented using Graph Pad Prism 

V6.0c software (GraphPad Software, Inc., La Jolla, CA).  Differences between control and 

treated samples for the MTT (viability fold change), wound healing and invasion assay were 

analyzed by using Student’s t-test (Graph PadPrism V6.0c). Differences for percent viability 

determined by MTT assay was analyzed by two-way ANOVA with Dunnet’s post-hoc test for 

multiple comparisons.  Data from real-time PCR were analyzed by one-way ANOVA followed 

by Tukey post-hoc test. Additional statistical analysis used for qRT-PCR analyses are listed in 

the respective section. Data was considered significant when the p value was less than 0.05. 

Statistical Analysis tests used for qRT-PCR analyses are listed in the respective section. 
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Table 3.1: Characterization of pancreatic cancer cell lines [51, 111, 231, 232] 

 p53 p16 Ras EGFR Differentiation Origin Metastasis 

BxPC-3 mt del wt high moderate primary no 

PANC-1 mt del mt high poor primary yes 

AsPC-1 mt mt mt high poor metastatic (ascites) yes 

MiaPaCa-2 mt del mt low poor primary no 

mt = mutant, del = deleted, wt = wild-type    

RESULTS 

mRNA expression of RGS16 is decreased in pancreatic cancer cell lines. 

We first investigated the relative expression of RGS16 mRNA in the BxPC-3, MiaPaCa-

2, PANC-1, and AsPC-1 pancreatic cancer (pancreatic ductal adenocarcinomas) cell lines in 

order to characterize the endogenous expression of RGS16.  Expression of RGS16 was measured 

by qRT-PCR analysis and the relative RGS16 mRNA fold change was calculated in the four 

pancreatic cancer cell lines compared to total RNA from normal human pancreatic tissue.  

Expression of RGS16 was decreased in all four pancreatic cancer cell lines compared to control 

with BxPC-3 having the highest expression of RGS16 mRNA (Figure 3.1).  Expression of 

RGS16 varied between the four pancreatic cancer cell lines with BxPC-3 and MIA PaCa-2 

having significantly higher expression of RGS16 than PANC-1 and the metastatic derived AsPC-

1 cells.  Higher RGS16 expression was found in the more differentiated and less aggressive cell 

line, while less RGS16 expression correlated with the more aggressive and/or metastatic cell 

lines (Table 3.1).     
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Figure 3.1: Decreased expression of RGS16 mRNA relative to total RNA extracted from 

normal human pancreatic tissue.   Expression of RGS16 was measured using qRT-PCR in 

BxPC-3, MiaPaCa-2, PANC-1, and AsPC-1 cells.  Relative fold change was measured using total 

RNA extracted from normal human pancreatic tissue as the control.  One-way ANOVA with 

Tukey’s test for multiple comparison were used to test for statistical significance between the cell 

lines and control * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-value < 

0.0001.   
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Expression of RGS16 inhibited migration of BxPC-3 and AsPC-1 pancreatic cancer cells 

but not PANC-1.  

To test the hypothesis that RGS16 inhibits pancreatic cancer cell migration, we 

exogenously expressed RGS16 in BxPC-3, PANC-1, and AsPC-1 cells with an adenoviral vector 

and used wound-healing assays to measure cell migration. We chose BxPC-3, PANC-1, and 

AsPC-1 because these three cell lines are derived from tumors with varying expression of 

RGS16, differentiation status, mutations, presence of metastases, and expression of Epidermal 

Growth Factor Receptor (Table 3.1).  EGF was used to stimulate cell migration therefore; we did 

not use the MiaPaCa-2 cell line because of the lower levels of EGFR (Table 3.1).  We RGS16 

was expressed using Adenoviruses that contain RGS16 plus a GFP reporter (Ad.GFP.RGS16). 

An Adenovirus expressing GFP (Ad.GFP) was used as the vector control.  Expression of RGS16 

protein correlated with GFP expression in cells treated with Ad.GFP.RGS16 (Figure 3.2).  

Fluorescent microscopy was used to determine viral transductions prior to experiment (Figures 

3.3a, 3.4a, and 3.5a).  Overexpression of RGS16 significantly inhibited FBS and EGF induced 

migration of BxPC-3 cells and FBS induced migration of AsPC-1 cells, but had no effect on FBS 

and EGF induced migration of PANC-1 cells (Figures 3.3-3.5).  Interestingly, expression of 

RGS16 in BxPC-3 cells incubated in media supplemented with EGF caused an increase in 

wound width compared to control 16 hours after the start of the experiment.   
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Figure 3.2: Fluorescence of GFP associated with RGS16 protein expression in cells 

treated with Ad.GFP.RGS16.   Cells were plated and received the following treatment: 1) 

untreated cells, 2) Ad.GFP and 3) Ad.GFP.RGS16 treated cells.  Cells were incubated in 

complete and low serum media 24 hours each.  A) Images of GFP fluorescence were taken 

72 hours after treatment and B) protein expression for RGS16 and GAPDH was assessed by 

western blot analysis.  

 



97 

 

 

 

 

 

 

  

Figure 3.3: Expression of RGS16 inhibited migration of BxPC-3 cells.  

BxPC-3 cells were transduced with 50 MOI of Ad.GFP (CTRL) or Ad.GFP.RGS16.  A) 

Virus transduction was verified by fluorescent microscopy. B) Images (100x) and 

measurements of wounds were taken prior and 16 hours after addition of media 

supplemented with FBS (10%) or EGF (100ng/ml).  The dashed lines represent size of 

scratch at time 0.  C) Mean Percentage of wound healing ± SEM of three separate 

experiments (three scratches/well) was determined. Student’s t-test was used to determine 

statistical significance compared to control * p-value < 0.05, ** p-value < 0.01. 
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Figure 3.4: Expression of RGS16 did not inhibit migration of PANC-1 cells.   

Wound healing assays were performed as described in Figure 3.3 A) Fluorescent microscopy 

was used to verify virus transductions: B) Images (100X) were taken and C) percentages of 

wound healing were calculated at 24 hrs after the addition of media supplemented with FBS or 

EGF.   
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Figure 3.5: Expression of RGS16 inhibited migration of AsPC-1 cells.   

Wound healing assays were performed as described in Figure 3.3. A) Fluorescent microscopy was 

used to verify virus transductions: B) Images (100X) were taken and C) percentages of wound 

healing were calculated at 24 hrs after the addition of media supplemented with FBS or EGF, * p-

value < 0.05.   
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Expression of RGS16 inhibited EGF induced invasion of BxPC-3 and AsPC-1 cells.  

Since RGS16 inhibited EGF induced migration of BxPC-3 and AsPC-1 cells, matrigel 

invasion chambers were used to investigate whether RGS16 could also inhibit EGF induced 

invasion of these pancreatic cancer cells.  Media supplemented with EGF was used as the 

chemoattractant to induce migration and invasion of BxPC-3 and AsPC-1 cells expressing GFP 

and or RGS16. Compared to control cells. RGS16 expression significantly inhibited EGF 

induced invasion of the BxPC-3 and AsPC-1 cells by 35.73% and 66% respectively(Figure 3.7).   

 

  

Figure 3.6: Expression of RGS16 inhibited invasion of BxPC-3 and AsPC-1 cells.   

Matrigel invasion chambers were used to measure cell migration and invasion of GFP and/or 

RGS16 expressing BxPC-3 (A & B) and AsPC-1 (C & D) cells using EGF as a 

chemoattractant. Migrated cells were stained with Crystal Violet and counted at 200x 

magnification (A &C). Percent invasion was calculated for each cell line (B & D) * p-value < 

0.05.   



101 

 

Expression of RGS16 using adenoviruses did not modify cell viability 

The results from the wound healing assays demonstrated an increase in the wound width 

of BxPC-3 cells treated with Ad.GFP.RGS16 and incubated in media supplemented with EGF.   

This effect could be due to a decrease in the number of viable cells caused by expression of 

RGS16 or by a cytolytic effect of adenoviruses.  MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assays were used to determine if expression of RGS16 or infection 

with the adenoviruses affects the viability of the pancreatic cancer cell lines.  The cells were 

serum starved for 24 hours to remove any pre-existing growth factors. Complete media 

containing FBS (10 or 15%) or EGF (100 ng/ml) was added to induce growth of the pancreatic 

cancer cells. Absorbance was measured at 0, 24, 48, and 72 hours following the addition of FBS 

or EGF.  The fold change of viable cells after 24, 48, and 72 hours compared to initial viable cell 

number was calculated for BxPC-3, AsPC-1, and PANC-1 cells treated with Ad.GFP or 

Ad.GFP.RGS16.  Expression of RGS16 did not alter the number of viable BxPC-3, PANC-1 or 

AsPC-1 cells stimulated with FBS or EGF (Figure 3.7A – 3.7C).  The percentage of viable 

BxPC-3 and AsPC-1 cells treated with Ad.GFP or Ad.RGS16 was not significantly different 

compared to no virus treated controls (NV FBS or NV EGF) for any of the time points (Figure 

3.7D and 3.7E).  There was a significant 20-25% mean drop in cell viability for PANC-1 cells 

treated with Ad.GFP or Ad.GFP.RGS16 48 and 72 hours after the addition of FBS to serum 

starved cells (Figure 3.7F).  However, all migration and invasion experiments were completed at 

a time in which there was no significant change in the percentage of viable cells (experiment 

completion ≤ 24 hours).  The results from the MTT assays suggest that RGS16 expression does 

not have an impact on BxPC-3, PANC-1, and AsPC-1 cell viability and the concentration of 

virus used to transduce RGS16 was tolerated by the pancreatic cancer cells.  

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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Figure 3.7: Expression of RGS16 did not alter number of viable cells and concentration 

of Adenoviruses used was tolerated by BxPC-3, PANC-1, and AsPC-1 pancreatic cancer 

cells.   A-C) The fold change of viable cells was calculated by comparing the initial 

absorbance (0HR) compared to absorbance for 24, 48, and 72 hours after the addition of 

complete media or media supplemented with 100ng/ml of EGF (mean fold change of viable 

cells +/- SEM of three separate experiments) Statistical significance was tested using paired 

Student’s t-test.  D-F) Effect of Adenoviruses on number of viable pancreatic cancer cells was 

determined by calculating the % viability by comparing the number of viable cells treated 

with Ad.GFP or Ad.GFP.RGS16 to cells that were not treated with viruses.  Data represents 

mean % of viable cells +/- SEM of three separate experiments. Statistical significance was 

tested using two-way ANOVA with Dunnet’s post-hoc test for multiple comparisons.  

*P<0.05, # P<0.01 (NV =  No virus)  
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Expression of RGS16 did not alter EGF induced expression of p-AKT (phosphorylated 

AKT), p-ERK (phosphorylated ERK). 

Our next step was the investigation of the mechanism(s) employed by RGS16 to regulate 

EGF induced cell migration and invasion.  Activation of EGFR by EGF initiates a signaling 

cascade that is most commonly associated with activation of the PI3K/AKT and mitogen 

activated protein kinase (MAPK) pathways [110, 114].  Phosphorylation and activation of AKT 

or ERK1/2 (MAPK) are both known to phosphorylate downstream signaling molecules and 

transcription factors that are responsible for promoting cell migration and invasion [119, 233-

235].  Protein expression of p-AKT and p-ERK in BxPC-3 and AsPC-1 cells treated with EGF 

were determined in order to delineate if one or both of these pathways is regulated by RGS16. 

Resulting in the inhibition of EGF induced migration and invasion.  There was no change 

detected in the protein levels of p-AKT or p-ERK following 15 minutes of EGF treatment of 

BxPC-3 or AsPC-1 cells expressing RGS16 compared to GFP controls (Figure 3.8).  This data 

suggests RGS16 inhibits migration and invasion of the pancreatic cancer cells independently of 

AKT and ERK activity.   
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 Figure 3.8: RGS16 did not alter expression of phosphorylated AKT (p-AKT) or 

phosphorylated ERK (p-ERK).  Western blot analyses were used to examine levels of 

phosphorylated AKT and ERK in BxPC-3 and AsPC-1 cells expressing GFP and/or RGS16 

treated with or without EGF for 15 min (A). The mean fold change +/- SEM of p-AKT/total AKT 

(t-AKT) and p-ERK/total ERK (t-ERK) was calculated using densitometry analysis (B & C).   
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Investigation of RGS16’s Efect on epithelial mesenchymal transition markers and 

cytoskeleton rearrangement 

Next we examined if expression of RGS16 inhibits cell migration and invasion by 

preventing epithelial mesenchymal transition (EMT) in BxPC-3 and AsPC-1 cells. EGF 

promotes EMT by decreasing the expression of the epithelial cell-cell adhesion molecule E-

cadherin and increasing the expression of mesenchymal phenotype markers such as vimentin, 

fibronectin, and n-cadherin; these mesenchymal proteins allow cell migration and invasion [116, 

126].  Using western blot analysis, we examined the expression of vimentin and E-cadherin 1 

hour and 24 hours following EGF treatment.  Expression of RGS16 up-regulated E-cadherin 

protein levels in BxPC-3 but not in the metastatic AsPC-1 cells (Figure 4.10).  Furthermore, 

vimentin expression did not change in either BxPC-3 or AsPC-1 cells expressing RGS16 

compared to the GFP control (Figure 3.9).   

Rearrangement of the actin cytoskeleton is an integral part of cancer cell migration and 

invasion and it is regulated by members of the Rho GTPase family.  Activation of the 

EGF/EGFR pathway initiates actin cytoskeleton rearrangement through activation of Rho 

GTPases (Cdc42, RhoA, Rac1) that aide in the migration of cancer cells [121, 122, 236].  We 

treated serum starved cells expressing GFP and or RGS16 with EGF for 15- (BxPC-3) or 30- 

(AsPC-1) minutes and stained the F-actin of the cells using phalloidin.  There was no obvious 

difference in the arrangement of the F-actin in BxPC-3 and AsPC-1 cells expressing RGS16 

compared to GFP controls (Figure 3.10).  Both cell lines contain a heterogeneous population 

making it difficult to quantify a difference in the actin organization between cells expressing 

GFP and/or RGS16.   
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Figure 3.9: RGS16 increased expression of E-cadherin in BxPC-3 cells but not AsPC-1 and 

did not alter vimentin expression in either cell line.  Western blots were used to determine E-

cadherin and Vimentin expression in BxPC-3 and AsPC-1 expressing GFP and/or RGS16 (A & 

C) and treat with EGF for 24h.  Mean fold change +/- SEM of EMT markers was calculated 

using densitometry analysis for both EMT markers (B & D).  * p-value < 0.05 
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Figure 3.10: F-actin of BxPC-3 and AsPC-1 cells did not show obvious 

reorganization in cells expressing GFP and/or RGS16.   BxPC-3 and AsPC-1 cells 

expressing GFP and/or RGS16 were treated with EGF for 15(BxPC-3) or 30 (AsPC-1) minutes, 

fixed, and stained using Phalloidin conjugated to rhodamine and Dapi cells were imaged at (A & 

B) 400x or (C) 1000x  
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DISCUSSION 

Pancreatic cancer and RGS16 significance 

A large portion of patients newly diagnosed with pancreatic cancer present with metastatic or 

locally advanced disease resulting in their ineligibility for curative pancreatic surgical resection 

[237].  Early dissemination and aggressiveness of this disease contributes to the dismal survival 

rates of pancreatic cancer [237, 238].  Loss of RGS16 has been identified as a possible marker 

for lymph node metastasis in pancreatic cancer; however, the function of RGS16 is unknown 

[149].  We, for the first time, showed that RGS16 expression inhibits pancreatic cancer cell 

migration and invasion suggesting that loss of RGS16 could be important in the metastatic 

process.   

New treatments are needed to prevent or treat advanced or metastatic cancer. However, in 

order to develop new treatments we need a better understanding of the molecular changes that 

occur in pancreatic cancer.  We identified RGS16 as a p53 and pRb cross-talk candidate (Chapter 

2). RGS16 has been of interest to further our studies for two reasons: 1) RGS16 regulates 

GPCRs, which are common targets for deregulation in cancer and 2) RGS16 has been linked to 

regulating the MAPK/RAS, PI3K/AKT, RhoA, and SDF-1/CxCR4 oncogene pathways [133, 

135, 141, 164, 171].  Investigations have found that oncogene pathways can feed into one 

another and bypass or overcome the inhibitory effects of monoclonal antibodies or other targeted 

inhibitors. For example, in melanoma, increased production of VEGF or increased expression or 

activation of the platelet-derived growth factor receptor-β or insulin-like growth factor-1 receptor 

is associated with resistance to BRAF inhibitors, demonstrating mechanisms cancer cells use to 

overcome single target modalities [239].  Therefore investigation of RGS16, a protein known to 

modulate several oncogene pathways will aid in understanding mechanisms by which cells alter 
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multiple signaling pathways to prevent carcinogenesis.  This information could then be used for 

future drug development.   

RGS16 and cell migration and invasion 

RGS16 has been linked with inhibition of cell migration in canonical (through regulation 

of GPCR signaling) and non-canonical pathways in normal cells. RGS16 inhibits 

megakaryocytes and T lymphocyte migration by regulating the activation of the GPCR CxCR4 

and decreasing T helper type 2 and 17 cell trafficking through regulation of CCR4 and CCR10 

chemokine pathways representing the canonical form of RGS signaling [136, 137, 141]. The 

activation of RhoA, a small GTPase involved in reorganizing actin cytoskeleton and mediating  

EGF induced pancreatic cell invasion is inhibited in MCF-7 cells by RGS16 preventing the 

relocation of Gα13 to the plasma membrane thus blocking Gα13 mediated activation of RhoA  

[164, 240].  The regulation of RhoA activation by RGS16 is an example of a non-canonical, non- 

GPCR-mediated mechanism.  There are no published reports demonstrating inhibition or 

activation of cell invasion by RGS16.  However, another member of the R4 subfamily of RGS 

proteins, RGS4, suppresses breast cancer migration and invasion in vitro and in vivo by 

regulating PAR-1, CxCR4 signaling, and RAC-1 lamellipodia formation [241].   

Ours is the first report demonstrating a role of RGS16 in inhibiting EGF induced cell 

migration and invasion.  The GPCR CxCR4 is aberrantly expressed in malignant and cancer 

stem cells and contributes to pancreatic cancer progression by aiding in gemcitabine resistance, 

cell migration, and invasion [173, 222, 242, 243].  Although our studies focused on EGF induced 

cell migration and invasion, RGS16 may be able to inhibit other pathways that mediate cell 

migration and invasion such as CxCR4.   
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EGF and pancreatic cancer signaling 

RGS16 and EGF induced activation of the PI3K and AKT pathways 

Pancreatic carcinomas have overexpression or amplification of the tyrosine kinase 

receptors EGFR/erbB1 (~85%) or HER2/erbB2 (2%) [110, 244].  Activation of EGFR by its 

ligands EGF or TGFα induces or enhances activation of a variety of signaling pathways 

including PI3K/AKT, MAPK, SRC, PLC, and the small Rho GTPases (Rac1,RhoA, RhoC, and 

Cdc42) [114, 121, 122].  These pathways are involved in activating processes that enhance cell 

proliferation, migration, invasion, EMT, and metastasis in pancreatic cancer [119, 126, 233].  For 

example, both AKT and ERK can aid in cell migration and invasion through regulating 

production of matrix metalloproteinase 9 [233, 245]. Mutations downstream of EGFR resulting 

in AKT2 amplification or constitutive activation of K-Ras (MAPK pathway) also occur in 

pancreatic cancer, making EGFR and its downstream components popular targets for pancreatic 

cancer treatments [96, 109].  We investigated whether RGS16 can inhibit EGF induced 

migration and invasion via regulation of AKT and ERK (MAPK). A study conducted using 

breast cancer cells found that RGS16 knockdown resulted in an increase rate of EGF induced 

proliferation in these cells due to increase in p-AKT [171], suggesting that RGS16 may regulate 

proliferation by preventing the phosphorylation and activation of AKT.  In our studies, RGS16 

had no effect on the number of viable pancreatic cancer cells and did not decrease the protein 

levels of p-AKT compared to control.  Our conflicting results could be due to two possibilities, 

1) RGS16 targets different signaling pathways in pancreatic cancer compared to breast cancer or 

2) mutations in pancreatic cancer (for example K-Ras or AKT2) overcome the inhibitory effect 

of RGS16 on pancreatic cancer viability or activation of AKT.   
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RGS16 can inhibit MAPK activation via regulation of G proteins associated with GPCRs 

[135].  However, other RGS molecules are known to directly interact and regulate localization 

and activity of members in the MAPK cascade.  We examined the expression of phosphorylated 

ERK and found no change in BxPC-3 and AsPC-1 cells expressing RGS16 relative to the GFP 

controls.  Our data suggests RGS16 inhibits EGF induced migration and invasion independently 

of the PI3K/AKT and MAPK pathways.   

RGS16 and EGF induced activation of EMT and F-actin rearrangement 

Cancer cells can adapt a mesenchymal phenotype aiding in their dissociation and migration 

to a distant site [126].  EGF can induce EMT in a variety of cancer cells by decreasing 

expression or localization of E-cadherin and increasing the expression of EMT markers such as 

N-cadherin, vimentin, and fibronectin [116, 246].  Knockdown of EGFR in the pancreatic cancer 

cell line PANC-1 inhibited EMT and decreased cell migration and invasion [116]. RGS16 may 

play a role in regulating E-cadherin.  Triple negative breast cancer cells that were knocked-down 

for lysine-specific demethylase1 (LSD1) and treated with the histone deacetylase inhibitor 

(SAHA) had increased expression of RGS16 that was vital for growth suppression and increased 

expression of E-cadherin [163].  Our studies showed increased expression of E-cadherin in 

BxPC-3 cells expressing RGS16 compared to GFP control.  We did not see a change in the 

expression of E-cadherin in the metastatic cell line AsPC-1.  This could be due to the differences 

in the status of K-Ras in AsPC-1 (mutant) vs. BxPC-3 (wild-type) cells.  Studies in prostate 

cancer cells overexpressing K-Ras found that increased hypermethylation of E-cadherin 

promoter mediated by K-Ras prevented E-cadherin expression [247].  Promoter methylation or 

other processes regulated by mutated K-Ras could be responsible for prevention of E-cadherin 

expression in AsPC-1.  Our data suggests RGS16 may have a role in regulating E-cadherin 
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expression, however, further studies are needed to determine if increased expression of E-

cadherin aids in the inhibition of BxPC-3 cell migration and invasion.  We did not find a change 

in vimentin expression.  However in addition to the amount of this protein, phosphorylation of 

vimentin regulates its organization, localization, and function [248, 249].  We did not examine 

the localization or phosphorylation status of vimentin following RGS16 expression, and this is 

something to consider for future studies. 

EGF can also lead to the activation of RhoA, Rac1 and other Rho GTPases that are also 

associated with EMT and initiate rearrangement of filamentous actin (F-actin) [121, 122].  Rac1, 

RhoA and Cdc42 are activated by oncogenic Ras and activation of these proteins is vital for Ras 

transformation and/or cell motility [250, 251]. Activation of Rac1, RhoA, and Cdc42 results in 

reorganization of the actin cytoskeleton causing lamellipodia, stress fiber, or filopodia formation 

respectively that aids in different aspects of cell migration [126, 131].  Activation of Rho 

GTPases contributes to cell motility, invasion, and metastasis [131].  RhoA and RhoC have both 

been shown to be important signaling molecules required for migration, invasion, and metastasis 

of pancreatic cancer.  Quantitative in vivo fluorescence lifetime imaging of mice with p53  and 

K-Ras mutant pancreatic cancer found increased RhoA activity in certain subcellular locations 

that are important for invasion [252]. Fukumoto and colleagues found that the Rho GTPase 

RhoC is overexpressed in human pancreatic cancer and is associated with metastases and 

decreased survival [108].  Inhibition of EGF induced activation of RhoA alone or in combination 

with inhibition of RhoB and RhoC by p190 RhoGap (converts active RhoGTP to inactive 

RhoGTP) in pancreatic cancer cells repressed EGF induced invasion and metastasis [240, 253].   

RGS16 can inhibit activation of RhoA by binding and preventing the small G protein, Gα13 

from mediating the activation of RhoA in MCF-7 cells [164].  Although commonly associated 
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with GPCR signaling, Gα13 was identified as a mediator of growth factor induced migration and 

was found to bind and aid in the localization of active Rac1 to sites of lamellipodia formation 

[254].  The significance of Gα13 binding to Rac1 following growth factor stimulation in unclear, 

but this interaction may aid in the deactivation of Rac1 resulting in the turnover of actin to be 

used for formation of stress fibers or lamellipodia in the cytoskeleton [254].  Rac1 and RhoA 

work in an antagonistic fashion and prolonged activation of Rac1 may inhibit RhoA induced 

formation of stress fibers needed for cell motility [255, 256].   

Although only RGS16 has been directly linked to regulation of RhoA, based on literature 

reports other Rho GTPases could be targets for RGS16 regulation.  We examined F-actin 

organization in BxPC-3 and AsPC-1 cells expressing GFP and/or RGs16 in order to 1) determine 

if there is a change in cytoskeleton, and 2) narrow down possible targets for future study.  We 

were unable to detect any significant change between cells treated with Ad.GFP or 

Ad.GFP.RGS16.  This was due in part to the heterogeneity of the cell population making it 

difficult to quantify differences between control and RGS16 expressing cells.  Also any changes 

to the organization of the cytoskeleton could be subtle and not detectable using phalloidin 

staining.  Measurement of Rho GTPases’ activation state will be required to test the hypothesis 

that RGS16 is regulating cytoskeleton rearrangement through modulation of RhoA, RhoC, Rac1, 

or Cdc42.   

FUTURE STUDIES AND CONCLUSIONS 

RGS16 is downregulated in metastatic pancreatic cancer and for the first time we have 

delineated a function of RGS16 in inhibiting EGF induced pancreatic cancer cell migration and 

invasion in vitro.  Phosphorylation is an important mechanism that regulates RGS16 GTPase, 

accelerating its activity and stability [157-159].  Tyrosine 168 is located in the RGS box and its 
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phosphorylation by EGF/EGFR enhances the GTPase activity of RGS16.  In contrast, 

phosphorylation by Src slowed degradation of RGS16 [157, 158].  Our data suggests the 

enhancement of RGS16 activity by EGF/EGFR functions in a negative feedback loop to inhibit 

pancreatic cancer migration and invasion.  Our study focused on examining migration and 

invasion mediated by the EGF/EGFR pathway.  However, a single RGS protein can interact and 

regulate signaling of multiple pathways ([134, 172]).  Future studies are needed to determine if 

RGS16 can inhibit cell migration and invasion through other pathways such as the SDF-

1/CxCR4 pathway.  The mechanism behind RGS16 inhibition of migration and invasion still 

remains unclear, however, our studies show it is independent of the PI3K/Akt and MAPK 

pathways.  More experiments are needed to determine the mechanism governing RGS16 

inhibition of EGF induced migration and invasion.  Examination of E-cadherin activity in BxPC-

3 cells and activation of Rho GTPases in cells expressing RGS16 will help narrow down possible 

mechanisms.  Our study did not directly investigate whether RGS16 inhibits invasion by 

preventing the secretion of factors (such as matrix metalloproteinases) involved in the 

breakdown of the extracellular matrix and basement membrane required for the infiltration  of 

cancer cell into the vasculature.  However, this is the first report to our knowledge demonstrating 

a relationship between an RGS protein and invasion.  Further studies examining the expression 

and activity of matrix metalloproteinases (MMPs) could determine whether RGS16 may inhibit 

invasion by decreasing the amount, activity or secretion of MMPs. 



115 

 

CHAPTER 4.   

DISCUSSION 

Conclusions 

The objectives of our research were twofold: first to identify p53 and pRb cross-talk 

candidates by examining p53 and pRb co-regulated genes; and second to characterize the 

function of a p53 and pRb cross-talk candidate genes in cancer development.  As described in 

Chapter 1, p53 and pRb are vital for cancer suppression and studies suggest p53 and pRb cross-

talk to regulate cellular fate and prevent cancer progression.  By utilizing microarray expression 

profiling, we have identified 179 p53 and pRb regulated cross-talk candidates that may be 

involved in coordinating cancer suppression processes and determining cell fate (Chapter 2).  

Ingenuity Pathway Analysis (IPA) identified molecular and cellular functions that could be 

modulated by the cross-talk candidate genes and in cells exogenously expressing p53, pRb, and 

both p53 and pRb (Chapter 2).  This IPA analysis will be useful for generating future hypotheses 

aimed at identifying mechanisms employed by p53 and pRb to regulate cellular processes.  We 

chose to further study RGS16 a common gene set cross-talk candidate because of its known 

regulation of several oncogene pathways that are depicted in Figure 1.4 and its ability to regulate 

GPCR pathways that are commonly deregulated in cancer.  Loss of RGS16 in metastatic 

pancreatic cancer suggests it functions to inhibit processes that aid in metastasis.  Our results 

support our hypothesis that RGS16 inhibits pancreatic cancer cell migration and invasion in vitro 

and suggests that loss of RGS16 may provide to pancreatic cancer a metastatic advantage.   

Although it is known that RGS16 is regulated by p53, we are the first to report the regulation 

of RGS16 by pRb and its ability to inhibit EGF induced migration and invasion with no impact 

on cell viability (Chapter 2 & 3). The findings from our study suggest RGS16 is regulated by p53 
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and pRb and functions to inhibit pancreatic cancer cell migration and invasion, however this 

effect was cell line dependent.  Although not commonly associated with p53 and pRb signaling, 

regulation of cellular migration and invasion by both tumor suppressors has become evident over 

the course of the past several years.  p53 regulates cell polarization and migration of cells 

predominately by inhibiting Rho signaling [257] and also inhibits cancer cell invasion by 

suppressing the activity or expression of matrix metalloproteinases (MMPs) [258-261].  pRb’s 

role in cell migration has recently come to light.  pRb has been implicated as an important factor 

in regulating neuronal cell migration and was recently found to inhibit CD44 induced collective 

cell migration of breast cancer cells [68, 262].  pRb is linked to regulating invasion through its 

ability to bind and inhibit E2F induced transcriptional activation of the matrix metalloproteinases 

(MMPs) 9, 14, and 15 [67].  Knock-down of E2F1 and E2F3 inhibited migration and invasion of 

non-small cell lung cancer cells [67].  RGS16 may be another mechanism employed to regulate 

cell migration and invasion by p53 and pRb.  However, future studies are needed to verify if 

RGS16 regulation by p53 and pRb mediates suppression of cancer cell migration and invasion.    

While the exact mechanisms employed by RGS16 to regulate pancreatic cancer cell 

migration and invasion remains unknown,, our studies suggests RGS16 regulation is independent 

of the PI3K/AKT, and MAPK pathways and increases RGS16 in Ras wild-type cells.  Critique of 

the data and future directions will be explored below in the following sections outlining the next 

steps that can be taken to understand the role of RGS16 in pancreatic cancer.   

Critique and Data analysis 

Expression profiling analysis was used to identify p53 and pRb cross-talk candidates using 

normal lung fibroblast cells (WI38) expressing p53, pRb, or p53 + pRb.  Our studies focused on 

transcriptional regulation as a cross-talk mechanism employed by p53 and pRb.  However, 
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downstream protein-protein interactions are another mechanism of communication and were not 

investigated in our study.  To avoid mutations that can alter p53 and pRb signaling pathways, 

normal WI38 cells were used to study p53 and pRb cross-talk.  Our experimental design used an 

exogenous system to express p53 and pRb in cells that already express both tumor suppressors.  

This method does raise the concern that the total expression of p53 and pRb (exogenous + 

endogenous) exceeds normal activation levels of these tumor suppressors inducing irregular 

responses in the WI38 cells.  This is a valid concern, however using western blot and 

densitometry analysis (Figure 2.1), we found that the fold change in p53 and 

hypophosphorylated pRb (active form) to total pRb was equivalent to those seen endogenously 

in cells undergoing quiescence or cell cycle arrest respectively [195, 196].  Pathways that tightly 

control p53 and pRb expression and activity (highlighted in Chapter 1) are present in WI38 cells 

and regulate the expression of these two proteins. 

p53 and pRb activity is tightly controlled, so in order to study their transcriptional regulation 

functions, we had to induce their expression and/or activity.  We used adenoviruses to induce 

expression of p53 and pRb overcoming regulatory pathways and activating p53 and pRb 

transcriptional responses.  There are alternate methods that could have been used to induce p53 

and pRb transcriptional activity and will be briefly discussed.  p53 and pRb can both be activated 

by a variety of compounds or stimuli that induce DNA damage such as doxorubicin, cisplatin, or 

UV [263-265] . However, it is hard to isolate activation of just p53 and/or pRb using chemicals 

or other stimuli that induce DNA damage.  Mouse embryonic fibroblasts (MEF) negative for p53 

or pRb were also considered for studying p53 and pRb cross-talk.  However, we were unable to 

find p53
-/-

 and pRb
-/-

 MEFs.  Furthermore both p53 and pRb induce cell cycle arrest and initiate 

DNA repair.  Loss of both p53 and pRb would make the cells vulnerable to mutations that could 
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alter the p53 and pRb signaling pathways hindering identification of valid cross-talk candidate 

genes.  siRNA knockdown of p53 and/or pRb could have also been employed.  Levels of p53 are 

kept at low levels in normal cells by MDM2, and depending on the stage of the cell cycle pRb 

could be in its inactive form.  Additional stimuli to siRNA treated samples may have been 

required to initiate p53 and pRb transcriptional activity to compare changes in gene expression 

between controls and siRNA treated cells.  We chose to use adenoviruses to express p53 and pRb 

because it offered a simple method to induce one or both of these tumor suppressor genes 

without initiating other cellular pathways.   

We identified 179 cross-talk candidate genes that were broken down into two gene sets; the 

common (39) and interaction (140) cross-talk candidates (Figure 2.1).  Our interest in the 

common set cross-talk candidate RGS16 was first peaked when qRT-PCR analysis revealed p53 

and pRb combined expression in WI38 cells synergistically increased RGS16 mRNA.  Analysis 

of the literature demonstrated that RGS16 not only regulated GPCR receptor signaling but is also 

associated with regulating oncogene pathways that are altered in cancer signaling. RGS16 has 

been shown to regulate pathways that are associated with cell migration and invasion.  However, 

no studies have investigated whether RGS16 can inhibit migration and invasion.  Primary 

pancreatic tumors from patients with lymph node metastasis had decreased expression of RGS16 

that was associated with decreased survival.  Since a majority of pancreatic cancer patients 

present with metastases at time of diagnosis, we used pancreatic cancer as a model to study 

RGS16 migration and invasion.    

When we began the migration and invasion studies, we chose to use adenoviruses to express 

RGS16 because of the decreased expression of RGS16 in clinical data.  Western blot analysis 

later showed a faint endogenous band in the BxPC-3 cells (highest expression of RGS16 mRNA) 
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(chapter 3) further supporting our decision to express RGS16.  However, repeating the migration 

and invasion studies using RGS16 siRNA would complement our data and further support our 

hypothesis, however due to low basal levels of RGS16, it would be difficult to detect RGS16 

knockdown.    

We saw decreased EGF induced migration of BxPC-3 and AsPC-1 but not in the PANC-1 

cells.  The difference in behavior between cell lines could be due to alternate mutations that are 

preventing inhibition of PANC-1 cell migration by RGS16.  However, this does not mean that 

RGS16 could still not inhibit migration of these cells.  We examined the ability of RGS16 to 

inhibit EGF induced migration and invasion; however, RGS proteins canonically regulate GPCR 

signaling [134].  The RGS16 targeted GPCR CxCR4 is expressed in pancreatic cancer and 

promotes migration and invasion of the PANC-1 cells [141, 222, 242].   

We explored the mechanism behind RGS16 suppression of migration and invasion.  

EGF/EGFR activates a variety of pathways that can contribute to cell migration and invasion 

including PI3K/AKT, Ras/MAPK, and Rho GTPases.  We did not see a change in expression of 

phosphorylated AKT or ERK suggesting RGS16 does not modulate EGF induced migration and 

invasion through the PI3K/AKT or MAPK pathways.  Examinations of EMT markers E-cadherin 

and vimentin were inconclusive.  We did find an increase in E-cadherin expression in the K-Ras 

wild-type BxPC-3 cells but there was no change in vimentin for either BxPC-3 or AsPC-1 cells.  

Although there was an increase in E-cadherin expression in BxPC-3 cells by RGS16, we did not 

test the activity of E-cadherin in these cells.  Induced upregulation of RGS16 increased 

expression of E-cadherin in triple negative breast cancer cells [163].  E-cadherin, often referred 

to as the master regulator of EMT, is important for the formation of tight cell-cell contact [125].  

RGS16 may regulate E-cadherin in a Ras wild-type dependent manner.  K-Ras mutations in 
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prostate cancer inhibit E-cadherin expression by promoting methylation of the E-cadherin 

promoter [247].  Future studies are needed to test the hypothesis that K-Ras mutations inhibit 

increased expression of E-cadherin by RGS16. 

Phosphorylation of vimentin regulates its activity and localization.  Our studies only focused 

on mechanisms that regulate vimentin by increasing or decreasing its expression.  Investigation 

of the phosphorylation state and localization of vimentin will determine if RGS16 regulates cell 

migration and invasion by regulating the post-translational modifications of vimentin.  We 

cannot say definitively if RGS16 regulates EMT due to the use of only two EMT markers and 

differences seen between the two cell lines.  Examination of other EMT markers such as 

fibronectin and N-cadherin will provide a more complete picture that will aid in forming more 

conclusive results regarding RGS16 and EMT.   

Activation of Rho GTPases is also associated with EMT and aids in cell migration and 

invasion [126].  Although RGS16 is only directly linked with inhibiting activation of RhoA in 

MCF-7 cells there are other Rho GTPases that are involved in the reorganization of the 

cytoskeleton and that are integral to motility [164].  We used phalloidin to stain and visualize F-

actin in BxPC-3 and AsPC-1 cells.  We were expecting that phalloidin staining would identify 

distinct changes in the organization of F-actin that would pinpoint alterations in signaling to a 

Rho GTPase.  We could not distinguish changes quantitatively in the F-actin that forms 

lamellipodia, filopodia, or stress fibers; this is likekly due in part to the heterogenous population 

of cells.  Furthermore phalloidin staining is not a very good quantitative assay and changes in F-

actin may be subtle in these cells.  Activation kits examining RhoA, RhoC Rac1, Cdc42 would 

provide more quantifiable assays that would help determine whether RGS16 causes changes to 

expression of activated Rho GTPases.   
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Our mechanistic investigations concentrated on pathways that are predominately known to 

mediate cell migration.  However, both AKT and ERK (MAPK) can aid cell invasion by 

increasing expression of MMP-9 [233, 245].  Activation of Rho GTPases does stimulates cell 

invasion in vitro and in vivo, however, this is predominately linked with rearrangement of the 

actin cytoskeleton, changes in cell-cell contact, and cell adhesion dynamics that mediate cell 

movement [126].  Remodeling of the extracellular matrix is an important step for invasion and is 

mediated by extracellular proteases such as matrix metalloproteases (MMPs).  The mesenchymal 

phenotype adopted by cancer cells that underwent EMT is associated with an increase in the 

secretion of MMP 2 & 9 [125]. We did not examine the activity or expression of MMPs, but 

since we are found an inhibition of invasion, it is possib inhibits the activity or expression of 

MMPs.  

Future studies 

Our studies have only begun to uncover the function and role of RGS16 in pancreatic cancer 

progression.  There are still several questions that remain unanswered.  These questions will be 

explored along with future studies that can be performed to fill in the gaps.     

How does RGS16 inhibit pancreatic cancer cell migration and invasion in vitro? 

We were unable to identify the mechanism used by RGS16 to inhibit pancreatic cancer cell 

migration and invasion.  However there are several steps that can be taken to further understand 

the function of RGS16 in pancreatic cancer that are outlined in Table 4.1.  All proposed 

experiments are for BxPC-3 and AsPC-1 cells expressing GFP and/or RGS16 and treated with 

EGF following previous protocols as described in Materials and Methods of Chapter 3.   

E-cadherin binds to β-catenin and other proteins to form a complex that connects cell-cell 

adhesion complexes with the F-actin [126, 266].  Loss of E-cadherin liberates β-catenin that can 
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be stabilized by the Wnt signaling pathway in the cytosol leading to the translocation of β-

catenin to the nucleus where it can initiate transcription of factors that promote proliferation, 

migration, and invasion [126]. Examination of β-catenin expression in the nucleus will determine 

if the increased expression of E-cadherin in BxPC-3 translates to increased expression of E-

cadherin at the membrane.    

The second proposed experiment is the investigation of the localization and phosphorylation 

of vimentin.  The post-translational modification of vimentin regulates its organization, 

localization, and function [248, 249].  Although the role of phosphorylated vimentin is not well 

known it appears to aid in cell migration [249, 267]  Phoshorylation of vimentin causes 

disassembly of the intermediate filament resulting in increase of soluble vimentin.  Investigation 

of vimentin localization (still in filamentous fibers) and phosphorylation will show whether 

RGS16 regulates this protein through post-translational modifications.  

The Third experiment will test the hypothesis that mutant K-Ras prevents the upregulation of 

E-cadherin by mediating the promoter methylation of its gene.  A demethylating agent 

(decitabine and azacitidine) will be used in cells with or without adenoviruses expressing GFP 

and/or RGS16.  The hypothesis will be supported if the data shows increased expression of E-

cadherin in cells expressing RGS16 and treated with the demethylating agent.   

The last three proposed experiments focus on examining expression or activation of other 

EMT markers, MMPs, and Rho GTPases.  These proteins can be examined using western blots 

or PCR arrays to obtain a more global view of cellular changes due to RGS16 expression.  

Completion of these experiments will provide data demonstrating whether RGS16 inhibits 

expression of EMT markers, activation of Rho GTPases involved in cytoskeleton rearrangement, 

or activation of MMPs.  
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Table 4.1: Proposed future in vitro studies to examine mechanisms governing RGS16 

inhibition of pancreatic cancer cell migration and invasion. 
 

Experiment Type Method/hypothesized outcome 

1. E-cadherin 

activity 

Examine β-catenin localization in nucleus (western blots or 

immunofluorescence / ↑ E-cadherin activity ↓ localization of β-catenin in 

the nucleus 

 

2. Vimentin 

localization and 

phosphorylation 

Examine localization (immunofluorescence) & phosphorylation (western 

blot using anti-phosphorylated vimentin and/or  extract soluble and 

filamentous proteins followed by western blot using anti-vimentin / 

determine if localization or spread of vimentin changes (for example, 

change in amount of filamentous fibers) and if vimentin is phosphorylated 

(phosphorylated vimentin can break down and become soluble) 

3. Test if RGS16 

induced 

expression of E-

cadherin is 

dependent on 

wild-type K-Ras 

Treat cells with a DNA demethylating agent with or without concomitant 

treatment with adenoviruses expressing GFP and/or RGS16. Measure E-

cadherin expression / determine if K-Ras mutations inhibit up-regulation of 

E-cadherin by methylation and inhibition of E-cadherin promoter. 

4. Examine 

expression of 

other EMT 

markers 

Examine expression of other EMT markers such as N-cadherin, 

fibronectin, αvβ6 integrin, or E-cadherin transcriptional repressors (Snail, 

slug, ZEB1, or twist (by western blot or PCR array) / more conclusively 

show if RGS16 regulates EMT.  

 

5. Activation of 

RhoGTPases 

Rho GTPase activation kits (immunoprecipitation followed by western blot 

analysis) for RhoA, RhoC, Rac1, and Cdc42 / determine if RGS16 inhibits 

activation of select Rho GTPases 

 

6. Matrix 

Metalloproteinase 

(MMPs) activity 

Examine Matrix metalloproteinase activity using fluorometric activation 

kit / determine if and which MMPs are active 

 

Does RGS16 inhibit cell migration and invasion induced by other factors? 

A single RGS protein can interact and regulate signaling of multiple pathways [134, 172].  

While our studies focused on EGF induced migration and invasion, RGS16 may inhibit 

migration and invasion induced by other factors such as CxCR4.  Repeating the migration and 

invasion experiments using other factors to stimulate cell migration and invasion will show if 

RGS16 can regulate multiple mechanism of pancreatic cancer cell migration and invasion.  
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These experiments can be completed by two methods:  the first, is to use single ligands to induce 

activation of certain signaling pathways (for example SDF-1 ligand for CxCR4).  The second 

option is to use fibroblast conditioned media that contains multiple factors providing a partial 

mimic of the microenvironment that cancer cells are exposed to in vivo.  Identification of 

mechanisms will be easier to identify using single ligands to induce migration and invasion.  

However, using fibroblast conditioned media is more representative of the growth factors and 

ligands that a cancer cell is exposed to in the microenvironment.   

Does RGS16 inhibit pancreatic cancer cell metastasis in vivo? 

Pancreatic cancer has a low survival rate that is due in part to the highly metastatic nature of 

this disease.  By understanding the underlying mechanisms of pancreatic cancer progression, we 

will be able to better prevent or treat advanced and metastatic pancreatic cancer.  Although 

RGS16 was found to inhibit pancreatic cancer cell migration and invasion in vitro (Chapter 3) 

this does not guarantee that RGS16 can inhibit pancreatic cancer metastasis.  The process of 

metastasis is dynamic and complex involving multiple interactions between the tumor and the 

surrounding microenvironment that can be better studied using in vivo.  There are several mouse 

models that can be employed to test the hypothesis that RGS16 inhibits pancreatic cancer cell 

metastasis such as genetically engineered mouse (GEM) and mice xenograft models.  There are 

multiple advantages of GEM over xenograft or carcinogen induced pancreatic cancer models: 1) 

GEM models more closely mimic human pancreatic cancer, 2) can be used to study pancreatic 

cancer progression from initiation to metastasis, 3) and allows investigation of any interactions 

between the tumor and immune response [268, 269].  Using GEM models we can induce 

targeted knock-out of RGS16 in the pancreas of mice with knock-in of mutant KRasG12D and 

mutant p53R172H (Pdx1-Cre;LSL-KRas
G12D/+

;LSL-p53
R172H/+

) or mice with knock-in of mutant 
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KRasG12D and knock-out of  Ink4a/ARF (Pdx1-Cre;LSL-KRas
G12D/+

;Ink4a/Arf
lox/lox 

).  Both the 

Pdx1-Cre;LSL-KRas
G12D/+

;LSL-p53
R172H/+ 

 and Pdx1-Cre;LSL-KRas
G12D/+

;Ink4a/Arf
lox/lox

 

models develop pancreatic intraepithelial neoplasias (PANINs) that later progress to pancreatic  

cancer with the presence of metastases [102, 104].  By combining RGS16 knock-out with well 

characterized pancreatic cancer GEM models, we can determine if loss of RGS16 increases 

metastases.   

There are a couple of disadvantages to using GEM models; one, is expense and the second, is 

that the signaling molecules in mice may not have the same mechanisms or effect as in humans.  

Wilkie and colleagues (2010) using RGS16::GFP BAC transgenic mice found that RGS16 is 

expressed in pancreatic progenitor cells during development [140].  However, after birth, 

expression of RGS16::GFP remained in pancreatic cells associated with ducts and veins for 3-4 

weeks but was lost in adult mice.  In an abstract published earlier this year, the authors found 

expression of GFP tagged RGS16 throughout the different stages of tumorigenesis in mice with 

pancreatic cancer induced by knock-in mutant KRas and knock-out p16 and p19 targeted to 

pancreatic acinar cells (p48
CRE

;LSL-KRas
G12D

;CDKN2A
f/f 

) [270].  In our studies, we found that 

the expression of RGS16 mRNA was lower in established pancreatic cancer cells compared to 

normal human pancreatic RNA (Chapter 3).  Immunohistochemical analysis of RGS16 in 

primary samples showed a decrease in RGS16 staining in tumors extracted from patients with 

lymph-node metastases [149].  This data suggests RGS16 expression is present in human 

pancreas tissue and expression is lost during progression of pancreatic cancer contradicting the 

findings of the mice studies.  Human and mouse RGS16 share 85% homology, however, that 

15% difference could be sufficient to elicit different functions of RGS16  in the pancreas of these 

two species [154].  The function of RGS16 in mice with pancreatic cancer has not yet been 
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investigated and experiments using RGS16 knock-out mice will increase our understanding of 

the role of RGS16 in mouse pancreatic cancer.   

A xenograft orthotopic pancreatic tumor mouse model can used to determine if expression of 

RGS16 inhibits pancreatic cancer cell metastasis.  In orthotopic models the pancreatic cancer 

cells are injected directly into the pancreas of an immunodeficient (nude) mouse and up to 65% 

of mice develop metastases [271].  This model can only be used to study the endpoint of 

metastasis (in our case) as opposed to GEM models that can be used to study the different stages 

of tumorigenesis or metastasis.  Using this model, pancreatic cancer cells (AsPC-1) will be 

injected into the pancreas of a nude mouse.  Mice will be treated with adenoviruses expressing 

GFP and/or RGS16 encapsulated in microbubbles for targeted delivery to the tumor site.  

Ultrasound will be used to target the delivery of the bubble to the pancreas of the mouse.  

Metastasis and tumor growth will be measured. Orthotopic models are invasive and rely on 

imaging modalities to measure size of the tumor [272].  However, ultrasound guided tumor 

injection protocols for pancreatic cancer has been developed to limit injury to the mice [273]. 

Use of xenograft mice prevents endogenous investigation of RGS16 function on pancreatic 

cancer development and progression.  However, this model may bypass problems associated 

with RGS16 having different functions in mice vs. humans.  
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Abstract 

Data collected since the discovery of p53 and pRb/RB1 suggests these tumor suppressors 

cooperate to inhibit tumor progression. Patients who have mutations in both p53 and RB1 genes 

have increased tumor reoccurrence and decreased survival compared to patients with only one 

tumor suppressor gene inactivated. It remains unclear how p53 and pRb cooperate toward 

inhibiting tumorigenesis. Using RNA expression profiling we identified 179 p53 and pRb cross-

talk candidates in normal lung fibroblasts (WI38) cells exogenously coexpressing p53 and pRb.  

Regulator of G protein signaling 16 (RGS16) was among the p53 and pRb cross-talk candidates 

and has been implicated in inhibiting activation of several oncogenic pathways associated with 

proliferation, migration, and invasion of cancer cells.   

RGS16 has been found to be downregulated in pancreatic cancer patients with metastases 

compared to patients without metastasis. Expression of RGS16 mRNA was decreased in the 

pancreatic cancer cell lines tested compared to control. Expression of RGS16 inhibited migration 

of the BxPC-3 and AsPC-1 but not PANC-1 cells and inhibited invasion of BxPC-3 and AsPC-1 

cells with no impact on cell viability. We have identified for the first time p53 and pRb cross-talk 

candidates and a role for RGS16 to inhibit pancreatic cancer migration and invasion.  
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Introduction   

The p53 and pRb tumor suppressors are two signaling pathways that are frequently altered 

during cancer progression. Mutations that disrupt the p53 and pRb pathways can occur in the 

gene sequences or in their upstream regulators and/or downstream effectors. Results of studies 

have found that both tumor suppressor genes are inactivated in a variety of malignancies 

including osteosarcoma, small cell lung, breast, and bladder carcinomas [1, 4, 45, 46].  

Furthermore, alterations in expression or activity of proteins involved in p53 and pRb signaling 

pathways have been identified in retinoblastoma and cancers of the pancreas, colon, and head 

and neck among others [49, 51, 52, 111]. The large number of cancers that have defects in the 

p53 and pRb pathways demonstrates the importance of these genes in preventing cancer 

development and progression.  

Existing data suggests that p53 and pRb cooperate to prevent tumor progression.  Examples 

of this cooperative interaction have been shown by various studies using human primary cancer 

samples and mouse models.  Patients who have mutations in both p53 and RB1 genes have 

increased tumor recurrence and decreased survival compared to patients with a mutation in either 

p53 or RB1 [45, 47, 180].  A study conducted in mice found that p53 null mice who were also 

heterozygous for RB1 were susceptible to developing more tumors than mice with single 

mutations; i.e. heterozygous p53 or RB1 null or p53 null mice [4].  In another study, mice with 

conditional inactivation of both p53 and RB1 in prostate epithelium developed highly metastatic 

tumors and had decreased survival time compared to mice with single p53 or RB1 inactivation 

[5]. The accumulated evidence suggests p53 and RB1 gene products have cooperative or 

synergistic effects for cancer suppression. 
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Considering the network of communication that exists within a cell, the rate of mutation of 

p53 and RB1, and the cellular processes these two proteins regulate, a natural hypothesis is that 

these two genes and respective gene products cross-communicate in order to determine cellular 

fate and prevent carcinogenesis. In fact, there are known examples of genes and proteins that are 

involved in the convergent signaling between the p53 and pRb pathways; such as Hdm2, p21, 

E2F-1 and the INK4a locus (reviewed in [3, 47, 74, 182]).  Although several proteins that are 

involved in the p53 and pRb pathways have been identified, the full extent in which these two 

tumor suppressors interact along their pathway to regulate cellular fate is still unknown. To 

identify downstream targets of both p53 and pRb regulation and to elucidate mechanisms of p53 

and pRb cross-talk, we coexpressed p53 and pRb in normal human lung fibroblasts cells (WI38) 

and used RNA expression profiling to identify up- or down-regulated genes.  We identified 

Regulator of G protein Signaling 16 (RGS16) as a p53 and pRb cross-talk candidate.   

RGS16, previously found to be induced by doxorubicin in cells expressing wild-type p53, 

belongs to a large family of proteins that plays a role in swiftly shutting down G protein-coupled 

receptor (GPCR) signaling pathways [134, 135].  RGS16 is a GTPase activating protein (GAP) 

that aids GTPase activity of the α-subunit of G proteins associated with G-protein coupled 

receptors (GPCR). RGS16 has been implicated in negatively regulating the MAPK, AKT/PI3K, 

RhoA, and SDF-1/CXCR4 oncogene pathways in normal or cancer cell lines [135, 141, 164, 

171].  These oncogene pathways have been implicated in cancer progression processes (such as 

proliferation, survival, chemoresistance, migration, invasion, and metastasis in a variety of 

malignancies including pancreatic cancer [221-225]. Recently, evidence has demonstrated a role 

of RGS16 in cancer signaling. RGS16 locus is a site of genomic instability in (50% of 222) 

primary breast tumors  and knockdown of RGS16 in breast cancer cell lines increases Epidermal 



150 

 

Growth Factor (EGF) and Fetal Bovine Serum (FBS) initiated proliferation [150, 171]. A 

previous report using tissue microarray analysis revealed decreased expression of Regulator of 

G-protein signaling 16 (RGS16) in pancreatic tumors with lymph-node metastases compared to 

non-metastasized pancreatic cancer and this loss was associated with decreased patient survival 

[149]. Based upon the link of RGS16 regulating several oncogenic pathways and the decreased 

expression of RGS16 in metastasized pancreatic cancer, we chose to further study the function of 

RGS16 in pancreatic cancer in order to identify the role it has in the p53 and pRb signaling 

pathways.  Currently, RGS16 has not been linked with inhibition of cancer cell metastasis nor 

has its function been investigated to understand it’s downregulation in metastasized pancreatic 

cancer.  The majority of patients newly diagnosed with pancreatic cancer present with highly 

progressed and/or metastatic cancer that is resistant to treatment [84, 85].  Due to the late stage 

of diagnosis and the aggressive nature of this disease, less than 20% of pancreatic cancer patients 

are eligible for the potentially curative surgery [85, 220].  Therefore, there is a great need for 

more effective drugs aimed at treating or preventing metastatic pancreatic cancer. Pancreatic 

cancer is associated with p53 mutations and p16 (pRb activator) deletions resulting in the 

crippling of both the p53 and pRb pathways. By investigating the p53 and pRb cross-talk and the 

role of RGS16 in pancreatic cancer cell migration, we have uncovered a novel regulator of 

metastasis processes that could be a future target in developing treatments for metastatic 

pancreatic cancer. 

 

Results 

Identification of p53 and pRb cross-talk candidates in WI38 cells following coexpression of 

p53 and/or pRb.   
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Studies have shown that p53 and pRb cooperate to prevent tumorigenesis.  Currently, the 

molecules that function in the p53 and pRb cross-talk pathway to regulate cellular fate are not 

known thus expression profiling by microarray was performed to find genes co-regulated by p53 

and pRb. Normal human lung WI38 fibroblast cells were transduced with adenoviral vectors 

expressing the p53 and/or RB1 genes under the control of a cytomegalovirus (CMV) promoter. 

The WI38 cell line was used because it is from non-cancerous tissue and lacks mutations or viral 

transformations that could disrupt the p53 and pRb pathways. Four experimental conditions were 

used in which WI38 cells were transduced with adenovirus vector control (cond. 1, Adenoviral 

CMV-vector control, Ad.CMV.p53 (cond. 2), Ad.CMV.pRb (cond. 3), or both Ad.CMV.p53 and 

Ad.CMV.pRb (cond. 4).  RNA and protein from WI38 cells was collected 48 hours after 

adenoviral infection. Immunoblots verified increased expression of p53 (fold change compared 

to Ad.CMV control = 2.80, 1.54, and 2.77) and/or hypophosphorylated (active form) pRb 

(hypophosphorylated/total pRb fold change compared to Ad.CMV control = 0.94, 5.48, 5.02) in 

the WI38 cells treated with adenoviruses containing p53, pRb, or both p53 and pRb respectively 

(Figure 1A and 1B).  Fold change values for p53 and hypophosphorylated pRb coincided with 

previously reported results in experiments that activated endogenous p53 and pRb [195, 196].  

Microarray data from the adenovirus vector control (empty vector with CMV promoter) was 

used as a reference to determine genes that were differentially expressed as a consequence of 

p53, pRb, and p53 + pRb expression. Analysis of the microarray data identified 294-p53, 650-

pRb, and 514-p53 + pRb differentially expressed genes (Figure 1C; see Supplementary 

Document 1) for full list of differentially expressed genes. Of the differentially expressed genes, 

294/294 genes were upregulated in cells with p53 expression, 427/650 genes were upregulated in 

cells with pRb expression, and 319/514 genes were up-regulated in cells with p53 + pRb 
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coexpression (Figure 1C). Consistent with protein measurements, increased expression of p53 

and/or RB1 mRNAs were also found in the appropriate groups (Supplementary Document 1).   

A Venn diagram shows the number of differentially expressed genes shared between the 

experimental groups (Figure 1C). By looking at the common genes between the three 

experimental groups, we were able to generate two lists of genes that may be involved in the p53 

and pRb cross-talk pathway. The first list of cross-talk candidates (designated as the p53 and pRb 

common gene set) consisted of 39 genes found to be commonly up-regulated in cells expressing 

either p53 or pRb. The second list of possible cross-talk members (designated as the p53 and 

pRb interaction gene set) contained 140 genes that were found to be differentially expressed only 

when p53 and pRb were overexpressed together (see Supplementary Document 1).  Thirty-two 

of the 39 common gene set cross-talk candidates were found to be up-regulated in the interaction 

gene set, while the remaining 7 were commonly up-regulated in cells that overexpress either p53 

or pRb (Table 1).  By focusing on the common and interaction gene sets, we were able to remove 

transcripts that were up- or down-regulated by only p53 or pRb and focus on candidates that may 

be involved in the p53 and pRb cross-talk pathway.  

 

qRT-PCR validation of microarray data in WI38 and SAOS-2 cells. 

  Our ultimate goal in performing the microarray analysis was to determine molecules 

involved in the p53 and pRb cross-talk pathway in order to identify and study downstream 

effector molecules that can be expressed to induce a p53 and/or pRb tumor suppressive function.  

Because of our interest in identifying downstream effector molecules, we chose five mRNA 

transcripts (IL-6, BTG-2, STAT4, RGS16, BCL2L11) from the set of 39 commonly up-regulated 

transcripts by p53 and pRb for validation via qRT-PCR.  IL-6, BTG-2, STAT4, RGS16, and 
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BCL2L11 were chosen for validation because of varying function, known regulation by p53 and 

pRb, and fold change values expression profiling assay.  WI38 cells were plated and transduced 

with adenoviral expression vectors via the same methods used for the microarray analysis.  

Relative fold change was calculated for IL-6, BTG-2, STAT4, RGS16, and BCL2L11 in WI38 

cells expressing p53 and/or pRb as shown in Figure 2. Statistically significant up-regulation of 

all transcripts tested except BCL2L11 was found in WI38 cells expressing p53 and pRb 

confirming the microarray results. Expression of p53 and pRb in WI38 cells increased mRNA 

expression for some of the transcripts (for example, RGS16 and BTG-2) to a greater extent than 

single expression of either p53 or pRb. This suggests p53 and pRb are working together resulting 

in an additive (i.e. BTG-2) or synergistic (i.e. RGS16) effect on mRNA expression for some of 

the transcripts.  

 To further support the RNA expression profiling results, we repeated the expression of 

p53 and pRb in a p53 null, RB1 mutant osteosarcoma cell line (SAOS-2) and performed qRT-

PCR analysis of IL-6, BTG-2, STAT4, RGS16, and BCL2L11. The expression of all five 

transcripts including IL-6 and BCL2L11 were found to be significantly increased by one-way 

ANOVA compared to vector control in SAOS-2 cells expressing p53 and/or pRb (Figure 3). 

Dunnett’s test for multiple comparison found BCL2L11 expression to be significantly increased  

in cells expressing p53, pRb, and both p53 and pRb and IL-6 was found to be significantly 

increased in cells expressing pRb and p53+pRb. Expression of IL-6 was not found to be 

statistically significant in SAOS-2 cells expressing p53 due to variation between replicates (fold 

change= 2.86).  All five transcripts were found to be up-regulated when p53 and/or pRb were 

expressed in the microarray analysis and qRT-PCR analysis showed similar results in WI38 and 

SAOS-2 cells.   
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mRNA expression of RGS16 is decreased in pancreatic cancer cell lines. 

RGS16 was identified as a p53 and pRb cross-talk candidate in our expression profiling 

analysis that was validated by qRT-PCR. We chose to study the role of RGS16 in pancreatic 

cancer cell migration due in part to its down-regulation in patients with metastasized pancreatic 

cancer and the high rate of p53 mutations (50-70%) and p16 deletions (85%) affecting both the 

p53 and pRb pathways in this disease  [51, 111, 149].  We first investigated the relative 

expression of RGS16 mRNA in four pancreatic cancer cell lines (BxPC-3, MIA PaCa-2, PANC-

1, and AsPC-1) in order to characterize the endogenous expression of RGS16. Expression of 

RGS16 was measured by qRT-PCR analysis and the relative RGS16 mRNA fold change was 

calculated in the four cell lines compared to total RNA from normal human pancreatic tissue. 

Expression of RGS16 was decreased in all four lines compared to control with BxPC-3 having 

the highest expression of RGS16 mRNA (Figure 4). Expression of RGS16 varied between the 

four lines with BxPC-3 and MIA PaCa-2 having significantly higher expression of RGS16 than 

PANC-1 and the metastatic derived AsPC-1 cells. RGS16 expression corresponded with the 

more differentiated and less aggressive cell lines having higher levels of RGS16 than the more 

aggressive and/or metastatic cell lines (Table 2).     

 

RGS16 inhibited migration of BxPC-3 and AsPC-1 pancreatic cancer cells but not PANC-

1.  

To test the hypothesis that RGS16 inhibits pancreatic cancer cell migration, we exogenously 

expressed RGS16 in BxPC-3, PANC-1, and AsPC-1 cells with an adenoviral vector and used 
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wound healing assays to measure cell migration. We chose BxPC-3, PANC-1, and AsPC-1 

because these three cell lines are derived from tumors with varying expression of RGS16, 

differentiation status, mutations, presence of metastases, and expression of Epidermal Growth 

Factor Receptor (EGRF, Table 2). We expressed RGS16 using adenoviral vector that contains 

RGS16 plus a GFP reporter (Ad.GFP.RGS16) and used a vector expressing only GFP (Ad.GFP) 

as the control. Expression of RGS16 protein correlated with GFP expression in cells treated with 

Ad.GFP.RGS16 (Supplementary Figure 1). Fluorescent microscopy was used to determine viral 

transduction prior to experiment (Figures 5a, 6a, and 7a). EGF was used to stimulate cell 

migration because EGFR is overexpressed in pancreatic cancer and is linked with development, 

invasion, and decreased survival in pancreatic cancer [115, 226, 227].  RGS16 significantly 

inhibited FBS- and EGF-induced migration of BxPC-3 cells and FBS-induced migration of 

AsPC-1 cells, but had no effect on FBS and EGF induced migration of PANC-1 cells (Figures 5-

7).   

Interestingly, expression of RGS16 in BxPC-3 cells incubated in media supplemented with 

EGF caused an increase in wound width compared to control 16 hours after the start of the 

experiment.  However, MTT assay revealed that there was no statistically significant change in 

cell viability of FBS or EGF treated BxPC-3, PANC-1 or AsPC-1 following expression of 

RGS16 compared to control cells expressing GFP (Supplementary Figure 2).   

Expression of RGS16 inhibited EGF induced invasion of BxPC-3 and AsPC-1 cells.  

RGS16 inhibited EGF induced migration of BxPC-3 and AsPC-1 cells, we further 

investigated if RGS16 can inhibit EGF induced invasion of these pancreatic cancer cells using 

matrigel invasion chambers.  Media supplemented with EGF was used as the chemoattractant to 

induce migration and invasion of BxPC-3 and AsPC-1 cells expressing GFP and or RGS16. 
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Expression of RGS16 significantly inhibited EGF induced invasion of the BxPC-3 and AsPC-1 

cells by 35.73% and 66% respectively, compared to control (Ad.GFP) (Figure 8).   

Discussion 

Significance of investigating p53 and pRb cross-talk  

Historically, investigations of p53 and pRb regulated transcription have focused on 

identifying the individual downstream targets of p53 and pRb. However, cell fate is not 

determined solely by one signaling pathway but by many pathways that communicate through a 

network of signaling molecules.  Cross-communication between pathways allows the integration 

of the exogenous and endogenous signals in a cell to aid in the determination of cell fate.  

Previous studies have found that co-expression of p53 and pRb in cancer cells with compromised 

p53 and pRb activity inhibited p53 mediated apoptosis and promoted cell cycle arrest suggesting 

p53 and pRb cross-talk to regulate cellular fate [188, 189].  Furthermore, data from previous 

studies suggests p53 and pRb may also cooperate to inhibit cancer progression. Patients 

diagnosed with breast cancer and treated with adjuvant chemotherapy had a better prognosis to 

adjuvant chemotherapy if they had functional p53 and pRb [61].  

To our knowledge this is the first study that examines altered gene expression when p53 and 

pRb are expressed together or separately with the purpose of finding genes co-regulated by both 

tumor suppressor genes. How p53 and pRb cross-communicate to regulate cellular functions or 

cooperate to inhibit cancer progression still remains largely unknown. The p53 and pRb 

pathways are commonly altered during tumorigenesis. Due to the dynamic properties of cell 

signaling, the study of genes dually regulated by p53 and pRb will provide a valuable insight into 

the collaborative cancer preventative properties of these two tumor suppressor proteins.   
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Transcriptional regulation may be one method used by p53 and pRb to coordinate cellular 

functions.  For example, the cyclin kinase inhibitor p21 is a down-stream target gene of p53 that 

inhibits phosphorylation and inactivation of pRb [25]. Transactivation of p21 demonstrates a 

mechanism by which p53 can coordinate with pRb to initiate cell cycle arrest.  However, this 

only begins our understanding of the complex regulation of cellular programs. 

 

Change in RNA expression profiles of WI38 cells expressing both p53 and pRb compared 

to expression of p53 and pRb alone, identification of cross-talk candidates, and validation 

by qRT-PCR 

In this study, we identified genes that may be regulated by p53 and pRb and compiled two 

lists of p53 and pRb cross-talk candidates by expressing p53 and/or pRb in WI38 cells.  

Although p53 has transcriptional repression activity, our microarray analysis did not detect any 

down-regulated transcripts in the WI38 cells expressing p53 [190, 191].  The deficit of p53 

down-regulated transcripts in our microarray analysis compared to previous studies could be due 

to our method of p53 activation, cell type, or p53 levels, which have previously been found to 

induce a distinct p53 response with a small set of overlapping genes [192, 193]. Our expression 

profiling analyses were conducted in normal lung fibroblasts cells instead of cancer epithelial 

cells. Absence of p53 down-regulated genes in the p53 expressing WI38 cells could also be 

attributed to the ability of p53 and pRb to alter each other’s transcriptional activation or 

repression functions in normal cells that contain intact pathways. Previous studies that 

discovered p53 down-regulated targets using expression profiling were done in cancer cells with 

mutated or null p53 and wild-type RB1 such as PC-3, HCT116, and H1299 cells [190, 194].   
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There were 319 upregulated transcripts when p53 and pRb were expressed together 

compared to 427 and 295 in the WI38 cells expressing pRb and p53 respectively. The change in 

upregulated genes suggests p53 and pRb can alter one another’s ability to regulate gene 

expression.  Management of p53 and pRb processes may require p53 and pRb to regulate gene 

expression in an opposing manner. Expression of an embryonic development gene, Placenta-

specific 1 (PLAC1), has recently been found to be down-regulated by p53 and up-regulated by 

pRb demonstrating how p53 and pRb can play contrasting roles to regulate cellular processes 

[81].   

pRb is most associated with transcriptional repression of E2F target genes preventing 

transcription of genes needed for the continuation of the cell cycle [18-20]. However, binding of 

E2F by pRb is not needed to promote transcription, suppress tumor growth and induce cellular 

differentiation or senescence [22, 23].  In fact, pRb has been found to act as a co-activator for 

several transcription factors including Sp-1, RUNX-2, MyoD, and several nuclear receptors 

(including NR4A1) resulting in cellular differentiation [22, 39].  We found more transcripts that 

were up-regulated in WI38 cells expressing pRb than downregulated demonstrating its function 

as a transcription co-activator. There is still a lot not known about pRb regulation, therefore, this 

study could contribute to the identification of genes up-regulated by pRb and understanding of 

the function of pRb as a transcriptional co-activator.  

Candidates for the p53 and pRb cross-talk pathway were chosen based on whether (1) the 

transcripts were differentially expressed in both WI38-p53 and WI38-pRb-expressing cells (the 

common gene set), or (2) only in WI38 cells that simultaneously expressed p53 and pRb 

(interaction gene set). By focusing on the p53 and pRb common and unique genes, we were able 

to remove from our analysis genes regulated by p53 or pRb alone. Several of the p53 and pRb 
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common gene set  (RGS16, BTG-2, GDF15, VCAN, D4s234e/NSG1, AKR1B10 and AREG) 

and interaction gene set  (F11R, TNFRSF10C, CERS6, HDM2, SESN1, RBM38 and 

PMAIP1/NOXA) cross-talk candidates have been previously found to be up-regulated by p53, 

and this data is in agreement with our microarray results [135, 193, 197-205].  Only a few of the 

downregulated p53 and pRb cross-talk candidates have previously been found by other studies to 

be downregulated by p53 (MCM3, BUB1, and CDT1) or pRb individually (VRK1, MCM3, and 

CDT1) [190, 206-209].  Although several of our p53 and pRb cross-talk candidates have 

previously been found regulated by p53, regulation of these transcripts by pRb is not known.    

Our expression profiling analysis was performed using a normal cell line in order to avoid 

any mutations that could be present up- or downstream of p53 and pRb that could hinder 

identification of downstream targets of both genes.  Although we expressed p53 and pRb using 

adenoviruses in normal cells, the fold change of p53 and hypophosphorylated pRb proteins 

compared to CMV control were equivalent to or less than fold change values in WI38 cells 

incubated in serum free media to induce quiescence (fold change p53 after 24 hours in serum 

free media = 5.5) or MCF7 cells undergoing confluence induced cell growth arrest (fold change 

hypophosphorylated pRb/total pRb = 6.00) [195, 196]. This data suggests the concentration of 

virus used did not exceed endogenous protein expression of p53 and the active 

hypophosphorylated form of pRb.  However, the use of a normal cell line with wild-type p53 and 

RB1 could make it difficult to identify cross-talk molecules due to possible interactions between 

endogenous and exogenous p53 and pRb. To investigate if exogenous and endogenous p53 and 

pRb interactions could influence expression profiles expression of RGS16, BCL2L11, BTG-2, 

IL-6, and STAT4, were measured using qRT-PCR in the p53 null and pRb mutated osteosarcoma 

cell line SAOS-2. Expression of all transcripts in the p53 and pRb expressing SAOS-2 cells were 
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found increased with differences in magnitude of expression as they did in our WI38 microarray 

data and qRT-PCR results. Interestingly, in the microarray data, STAT4 was found to be 

differentially expressed in WI38 cells expressing p53 and pRb but not in cells expressing both 

genes.  However qRT-PCR analysis found a statistically significant increase in STAT4 

expression in WI38 and SAOS-2 cells expressing p53 and pRb.  The statistical analyses of 

expression profiling data or the sensitivity of microarray signal detection could account for the 

failure to observe differential expression of STAT4 in WI38 cells expressing p53 and pRb.    

 

RGS16 significance and signaling in cancer 

RGS16 was of interest to our study for two reasons: 1) RGS16 regulates GPCRs, which are 

common targets for deregulation in cancer and 2) RGS16 has been linked to regulating the 

MAPK/RAS, PI3K/AKT, RhoA, and SDF-1/CxCR4 oncogene pathways [133, 135, 141, 164, 

171].  Investigations have found that oncogene pathways can feed into one another and bypass or 

overcome the inhibitory effects of monoclonal antibodies or other targeted inhibitors. For 

example, in melanoma, increased production of VEGF or increased expression or activation of 

the platelet-derived growth factor receptor β or insulin like growth factor 1 receptor is associated 

with resistance to BRAF inhibitors demonstrating mechanisms cancer cells use to overcome 

single target modalities [239].  Therefore investigation of RGS16, a protein known to modulate 

several oncogene pathways will aid in understanding mechanisms by which cells alter multiple 

signaling pathways to prevent carcinogenesis that could be used for future drug development.  

We chose to study the function of RGS16 in pancreatic cancer because only 5.7% (1 out of 

17) of pancreatic tumors with lymph-node metastases had expression of RGS16 compared to 

70.6% (12 out of 17) of pancreatic tumors with non-metastasized pancreatic cancer [149]. 



161 

 

Furthermore, decreased expression of RGS16 was associated with poor pancreatic cancer patient 

survival indicating the potential of RGS16 as a pancreatic cancer prognostic marker [149].  

Few reports have been published that describe the impact of RGS16 on cancer cell signaling 

and progression.  Although increased expression of RGS16 has been found in pediatric high 

hyperdiploid acute lymphoblastic leukemia (ALL) and colon cancer, functional analysis of 

RGS16 has not been performed to identify any oncogenic function in these cancers [147-149]. 

Functional and expression analysis of RGS16 has been performed in breast cancers.  The RGS16 

promoter is located at a site that is vulnerable to allelic imbalances in a subset of breast cancers 

that can result in promoter methylation of RGS16 in 10% of these cancers [150].  Liang et al. 

(2009) found that RGS16 overexpression in breast cancer cell lines decreased EGF induced 

proliferation and AKT activation by binding to the p85-alpha subunit of PI3K preventing the 

phosphorylation of AKT [171]. RGS16 has also been associated in the anti-proliferative effect of 

retinoic acid in neuroblastoma cells and the cytotoxic effect of histone deacetylase inhibitor 

Vorinostat in triple negative breast cancers [162, 163]. The current data suggests RGS16 plays a 

role in cancer signaling, however, more research is needed to delineate the function of RGS16 in 

cancer cells. 

 

RGS16 and cell migration 

RGS16 has been linked with inhibition of cell migration in a canonical (through regulation of 

GPCR signaling) and non-canonical pathways in normal cells. RGS16 inhibits megakaryocytes 

and T lymphocyte migration by regulating the activation of the GPCR CxCR4 and decreases T 

helper type 2 and 17 cell trafficking through regulation of CCR4 and CCR10 chemokine 

pathways representing the canonical form of RGS signaling [136, 137, 141]. The activation of 
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RhoA, a small GTPase involved in reorganizing actin cytoskeleton and a mediator of EGF 

induced invasion of pancreatic cancer cell lines is inhibited in MCF-7 cells by the relocation of 

Gα13 to the plasma membrane by RGS16 preventing Gα13 mediated activation of RhoA  [164, 

240].  The regulation of RhoA activation by RGS16 is an example of a non-canonical 

mechanism used to regulate signaling.  These studies show mechanisms by which RGS16 can 

regulate cell migration.  To date, this is the first report demonstrating RGS16 induced inhibition 

of cancer cell invasion.     

The findings from our study suggest RGS16 is regulated by p53 and pRb and functions to 

inhibit pancreatic cancer cell migration and invasion; however this effect was cell line 

dependent. PANC-1 cell migration induced by FBS or EGF was not inhibited by RGS16, this 

could be due to different mutations in PANC-1 compared to the other cell lines that prevent 

RGS16 inhibition of FBS or EGF induced cell migration.  Although not commonly associated 

with p53 and pRb signaling, regulation of cellular migration and invasion by both tumor 

suppressors has become evident over the course of the past several years.  p53 has been found to 

regulate cell polarization and migration of cells predominately by inhibiting Rho signaling [257].  

p53 also inhibits cancer cell invasion by inhibiting activity or expression of matrix 

metalloproteinases (MMPs) [258-261].  pRb’s role in cell migration has recently come to light.  

pRb has been implicated as an important factor in regulating neuronal cell migration and was 

recently found to inhibit CD44 induced collective cell migration of breast cancer cells [68, 262].  

pRb is linked to regulating invasion through its ability to bind and inhibit E2F induced 

transcriptional activation of the MMPs 9, 14, and 15 [67].  Knock-down of E2F1 and E2F3 

inhibited migration and invasion of non-small cell lung cancer cells [67].  RGS16 may be 

another mechanism employed to regulate cell migration and invasion by p53 and pRb.   
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Future studies and conclusions 

This is the first report of regulation of RGS16 pRb and RGS16-mediated inhibition of EGF- 

induced migration and invasion in normal and cancer cells. This study focused on examining 

migration and invasion mediated by the EGF/EGFR pathway.  However, a single RGS protein 

can interact and regulate signaling of multiple pathways ([134, 172]).  Future studies are needed 

to determine if RGS16 can inhibit cell migration and invasion through other pathways such as 

the SDF-1/CxCR4 pathway which is deregulated in pancreatic cancer ([222]).    

By utilizing microarray expression profiling, we have 1) identified p53 and pRb regulated 

candidates or genes involved in coordinating cancer suppression processes and determining cell 

fate, 2) and identified a possible role for the cross-talk candidate RGS16 in inhibiting pancreatic 

cancer cell migration and invasion.  Our study suggests that the loss of RGS16 promotes 

pancreatic cancer metastasis by removing the inhibitory function of RGS16 on cell migration and 

invasion.  Our study further supports the use of RGS16 as a prognostic marker for predicting 

pancreatic cancer metastasis previously described by Kim et a.l that can be used to asses 

eligibility of patient for surgery [149].  By investigating the p53 and pRb cross-talk and the role 

of RGS16 in pancreatic cancer cell migration, we have uncovered a novel regulator of metastatic 

processes that could be a future target in developing treatments for late stage pancreatic cancer.   

 

Materials and Methods 

Cell culture and virus transductions  

The human lung fibroblast WI38 cell line, osteosarcoma cell line SAOS-2 (p53 null and 

truncated RB1), and the pancreatic cancer cell lines, BxPC-3, AsPC-1, MIA PaCa-2, and PANC-

1 were purchased from the American Type Culture Collection (Manassas, VA, USA).  WI38 
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cells were grown in Hyclone MEM/EBSS (ThermoFisher Scientific, Waltham, MA) media 

supplemented with 10% research grade fetal bovine serum (FBS) (PAA Laboratories, 

Dartmouth, MA) and 1% Penicillin Streptomycin (Corning, Corning, NY) and SAOS-2, MIA 

PaCa-2, and PANC-1 cells were grown in Hyclone High Glucose DMEM  (ThermoFisher 

Scientific, Waltham, MA) supplemented with 10% FBS and 1% Penicillin Streptomycin.  BxPC-

3 and AsPC-1 were cultured in RPMI supplemented with 10% or 15% FBS (respectively) and 

1% Penicillin Streptomycin.  Cells were cultured at 37°C in a humidified 5% CO2 incubator.   

Ad.CMV (adenovirus with CMV promoter) and Ad.CMV.p53 (Adenovirus containing wild-

type p53 gene under control of CMV promoter) viral vectors were generated using the AdEasy 

system (Carlsbad, CA). The Ad.CMV.pRb (Adenovirus containing RB1 gene cDNA under 

control of CMV promoter) vector was provided by Dr. Juan Fueyo (M.D. Anderson Cancer 

Center, The University of Texas).  The Ad.GFP and Ad.GFP.RGS16 viruses were purchased 

from Vector Biolabs (Philadelphia, PA).  Viruses were amplified and tittered as previously 

described [183-185].   

 

Microarray expression profiling  

For expression profiling, WI38 cells were transduced with each of the following vectors or 

vector combination:  (1) adenovirus vector with no insert (Adenoviral CMV-vector ctrl), (2) 

Ad.CMV.p53, (3) Ad.CMV.pRb, and (4) both Ad.CMV.p53 and Ad.CMV.pRb.  Vectors were 

added at a multiplicity of infection (MOI) of 50 to 80% confluent WI38 cells in MEM/EBSS 

supplemented with 2% heat-inactivated FBS.  Culture media were replaced with 10% FBS and 

1% Penicillin/Streptomycin supplemented MEM/EBSS medium 16 hours after vector addition; 

cells were collected after 48 hours.  Four biological replicates were performed for each of the 
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four expression studies.  Immunoblots were used to verify increased expression of p53 and/or 

pRb in the WI38 samples prior to microarray analysis. 

Total RNA was isolated from transduced WI38 cells using TRIzol reagent (Invitrogen, 

Carlsbad, CA) according the manufacturer’s protocol.  Using a universal reference design, two 

RNAs (transduced WI38 cells + Agilent (Santa Clara, CA) human universal reference RNA) 

were hybridized to Agilent 44K whole human genome expression arrays. Total RNAs were 

labeled with either cyanine (Cy)-3-CTP and Cy5-CTP (Perkin Elmer, Waltham, MA) using 

Agilent QuickAmp cRNA labeling kits. Following purification, Cy3- and Cy5-labeled cRNAs 

were combined and hybridized for 17 hours at 65ºC in an Agilent hybridization oven. 

Microarrays were then washed and scanned using Agilent DNA Microarray Scanner. 

 

Statistical Analysis of Expression Profiling Data 

Lowess-normalized feature intensities were extracted from the scanned image using Feature 

Extraction (Agilent). These data were exported as tab-delimited files (one file per sample) to 

Microsoft Excel for filtering.  For each feature, data were removed if both channels reported 

values not well-above background according to default Feature Extraction Criteria.  For each 

comparison, log base-2 ratios of each sample to universal reference RNA were collated into a 

single table.  Features for which fewer than 50% of all samples had a present value were 

removed from further analysis.   

The resulting tables were imported into Multiple Experiment Viewer (MEV) v4.3.  Log base 

2 ratios were compared between each of three sample sets (p53 expressed samples.  RB1 

expressed samples and p53 and RB1 coexpressed samples) and the adenovirus vector control 

samples by Significance Analysis of Microarrays [186].  We used a conservative threshold 
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whereby only genes for which MEV reported a false discovery rate of 0% were considered 

significantly differentially expressed. 

Data extracted using Feature Extraction was uploaded to the NCBI’s Gene Expression 

Omnibus (GEO) public database and is available via access number GSE59660.   

Real-time PCR analysis 

Total RNA was isolated from cells using TRIzol reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s protocol.  Total RNA was reverse transcribed into cDNA using 

the High Capacity cDNA Reverse Transcription kit from Applied Biosystems (Foster City, CA) 

according to the manufacturer’s protocol.   Real-Time PCR was performed using the Applied 

Biosystems TaqMan Gene Expression Assays in the ABI 7000 detection system. TaqMan probes 

were purchased from Applied Biosystems (Foster City, CA) IL-6 (HS00197982_m1), BCL2L11 

(BCL2L11) (HS00197982_m1), RGS16 (HS00892674_m1), BTG2 (HS00198887), STAT4 

(HS00231372_ml) and GAPDH (HS02758991). Human pancreatic total RNA used for 

comparing the expression of RGS16 mRNA was purchased from Agilent Technologies (Cedar 

Creek, TX).  The relative fold change for each marker was calculated using the 2
-ΔΔCT

 analysis 

according to Livak et.al and statistical significance was determined using a one way ANOVA 

with a Dunnett’s or Tukey (pancreatic cancer cell lines) post-hoc test, using Prism V6.0c 

(GraphPad Software, Inc., La Jolla, CA) [187].    

Western blot analysis 

WI38 or Saos-2 cells were lysed in whole cell lysis buffer containing 50mM TRIS (pH7.4), 

5mM EDTA 250mM NACL, 50mM NaF, 0.1mM Na3VO4, 0.1% Triton X-100 and protease 

inhibitors (Pierce Protease inhibitor Tablets 88661; Thermo Scientific, Rockford, IL).  Protein 

extracts (50ug) were loaded onto 8% polyacrylamide gels and proteins were separated using 
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sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).  Blots were blocked 1 

hour in 5% dry non-fat milk diluted in Tris-buffered saline solution containing 0.1% Tween-20 

(TBS-T). Membranes were probed overnight at 4°C with mouse anti-p53 (SC-DO1, 1: 1000) or 

mouse anti-pRb (SC-IF8, 1:500) antibodies from Santa Cruz Biotechnology (Dallas, TX).  

Following primary antibody incubation the membranes were washed and probed with 

Horseradish peroxidase (HRP)-conjugated goat anti-mouse (1:5000) secondary antibodies 

(Rockland, Gilbertsville, PA) for 1 hour at room-temperature.  Primary and Secondary antibodies 

were diluted in TBS-T.  Blots were washed 5 minutes in TBS-T three times and Amersham ECL 

prime western blotting detection reagent was added in order visualize the protein bands (RPN 

2232, GE Life Sciences, Pittsburgh, PA).  Western blot images were captured using 

FOTODYNE FOTO/Analyst FX (Hartland, WI) imaging camera.   Membranes were normalized 

using mouse anti-actin (1:1000). Densitometry was performed using TotalLab Quant software 

(TotalLab Ltd, UK). 

 

Wound healing Assay 

Pancreatic cancer cells (BxPC-3, AsPC-1 and PANC-1) were placed in a 6 well plate at 

approximately 70% confluency.  The following day, 50 Multiplicity of Infection (MOIs) of 

Ad.GFP (control) or Ad.GFP.RGS16 were added to the cells in media containing 2% heat-

inactivated FBS for 24 hours.  The media was changed to complete media (10% FBS for BxPC-3 

and PANC-1 or 15% for AsPC-1) for 24hrs.  48 hours after the addition of the virus the media 

was changed from complete media to media supplemented with 0.5% FBS and 1% P/S for 

24hours.  Three wounds or scratches were made per well using a p200 pipette tip in PBS.  The 

cells were washed three times with PBS and incubated for 16-24 hours in complete media or 
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media supplemented with 100ng/ml of EGF.  FBS or EGF was added to induce cell migration at 

a concentration previously described in [228-230].  Wound widths were measured and images 

taken at 0, 16, or 24 hrs after addition of media supplemented with FBS or EGF at 100x 

magnification using an Olympus DP71 microscope (Center Valley, PA).  Efficacy of virus 

transduction was confirmed using fluorescent microscopy to examine GFP expression prior to 

the start of the experiment.  Percent wound healing was determined using the following equation; 

% wound healing = ([initial scratch width  – final scratch width]/ initial scratch width)*100.  

Three replicates were performed for each cell line.   

 

Invasion Assay 

BD Bio Coat Matrigel Invasion chambers (Bedford, MA) containing membrane with 8um 

pores were used to assess the role of RGS16 to inhibit pancreatic cancer cell migration and 

invasion.  BxPC-3 cells were plated into 6-well dish, 24 hours later 50 MOIs of Ad.GFP or 

Ad.GFP.RGS16 virus were added to the cells followed by 24 hour incubation in complete media 

and 24 hours in low-serum media as described in the wound healing section.  Chambers were re-

hydrated in RPMI containing 1% P/S and 0.1 % BSA for 2 hours at 37°C.  BxPC-3 and AsPC-1 

cells were collected and 25 x 10
4 

cells were added to the top of the chambers in RPMI 

supplemented with 1% P/S and 0.1%BSA.  RPMI supplemented with 100ng/ml EGF, 1% P/S, 

0.1% BSA was added to lower portion and the chambers were incubated for 18 (AsPC-1) or 20 

(BxPC-3) hours at 37 ֯C.  The non-migrating cells were removed using a cotton swab and the 

invaded cells were fixed using 100% methanol (MeOH) for 5 minutes and stained using 0.5% 

crystal violet plus 20% MeOH (10-15 mins).  Invaded cells were counted using 200x 

magnification with 12 different views.  Percentage of invasion compared to GFP control was 
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calculated for each cell line [(# of invaded cellstreated / # of invaded cellcontrol) *100].  Three 

replicates were performed for each cell line.    

 

Statistical Analysis 

Statistical significance for the wound healing and invasion assays was calculated using 

Student’s t-test using Prism V6.0c (GraphPad Software, Inc., La Jolla, CA).  Statistical Analysis 

tests used for expression profiling and qRT-PCR analyses are listed in their respective sections. 

 

Abbreviations 

qRT-PCR: quantitative real-time PCR; pRb: retinoblastoma protein; RB1: retinoblastoma 
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signaling 16; EGF: epidermal growth factor; EGFR; epidermal growth factor receptor; GPCR: G 

protein coupled receptor. 
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Figure Legends 

Figure 1: Identification of differentially expressed transcripts in WI38 cells 

expressing p53 and/or pRb.  WI38 cells were transduced with adenoviruses carrying the 

transgenes p53, or RB1/p105; a MOI of 50 was used in each case.  A) Western blot analysis was 

used to test for p53 and pRb expression prior to microarray analysis.  B) A Venn diagram shows 

the differentially expressed transcripts and intersects identified during the microarray analysis.  

The numbers in red denote transcripts that were up-regulated due to p53, pRb, or p53 and pRb 

expression. 

Figure 2: Validation of microarray data using qRT-PCR in WI38 cells.  Five 

transcripts RGS16, BCL2L11, BTG2, IL-6 and STAT4 from the p53 and pRb intersect were 

chosen for validation by qRT-PCR in WI38 cells expressing p53, pRb, or both p53 and pRb.  

The vector control (Ad.CMV) was used to calculate the fold change for each transcript.  One-

way ANOVA with Dunnett’s test for multiple comparison were used to test for statistical 

significance * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-value < 

0.0001.   

Figure 3: Validation of microarray data using qRT-PCR in SAOS-2 cells. Five 

transcripts RGS16, BCL2L11, BTG2, IL-6 and STAT4 from the p53 and pRb intersect were 

chosen for validation by qRT-PCR in SAOS-2 cells expressing p53, pRb, or both p53 and pRb.  

The vector control (Ad.CMV) was used to calculate the fold change for each transcript.  One-

way ANOVA with Dunnett’s test for multiple comparison were used to test for statistical 

significance * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-value < 

0.0001.   
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Figure 4: Decreased expression of RGS16 mRNA relative to total RNA extracted 

from normal human pancreatic tissue.  Expression of RGS16 was measured using qRT-PCR 

in BxPC-3, MIA PaCa-2, PANC-1, and AsPC-1 cells.  Relative fold change was measured using 

total RNA extracted from normal human pancreatic tissue as the control.  One-way ANOVA 

with Tukey’s test for multiple comparison were used to test for statistical significance between 

the cell lines and control * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, and **** p-

value < 0.0001.   

Figure 5: Expression of RGS16 inhibited migration of BxPC-3 cells. BxPC-3 cells 

were transduced with 50 MOI of Ad.GFP (CTRL) or Ad.GFP.RGS16.  A) Virus transduction 

was verified by fluorescent microscopy. B) Images (100x) and measurements of wounds were 

taken prior and 16 hours after addition of media supplemented with FBS (10%) or EGF 

(100ng/ml).  The dashed lines represent size of scratch at time 0.  C) Mean Percentage of wound 

healing ± SEM of three separate experiments (three scratches / well) was determined. Student’s 

t-test was used to determine statistical significance compared to control * p-value < 0.05, ** p-

value < 0.01. 

Figure 6: Expression of RGS16 did not inhibit migration of PANC-1 cells.  Wound 

healing assays were performed as described in Figure 2. A) Fluorescent microscopy was used to 

verify virus transductions: B&C Images (100X) were taken and percentages of wound healing 

were calculated at 24hrs.   

Figure 7: Expression of RGS16 inhibited migration of AsPC-1 cells.  Wound healing 

assays were performed as described in Figure 2. A) Fluorescent microscopy was used to verify 

virus transductions: B&C Images (100X) were taken and percentages of wound healing were 

calculated at 24hrs * p-value < 0.05.   
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Figure 8: Expression of RGS16 inhibited invasion of BxPC-3 and AsPC-1 cells.  

Matrigel invasion chambers were used to measure cell migration and invasion of GFP and/or 

RGS16 expressing BxPC-3 (A & B) and AsPC-1 (C & D) cells using EGF as a chemoattractant. 

Migrated cells were stained with Crystal Violet and counted at 200x magnification (A &C). 

Percent invasion was calculated for each cell line (B & D) * p-value < 0.05.    
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Table 1. Fold Change of p53 and pRb common gene set cross-talk candidates.  

 
Gene Symbol Name FC-p53 FC-Rb FC-p53+Rb 

LOC387763 hypothetical LOC387763 30.62 159.25 297.07 

A_24_p775812 Unknown 15.65 199.36 252.80 

RGS16 Regulator of G-protein signaling 16 18.84 30.82 149.75 

AREG Amphiregulin 8.15 46.41 81.91 

CCL3 Chemokine (c-c motif ligand 3) 3.78 8.18 56.12 

TNFSF15 Tumor necrosis factor (ligand) superfamily, member 15 10.68 69.61 53.34 

IL-1B Interleukin-1 beta 4.82 22.53 43.79 

OLFM2 Olfactomedin 2 10.60 37.76 27.31 

NR4A1 Nuclear receptor subfamily 4 group A member 1 11.56 20.73 27.08 

POSTN Periostin 2.91 21.051 25.66 

D4S234e D4S234e (NSG1; neuron specific gene family member 1) 21.20 7.86 22.06 

IL-6 Interleukin-6 6.04 12.37 21.99 

DMN Desmuslin 4.57 27.42 21.25 

EPPK1 Epiplakin 32.06 8.27 20.04 

IQSEC3 IQ motif and Sec7 domain 3 7.29 20.37 19.95 

PLAC2 Placenta specific 2 21.60 4.63 19.00 

L3MBTL2 Lethal(3)malignant brain tumor-like protein 2 18.33 11.82 16.00 

LHX6 LIM homeobox 6 10.11 7.11 15.15 

AKR1B10 Aldo-keto reductase family 1 member B10 11.61 13.92 13.30 

RRAD Ras associated with diabetes 5.98 7.80 12.61 

c10orf58 chromosome 10 open reading frame 58 4.86 9.20 11.74 

BCL2L11 Bcl2-like 11 (apoptosis facilitator) 9.58 6.50 11.34 

COL7A1 Collagen, type VII, alpha 1 5.97 10.65 10.94 

JUP Junction plakoglobin 7.60 16.61 9.92 

VCAN Versican proteoglycan 5.61 9.17 9.73 

CRISPLD2 Cystein-rich secretory protein 11 10.11 5.38 9.55 

STOX2 Storkhead-box 2 14.48 8.70 9.33 

BTG-2 B-cell translocation gene 2 3.85 5.07 7.46 

P2RY2 purinergic receptor P2Y, G-protein coupled, 2 2.38 19.53 6.91 

TSKU Tsukusi,small leucine rich proteoglycan 5.28 5.42 5.97 

C4B Complement component 4B 3.38 7.64 2.22 

RTN4R Reticulon 4 receptor 8.01 6.19 N/A 

STAT4 Signal transducer and activator of transcription 4 5.98 7.80 N/A 

AK124344 cDNA FLJ42353 fis, clone UTERU2007520 5.21 7.13 N/A 

KLHL20 Kelch like 20 4.88 4.46 N/A 

NOTCH3 Notch homolog 3 4.68 3.96 N/A 

KSR1 Kinase suppressor of RAS 3.86 4.08 N/A 

GDF15 Growth/differentiation factor 15 3.24 3.40 N/A 

LOC654346 similar to galectin 9 short isoform (LOC654346) 2.81 4.77 N/A 

FC = Fold change 

N/A= Fold change not available.  Gene was not found to be significantly differentially expressed in WI38 cells coexpressing p53 and pRb. 

    

  

http://getentry.ddbj.nig.ac.jp/getentry/na/AK124344/?filetype=html
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 p53 p16 Ras EGFR Differentiation Origin Metastasis 

BxPC-3 mt del wt high moderate primary no 

PANC-1 mt del mt high poor primary yes 

AsPC-1 mt mt mt high poor metastatic (ascites) yes 

MiaPaCa-2 mt del mt low poor primary no 

 

Figure 1: 
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