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ABSTRACT 
 

This thesis contributes to on-going research at Marshall University on effects of excess nitrogen 

(N) deposition on hardwood forests. Excess N can decrease plant biodiversity and enhance loss 

of nutrients (e.g., Ca++). Preliminary results have suggested that excess N has increased cover of 

Rubus (blackberry) in the herbaceous layer. The purpose of this study was to quantify the 

response of Rubus to the N treatment, relating Rubus cover to species richness and using foliar 

analysis to examine effects on nutrient availability. It is expected that increased Rubus will 

decrease biodiversity by eliminating N-efficient species, and that added N will simultaneously 

increase foliar N and decrease foliar cations. Species richness decreased significantly with N-

mediated increases in Rubus cover. Foliar tissue contained higher N and lower Ca++ from added 

N, suggesting loss via leaching with NO3
-. Observed increases of Rubus cover under a closed 

canopy is novel, considering its intolerance of shade
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CHAPTER 1 

INTRODUCTION 
 

 

N Deposition 

Nitrogen (N) deposition is increasing globally due to increases in high-energy 

combustion of fossil fuels and use of N-based fertilizers for agriculture. Despite efforts to 

regulate anthropogenic increases of N deposition (Clean Air Act of 1990), rates are not expected 

to decrease in the near future. Bobbink et al. (2010) predicted that N deposition in the eastern 

United States would rise from 10-15 kg N ha-1 yr-1 in 2000 to 20-30 kg N ha-1 yr-1 in 2030. 

Impacts from anthropogenic increases of N on aquatic and terrestrial ecosystems continue to be 

an area of emerging ecological concern, particularly for the ability of these ecosystems to absorb 

and store N (Galloway et al. 2004, 2008; Phoenix et al., 2006; Barbour et al., 1999). Excess N 

deposition has the potential to saturate the capacity for N retention in a variety of forest 

ecosystems, including those of the eastern hardwood region. Nitrogen saturated soils in these 

regions can possibly alter nutrient processing rates, acidify soils, and lead to forest decline 

(Magill et al., 1997, 2004).  

 

 The Herbaceous Layer  

Although the herbaceous layer in an eastern hardwood forest of the U.S. makes up 

~0.1% of the aboveground biomass, it can represent up to 90% of plant biodiversity in this 

ecosystem (Gilliam 2007). Biodiversity in hardwood forest herbaceous layers is highly 

dependent on spatial and temporal heterogeneity in soil resources and light availability (Kold and 

Diekmann 2004; Bartels and Chen, 2010; Gilliam and Dick, 2010; Costanza et al., 2011; Gilliam 

and Roberts, 2014). Spatial and temporal variation in environmental conditions can increase 

biodiversity because heterogeneous ecosystems promote coexistence between more species than 

homogeneous ecosystems by altering the interspecific competition (Maestre et al. 2012; 

Hutchings et al. 2003).  
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The herbaceous layer is particularly sensitive to fluctuations in N deposition, where 

excess N deposition can alter species composition and decrease biodiversity (Gilliam et al. 

2006). Impacts on forest ecosystems arise when rates of N deposition exceed biotic demand for 

N, known as N saturation (Aber et al. 1998). The atmosphere is comprised of 78% N2 gas that is 

nonreactive with virtually all living organisms (Gilliam 2014a). Conversion from unreactive N to 

reactive N, particularly NO3
- and NH4

+, has increased due to increases in anthropogenic N 

deposition (Galloway et al., 2004, 2008). Consequently, NO3
- is the dominant form of available 

N for plant uptake when soils of hardwood forest ecosystems become N-saturated. Aber et al. 

(1998) predicted that N saturation increases N availability over time resulting in decreased 

nitrogen limitation for biological function. Nitrogen-saturated soils can enhance growth of 

nitrophilic plant species, competitively displacing N-efficient plant species. In undisturbed 

hardwood forest ecosystems, N-efficient plant species out-compete high N-requiring plant 

species through uptake of enough inorganic N to keep soil concentrations below the level of high 

N-requiring plant species (Gilliam 2014a).  

Excess NO3
- in N saturated soils has the potential to leach from mineral soils while 

simultaneously promoting loss of nutrient cation (Ca++, Mg++, K+). Leaching of base cations, 

resulting from excess soil NO3
-, decreases soil pH (Gilliam and Adams, 2011). Highly acidic 

soils have low base cation availability from the result of H+-enhanced nutrient cation leaching in 

N-saturated soils (Moore and Houle, 2013). In a study on environmental heterogeneity in North 

Carolina and South Carolina, Costanza et al. (2011) found mean pH as the best predictor for 

species richness on a local scale (plots) and low pH was associated with low species richness. 

Acidic soils promote mobility of Al+++ and other heavy metals that can inhibit root growth, 

promote senescence of foliar tissue, inhibit uptake of other nutrients, and promote forest decline 

(Godbold et al., 1988; Shortle and Smith, 1988; Pitelka and Raynal, 1989; Boudot et al., 1994; 

Nagajyoti et al., 2010).  

 

N Homogeneity Hypothesis 

Gilliam (2006) developed the N homogeneity hypothesis, describing negative effects of 

excess N deposition through making a connection between decreases in spatial heterogeneity of 

soil N dynamics and decreases in species diversity for impacted forests. Spatial heterogeneity in 

soil resources maintains high biodiversity in a variety of herbaceous communities (Bartels and 
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Chen, 2010; Gilliam and Dick, 2010; Costanza et al., 2011; Lu et al., 2012; Reinecke et al., 

2014). Species composition depends highly on spatial and temporal variability of soil nutrients 

and particularly, soil N dynamics (Gilliam and Adams, 2001; Bengston et al. 2006; Gilliam and 

Dick, 2010). Spatial heterogeneity of essential nutrients in soils, such as N, can increase the 

number of species in a community through decreasing competitive interactions. Typically, 

spatial heterogeneity of N processing is high in hardwood forest soils due to many influences, 

such as spatial variability in decomposing litter (Gilliam 2006).   

Nitrogen saturated soils resulting from excess N deposition alter N cycling by shifting 

from processing organic N to dominance in the mobility of NO3
-. As mentioned above, NO3

- in 

excess of plant requirements readily leaches from mineral soil while simultaneously inducing 

leaching of other nutrient cations.  High NO3
- mobility in N-saturated soils decreases availability 

of essential nutrients (Ca++, Mg++, K+) for forest plants. Herbaceous responses to N-saturated 

soils that are directly influenced by increased NO3
- typically include decreased richness, 

impacting overall biodiversity of affected forests. Therefore, N-saturated soils shifting the N 

cycle to mobility of NO3
- can potentially homogenize N dynamics, essential nutrient availability, 

and species composition, ultimately decreasing biodiversity of impacted forest ecosystems.   

 

N/Herbaceous Studies at Fernow Experimental Forest 

In 1988, the USDA funded a project to apply an acidification treatment of (NH4)2SO4 to 

a single watershed in Fernow Experimental Forest (FEF), Parsons, WV (Adams et al., 1993). 

This application of (NH4)2SO4 when dissolved in solution becomes acidic by nature. The 

purpose of this treatment was to address responses at an ecosystem level to increasing acid 

deposition.  It was known that acid deposition had potential to decrease productivity of forested 

ecosystems, but it was not known to what extent these decreases in productivity were linked to 

increasing acid deposition alone (Gilliam et al., 1994). The herbaceous layers of forest 

ecosystems are particularly sensitive to acid deposition, therefore, Gilliam et al. (1994) examined 

the responses of the herbaceous layer vegetation and soil nutrients to excess acid deposition. 

They concluded that the acid treatment had not shifted species composition or nutrient 

concentrations when comparing the treated watershed with reference watersheds; however, there 

was evidence of higher Al and Fe uptake on the treated watershed, suggesting possible toxicity 

problems for herbaceous species exposed to excess acid deposition.   
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The acidification study has now shifted focus toward excess N deposition, even though 

the same treatment is still being applied. Experimental N treatment to a single watershed at FEF 

has resulted in an increase in dominance of a rhizomatous clonal species, Rubus spp (hereafter, 

Rubus). Following 14 years of excess N treatment at FEF, Rubus cover increased from ~1% 

cover to ~13% cover from 1991 to 2003, while species richness decreased from ~13 species/plot 

to 10 species/plot from 1994 to 2003. A decrease in a previously dominant herbaceous species, 

Viola spp.¸ has also been associated with this increase in Rubus cover. Therefore, the positive 

response of Rubus to N treatment appears to provide a valuable signal for examining the effects 

of excess N deposition in eastern hardwood forests for this study.  

 

Rubus Ecology  

Rubus is a genus within the Rosaceae family that is found throughout temperate zones in 

North America, Europe, and Asia. Rubus is considered a ruderal and clonal species, that often 

dominates early successional habitats of the eastern hardwood region (Graham et al., 2003; 

Patamsytë et al., 2005; Donoso and Nyland, 2006; Caplan and Yeakley, 2010 and 2013; Bajcz, 

2014). Ruderal species thrive in conditions of disturbed areas (high light, high moisture, and high 

fertility) and are highly adaptable to changing conditions; these life history traits contribute to a 

large distribution of Rubus (Donoso and Nyland, 2006). Clonal species high adaptability to 

changing conditions is made possible through vegetative growth via a rhizome. A rhizome root 

system provides access to spatial variability in soil resources (nutrients and water) and 

persistence of roots through non-growing seasons. The lateral expanse of clonal species allows 

increased colonization of adjacent areas for access to spatial resource pools.  

 The majority of the eastern United States hardwood region is classified as second growth 

because much of the hardwood forests were harvested in the early 1900s. Harvesting timber 

promotes rapid vegetative expanse and germination of Rubus through increased light and high 

nutrient availability (particularly N) by opening the overstory canopy (Donoso and Nyland, 

2006). Rubus is present across the eastern US region partially due to secondary succession after 

the majority of this hardwood region was harvested for timber in the late 1800s and early 1900s 

(Donoso and Nyland, 2006). Rubus becomes the dominant species within 2-3 years following 

clearcutting and peaks in vegetation by the fifth year (Donoso and Nyland, 2006). In the seventh 

year following clearcutting, tree saplings start to grow through the Rubus canopy, diminishing 

4 
 



 

high-light conditions, and by the tenth year after clearcutting Rubus has almost completely died 

back (Donoso and Nyland, 2006). Rubus is now present under many closed canopies of mature 

hardwood forest in the eastern US, mainly due to natural disturbances in the form treefall gaps 

that maintain Rubus at ~1-2% cover (Donoso and Nyland, 2006).  

 Rubus dieback under a closed canopy is particularly due to intolerance of low light 

conditions (high light compensation point) (Richard and Messier 1996), but seeds can persist in a 

dormant state for over 100 years (Donoso and Nyland, 2006). Graber and Thompson (1978) 

found 95% and 90% germination in recovered Rubus seeds from soils of 38 year old and 95 year 

old clearcut stands, respectively. Persistence of Rubus seeds allows colonization of disturbed 

areas, where 40% canopy removal promotes Rubus seed germination (Donoso and Nyland, 

2006). Further, Richard and Messier (1996) found no Rubus growth under a 7% photosynthetic 

photon flux density (PPFD), but Rubus was always present under a 25% PPFD. Therefore, 

secondary succession has established Rubus in eastern hardwood forests, but natural and 

anthropogenic disturbances have maintained Rubus.  

 When areas are disturbed, higher light conditions become available along with an influx 

of N to soil solution from decomposing litter for plant absorption. Nitrogen is a macronutrient 

that is required in relatively high amounts because of its importance in several key biomolecules, 

including protiens, nucleic acids, and chlorophyll. There are two available forms of N for plant 

absorption, NO3
- and NH4

+. Nitrate is readily available under disturbed conditions or when 

excess N deposition is present in a hardwood forest ecosystem. When NO3
- is the prominent 

form of N available, Rubus seed germination and biomass increases (Claussen and Lenz, 1999; 

Donoso and Nyland, 2006). Rubus is considered a nitrophilous species, where high levels of N 

promote Rubus dominance over other species (Hedwall et al., 2011). Further supporting the 

nitrophilous nature of Rubus, Lautenshlager (1999) found Rubus biomass to increase when N 

was the only added nutrient. Therefore, it can be expected that excess N deposition will 

significantly increase Rubus cover when Rubus was previously established in early succession.  

 

Purpose and Hypotheses 

The purpose of this study was to assess the effects of excess N deposition on the 

herbaceous layer of a mixed hardwood forest. More specifically, the objectives of this study are 

to: 1) quantify Rubus response to N treatment from 1991 to 2014, 2) relate Rubus cover to 
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species richness of the herbaceous layer during this period, and 3) determine effects of N 

additions on foliar nutrients of Rubus. Examining Rubus foliar nutrients will provide an 

indication of impacts that excess N deposition has on nutrient status in a hardwood forest 

ecosystem. Expected effects of excess N treatment are: 1) excess N deposition will increase 

Rubus cover, 2) increased Rubus cover will result in a decrease in biodiversity on the treatment 

watershed and 3) excess N treatment will increase foliar N of Rubus while decreasing foliar 

cation nutrients. 

 

Study Site 

This study was conducted at Fernow Experimental Forest (FEF), Tucker County, West 

Virginia (39o 03’ N, 79o 49’ W). Fernow Experimental Forest is a montane hardwood forest in 

the Allegheny Mountain portion of the unglaciated Allegheny Plateau, adjacent to the 

Monongahela National Forest. Mean annual precipitation for the FEF is approximately 1430 mm 

yr-1, with higher precipitation occurring during the growing season and with increasing elevation 

(Gilliam and Adams, 1996). Wetfall N deposition is approximately 10 kg N ha-1 yr-1 and dry N 

deposition is approximately 2 kg N ha-1 yr-1 at FEF. Study site consists of coarse textured 

Inceptisols (loamy-skeletal, mixed mesic Typic Dystrochrept) of the Berks and Calvin series, 

sandy loams derived from sandstone (Gilliam et al., 2005).  

 There were three adjacent watersheds used in the study from FEF: Watershed 3 (WS3), 

Watershed 4 (WS4), and Watershed 7 (WS7). Watershed 4 served as a reference watershed 

representing a mixed-aged hardwood stand last cut between 1904 and 1911. Watershed 7 served 

as another reference watershed representing approximately 45-year-old even-aged hardwood 

stand that was treated with herbicide six years prior to being let go to grow in 1969. Watershed 3 

served as the treatment watershed for this study, receiving three aerial applications beginning in 

1988 of (NH4)2SO4: 9 kg N ha-1 in spring, 17 kg N ha-1 in mid-summer, and 9 kg ha-1 in late fall, 

totaling 35 kg ha-1 yr-1. WS3 represents a mixed-aged hardwood stand last cut in 1969, removing 

approximately 90% of tree basal area, except for three hectares of the shade area around the 

stream channel. Important overstory tree species found on WS3, WS4, and WS7 are Acer 

pensylvanicum L., Acer saccharum, Betula lenta, Fagus grandifolia, Fraxinus americana L., 

Liriodendron tulipifera, Prunus serotina, Quercus prinus L., Quercus rubra, Robinia 

pseudocacia L., and Sassafras albidum (Nutt.) Nees (Gilliam et al. 1995).  
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CHAPTER 2 

HERB-LAYER STUDY 
 

 

Introduction 

 Although herbaceous layers of the eastern hardwood region are often over looked due to 

the low contribution they provide to overall aboveground biomass, they make up ~90 % of 

biodiversity in eastern hardwood forests (Gilliam 2007). Herbaceous layer biodiversity is an 

important component of the ongoing study at the FEF examining effects of excess N deposition 

on an eastern hardwood forest ecosystem. Excess N deposition has the potential to alter 

herbaceous communities by decreasing biodiversity. This study compared herb-layer 

composition between an N treated watershed (WS3) and a reference watershed (WS4) to 

interpret impacts from excess N deposition on herb-layer composition in the eastern hardwood 

region.  

 

Material and Methods 

Field Sampling 

The herbaceous layer was sampled during the peak of the growing season, beginning of 

July, in seven circular 0.04-ha sampling plots on each of WS3 and WS4 totaling 14 sampling 

plots on an on-going basis from 1991 to 2014. Each sampling plot center was permanently 

marked in 1991, and Dr. William J. Peterjohn, West Virginia University, had since established 

each sampling plot center using GPS coordinates. All vascular plants ≤1m in height were 

identified and estimated for cover (%) in five 1-m2 random subplots located in each sampling 

plot for WS3 and WS4. Subplots were located using a stratified-random polar coordinates 

method to avoid over sampling the center of plots (Gaiser 1951).  

Mineral soil was collected on an on-going basis from 1993 to 2014 for WS3 and WS4 by 

hand trowel at five points within the sampling plots for each watershed to a depth of 5 cm using 

methods described in Gilliam et al. (1996). The five mineral soil samples for each sample plot 
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were bulked together and mixed thoroughly to yield a single composite sample that was 

separated into two polyethylene bags. One bag was incubated in situ by burying at a depth of 5 

cm below the O horizon for approximately 30 d increments throughout the growing season and 

the other bag was immediately taken to the laboratory for extraction of NO3
- and NH4

+. Bags 

immediately taken back to the lab and incubated bags were extracted with 1M KCl and analyzed 

for levels of NO3
- and NH4

+ with an AutoAnalyzer 3.   

Data Analysis 

Data were compared between WS3 (treatment) and WS4 (reference) to examine temporal 

patterns for mean cover (total cover and Rubus cover) and species richness during the peak of the 

growing season (early to mid-July of each year) (Gilliam et al., 2006). Means were calculated 

from data collected from the seven plots on each watershed for each year of sampling. Means for 

Rubus cover, total cover, richness, and Rubus cover relative to total cover were compared 

between watersheds and among years of sampling with repeated measures of analysis of variance 

(ANOVA). Analysis of covariance (ANCOVA) was used to compare total cover and Rubus 

cover yearly means from 1991-present in WS3 and WS4. Mean daily precipitation from April to 

July was used as the covariate for ANCOVA to determine if excess N deposition affected 

herbaceous and Rubus cover. Generalized linear regression was used for net nitrification versus 

Rubus cover yearly means from 1994-present. Net nitrification was calculated as incubated soil 

NO3
- concentrations minus initial soil NO3

- concentrations.   

Detrended correspondence analysis (DCA) was used to assess annual changes in herb 

layer species composition from 1991-2014. Detrended correspondence analysis was run on total 

cover data for every species combined, followed by calculating centroids for seven 

plots/watershed/year. The top 10 weighted species calculated by running DCA were used to 

assess the influence these species had on annual change in herb layer composition on WS3 and 

WS4. Pearson rank correlations were used for annual means of DCA axes data, % total cover, % 

Rubus cover, and species richness (species/plot) for WS3 and WS4, separately.  

Results and Discussion 

Temporal Change in Total Cover 

Total % cover was not significantly different among years for WS3 and WS4 for 1991, 

1992, and 1994 (Gilliam et al., 2006). Total herb-layer cover significantly increased (P≤0.05) on 
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WS3 and WS4 after 1994 (Fig 2.1). Total cover was consistently higher on WS3 compared to 

WS4, but was only significant (P≤0.05) for 2009 and 2010 (Figure 2.1). Nitrogen increases total 

cover because it is presumably responsible for increasing leaf area by increasing cell size and 

number (Chapin 1980). Although the difference between WS3 and WS4 total cover is not 

significantly different for all years from 1994-present, consistently higher total cover on WS3 

compared to WS4 can be considered an effect of excess N deposition.  

The paralleled response among WS3 and WS4 for total cover from 1994-present is a 

unique feature worth explaining. Precipitation influences total cover of herbaceous communities, 

where increased precipitation is associated with higher total cover (Anderson et al., 1969). Linear 

regression for annual means of precipitation versus annual means of total cover indicated 

significance for watersheds (P≤0.0746) and an insignificant interaction (P≤0.4645) between the 

slopes for WS3 and WS4 (Table 2.1). This lack of significant interaction between slopes allows 

for comparison of watersheds using precipitation as a covariate in ANCOVA. The model for 

ANCOVA was significant (P≤0.0821) for total cover (Table 2.2), therefore, WS3 has on average 

11.6% more total cover (P≤0.0694) than WS4 (Table 2.3). Significantly higher cover on WS3 

compared to WS4 is a result of N treatment, where excess N deposition is shifting limiting 

factors through alleviating N limitations.  

 

Temporal Change in Species Richness 

Species richness was not significantly different (P≤0.05) between watersheds from 1991-

1994 (Gilliam et al., 2006). Species richness did not significantly change (P≥0.05) for the 

sampling period on WS3 during N treatment either, but there was a decrease from ~13 

species/plot in 1994 to ~11 species/plot in 2014 (Fig 2.3). During this time period, species 

richness on WS4 significantly increased (P≤0.05) from ~11 species/plot to 15 species/plot, 

making species richness on WS3 lower than WS4 (Fig 2.3). Species richness normally increases 

as hardwood forests mature (e.g. Jacquemyn et al., 2001). Therefore, the significantly lower 

species richness on WS3 due to a temporal decrease may be an effect of excess N deposition.  
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Figure 2.1: Repeated measures of ANOVA for annual means from July sampling for percent total 
cover for WS3 (treatment) and WS4 (reference) from 1991-present.  Means with the same letter 
are not significantly different (p ≤ 0.05) between watersheds and among years. 
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Figure 2.2: Generalized linear regression of annual daily means for precipitation from April to 
July versus yearly means for total % herb-layer cover from July sampling for WS3 and WS4 
from 1991, 1992, 1994, 2003, and 2009-2013 at Fernow Experimental Forest, West Virginia.  
Lines represent mean linear regression: WS3: R2 = 0.1977, y = 6.9939x + 4.0464, P ≤ 0.2305; 
WS4: R2 = 0.1048, y = 2.5664x + 11.972, P ≤ 0.3955.  
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Table 2.1: Generalized linear model for annual daily means of precipitation from April to July 
versus mean annual total % herb-layer cover from July sampling for WS3 and WS4 at Fernow 
Experimental Forest, West Virginia. 

Source DF Type I SS Mean Square F Value Pr > F 

Model 3 1019.633484 339.877828 2.11 0.1451 
Precipitation 1 330.1011505 330.1011505 2.05 0.1744 
Watershed 1 598.3895496 598.3895496 3.71 0.0746 
Precipitation*Watershed 1 91.1427843 91.1427843 0.57 0.4645 

 

 

 

Table 2.2: Analysis of covariance sums of squares for annual daily means of precipitation from 
April to July versus mean annual total % herb-layer cover from July sampling for WS3 and WS4 
at Fernow Experimental Forest, West Virginia. 

Source DF Type I SS Mean Square F Value Pr > F 
Model 2 928.490700 464.245350 2.97 0.0821 
Precipitation 1 330.1011505 330.1011505 2.11 0.1670 
Watershed 1 598.3895496 598.3895496 3.82 0.0694 

 

 

 

Table 2.3: Summary of analysis of covariance estimates for annual daily means of precipitation 
from April to July versus mean annual total % herb-layer cover from July sampling for WS3 and 
WS4 at Fernow Experimental Forest, West Virginia. 

Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 3.08838150 13.56829200 0.23 0.8230 
Precipitation 4.55188891 2.88561324 1.58 0.1355 
WS3 11.55642062 5.91042363 1.96 0.0694 
WS4 0.00000000 . . . 

  

12 
 



 

 

 

 

Figure 2.3: Repeated measures of ANOVA for annual means for species richness from July 
sampling on WS3 (treatment) and WS4 (reference) from 1991-present.  Means with the same 
letter are not significantly different (p ≤ 0.05) between watersheds and among years. 

0

2

4

6

8

10

12

14

16

18

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

R
ic

hn
es

s (
Sp

ec
ie

s/
pl

ot
)

Year

WS3 (Treatment)

WS4 (Reference)

FGH
HI

HI

I

BCDE

DEFGH

ABCD

EFGH

ABC

CDEFG

EFGH

ABC

A
AB

BCDEF

AB

CDEFG

GHI

HI

DEFGH

13 
 



 

In hardwood forest ecosystems with high integrity, N-efficient plant species typically out-

compete high N-requiring plant species through uptake of enough inorganic N to keep soil 

concentrations below the level required by nitrophilic plant species (Gilliam 2014b). It was not 

until after 1994 that the soil of WS3 was determined to be N-saturated from excess N deposition 

(Gilliam et al., 1995). Nitrogen-saturated soils as a result of excess N deposition are known to 

cause decreases in species richness (Bobbink et al. 1998, 2010), where the less prevalent 

nitrophilic species out-compete the higher number of N-efficient species for available N (Gilliam 

2014b). 

 

Temporal Change in Rubus Cover 

Following five years of treatment to WS3 (1989-1994), no significant differences 

(p>0.05) were found in Rubus cover among years or in comparison to reference WS4 (Fig 2.4).  

Gilliam et al. (2006) indicated Rubus importance increasing based on relative cover on WS3 but 

slightly decreasing in importance on WS4 during this same time period. Preliminary results 

indicated an increase of Rubus presence in the herb-layer when total cover is increasing on WS3 

along with a decrease in number of species/plot. This is supported by a significant increase 

(P≤0.05) in Rubus cover relative to total cover from 1991-2014 (Fig 2.5). There have been few 

studies that have examined effects of experimental N additions on Rubus, but some studies have 

found increased Rubus germination, luxury consumption, and increased biomass from excess N 

deposition (Grader and Thompson 1978; Jobidon 1993; Claussen and Lenz 1999; Lautenshlager 

1999; Kula et al. 2012; Bajcz 2014; McDonnell et al. 2014). 

Rubus cover on WS3 significantly increased from ~2% cover in 1994 to ~12% cover in 

2003 (Fig 2.4). Although Rubus growth is favored by conditions that are typical of early 

succession (e.g. high levels of light, nutrients, and moisture), the ~45 year old closed canopy of 

WS3 exhibits conditions typical of later succession (e.g low light and moisture). Donoso and 

Nyland (2006) concluded via literature review that Rubus becomes dominant in the first 2-3 

years after clearcutting, peaks between 3-5 years, and after 10 years most of the Rubus has died 

off because tree species start developing the overstory stratum. Rubus on WS7 followed a similar 

pattern after clearcutting and 6 years of herbicide treatment. Rubus growth peaked at 37% 

ground cover after 5 years of growth and after 10 years declined to 7% ground cover 

(Kochenderfer and Wendel, 1983). 
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Figure 2.4: Repeated measures of ANOVA for annual means for percent Rubus cover from July 
sampling for WS3 (treatment) and WS4 (reference) from 1991-present.  Means with the same 
letter are not significantly different (p ≤ 0.05) between watersheds and among years. 
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Figure 2.5: Repeated measures of ANOVA for annual means for percent Rubus cover relative to 
percent total cover from July sampling for WS3 (treatment) and WS4 (reference) from 1991-
present.  Means with the same letter are not significantly different (p ≤ 0.05) between watersheds 
and among years.  

0

5

10

15

20

25

30

35

40

45

50

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

R
ub

us
 C

ov
er

(%
)/T

ot
al

 C
ov

er
(%

) 

Year

WS3 (Treatment)

WS4 (Reference)

AB

ABC

A A A

A

A

BCD

CD

D

D

CD

D
D

CD

D

CD
CD

CD
CD

16 
 



 

Rubus cover on WS3 significantly increased after five years of N treatment (Fig 2.4). 

Emergence of an overstory stratum in early successional habitats provides limited light 

transmittance to the understory strata resulting in the die-back of many dominant species in early 

successional habitats. Rubus is able to persist belowground in later successional habitats because 

seeds are able to stay dormant for up to 100 years in mineral soil until disturbance conditions 

promote germination (Donoso and Nyland 2006). Therefore, excess N deposition could be 

promoting favorable conditions for germination of dormant Rubus seeds from the early 

successional period and allowing Rubus to overcome high light requirements, in turn allowing 

Rubus to become the dominant species presently.  

Rubus is considered a ruderal species, characterized by the ability to adapt to changing 

conditions in the quality of habitat. Claussen and Lenz (1999) found higher dry weight of Rubus 

when Rubus was present in ecosystems treated with NO3
- as opposed to NH4

+, wherein Rubus 

was highly adaptable to changing soil conditions from this treatment. Rubus is also considered a 

nitrophilous, requiring high-N availability, where luxury uptake of N allows Rubus to 

outcompete many species in early successional stages. Typically N is limited in hardwood 

ecosystems, wherein N-efficient species absorb enough N to prevent nitrophilous species from 

expanding, explaining low Rubus cover prior to and during the first five years of N treatment to 

WS3 (Fig 2.4). When excess N is available, nitrophilous species can out-compete N-efficient 

species for resources due to luxury uptake of N. Studies such as Lautenshlager (1999) found an 

increase in Rubus biomass when N was the only added nutrient to a mature forest. There are 

fewer nitrophilous compared to N-efficient species in hardwood forest ecosystems (Gilliam 

2014a), explaining an increase in Rubus cover relative to total cover from ~5% in 1991 to ~43% 

in 2014 (Fig 2.5) and the decrease of ~3 species/plot on WS3 from 1994-2014 (Fig 2.2). A 

decrease in species richness did not occur until there was a significant increase (P≤0.05) in 

Rubus cover from 1994-2003 (Fig 2.4), further suggesting the competitive advantage of Rubus 

arising from excess N availability.  

Rubus cover on WS3 responded more (y = 3.6495x – 4.14) compared to WS4 (y = 

0.4741x + 0.4362) to increasing precipitation (Fig 2.6). There was a significant difference 

(P≤0.003) between watersheds for Rubus cover in the generalized linear model and the 

interaction between precipitation and watershed is not significant (P≤0.234), meaning the slopes  

17 
 



 

 

 

 

 

 

Figure 2.6: Generalized linear regression of annual daily means for precipitation from April to 
July versus yearly means for Rubus % cover from July sampling for WS3 and WS4 from 1991, 
1992, 1994, 2003, and 2009-2013 at Fernow Experimental Forest, West Virginia.  Lines 
represent mean linear regression: WS3: R2 = 0.2152, y = 3.6495x – 4.14, p ≤ 0.2082; WS4: R2 = 
0.1401, y = 0.4741x + 0.4362, p ≤ 0.3210.   

0

5

10

15

20

25

3 3.5 4 4.5 5 5.5 6 6.5 7

Ru
bu

sc
ov

er
 (%

)

Precipitation (mm/day)

WS3 (Treatment)
WS4 (Reference)

1994
1992

1991

18 
 



 

Table 2.4: Summary of generalized linear model for annual daily means of precipitation from 
April to July versus mean annual Rubus cover from July sampling for WS3 and WS4 at Fernow 
Experimental Forest, West Virginia.   

Source DF Type I SS Mean Square F Value Pr > F 
Model 3 490.6243236 163.5414412 5.41 0.011 
Precipitation 1 48.148994 48.148994 1.59 0.228 
Watershed 1 395.5955611 395.5955611 13.08 0.003 
Precipitation*Watershed 1 46.8797685 46.8797685 1.55 0.234 
 

 

 

 

Table 2.5: Summary of ANCOVA sums of squares for annual daily means of precipitation from 
April to July versus mean annual Rubus cover from July sampling for WS3 and WS4 at Fernow 
Experimental Forest, West Virginia. 

Source DF Type I SS Mean Square F Value Pr > F 
Model 2 443.7445551 221.8722775 7.08 0.0068 
Precipitation 1 48.1489940 48.1489940 1.54 0.2343 
Watershed 1 395.5955611 395.5955611 12.62 0.0029 

 

 

 

 

Table 2.6: Summary of ANCOVA estimates for annual daily means of precipitation from April 
to July versus mean annual Rubus cover from July sampling for WS3 and WS4 at Fernow 
Experimental Forest, West Virginia. 

Parameter Estimate Standard Error t Value Pr > |t| 
Intercept -5.9353 6.07200039 -0.98 0.3438 
Precipitation 1.89813 1.29135227 1.47 0.1623 
Watershed WS3 9.3963 2.64499722 3.55 0.0029 
Watershed WS4 0 . . . 
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can be considered parallel (Table 2.4). Rubus cover for 1991, 1992, and 1994 are similar to 

Rubus cover on WS4, during the same time period that was considered to be prior to the 

herbaceous layer responding to excess N additions to WS3 (Fig 2.6). After 1994, Rubus cover 

significantly increased (P≤0.05) and because the interaction statement was not significant 

(P≤0.234), ANCOVA was used to examine the average difference between WS3 and WS4 for 

Rubus cover using precipitation as a covariate (Table 2.4). The model (P≤0.0068) and watershed 

source (P≤0.0029) were significant based on ANCOVA sums of squares (Table 2.5). On 

average, WS3 had ~9.4% more Rubus cover (P≤0.0029) than WS4 from 1991-2013 (Table 2.6). 

This response of Rubus cover versus precipitation on WS3 suggests that excess N additions are 

shifting limiting factors by alleviating N-limitations, in turn allowing ~ 42% Rubus cover relative 

to % total cover in 2014 (Fig 2.5).    

Disturbed habitats that are associated with Rubus dominance are typically high in soil 

NO3
- (Donoso and Nyland 2006). Magill et al. (2000) found similar soil NO3

- concentrations 

after 9 years of 50 kg N ha-1 yr-1 additions and 3 years of 150 kg N ha-1 yr-1additions, where the 

three fold difference in N additions is consistent with the three fold difference in the amount of 

time to reach similar soil NO3
- concentrations. Magill et al. (2000) also experienced an eight 

year delayed response of the study site to 50 kg N ha-1 yr-1 additions, similar to the delayed 

response for five years from 35 kg N ha-1 yr-1 additions to WS3 at FEF. A delayed response is 

most likely the amount of time for soils to become N-saturated from excess N deposition, at 

which point NO3
- is probably responsible for altering herb-layer dynamics. With respect to N 

treatment on WS3, altering of herb-layer dynamics has resulted from maintenance of 

significantly higher Rubus cover from 2003-present (Fig 2.4).    

Jobidon (1993) found a significant increase in germination of Rubus during a second 

consecutive year of 112, 224, and 336 kg-N ha-1 treatments. Although these treatments in the 

Jobidon (1993) study were higher than the 35 kg-N ha-1 treatment to WS3, the cumulative 

amount of excess N deposition from two years of 112 kg-N ha-1 treatment was 224 kg-N ha-1 

compared to the 175 kg-N ha-1 after 5 years of treatment at FEF. This is important information 

because it was not until after 1994 that Rubus significantly increased in cover, when cumulative 

amounts were higher than the study by Jobidon (1993). Between 1994 and 2003, Rubus cover 

increased from ~2% cover to ~12.5% (Fig 2.3). Delayed responses to N additions at FEF and 

increasing response from consecutive years of excess N deposition provide evidence that soil N 
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saturation from cumulative loads of N deposition dictate Rubus cover under closed canopies. 

More specifically, Rubus cover increases when excess N deposition promotes N-saturated soils, 

where mobility of NO3
- dominates the N cycle.  

Gilliam et al. (2001) found lower variability in soil water NO3
- and nitrification in N 

saturated soils at FEF, leading Gilliam (2006) to develop the N Homogeneity Hypothesis, which 

predicts that excess N deposition decreases both spatial heterogeneity of soil N dynamics and 

herb layer biodiversity. Rubus has responded to N additions on WS3 by increasing in cover, in 

turn contributing to a decrease in biodiversity and possibly homogenization of soil N dynamics. 

Eilts et al. (2011) suggests that clonal species, such as Rubus, can contribute to decreases in 

resource heterogeneity, soil fertility, and species diversity due to rapid lateral expanse of 

rhizomes. This same effect on diversity from rapid lateral expanse could be responsible for 

Rubus cover significantly increased from 1994 to 2003 (Figure 2.3) and species richness on WS3 

decreased and has remained significantly (P≤0.05) lower than species richness on reference 

WS4, with the exception of 2009 (Fig 2.2).  

The failure to detect a change in Rubus from 2003-present on WS3 suggests that Rubus 

may have reached a threshold for response to this N treatment (Fig 2.1). Excess N deposition has 

maintained levels of NO3
- in the soils on WS3 through N saturation and homogenizing spatial N 

dynamics (Gilliam 2006) contributing to a significant increase in Rubus cover from 1994-2003, 

but after 2003 Rubus has not significantly changed in cover. Using nitrification as a predictor for 

Rubus cover on WS3 reveals that before Rubus cover significantly increased (P≤0.05) after 1994, 

average annual nitrification was higher and associated with lower Rubus cover (Fig 2.7). 

Consistent annual excess N deposition has maintained N-saturated soils from 2009-2013 on 

WS3, resulting in homogenization of nitrification and higher Rubus cover compared to WS4 (Fig 

2.7). Soils on WS4 were N-saturated after 1994 and show similar mean annual nitrification to 

WS3 from 2009-2013 (Fig 2.7). Generalized linear model for nitrification and Rubus cover is 

significant (P<0.0001), therefore Rubus cover is significantly different between watersheds 

(P<0.0001) and nitrification (P≤0.0028) is a predictor of Rubus cover for 1994 and 2009-2013 

(Table 2.7). Therefore, the difference in Rubus cover between WS3 and WS4 is the result of N 

additions to an ecosystem when soils are N-saturated.  
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Figure 2.7:  Generalized linear regression of annual means for nitrification versus annual means 
for Rubus % cover from July sampling for WS3 and WS4 from 1994 and 2009-2013 at Fernow 
Experimental Forest, West Virginia.  Lines represent mean linear regression: WS3: R2 = 0.8475, 
y = -10.96x + 28.122, p ≤ 0092; WS4: R2 = 0.4484, y = -2.4511x + 5.6601, P ≤ 0.1457. 

 

 

Table 2.7: Summary of generalized linear model for mean annual nitrification versus mean 
annual Rubus cover from July sampling for WS3 and WS4 at Fernow Experimental Forest, West 
Virginia. 

Source DF Type I SS Mean Square F Value Pr > F 
Model 3 630.0469848 210.0156616 42.96 <.0001 
Nitrification 1 88.0133018 88.0133018 18.01 0.0028 
Watershed 1 507.6705699 507.6705699 103.86 <.0001 
Nitrification*Watershed 1 34.3631131 34.3631131 7.03 0.0292 
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Herb-Layer Composition 

Beta diversity is defined as variation of species composition among sites within a 

geographic area and is often used to address conservation of biodiversity in a functioning 

ecosystem (Legendre et al. 2005). Beta diversity was directly assessed in this study between 

watersheds (WS3 and WS4) and among years (1991-2014) through the use of DCA (Gauch 

1982). Changes in species composition are represented in every “unit” and every “unit” is the 

average standard deviation of species turnover (Gauch 1982). Thus, the distance in ordinal space 

between points is a measure of dissimilarity of species composition for WS3 and WS4 among 

years.  

Herb layer composition was similar between WS3 and WS4, despite their difference in 

stand age (65 years), for 1991, 1992, and 1994 (Fig. 2.8), confirming results from Gilliam et al. 

(2006). From 1994-2003 WS3 changed ~1.2 units along DCA axis 2, the largest change in herb 

layer composition on both WS3 and WS4 (Fig 2.8). From 2003-2014 the variation among WS3-

year centroids was ~0.3 along DCA axis 1 and ~0.2 along DCA axis 2 (Fig 2.8). During this time 

period variation among WS4-year centroids was ~0.2 along DCA axis 1 and ~0.3 along DCA 

axis 2 (Fig 2.8). Therefore, it can be concluded that excess N deposition altered herb layer 

composition on WS3 from 1994 to the present. 

Rubus cover significantly (P≤0.05) increased from 1994-2003 on WS3, but did not 

significantly (P≤0.05) change from 2003-2014, remaining significantly (P≤0.05) higher 

compared to WS4 (Fig 2.4). Herb layer composition on WS3 from 2003-2014 was associated 

more with Rubus compared to WS4 from 1991-2014 (Fig 2.9). Rubus was significantly 

correlated with DCA axis 2 (r = 0.94, P≤0.0001) and total cover (r = 0.94, P≤0.0002) on WS3 

(Table 2.8). These results suggest that the change in herb layer composition from 1994-2003 on 

WS3 was due to a significant increase in %Rubus cover from excess N deposition. 

Similar to WS3, Rubus was significantly correlated DCA axis 1 (r = -0.83, P≤0.0053) and 

total cover (r = 0.8953, P≤0.0011) on WS4 (Table 2.9). These results indicate that Rubus 

significantly influenced herb layer composition through increasing total cover on both WS3 and 

WS4. In contrast to WS3, total cover was significantly correlated with DCA axis 1 (r = -0.6705, 

P≤0.0481) and species richness was significantly correlated with DCA axis 1 (r = -0.6809, 

P≤0.0435) and total cover (r = 0.6993, P≤0.0360) on WS4 (Table 2.9), suggesting that total 

cover and species richness are also influencing herb layer composition. Similar to results by 
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Brunet et al. (1998), Rubus responds to excess N deposition through increasing % cover, in turn 

significantly influencing herbaceous composition on WS3 in this study.  

Although spatial heterogeneity of soil nutrients has been shown to influence herbaceous 

species composition of hardwood forests ecosystems (Gilliam and Dick 2010), herb species 

themselves can alter spatial patterns of soil nutrient availability (Gilliam and Dick 2010), part of   

the circulus vitiosus stated by Jenny et al. (1969) to acknowledge the dilemma of distinguishing 

between effects of plants on soil versus the effects of soil on plants. Wedin and Tilman (1990) 

found that some grass species affected net N mineralization and nitrification over a three year 

period by causing a ~10-fold difference in rates. Data from this study suggests that N additions 

affect both herbaceous species composition and N dynamics, but there is also the reciprocating 

effect of herbaceous species composition on spatial heterogeneity of soil N dynamics. The 

reciprocating effect in this study is particularly influenced by excess N deposition altering herb 

layer composition through shifting the N cycle towards high NO3
- mobility and significantly 

(P≤0.05) increasing % Rubus cover relative to % total cover from ~5% to ~42% on WS3 (Fig 

2.5).  
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Figure 2.8: Detrended correspondence analysis of herbaceous layer species composition for WS3 
(Treatment) and WS4 (Reference) at Fernow Experimental forest, WV. Each point represents a 
mean centroid for seven sample plots per watershed per year from 1991-2014. 
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Figure 2.9: Detrended correspondence analysis of herbaceous layer species composition for WS3 
(Treatment) and WS4 (Reference) at Fernow Experimental forest, WV. Each point represents a 
mean centroid for seven sample plots per watershed per year from 1991-2014. “X” represents the 
location in ordination space for the prominent herb layer species: RUBUS = Rubus spp.; ACPE = 
Acer pensylvanicum; ACRU = Acer rubrum; Viola = Viola spp.; PRSE = Prunus serotine; 
SMRO = Smilax rotundifolia; DEPU = Dennstaedtia punctiloba; POAC = Polystichum 
acrostichoides; LACA = Laportea canadensis; VACC = Vaccinium spp.. 
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Table 2.8: Pearson rank correlation matrix of yearly means for DCA axis 1 values, DCA axis 2 
values, % total cover, richness (species/plot), and % Rubus cover from 1991-2014 for treatment 
WS3.  * indicates significant correlation (P<0.05) and ** indicates significant correlation 
(P<0.01).  
 
 
 
 DCA axis 1 DCA axis 2 Total cover Richness Rubus cover 
DCA axis 1 1.0000 

 

    
    

DCA axis 2 -0.8301 1.0000    
**     

Total cover -0.6175 0.8531 1.0000   
 **    

Richness 0.3050 -0.0702 0.2805 1.0000  
     

Rubus cover -0.6489 0.9441 0.9361 0.1622 1.0000 
 ** **   

 

 

 

 

Table 2.9: Pearson rank correlation matrix of yearly means for DCA axis 1 values, DCA axis 2 
values, % total cover, richness (species/plot), and % Rubus cover from 1991-2014 for reference 
WS4.  * indicates significant correlation (P<0.05) and ** indicates significant correlation 
(P<0.01).  
 

 

 DCA axis 1 DCA axis 2 Total cover Richness Rubus cover 
DCA axis 1 1.0000     
      
DCA axis 2 -0.5427 1.0000    
      
Total cover -0.6705 0.2711 1.0000   
 *     
Richness -0.6809 -0.0372 0.6993 1.0000  
 *  *   
Rubus Cover -0.8332 0.3145 0.8953 0.7818 1.0000 
 **  ** *  
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CHAPTER 3 

RUBUS FOLIAR NUTRIENT ANALYSIS 
 

 

Introduction  

Investigations of foliar nutrient concentrations can provide insight to nutrient dynamics 

of hardwood forest ecosystems. Most hardwood forests exhibit nutrient, especially N, limitations 

and respond to increased nutrient availability through increased growth, wherein fertile habitats 

have been associated with higher growth rates, leaf production, and root biomass (Chapin 1980). 

For this study a single dominant species—Rubus—is utilized to further our understanding of the 

effects of excess N deposition on nutrient cycling of eastern hardwood forests. 

Impacts on nutrient dynamics can arise when rates of N deposition exceed the biotic 

demand for N, known as N saturation (Aber et al., 1998). Soil nutrient availability can influence 

foliar nutrient concentrations in herb-layer species, with soil nutrient availability varying 

spatially and temporally in response to many factors, especially soil N dynamics (Gilliam et al. 

2001, Gilliam and Dick 2010). The N cycle in N saturated soils is dominated by NO3
-, and 

excess NO3
- has the potential to leach from mineral soil while simultaneously promoting the loss 

of nutrient cations (Ca++, Mg++, K+). Excess N deposition can homogenize nutrient dynamics 

through dominance of NO3
- mobility in mineral soils. Gilliam and Adams (2011) determined that 

variation of soil water NO3
- decreases as mean soil water NO3

- increases. Heterogeneity of 

essential nutrients in soils is positively correlated with species richness and understory species 

richness is positively correlated with overstory species richness (Gilliam 2014a). Therefore, 

homogeneity of essential nutrients can decrease herbaceous species diversity in impacted forest 

ecosystems.  

Soils of WS3 and WS4 at FEF are N-saturated, with symptoms of N saturation including 

elevated levels of stream NO3
-, high levels of nutrient cations in stream water, significantly 

(P≤0.05) lower levels of foliar Ca in tree and herb-layer species, high rates of net nitrification, 

low season variability of stream NO3
-, and high discharge of streams NO3

- following N 

treatment (WS3) (Peterjohn et al., 1996; Gilliam et al., 1996; Gilliam et al., 2001). Gilliam et al. 
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(1996) addressed effects of excess N deposition on nutrient availability by using a single herb-

layer species, Viola rotundifolia, a species present on every plot of WS3 and WS4. Foliar tissue 

of Viola rotundifolia contained significantly (P≤0.05) higher levels of N accompanied by 

significantly (P≤0.05) lower levels of Ca and Mg on WS3 at FEF from excess N deposition 

(Gilliam et al., 1996). In 2014, Rubus cover accounted ~42% of the total cover on WS3 (Fig 2.5) 

and Viola rotundifolia was no longer found on every plot in WS3 and WS4 at FEF. Therefore, 

Rubus can be used as an indicator of nutrient status at FEF. Indeed, excess N deposition has 

decreased species richness (Fig 2.3) and increased Rubus cover from ~1% in 1991 to ~19% in 

2014 (Fig 2.4). 

Stream, soil, and foliar chemistry have led to the conclusion that rates of N deposition are 

altering N status in northeastern forests of the US (Aber et al., 2003). Studies are needed to 

address the severity of altering N status on nutrient dynamics, especially in regions where N 

deposition is already altering N status. Garten (1976, 1978) concluded from consistent P:N, 

Ca:Mg, and Mg:K ratios through a correlation matrix of 110 plant species that correlated 

nutrients within plants suggest similar biochemical functions. Garten (1978) further established 

sets of nutrients and corresponding functions as: 1) nucleic acid-protein (P, N, Cu, S, and Fe), 2) 

structural/photosynthetic (Mg, Ca, and Mn), and 3) enzymatic (Mn, K, and Mg). Herbaceous 

plants are particularly sensitive to soil nutrient availability and can provide more insight to soil 

nutrient dynamics. Gilliam and Adams (1995) found similar correlations between the same 

nutrients in soil and foliar tissue among young and mature hardwood stands at FEF, establishing 

a link for addressing nutrient dynamics at FEF from excess N deposition. 

In Chapter 2, WS3 and WS4 were the only two watersheds used for the herb layer study 

from 1991-2014. Even though the difference in stand age of WS3 and WS4 is ~55 years, there 

were no significant differences between watersheds found prior to initiation of N treatment to 

WS3 (Gilliam and Turrill 1993). Incorporating another reference watershed (WS7) of similar 

stand age (~45 years) to WS3 addresses the differences in nutrient dynamics between watersheds 

that can arise from stand age (Small and McCarthy 2005). The purpose of this chapter is to use 

nutrient levels in Rubus foliar tissue as an indication of nutrient status in the herbaceous layer on 

N-treated (WS3) and untreated watersheds (WS4 and WS7) to address the growing concern on 

effects of excess N deposition on soil nutrient availability. 
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Materials and Methods 

Field Sampling  

Foliar material was collected from Rubus within or near seven circular 0.04-ha sample 

plots in WS3, WS4, and WS7, with the exception of one plot on each of WS4 and WS7 whereon 

no Rubus was found. Rubus leaves were collected in the beginning of July (selected as peak of 

growing season) for the years 2013 and 2014. Each sample of foliar material was placed in a 

polyethylene bag and stored in a cooler before returning to the Weeds and Dirt Laboratory at 

Marshall University. Rubus foliar tissue was placed in paper bags and dried for 24 hours at 25 C 

in an oven. Dried samples were ground to pass a 1-mm sieve and at least 2 g were placed into 

polyethylene bags and shipped to University of Maine Analytical Lab for determination of N, P, 

K, Ca, Mg, Al, B, Cu, Fe, Mn, and Zn levels. Data consisted of foliar nutrient concentrations for 

seven plots on WS3 and six plots on WS4 and WS7 for 2013 and 2014.  

Data Analysis 

Nutrient levels in dried samples were compared between 2013 and 2014 collections using 

ANOVA (α = 0.05) to determine if there were any significant differences between years of 

collection. There were no differences found between 2013 and 2014, therefore, nutrient data 

were compiled and the means for each nutrient were compared across watersheds using ANOVA 

(α = 0.05). Spearman rank correlations for these means were also used to determine correlated 

nutrients for each watershed separately. 

 

Results and Discussion 

Macronutrients  

Elevated levels of foliar N are characteristic of N saturated hardwood ecosystems (Aber 

et al., 1998). Therefore, untreated watersheds (WS4 and WS7) are expected to show no 

significant differences for concentrations of foliar N, because soils of each watershed are N 

saturated. The N treated watershed (WS3) should show a higher concentration of foliar N 

compared to the untreated watersheds due to excess N deposition. There was no significant 

difference (P≤0.05) for N concentrations between WS4 and WS7 (Fig 3.1). Nitrogen was 

significantly higher (P≤0.05) on WS3 compared to WS7, but not significantly higher than WS4 

(Fig 3.1). 
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Failure to detect differences in Rubus foliar N between WS3 and WS4 may be due to 

luxury uptake of NO3
- by Rubus in N-saturated soils on WS4. When soils are N-saturated, 

nitrifying bacteria oxidize more NH4
- to NO3

-, therefore, excess N deposition to WS3 is resulting 

in more NO3
- than that of WS4. More NO3

- in mineral soil of WS3 compared to WS4 is the 

result of more N being added, explaining higher N in Rubus foliar tissue on WS3 (Fig 3.1). 

Luxury consumption of NO3
- in Rubus foliar material on WS4 could be due to enough NO3

- 

from the soil to maintain vegetative growth but not germination of new dormant seeds, hence 

why there is a gradual, not significant (P≤0.05), increase in Rubus cover on WS4 (Fig 2.4). 

Additionally, stream NO3
- concentrations significantly declined on WS3 following a peak stream 

NO3
- concentrations in 1998 (Gilliam and Adams 2011). This decline in stream NO3

- 

concentrations could be influenced by the significant increase in Rubus cover (Fig 2.4) on WS3 

and responsible for the insignificant difference among WS3 and WS4 for foliar N concentrations.  

Foliar N concentrations are proportional to photosynthetic rates in leaves (Chapin 1980), 

suggesting that higher N concentrations in Rubus foliar tissue can explain higher Rubus cover on 

WS3 compared to WS4 under low light conditions from the intact canopies. Nitrogen also 

contributes to increases in cell numbers and cell size (Chapin 1980), where significantly higher 

(P≤0.05) Rubus cover on WS3 can also be attributed to significantly higher Rubus foliar N 

concentrations (Fig 3.1). Even though soils of WS4 are considered N-saturated like WS3 

(Gilliam et al. 1996), lack of excess N deposition from a treatment contributes to less N mobility 

compared to WS3. Rubus cover on WS3 is significantly (P≤0.05) higher than WS4 from 2003 to 

2014, but does not significantly increase (P≤0.05) during this time period suggesting that light 

may be the limiting factor and not N on WS3 (Fig 2.4).   

Nutrient limitations, especially P, can arise when excess N deposition alleviates the N 

limitation that is common in most hardwood forest ecosystems (Vitousek et al. 2010). Gress et 

al. (2007) found greater root ingrowth to microsites when fertilized with P and increased 

phosphomonoesterase (root-associated P enzyme) activity when N additions increased at FEF. 

Gress et al. (2007) concluded from these data that as N availability increases at FEF, P typically 

becomes more limiting. There were no significant (P≤0.05) differences across watersheds for P 

concentrations (Fig 3.2), but this does not mean that these watersheds are not P limited. Given 

that soils of WS3, WS4, and WS7 are N-saturated at FEF, suggests that there is no longer an N 

limitation and possibly a P limitation for this ecosystem. Additionally, Vitousek et al. (2010)  
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Figure 3.1: Mean % dry weight of Rubus foliar nitrogen (N) during 2013 and 2014 growing 
seasons combined for each watershed separately.  Different letters represent a significant 
difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 (reference).  
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Figure 3.2: Mean % dry weight of Rubus foliar Phosphorus (P) during 2013 and 2014 growing 
seasons combined for each watershed separately.  Different letters represent a significant 
difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 (reference).  
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outlined P limitation in weathered/older soils due to depletion of P from circulation within the 

ecosystem. Therefore, the insignificant differences for P across watersheds is most likely a 

combination of P limitation in all watersheds from a lack of P in parent material of 

weathered/older soils associated with the Appalachian region and N saturated soils from high N 

deposition.  

The N cycle of N-saturated soils is dominated by high mobility of NO3
- and results in the 

leaching of NO3
- from mineral soil while promoting loss of essential base cations (Ca++, Mg++, 

K+). Chapin (1980) found Ca and Mg deficiencies associated with increased NO3
- mobility, 

explaining significantly lower (P≤0.05) Ca on WS3 compared to WS4 and WS7 (Fig 3.3). The 

significantly lower Ca on WS3 is consistent with results for Viola rotundifolia from Gilliam et al. 

(1996). Foliar Mg did not vary significantly (P≤0.05) across watersheds at FEF (Fig 3.4).  These 

findings for foliar Mg are not consistent with Gilliam et al. (1996), where there was significantly 

lower Mg on WS3 compared to WS4 and WS7 in Viola rotundifolia. This suggests that Rubus 

may respond less to Mg availability than Viola rotundifolia under excess N deposition to a 

hardwood ecosystem.  

Potassium (K) was significantly higher on WS3 compared to WS7, but WS4 was not 

significantly lower than WS3 or significantly higher than WS7 (Fig 3.4). The outlier for WS3 

could be influencing this insignificant difference compared to WS4 by shifting the mean to be 

similar to the mean of WS4 (Fig 3.4). These results are also consistent with K concentrations in 

Viola rotundifolia from Gilliam et al. (1996), where Viola rotundifolia contained significantly 

higher (p≤0.05) levels of K on WS3 compared to WS7 and WS4 was not significantly lower 

(p≤0.05) than WS3 or significantly higher (p≤0.05) than WS7. Diffusion rates for K in plant 

tissue are typically faster than most nutrients with the exception of NO3
- (Chapin 1980). 

Excessive uptake of cations, especially K, occurs when passive uptake of N is predominately in 

the form of NO3
- as opposed to NH4

+, where NH4
+ uptake typically involves competition with 

base cations (Waring and Schlesinger 1985). Therefore, the significantly higher Rubus foliar K 

concentrations from increased NO3
- uptake on WS3 compared to WS7 is due to excess N 

deposition, but the insignificant difference for K on WS3 and WS4 is due to similar mobility of 

NO3
- from N saturated soils.    
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Figure 3.3: Mean % dry weight of Rubus foliar calcium (Ca) during 2013 and 2014 growing 
seasons combined for each watershed separately.  Different letters represent a significant 
difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 (reference).  
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Figure 3.4: Mean % dry weight of Rubus foliar magnesium (Mg) during 2013 and 2014 growing 
seasons combined for each watershed separately.  Different letters represent a significant 
difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 (reference). 
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Figure 3.5: Mean % dry weight of Rubus foliar potassium (K) during 2013 and 2014 growing 
seasons combined for each watershed separately.  Different letters represent a significant 
difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 (reference).  
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Up to 37% of K from throughfall was contributed to herbaceous foliar tissue and foliar 

litter productions in a deciduous forest from the herbaceous layer and can account for ~30% of 

total litter fall (Muller, 2014). Rubus foliar tissue contained significantly higher (P≤0.05) levels 

of K on WS3 compared to WS7 (Fig 3.4) and total cover of the herbaceous layer was higher in 

2013 and 2014 on WS3 compared to WS4 because of significantly higher Rubus cover (Fig 2.1). 

This suggests that Rubus foliar material contributes to high concentrations of K in the soil on 

WS3.  High concentrations of K in foliar material have also increased herbaceous species growth 

during experimental settings (Grewal and Singh, 2008), contributing to higher Rubus cover on 

WS3. In experimental settings, increases in foliar K led to more efficient water retention in 

herbaceous species (Grewal and Singh, 1980).   

Levels of K in Rubus foliar tissue influence water retention, where K is responsible for 

stomata opening and closing. In turn, stomatal opening influences transpiration rates through 

Rubus tissue to aid in more water absorption for the higher Rubus cover on WS3. Luxury 

consumption of K by Rubus most likely inhibits K from leaching out of the soil when it is stored 

in foliar material, possibly due to an increased water stress through competition from higher 

Rubus cover on WS3. Water stress from competition is also supported by the generalized linear 

regression of mean annual precipitation versus mean annual Rubus cover (Fig 2.4), where 

increased Rubus foliar K on WS3 could be responsible for precipitation versus Rubus cover 

increasing at a higher rate on WS3 compared to WS4.  

 

Micronutrients 

Effects of excess N on foliar nutrients can vary greatly among specific nutrients, 

especially when comparing macro- versus micronutrients. Excess N deposition can acidify soils 

and promote increased mobility of metal ions in soil solution (Bobbink et al., 2010). There are no 

significant differences (p≤0.05) among watersheds for Cu or Zn (Fig 3.5 and Fig 3.6, 

respectively). Mineral soils at FEF were acidic prior to starting the N treatment to WS3 and high 

mobility of these micronutrients prior to the N treatment on WS3 may be responsible for the 

similarity of some Rubus foliar nutrient levels across watersheds, suggesting that excess N 

deposition cannot further alter these micronutrient levels. There was also failure to detect any 

differences (p≤0.05) among watersheds for B concentrations in Rubus foliar tissue (Fig 3.8).  
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Figure 3.6: Mean parts per million dry weight of Rubus foliar copper (Cu) during 2013 and 2014 
growing seasons combined for each watershed separately.  Different letters represent a 
significant difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 
(reference). 
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Figure 3.7: Mean parts per million dry weight of Rubus foliar zinc (Zn) during 2013 and 2014 
growing seasons combined for each watershed separately.  Different letters represent a 
significant difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 
(reference).  
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Figure 3.8: Mean parts per million dry weight of Rubus foliar boron (B) during 2013 and 2014 
growing seasons combined for each watershed separately.  Different letters represent a 
significant difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 
(reference).  
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Biochemical Function 

Significantly correlated foliar nutrients suggest similar biochemical functions within that 

plant. Garten (1976) identified three common correlations within 54 terrestrial and aquatic 

species; P:N, Ca:Mg, and Mg:K. Garten (1978) further confirmed these same relationships 

within 110 plant species and identified plant nutrients based on three functions: 1) nucleic acid-

protein (P, N, Cu, S, and Fe), 2) structural/photosynthetic (Mg, Ca, and Mn), and 3) enzymatic 

(Mn, K, and Mg).  Ca:Mg was significantly correlated (r=0.77, P≤0.05) on WS3 (Table 3.1), but 

not significantly correlated for WS4 or WS7 (Table 3.2 and 3.3, respectively). There were no 

significant correlations (P≤0.1) on WS3, WS4, and WS7 for P:N or Mg:K (Table 3.1, 3.2, and 

3.3, respectively), suggesting that Rubus absorbs nutrients at a different capacity through luxury 

consumption of specific nutrients (eg. N and K) that can alter the correlated nutrients based on 

function. The amount of significantly correlated (P≤0.05) nutrients on WS3 was higher than 

WS4 and WS7 suggesting that excess N deposition may alter the nutrient cycling on WS3.   

    

Potential toxicity 

Aluminum comprises ~7% of earth’s crust, making it the most abundant metal (Delhaize 

and Ryan 1995). Aluminum is toxic to plants at very low concentrations and inhibits root growth 

(Delhaize and Ryan 1995; Miyasaka and Hawes 2001). Toxic effects of Al are not specifically 

reliant upon levels of Al in mineral soil, but rather controlled by Ca levels in roots (Boudot et al. 

1994). Calcium deficiencies are typically associated with levels of Al, therefore, Ca:Al ratios in 

foliar tissue are used to identify potential toxicity (Godbold et al., 1988; Rengel 1992; Delhaize 

and Ryan, 1995). There was failure to detect differences (P≤0.05) among watersheds for Al (Fig 

3.9), but Ca:Al ratio is significantly lower (P≤0.05) on WS3 compared to WS4 and WS7 (Fig 

3.10) due to significantly (P≤0.05) lower Ca on WS3 compared to WS4 and WS7 (Fig 3.3). 

Mobility of Al is enhanced when soils are acidic, where Al can then become the major limiting 

factor of plant growth (Kochian et al., 2005). The pH of WS3, WS4 and WS7 are 4.3, 4.5 and 

4.1, respectively (Gilliam et al., 1994), and this similarity of pH is potentially responsible for no 

differences among watersheds for Al. Results suggests potential for Al toxicity, wherein Rubus 

may have high tolerance for Al toxicity, given the significantly (P≤0.05) higher cover on WS3 

compared to WS4 and WS7 (Fig 2.4).  
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Table 3.1: Spearman rank correlation matrix of means for nutrients in Rubus foliar tissue from 
treatment WS3 during the growing seasons of 2013 and 2014.  * indicates significant correlation 
(P<0.05) and ** indicates significant correlation (P<0.01).  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
  

WS3 Spearman Correlation Coefficients, N = 7 

 N Ca K Mg P Al B Cu Fe Mn Zn 

N 1           

 

Ca -0.39286 
 

1 

 

K -0.75679 
* 

0.07207 
 

1 

 

Mg -0.32434 
 

0.77481 
* 

0.35455 
 

1 

 

P 0.32143 
 

-0.85714 
* 

-0.18019 
 

-0.75679 
* 

1 

 

Al 0.54056 
 

-0.90094 
** 

-0.38182 
 

-0.8 
* 

0.95499 
** 

1 

 

B -0.39641 
 

-0.23424 
 

0.10909 
 

-0.23636 
 

0.07207 
 

0.1 
 

1 

 

Cu 0.92857 
** 

-0.35714 
 

-0.73877 
 

-0.30632 
 

0.42857 
 

0.59462 
 

-0.46849 
 

1 

 

Fe 0.10714 
 

-0.21429 
 

0.41443 
 

-0.09009 
 

-0.03571 
 

-0.05406 
 

-0.50452 
 

0 
 

1 

 

Mn 0.5 
 

-0.17857 
 

-0.52254 
 

-0.41443 
 

0.53571 
 

0.50452 
 

-0.63066 
 

0.67857 
 

0.03571 
 

1 

 

Zn -0.03571 
 

0.75 
 

-0.23424 
 

0.45047 
 

-0.42857 
 

-0.46849 
 

-0.55858 
 

0.17857 
 

-0.17857 
 

0.42857 
 

1 
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Table 3.2: Spearman rank correlation matrix of means for nutrients in Rubus foliar tissue from 
reference WS4 during the growing seasons of 2013 and 2014.  * indicates significant correlation 
(P<0.05) and ** indicates significant correlation (P<0.01).  
 

 

 

 

 

 

 

 

  

WS4 Spearman Correlation Coefficients, N = 6 
 N Ca K Mg P Al B Cu Fe Mn Zn 

N 1           
           

Ca 0.02857 
 

1          
           

K -0.14286 
 

0.14286 
 

1         
          

Mg 0.54286 
 

0.37143 
 

0.54286 
 

1        
         

P -0.25714 
 

0.82857 
* 

0.31429 
 

0.42857 
 

1       
        

Al -0.71429 
 

-0.14286 
 

0.02857 
 

-0.54286 
 

0.2 
 

1      
       

B 0.54286 
 

0.6 
 

-0.25714 
 

0.08571 
 

0.08571 
 

-0.42857 
 

1     
      

Cu -0.48571 
 

0.08571 
 

0.25714 
 

-0.54286 
 

-0.08571 
 

0.42857 
 

0.2 
 

1    
     

Fe -0.6 
 

0.14286 
 

-0.02857 
 

-0.25714 
 

0.54286 
 

0.88571 
* 

-0.37143 
 

0.08571 
 

1   
    

Mn -0.42857 
 

0.48571 
 

-0.37143 
 

-0.6 
 

0.2 
 

0.2 
 

0.48571 
 

0.6 
 

0.14286 
 

1  
   

Zn 0.82857 
* 

0.37143 
 

-0.48571 
 

0.31429 
 

0.02857 
 

-0.54286 
 

0.77143 
 

-0.42857 
 

-0.31429 
 

0.02857 
 

1 
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Table 3.3: Spearman rank correlation matrix of means for nutrients in Rubus foliar tissue from 
reference WS7 during the growing seasons of 2013 and 2014.  * indicates significant correlation 
(P<0.05) and ** indicates significant correlation (P<0.01).  
 

 

 

 

 

 

 

 

 

WS7 Spearman Correlation Coefficients, N = 6 
 N Ca K Mg P Al B Cu Fe Mn Zn 

N 1           
            

Ca 0.6 
 

1          
           

K -0.42857 
 

-0.37143 
 

1         
          

Mg 0.11595 
 

0.40584 
 

0.49281 
 

1        
         

P 0.65714 
 

0.94286 
** 

-0.25714 
 

0.60876 
 

1       
        

Al 0.02857 
 

-0.14286 
 

-0.31429 
 

-0.57977 
 

-0.37143 
 

1      
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Figure 3.9: Mean parts per million (ppm) dry weight of Rubus foliar aluminum (Al) during 2013 
and 2014 growing seasons combined for each watershed separately.  Different letters represent a 
significant difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 
(reference).  
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Figure 3.10: Mean % dry weight Ca:ppm dry weight Al in Rubus foliar tissue for 2013 and 2014 
growing seasons combined.  Different letters represent a significant difference (p<0.05) between 
WS3 (Treatment), WS4 (reference), and WS7 (reference).  
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Acidic soils increase exchangeable Mn in soil solution, particularly in the form of Mn2+ 

at pH<5.5 (Millaleo et al., 2010). Soils of WS3, WS4 and WS7 have a pH of 4.3, 4.5 and 4.1, 

respectively (Gilliam et al., 1994), which should show increased mobility of Mn. Kula et al. 

(2012) found Rubus idaeus L. (raspberry) and Rubus fructicosus L. (blackberry) to have the 

highest concentrations of Mn in foliar tissue along with other herbaceous species (e.g. Sorbus 

aucuparia L., Rowan). Consistent with the high concentration of Mn in the results of Kula et al. 

(2012), Mn concentration were significantly (P≤0.05) in Rubus foliar tissue on WS3 compared to 

reference WS4 and WS7 (Fig 3.11). Even though soils of all three watersheds are acidic, 

significantly higher (p≤0.05) Mn concentration in Rubus foliar tissue implies higher mobility of 

Mn in the mineral soil of WS3 due to excess N deposition. Significantly higher (p≤0.05) Mn 

concentrations in foliar tissue is due to more available Mn in soil solution from excess N 

deposition on WS3 along with luxury consumption of Mn by Rubus.  

Micronutrients are utilized at low concentrations within plants, where higher 

concentrations can promote toxicity. Rubus shows high tolerance for micronutrients, more 

specifically metal ions (e.g. Mn++ and Fe+++) (Donoso and Nyland, 2006). Alam et al. (2005) 

examined the effects of K on Mn toxicity in barley and found that K represses Mn toxicity. 

Higher K in Rubus foliar tissue (Fig 3.4) could be a result of Mn toxicity stress or could be 

responsible for high tolerance of Mn. Toxic symptoms of Mn could be affecting some species in 

the herb layer on WS3 and not having a significant impact on Rubus due to luxury consumption 

of K in Rubus foliar tissue. Increased K is associated with alleviating Fe toxicity in herbaceous 

species, decreasing foliar concentrations of Fe by two-fold in foliar tissue (Cakmak, 2005). There 

was no significant difference in Rubus foliar Fe concentrations among watersheds at FEF (Fig 

3.12), but concentrations of Fe are similar (WS3>WS4>WS7) to K concentrations in Rubus 

foliar tissue (Fig 3.4). This suggests that Fe levels in foliar material are not affected by K 

concentrations because Fe may not be toxic to Rubus, but levels of Mn may be toxic and 

promoting luxury uptake of K to alleviate toxic stress.  

Micronutrients in high amounts typically present herbaceous plants with toxic symptoms, 

where Rubus is able to potentially tolerate conditions that are not suitable for other herbaceous 

species. Rubus cover was significantly (P≤0.0003) related to soil Mn concentrations at FEF in 

2011, where higher Rubus cover was associated with higher Mn concentrations in mineral soil 

(Chris Walter, unpublished data). High tolerance of Rubus for toxic levels of metal ions and 
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micronutrients promote a competitive advantage for space, light, essential nutrients, and 

moisture. Luxury consumption of nutrients like K can provide tolerance for Rubus against effects 

of toxicity from excess N deposition, but other herbaceous species may be impacted by toxicity 

from Mn.  
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Figure 3.11: Mean parts per million dry weight of Rubus foliar manganese (Mn) during 2013 and 
2014 growing seasons combined for each watershed separately. Different letters represent a 
significant difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 
(reference).   
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Figure 3.12: Mean parts per million dry weight of Rubus foliar iron (Fe) during 2013 and 2014 
growing seasons combined for each watershed separately. Different letters represent a significant 
difference (p<0.05) between WS3 (Treatment), WS4 (reference), and WS7 (reference).  
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CHAPTER 4 

CONCLUSION 
 

 

 

Nitrogen deposition is increasing globally due to anthropogenic increases from high-

energy combustion of fossil fuels and use of N-based fertilizers for agriculture, but despite 

efforts to regulate anthropogenic increases (Clean Air Act of 1990), rates are not expected to 

decrease in the near future (Bobbink et al. 2010). Excess N deposition has the potential to 

saturate the capacity for N retention in the eastern hardwood region, possibly altering herb layer 

dynamics and nutrient status, acidify soils, and lead to forest decline (Magill et al., 1997, 2004). 

This study assessed the effects of excess N deposition on the herbaceous layer of a mixed 

hardwood forest by comparing a watershed (WS3) that has been receiving N additions since 

1989 to two adjacent watersheds (WS4 and WS7) that have not received any treatment. The 

objectives of this study were to: 1) quantify Rubus response to N treatment on WS3 from 1991 to 

2014, 2) relate Rubus cover to species richness of the herbaceous layer during this period, and 3) 

determine effects of N additions on foliar nutrients of Rubus, providing an indication of nutrient 

status.  

 

Herb layer dynamics 

 Herbaceous layers of hardwood forest ecosystems are particularly sensitive to 

fluctuations in N deposition, wherein excess N deposition can alter herb layer composition by 

decreasing biodiversity. Results of this study contrast earlier findings by Gilliam et al. (2006), 

who found no significant response after six years of N treatment to WS3 at FEF up to 1994.  

Excess N deposition has significantly altered herb layer composition on WS3 compared to WS4 

through impacting herb layer dynamics after 1994. Total cover on WS3 significantly increased 

from 1991-present mainly due to the significant increase of Rubus cover. Results for increased 

Rubus cover from excess N deposition are consistent with many other studies that found higher 

Rubus presence associated with increasing N availability (Jobidon 1993; Truax et al. 1994; 
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Claussen and Lenz 1999; Hedl 2004; Strengbom and Nordin 2008; Hedwall et al. 2011; Heubner 

et al. 2013; McDonnell et al. 2014). As Rubus cover relative to total cover significantly increased 

from 1991-present, species richness of the herb layer decreased on WS3. Decreased biodiversity 

on WS3 from excess N deposition is consistent with predictions for effects of long-term excess 

N deposition (Gundersen et al. 1998; Aber et al. 1998; Magill et al. 2000; Aber et al. 2003; 

Bobbink et al. 2010). The decrease in species richness accompanied by an increase of Rubus 

cover supports the hypothesis for the herb layer study.  

 

Nutrient status 

 Herbaceous layers of hardwood forest ecosystems are particularly sensitive to 

fluctuations of nutrient dynamics. Thus, foliar tissue analysis of Rubus in the herb layer can 

provide insight as to how excess N deposition is affecting nutrient status in the eastern hardwood 

region. Results of this study are consistent with previous finding at FEF by Gilliam et al. (1996), 

wherein excess N deposition has significantly increased N concentrations in herbaceous foliar 

material. Decrease of Ca concentrations in foliar material indicates that excess N deposition has 

saturated the capacity for N retentions at FEF, partially supporting the previous hypothesis; 

excess N treatment will increase foliar N of Rubus while decreasing foliar cation nutrients.  

Increased K concentrations from a shift of the N cycle to high NO3
- mobility also indicate that 

soils are N saturated, with NO3
- being the main source of available N for plant uptake.   

 This study also provides evidence for two potential toxic effects that can arise from 

excess N deposition. Even though there was no significant difference across watersheds for Al 

concentrations, excess N deposition significantly decreased Ca concentrations on WS3. Thus, the 

Ca:Al ratio was significantly lower on WS3, providing indication for potential Al toxicity that 

can result in forest decline (Godbold et al. 1988). Micronutrients are utilized at very low 

concentrations, with potential for toxicity arising when plants are exposed to levels that are 

higher than the biotic demand. Manganese was significantly higher on WS3, suggesting that 

Rubus may have high tolerance for Mn toxicity that can be potentially harmful to other 

herbaceous species.   
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Broader implication 

 The N treatment to WS3 of 35 kg N ha-1 yr-1 is double the ambient N deposition that was 

determined prior to the initiation of this treatment in 1989. Gilliam et al. (2006) concluded that 

this N addition to WS3 increased available N relative to the amount generated from net N 

mineralization by 25%, representing a relatively small addition of a no longer growth-limiting 

nutrient. This makes the N treatment (2x total ambient N deposition) to WS3 at FEF more 

biologically relevant compared to other studies on excess N deposition, with the lowest N 

treatments prior to this study being ~5x and ~7x total ambient N deposition (Fernandez et al. 

2010 and Magill et al. 2004, respectively). The effects of excess N deposition to WS3 is also 

appearing to be representative of the gradual increase of Rubus cover on WS4 from ambient N 

deposition over this time period. These findings could be either unique to this region of the 

central Appalachians or could be applied as an indication of excess N deposition to the entire 

eastern hardwood region. Regardless, Gilliam (2006) found that there are far less N manipulation 

studies in hardwood forest ecosystems compared to other ecosystems (e.g. grass prairie); 

therefore, future studies are needed to justify if the summarized data from this study can be used 

as a baseline comparison for just the central Appalachians or the entire eastern hardwood region.  
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