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ABSTRACT

Time Scale Calculus, introduced by Dr. Stefan Hilger in 1988, combines the study of differential

and difference equations into a single topic. We begin with an introduction of sets used in this field,

time scales, and build up to the definition of the exponential function on a time scale. The main

focus of this work is a study of the solutions of a particular logistic dynamic equation on varying

time scales. We study both the analytical and graphical solutions of this equation. Analytical

solutions are worked out using theorems from Time Scale Calculus, including properties of the

exponential function. Graphical solutions are obtained using the Marshall University Differential

Analyzer (DA), fondly known as Art. Differential analyzers, such as Art, are machines that perform

mechanical integration to solve differential equations. Both the analytical and graphical solutions

offer the same conclusions about the convergence of solutions as the time scales converge.
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CHAPTER 1

INTRODUCTION

Over the past few decades, Time Scale Calculus has become a growing field of study in

mathematics. As opposed to studying differential and difference equations separately, Time Scale

Calculus, introduced by Dr. Stefan Hilger, unites these two studies. With the use of Time Scale

Calculus, we are not only able to solve dynamic equations defined on domains such as R and Z

but also on domains that are the unions of disjoint sets. Since its introduction in 1988, others

such as Dr. Allan Peterson and Dr. Martin Bohner have gathered and continued the work of Dr.

Stefan Hilger. Their work Dynamic Equations on Time Scales – An Introduction with

Applications, referenced throughout this work, has broadened the field of Time Scale Calculus.

The goal of this work is to analyze the solutions of a particular logistic dynamic equation on a

variety of time scales. Our focus is to show that as the gap between intervals of a time scale

closes, the solution of the dynamic equation converges to its solution when the time scale is

equivalent to the real numbers. We begin by introducing definitions and theorems which involve

differentiation, integration, the exponetial function, and the logistic dynamic equation with

respect to time scales. These are used to study the solutions of our logistic dynamic equation

analytically while Art, Marshall University’s four-integrator differential analyzer, is used to study

the solutions graphically.
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CHAPTER 2

DIFFERENTIAL ANALYZERS

2.1 History

First built to solve nonlinear differential equations which could not be solved by any other

method at the time, the differential analyzer has quite a history [4]. From rumors of helping

Allied forces in World War II to becoming obsolete after the invention of electronic computers,

DAs undeniably remain a learning tool and a visualization of differential equations.

2.1.1 Early Days

The late 1920s brought with it the development of the first differential analyzer. Dr. Vannevar

Bush, a professor of Electrical Engineering at Massachusetts Institute of Technology (MIT),

designed and constructed the first differential analyzer which consisted of six integrators. By the

early 1930s, word of the machine had spread to England and captured the interest of a University

of Manchester professor, Dr. Douglas Hartree. Dr. Hartree, during a visit to MIT, formulated a

plan to create a working model of Bush’s machine out of Meccano parts, the British version of

Erector Set [4]. By the mid-1930s, Dr. Hartree’s undergraduate research assistant majoring in

physics, Arthur Porter, had successfully built a four-integrator working model of Bush’s machine

predominately out of Meccano parts.

Porter used his machine to solve problems relating to control theory and, particularly, to study

the atomic structure of the chromium atom. Porter’s University of Manchester machine was the

first differential analyzer outside of the United States, but little did he know, he would soon end

up continuing his work in America under the leadership of Dr. Bush. After completing his

doctoral thesis, Dr. Porter was chosen for the Commonwealth Fund Fellowship. This led him to

MIT to work with Dr. Bush on the Rockefeller DA which was built by Dr. Bush in 1941 and had

16 integrators. While the differential analyzer may have been the dawning of the computer era,

most have been destroyed. However, a lucky few exist as static displays in museums serving as a

reminder of advancements in electronics and even inspiring an occasional visitor.
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2.1.2 Recent Past

While differential analyzers lost their vitality decades ago, in the fall of 2004 a professor of

mathematics in Huntington, West Virginia brought life to the Marshall Univesity Differential

Analyzer Project. Dr. Bonita Lawrence paid a visit to the London Science Museum that summer

where she discovered the static display of a portion of the Manchester DA, built by the

Metropolitan-Vickers Company [8]. She immediately saw the educational benefits that an active

differential analyzer could offer current students of mathematics. Upon returning to Marshall for

the fall semester, Dr. Lawrence created a team of undergraduate and graduate student

researchers and the project began.

Students studied everything they could on the first and most well-known DAs. They read

papers and contacted people with first-hand experience. Finally, they discovered that Dr. Porter,

creator of the Manchester DA, was living only two states away in North Carolina. Dr. Lawrence

and a few of her students visited Dr. Porter and returned with their final, and most important,

dose of inspiration for the project. In 2006, Lizzie, named after the Ford Model T - Tin Lizzie,

was the first machine completed by the Marshall DA Team. Lizzie consists of two integrators and

is easily portable. In May of 2009, construction was completed on a four-integrator DA capable of

running nonlinear differential equations. This machine, Art, is named after Dr. Arthur Porter.

Dr. Lawrence, and her colleague, Dr. Clayton Brooks (also her husband), began traveling to

universities giving presentations with Lizzie. Molly Peterson, a former graduate student, met Dr.

Lawrence at a conference at the University of Wyoming in 2009. Molly was able to visit Marshall

University and build her own DA, Miles-Diffy, over an 11-day period. Miles-Diffy, a

two-integrator machine, was taken back to Simpson College, Molly’s home college in Iowa, which

is now the second location in the United States to have a publicly accessible DA [7].

The final differential analyzer built at Marshall is similar in design to Miles-Diffy and is known

as DA Vinci. DA Vinci has two integrators and a large avenue of interconnect, which contains all

of the rods and gears used in setting up a problem. Both are capable of running more complex

equations because of their vast avenues of interconnect. Over the span of 8 years, the Marshall

DA Team, under the guidance of Dr. Lawrence, has produced four successful and unique DAs.
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2.1.3 Current Events

Dr. Lawrence, current research students, and DA Vinci continue to travel to universities and

conferences to talk about differential analyzers and hopefully inspire other schools to build their

own. At Marshall, professors of calculus and differential equations courses bring their students

into the DA lab to help them understand integration in a mechanical fashion. Art has been

incorporated into six masters theses, including this one, and numerous undergraduate capstone

projects since 2009.

I became interested in the DAs at Marshall after Molly began telling me about her thesis work

in the fall of 2013. I began reading the appropriate material and understanding differential

analyzers in general, but particularly, studying the mechanics of Art. By the following spring, I

was helping Molly perform runs on Art for her thesis. Since becoming a part of the Marshall DA

Team, I have been fortunate enough to travel to Emmanuel College in Boston, MA and Indiana

State University to run DA Vinci. We also had the opportunity this March to run Art during the

Mathematical Assosiaction of America (MAA) Ohio sectional meeting hosted at Marshall.

Currently, students from Lindenwood University in St. Charles, Missouri are making moves

toward the construction of a DA. The DAs at Marshall continue to attract students locally and

nationally. They may be outdated by modern technologies, but differential analyzers will remain

a learning tool and continue to hold their educational value.

2.2 Art: Marshall University’s DA

The purpose of the differential analyzer is to model a variety of differential equations. The design

and size of a particular machine determine the maximum order of the differential equation it is

capable of solving. Differential equations are programmed into a DA through a specific

arrangement of gears and shafts known as the avenue of interconnect [4]. The setup for the

avenue of interconnect is based on a Bush Schematic Diagram, named after Dr. Vannevar Bush,

which details each component and connection for a particular differential equation.

4



2.2.1 Mechanical Makeup

At the core of a differential analyzer is a series of mechanical integrators, one of which is pictured

in Figure 2.1. Each integrator consists of a movable carriage which houses a horizontal disk,

attached by a vertical axis. The vertical axis allows the disk to spin while the carriage translates

the disk along a set of rails. Atop the disk rests a vertical wheel which is attached to a shaft that

spins but is fixed in the horizontal plane. So, as the disk rotates and is translated, the wheel

rotates, powered by the frictional force created at their point of contact. Note that the wheel may

be positioned at various locations along a diameter of the disk since the disk is attached to a

movable carriage by a lead screw.

Figure 2.1: Setup of the wheel and disk for each integrator [7].

The motion created by the turning of the wheel, and in turn the rod connected to it, must

make its way to the avenue of interconnect to feed other components. The torque produced from

this motion is not strong enough to power all of the necessary components. Instead of increasing

the friction between the wheel and disk, a torque amplifier is used to increase torque. Throughout

the DA’s time of use, many different types of torque amplifiers were used. Art, the four-integrator

DA used in this work, amplifies torque using a servo-type motor [4]. It is important to mention

that the torque amplifier does not affect the mathematical output of the integrator.

Another important component is the adder. A mechanical adder connects three rods where two

rods send motion in and the third rod outputs the sum of those two motions [5]. The two rods

5



send in motion using bevel gears attached to independent rods which create a sum (or difference)

that is transferred to a single rod. This allows us to combine the motions produced from two or

more integrators.

A beneficial accessory is the output table which requires two motions to be fed into it to

produce a graphical representation of what one wants to model. One motion moves the physical

table horizontally along a set of rails while the second motion moves the pen vertically.

Depending on which rods are connected, the output table has the potential to graph the solution,

the derivative, or other aspects of a particular DE. Art has two output tables, but an output table

is not a necessity for the DA to run. The DA is designed to model DEs without sending motion

into an output table.

2.2.2 Mathematics Behind Art

Mechanical integration requires two inputs to create the desired output motion. An independent

variable is needed to spin the horizontal disk about the vertical axis. An input motion is

necessary to move the disk along the carriage by means of a threaded lead screw. Finally, an

output is produced and sent to other components along the avenue of interconnect via the fixed

rod attached to the wheel and the torque amplifier. As the carriage moves the disk along the

track, the position of the wheel on the disk is changing. The position of the wheel on the disk,

measured in inches relative to the center of the disk, determines the number of times the wheel

turns. This means if the wheel is positioned at the center of the disk, where the distance is

considered zero, the wheel will not rotate. Another way to look at this is, if the wheel is

positioned a inches from the center of the disk and the radius of the wheel is a inches, one turn of

the disk will create one turn of the wheel.

Notice that the position of the wheel is measured in inches but needs to be represented in terms

of shaft rotations. Focusing on Art’s setup, there is a geardown of the output respresented by an

integrator constant. This constant comes from the pitch of the lead screw, the embedded gear

ratios, and the radius of the wheel. The motion coming out of the integrator is only p·k
a of the

actual integral where p is the pitch of the lead screw, k is the ratio of gear reductions, and a is the

radius of the wheel in inches.

6



On Art, the lead screw has 32 threads per inch, so p is 1
32 inches per rotation. The gear near

the clutch that moves the lead screw has a gear ratio of 50
57 while the helical gears under the disk

have a gear ratio of 2
5 . This makes k = 20

57 rotations squared. Finally, the radius of the wheel on

each of Art’s integrators measures 15
16 of an inch. So, the output of an integrator on Art with

respect to the input is calculated by

p · k
a

=
1
32 inches/rotation · 20

57 rotations2

15
16 inches

≈ 0.0117 rotations.

Thus, one turn of an input rod leads to a factor of 0.0117 turns of the output rod. Excluding the

counters, this means that our unit of measure becomes

1
p·k
a

=
1

0.0117
≈ 85.5 rotations.

So, we get 85.5 turns of output for each turn of input.

In order to set the position of the wheel on the disk on Art, we use a counter mechanism. The

counter has a gear ratio of 19
57 = 1

3 and has a multiplier of 10 built into it. So the ratio of the

counter becomes 10
3 . We also have to take into consideration the lead screw that connects the

carriage to the counter. From above we know this gear ratio is 50
57 . If we multiply these ratios

along with our unit of measure, we get

10

3
· 50

57
· 85.5 = 250 rotations.

Thus, 250 turns on the counter represent one unit from the center of the disk to the position of the

wheel. We use the counters and this measure of unity to set initial conditions on the integrators.

For example, if we want to set initial conditions y(x0) = 1/2 and y′(x0) = 5/4, we would set the

counter on the first integrator to 125 and the counter on the second integrator to 312.5.

2.2.3 Riemann Sums

To begin the process of integration on the differential analyzer, we begin with the wheel

remaining a fixed distance, y, from the center of the disk. This means that the carriage holding

7



the disk is stationary. So as the disk rotates, the wheel creates a circle outlined on the disk. The

circumference of this “outlined” circle will be Cd = 2πy. Also, if we denote the radius of the wheel

as a, we know the circumference of the wheel is Cw = 2πa. So, the disk to wheel rotation ratio is

1 to y/a. That is, one turn of the disk results in y/a turns of the wheel.

Keeping this in mind, consider the case when an input is rotating the lead screw attached to

the carriage so that the disk is moving, creating a change in position of the wheel on the disk.

The change in radius, y, of the outlined circle on the disk will affect the arc lengths created by the

rotations of the wheel. The formula for arc length, s, is s = rθ. If we let r = y and θ = 2π4x,

where 4x is the portion of a circle traced by the wheel at radius y, then we have s = y · 2π4x.

If we let n represent the number of portions of a rotation of the disk, then we can relate the arc

lengths of the wheel to the turns of the disk. The total distance, for n portions of a turn, that the

wheel covers on the disk is the sum of the arc lengths at the different radii, ri, of the circles

outlined by the wheel such that
n∑
i=1

y(xi)2π4xi

where y(xi) = ri and 2π4xi = θi [4].

Since we know the distance the wheel travels on the disk and the circumference of the wheel, to

find the total number of rotations of the wheel, we just need to divide:

Rotations of the wheel =
Distance wheel travels

Circumference of wheel

=

n∑
i=1

y(xi)2π4xi
2πa

=
1

a

n∑
i=1

y(xi)4xi.

Notice that the distance traveled by the wheel is measured in length while the circumference of

the wheel can be thought of as length per rotation. When we divide these two, we are left with a

sum of rotations.

Now, if we let n, the number of portions of a rotation of the disk, decrease, the formula for the
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rotations of the wheel becomes

1

a

∫
y(x) dx.

These attributes resemble that of a Riemann sum [4]. Below is a formal definition of Riemann

sum.

Definition 1 ([1]). If P is the tagged partition, which is a partition of a given interval together

with a finite sequence of numbers i = 1, 2, ..., n, we define the Riemann sum of a function

f : [a, b]→ R corresponding to P to be the number

S(f ;P ) :=
n∑
i=1

f(ti)(xi − xi−1).

If the function f is positive on [a, b], then the Riemann sum is the sum of the areas of n rectangles

whose bases are subintervals Ii = [xi−1, xi] and whose heights are f(ti).

The mechanical integrators provide a visual representation of integration. The position of the

wheel on the disk, relative to the center, determines the direction in which the wheel spins. One

side of the disk represents positive values while the other side represents negative values. This is

due to the fact that the wheel comes to a stop at zero (the center of the disk) and changes

direction when it crosses to the other side [4]. The motion created by the wheel is carried out

through the rod connected to it and sent to the desired locations.

Now, consider the wheel leaving an outline of its movements on the disk. If the DA runs

through one period of a periodic differentiable function, like y = sinx, then the wheel passes

through zero on two occasions. This causes the wheel to outline four spirals on the disk, defined

by the particular equation set up on Art. The path of the wheel on the disk is modeled by these

spirals, and they display the motion (definite integral) that was sent out through the rod attached

to the wheel. If we plot these spirals on an xy−plane with the number of rotations of the wheel

along the x−axis and the distance from the center of the disk to the wheel along the y−axis, then

we can think about definite integrals as being the areas under the curves [7].

To generalize, consider the value of a function’s nth derivative determining the position of the

wheel on the disk of a specific integrator. Then the rotation of the wheel represents the value of
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the (n− 1)st derivative of our function [4]. Suppose this motion is sent into another integrator

determining the position of the wheel on the disk of this integrator. Then, the motion of this

wheel represents the (n− 2)nd derivative of our function. If this continues through n integrators,

then the motion being outputed from the nth integrator will represent the desired function.
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CHAPTER 3

TIME SCALE CALCULUS

Stefan Hilger had a vision to unite discrete and continuous analysis into one study. This vision

came to life in his PhD thesis in 1988 and is known as Time Scale Calculus. In the past, dynamic

equations have been classified by the structure of their domain being an interval subset of R. The

equations were then studied accordingly with the use of differential equations in the case of an

interval subset of R and difference equations in the case of a (totally) discrete domain set. With

the bond created between the two by Time Scale Calculus, dynamic equations can now be studied

over a hybrid of these two domain types. Time Scale Calculus closes the gap between discrete and

continuous analysis.

3.1 Basic Terms

A time scale, denoted T, is an arbitrary nonempty closed subset of the real numbers. Examples

of time scales include the real numbers, R, the integers, Z, the natural numbers, N, and the

nonnegative integers, N0. Other examples include [0, 2] ∪ [4, 5] ∪ {6} and [0, 1] ∪ N. Nonexamples

include the rational numbers, Q, the irrational numbers, R\Q, the complex numbers, C, and the

open interval (0, 2).

Notice that it is not necessary for a time scale to strictly be an interval subset of R or strictly

be a (totally) discrete set. This fact requires us to define operators which allow us to move from

one element to another in the time scale. So, we have the following two definitions.

Definition 2 ([2]). (i) For t ∈ T we define the forward-jump operator σ : T→ T by

σ(t) := inf{s ∈ T : s > t}.

(ii) For t ∈ T we define the backward-jump operator ρ : T→ T by

ρ(t) := sup{s ∈ T : s < t}.

Note: If t = supT, then σ(t) = t, and if t = inf T, then ρ(t) = t.

11



There are two cases for each of the jump operators. The forward-jump operator may result in

σ(t) > t, in which case, there is a non-zero distance between t and the next element in T. On the

other hand, the forward-jump operator may result in σ(t) = t. This implies that there does not

exist a “next” element that is greater than t. Similarly, the backward-jump operator may result

in ρ(t) < t implying a non-zero distance between t and the previous element in T or ρ(t) = t, in

which case, there does not exist a “previous” element that is less than t.

Using these definitions, we are able to classify elements in the time scale as right-scattered or

left-scattered and right-dense or left-dense. When there is a gap between elements in T, we say an

element is right-scattered if σ(t) > t and left-scattered if ρ(t) < t. When there does not exist a

“next” element greater than t or a “previous” element less than t, the jump operators tell us to

remain at the current location, and we say an element is right-dense if σ(t) = t and left-dense if

ρ(t) = t. If an element is both left-scattered and right-scattered at the same time

(ρ(t) < t < σ(t)) we call the element isolated. Alternately, if an element is both left-dense and

right-dense at the same time (ρ(t) = t = σ(t)) we call the element dense. Finally, we need a way

to calculate the distance between elements in T, so we define the graininess function.

Definition 3 ([2]). The change in position of consecutive elements, µ : T→ [0,∞), is definied by

µ(t) := σ(t)− t and we call µ the graininess function.

It is important to mention that the function µ(t) measures the distance between an element t

and the next element σ(t) in T which means it will always have a nonnegative value.

In order to define and use differentiation and integration in Time Scale Calculus, we must first

define the set denoted by Tκ.

Definition 4 ([2]). If T has a left-scattered maximum m, then Tκ = T− {m}. Otherwise,

Tκ = T. So,

Tκ =


T\(ρ(supT), supT] if supT <∞

T if supT =∞
.

Lastly, we want to define composition of f with σ notation. Let f : T→ R be a function. Then,

we define the function fσ : T→ R by fσ(t) = f(σ(t)) for all t ∈ T. It is important to mention

that these notations may be used interchangeably.

12



Now, we will look at a few examples to better understand the jump operators and graininess

function. For each of the following examples, we will calculate σ(t), ρ(t), and µ(t) as well as

classify the elements t ∈ T.

Example 1. We consider three examples.

(i) Let T = R. Then for any t ∈ R, we have

σ(t) = inf{s ∈ R : s > t} = inf{(t,∞)} = t.

Similarly, we have ρ(t) = t. Since ρ(t) = t = σ(t) for every element t ∈ R, all elements in

T = R are dense. The graininess function yields

µ(t) = σ(t)− t = t− t = 0 ∀ t ∈ T.

(ii) Let T = Z. Then for any t ∈ Z, we have

σ(t) = inf{s ∈ Z : s > t} = inf{t+ 1, t+ 2, t+ 3, ...} = t+ 1.

Similarly, we have ρ(t) = t− 1. Since ρ(t) < t < σ(t) for every element t ∈ Z, all elements

in T = Z are isolated. The graininess function yields

µ(t) = σ(t)− t = (t+ 1)− t = 1 ∀ t ∈ T.

Figure 3.1: Visual representation of Example 1(iii), T = [0, 2] ∪ {6}.

(iii) Refer to Figure 3.1. Let T = [0, 2] ∪ {6}. Then for t ∈ (0, 2), we have

σ(t) = inf{s ∈ T : s > t} = t.
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Similarly, ρ(t) = t for the above values of t. The graininess function for the above t values

becomes

µ(t) = σ(t)− t = t− t = 0.

Thus, the elements t ∈ (0, 2) are dense. For t = 0, we have

σ(0) = inf{s ∈ T : s > 0} = 0

and

ρ(0) = sup{s ∈ T : s < 0} = sup ∅ = inf T = 0.

Note that the element t = 0 = inf T is a right-dense minimum which behaves as left-dense.

The graininess function yields

µ(0) = σ(0)− 0 = 0.

For t = 2, we have

σ(2) = inf{s ∈ T : s > 2} = 6

and

ρ(2) = sup{s ∈ T : s < 2} = 2.

The graininess function yields

µ(2) = σ(2)− 2 = 4.

Thus, the element t = 2 is a left-dense and right-scattered element. For t = 6, we have

σ(6) = inf{s ∈ T : s > 6} = inf ∅ = supT = 6.

Note that the element t = 6 = supT is a left-scattered maximum which behaves as

right-dense. Also,

ρ(6) = sup{s ∈ T : s < 6} = 2
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and the graininess function yields

µ(6) = σ(6)− 6 = 0.

The above examples provide insight into how the forward-jump operator, backward-jump

operator, and graininess function behave on diverse time scales. These are the building blocks we

will use in the next section to describe differentiation on a time scale.

3.2 Differentiation

In order to solve a logistic dynamic equation on a time scale, we must first understand

differentiation on a time scale. In Time Scale Calculus, differentiation merges the rules from

traditional calculus and from discrete analysis into one uniform concept. We begin with the

definition of the delta derivative and follow with useful properties and applications. Also, from

this point forward when we say derivative, we are referring to the delta derivative.

Definition 5 ([2]). Assume f : T→ R is a function and let t ∈ Tκ. Then we define f4(t) to be

the number (provided it exists) with the property that given any ε > 0, there is a neighborhood U

of t (for example, U = (t− δ, t+ δ) ∩ T for some δ > 0) such that

∣∣∣[fσ(t)− f(s)]− f4(t)[σ(t)− s]
∣∣∣ ≤ ε|σ(t)− s| for all s ∈ U.

We read f4(t) as the delta derivative of f at t.

Now we introduce a theorem which relates differentiability with continuity for elements

characterized by the jump operators. The reader may find proofs (not provided) for this theorem

and all future theorems in the referenced texts.

Theorem 1 ([2]). Suppose f : T→ R is a function and t ∈ Tκ. Then we have the following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f4(t) =
fσ(t)− f(t)

µ(t)
.
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(iii) If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s

exists and is a finite number. In this case

f4(t) = lim
s→t

f(t)− f(s)

t− s
.

(iv) If f is differentiable at t, then

fσ(t) = f(t) + µ(t)f4(t).

This equation is known as the “simple useful formula.”

The following example provides a connection to traditional calculus and discrete analysis along

with a combination of the two.

Example 2. Let f : T→ R be continuous.

(i) Let T = R. Then f4(t) = f ′(t).

(ii) Let T = Z. Then f4(t) = 4f(t) = f(t+ 1)− f(t).

(iii) Let T = [0, 2] ∪ {3} ∪ [5, 6]. Then computing the derivative at the points t = 1, 2, 3, and 5

using the definition of delta derivative, we obtain

(a) The point t = 1 is dense, so we have

f4(1) = lim
s→1

f(1)− f(s)

1− s
.

(b) The point t = 2 is right-scattered, so we have

f4(2) =
fσ(2)− f(2)

µ(2)
=
f(3)− f(2)

1
= f(3)− f(2).
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(c) The point t = 3 is isolated, so we have

f4(3) =
fσ(3)− f(3)

µ(3)
=
f(5)− f(3)

2
.

(d) The point t = 5 is right-dense, so we have

f4(5) = lim
s→5

f(5)− f(s)

5− s
.

These examples show that the method used to find the derivative at a point in a time scale

changes based on the classification of the element. As one would hope, the delta derivative at a

dense element is precisely that of a traditional derivative and the delta derivative at a

right-scattered element with graininess 1 is precisely that of a difference operator.

The next theorem states properties of the delta derivative that are also similar to those in

traditional calculus.

Theorem 2 ([2]). Suppose f, g : T→ R are differentiable at t ∈ Tκ. Then:

(i) The sum f + g : T→ R is differentiable at t with

(f + g)4(t) = f4(t) + g4(t).

(ii) For any constant α, αf : T→ R is differentiable at t with

(αf)4(t) = αf4(t).

(iii) The product fg : T→ R is differentiable at t with

(fg)4(t) = f4(t)g(t) + fσ(t)g4(t) = f(t)g4(t) + f4(t)gσ(t).
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(iv) If f(t)fσ(t) 6= 0, then 1
f is differentiable at t with

(
1

f

)4
(t) = − f4(t)

f(t)fσ(t)
.

(v) If g(t)gσ(t) 6= 0, then f
g is differentiable at t with

(
f

g

)4
(t) =

f4(t)g(t)− f(t)g4(t)

g(t)gσ(t)
.

As stated previously, the delta derivative is all-inclusive. It provides a way to differentiate, for

example, on an interval, or on a union of intervals, or on a union of intervals and isolated

elements. Just as it is important to understand differentiation on a time scale, we must have a

solid foundation for integrating on a time scale in order to solve a logistic dynamic equation. The

next section will build this foundation.

3.3 Integration

Before discussing the antiderivative with respect to time scales, we must describe what it means

for a function to be regulated and rd-continuous since these are properties that our

pre-antiderivative must possess. Also, any mention of the term limit refers to finite limit.

Definition 6 ([2]). A function f : T→ R is called regulated provided its right-sided limits exist

at all right-dense points in T and its left-sided limits exist at all left-dense points in T.

Definition 7 ([2]). A function f : T→ R is called rd-continuous provided it is continuous at

right-dense points in T and its left-sided limits exist at left-dense points in T. The set of

rd-continuous functions f : T→ R will be denoted by

Crd = Crd(T) = Crd(T,R).

The following theorem describes a few results related to continuity and regulated and

rd-continuous functions.
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Theorem 3 ([2]). Assume f : T→ R.

(i) If f is continuous, then f is rd-continuous.

(ii) If f is rd-continuous, then f is regulated.

(iii) The jump operator σ is rd-continuous.

(iv) If f is regulated or rd-continuous, then so is fσ.

(v) Assume f is continuous. If g : T→ R is regulated or rd-continuous, then f ◦ g has that

property too.

Combining these ideas of regulated and rd-continuous functions with the concept of

pre-differentiability and the existence of pre-antiderivatives will allow us to define the delta

antiderivative. Also, note a region of differentiability, D, is a region such that D ⊂ Tκ and Tκ\D

is countable and contains no right-scattered elements of T.

Theorem 4 ([2]). Let f be regulated. Then there exists a function F which is pre-differentiable

with region of differentiation D such that

F4(t) = f(t) holds for all t ∈ D.

Definition 8 ([2]). Assume f : T→ R is a regulated function. Any function F as in Theorem 4 is

called a pre-antiderivative of f . We define the indefinite integral of a regulated function f by

∫
f(t)4t = F (t) + C,

where C is an arbitrary constant and F is a pre-antiderivative of f . We define the Cauchy

integral by ∫ s

r
f(t)4t = F (s)− F (r) for all r, s ∈ T.

A function F : T→ R is called an antiderivative of f : T→ R provided

F4(t) = f(t) holds for all t ∈ Tκ.
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3.4 The Hilger Complex Plane

In order to define the exponential function on a time scale, we must first understand the structure

of the Hilger complex plane. In the Hilger complex plane, the reciprocal of the graininess

function, h, is the radius of the Hilger imaginary circle which is tangent to the imaginary axis.

Definition 9 ([2]). For h > 0 we define the Hilger complex numbers, the Hilger real axis,

the Hilger alternating axis, and the Hilger imaginary circle as

Ch :=

{
z ∈ C : z 6= −1

h

}
Rh :=

{
z ∈ Ch : z ∈ R and z > −1

h

}
Ah :=

{
z ∈ Ch : z ∈ R and z < −1

h

}
Ih :=

{
z ∈ Ch :

∣∣∣∣z +
1

h

∣∣∣∣ =
1

h

}
,

respectively. For h = 0, let C0 := C, R0 := R, I0 := iR, and A0 := ∅. A visualization of the Hilger

complex plane can be seen in Figure 3.2.

Figure 3.2: The Hilger Complex Plane [7]
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Refering to Figure 3.2, notice that the radius of the Hilger imaginary circle is 1
h and that the

circle is centered to the left of the origin 1
h units. So, as the graininess becomes smaller, the Hilger

imaginary circle grows larger.

Additionally, we define the Hilger real and imaginary parts of a complex number z, along with

the Hilger purely imaginary number ı̊ω.

Definition 10 ([2]). Let h > 0 and z ∈ Ch. We define the Hilger real part of z by

Reh(z) :=
|zh+ 1| − 1

h

and the Hilger imaginary part of z by

Imh(z) :=
Arg(zh+ 1)

h
,

where −π < Arg(z) ≤ π.

Definition 11 ([2]). Let −π
h
< ω ≤ π

h
. We define the Hilger purely imaginary number ı̊ω by

ı̊ω =
e̊ıωh − 1

h
.

To define our logistic dynamic equation on a time scale, we must introduce the operation

“circle plus” and its connection to the Hilger real and imaginary parts, and for z ∈ Ch, introduce

operation “circle minus.” Both circle plus and circle minus are defined on Ch.

Definition 12 ([2]). We define the circle plus addition ⊕ on Ch by

z ⊕ w := z + w + zwh.

It is important to mention that (Ch,⊕) is an Abelian group.

Theorem 5 ([2]). For z ∈ Ch we have

z = Rehz ⊕ iImhz.
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The operation circle minus appears in the properties of the exponential function and in our

logistic dynamic equation.

Definition 13 ([2]). We define the cirlce minus subtraction on Ch by

z 	 w := z ⊕ (	w)

where

	z :=
−z

1 + zh
.

Also, if z, w ∈ Ch with h ≥ 0, then we have the following properties

(i) z 	 z = 0;

(ii) z 	 w =
z − w

1 + wh
;

(iii) z 	 w = z − w if h = 0.

The cylinder transformation is at the heart of the exponential function. In order to define it,

however, we need to define its codomain, Zh.

Definition 14 ([2]). For h > 0, let Zh be the strip

Zh :=
{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
,

and for h = 0, let Z0 := C.

Definition 15 ([2]). For h > 0, we define the cylinder transformation ξh : Ch → Zh by

ξh(z) =
1

h
Log(1 + zh),

where Log is the principal logarithm function. For h = 0, we define ξ0(z) = z for all z ∈ C.

Definition 16 ([2]). For h > 0, we define the inverse transformation ξ−1
h : Zh → Ch of the

cylinder transformation by

ξ−1
h (z) =

1

h

(
ezh − 1

)
.
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The cylinder transformation, ξh, gets its name from Zh. For h > 0, if the boundary lines,

Im(z) = −π
h and Im(z) = π

h , of Zh are joined, Zh can be viewed as a cylinder.

3.5 Exponential Function

The exponential function is essential for solving the logistic dynamic equation. However, we must

first describe what it means for a linear function to be regressive before formally stating the

definition of the exponential function.

Definition 17 ([2]). We say that a function p : T→ R is regressive provided

1 + µ(t)p(t) 6= 0 for all t ∈ Tκ

holds. The set of all regressive and rd-continuous functions f : T→ R is denoted by

R = R(T) = R(T,R).

Now, using the cylinder transformation, we can define the exponential function on an arbitrary

time scale.

Definition 18 ([2]). If p ∈ R, then we define the exponential function by

ep(t, s) = exp

(∫ t

s
ξµ(τ) (p(τ))4τ

)
for all s, t ∈ T.

Here is a look at a few useful properties of the exponential function. In particular, properties

iii, iv, and v, are essential in solving our logistic dynamic equation on a time scale.

Theorem 6 ([2]). If p, q ∈ R, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);

(iii)
1

ep(t, s)
= e	p(t, s);

(iv) ep(t, s) =
1

ep(s, t)
= e	p(s, t);

(v) ep(t, s)ep(s, r) = ep(t, r);
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(vi) ep(t, s)eq(t, s) = ep⊕q(t, s);

(vii)
ep(t, s)

eq(t, s)
= ep	q(t, s);

(viii)

(
1

ep(·, s)

)4
= − p(t)

eσp (·, s)
;

(ix) e4p (t, t0) = p(t) · ep(t, t0).

3.6 Logistic Dynamic Equations

Let us consider the linear equation

v4 = −p(t)vσ + f(t) (3.1)

where p ∈ R and f ∈ Crd. If v(t) is a solution of (3.1) and x(t) = 1/v(t), then

x4 =

(
1

v

)4
=
−v4

vvσ

=
p(t)vσ − f(t)

vvσ

= (p(t)− f(t)xσ)x

= p(t)x− f(t)x
(
x+ µ(t)x4

)
= (p(t)− f(t)x)x− f(t)xµ(t)x4

=
p(t)− f(t)x

1 + f(t)xµ(t)
· x

= [p(t)	 f(t)x]x.

We call

x4 = [p(t)	 f(t)x]x (3.2)

a logistic dynamic equation.

Definition 19 ([2]). The equation

x4 = p(t)x+ f(t)

24



is called regressive provided p ∈ R and f : T→ R is rd-continuous.

In order to obtain the solution to (3.2), we must use the variation of constants approach

explained in the following theorem.

Theorem 7 ([2]). Suppose

v4 = p(t)v + f(t)

is regressive. Let t0 ∈ T and v0 ∈ R. Then the unique solution to the initial value problem

v4 = −p(t)vσ + f(t), v(t0) = v0 (3.3)

is given by

v(t) = e	p(t, t0)v0 +

∫ t

t0

e	p(t, τ)f(τ)4τ.

Using this theorem, we prove the solution of the logistic dynamic equation (3.2).

Theorem 8 ([3]). Suppose p ∈ R and f ∈ Crd. Let x0 6= 0. If

v(t) = e	p(t, t0)v0 +

∫ t

t0

e	p(t, τ)f(τ)4τ for all t ∈ T,

then

x(t) =
1

v(t)
=

ep(t, t0)

1

x0
+

∫ t

t0

ep(τ, t0)f(τ)4τ

solves (3.2) and satisfies x(t0) = x0.

Proof. Let x0 6= 0 and suppose

v(t) =
e	p(t, t0)

x0
+

∫ t

t0

e	p(t, τ)f(τ)4τ 6= 0

for all t ∈ T. Let v0 = 1/x0. Then

v(t) = e	p(t, t0)v0 +

∫ t

t0

e	p(t, τ)f(τ)4τ,
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from Theorem 7, is the unique solution to the initial value problem (3.3). Now, let

x(t) =
1

v(t)
=

ep(t, t0)

1

x0
+

∫ t

t0

ep(τ, t0)f(τ)4τ
.

From the way we derived (3.2), we know that x(t) solves

x4 = [p(t)	 f(t)x]x.

Also, since we let v0 = 1/x0, x(t0) = x0 is satisfied.

So, we will use this general equation

x(t) =
1

v(t)
=

ep(t, t0)

1

x0
+

∫ t

t0

ep(τ, t0)f(τ)4τ
,

t ∈ T and x(t0) = x0, to solve the logistic dynamic equation

x4 = [p(t)	 f(t)x]x

on various time scales.
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CHAPTER 4

A LOGISTIC DYNAMIC EQUATION: ANALYTICAL SOLUTIONS

This chapter focuses on the solution of a particular logistic dynamic equation. Analytical

solutions will be provided on various time scales. Theorem 8 along with many properties of the

exponential function detailed in Chapter 3 will be utilized throughout these analyses.

4.1 The Initial Value Problem

Our focus is on the solution of a particular logistic dynamic equation. In differential equations

(T = R), our equation of interest has the form x′ =
(
1− 1

2x
)
x with initial condition x(0) = 1

5 .

From the method of separation of variables, the general solution to this initial value problem

(IVP) is given by

x(t) =
2x0e

t

et0(2− x0) + x0et
.

So, the particular solution of this IVP is

x(t) =
2et

et + 9
.

Our IVP, with general form,

x4 =

(
1	 1

2
x

)
x, x(0) =

1

5
,

involves the circle minus operation and has the unique solution defined in Theorem 8. We will

begin by finding the general solution on an arbitrary time scale, T = [t0, t1] ∪ [t2, t3] and initial

condition x(t0) = x0. Using the general solution, we will find a particular solution on a time scale

with a large gap, T1 = [0, 1] ∪ [3, 5]. We will continue to find particular solutions on time scales

with smaller gaps between intervals to show that the solution converges to the solution on T = R,

a time scale with no gap. It is impoartant to note that our IVP has only one initial condition.

Even though we are able to have disjoint sets for our domains in Time Scale Calculus, we only

need one initial condition for a first order problem. We are able to obtain the value of the solution
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at the beginning of the second interval by using the information obtained at the end of the first

interval.

4.2 The General Solution

First, we will look at our IVP

x4 =

(
1	 1

2
x

)
x, x(t0) = x0,

on an arbitrary time scale T = [t0, t1] ∪ [t2, t3]. Using concepts from Chapter 3, we know the

dynamic equation

x4 = [p(t)	 f(t)x]x, x(t0) = x0,

has the general solution

x(t) =
ep(t, t0)

1
x0

+
∫ t
t0
ep(τ, t0)f(τ)4τ

.

For our IVP, we have p(t) = 1 and f(t) = 1
2 . Also recall that our circle minus definition gives us

x4 =

(
1− 1

2x

1 + 1
2µ(t)x

)
x,

the differential equation divided by the factor
(
1 + 1

2µ(t)x
)

where µ(t) is the size of our gap at t.

Notice that when µ(t) = 0, (T = R), we simply have the differential equation x′ =
(
1− 1

2x
)
x.

Now, we will calculate the solution for t ∈ [t0, t1], t = t2, and t ∈ (t2, t3] analytically.

• For t ∈ [t0, t1] with µ(t) = 0, we have

x(t) =
ep(t, t0)

1
x0

+
∫ t
t0
ep(τ, t0)f(τ)4τ

=
e1(t, t0)

1
x0

+ 1
2

∫ t
t0
e1(τ, t0)4τ

=
et−t0

1
x0

+ 1
2

∫ t
t0
eτ−t04τ

=
2x0e

t−t0

2 + x0e−t0
∫ t
t0
eτ4τ
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=
2x0e

t

2et0 + x0

∫ t
t0
eτ4τ

=
2x0e

t

2et0 + x0(et − et0)

=
2x0e

t

et0(2− x0) + x0et
.

• For t = t2 with µ(t1) = t2 − t1, we have

x(t) =
ep(t, t0)

1
x0

+
∫ t
t0
ep(τ, t0)f(τ)4τ

=
e1(t, t0)

1
x0

+ 1
2

∫ t
t0
e1(τ, t0)4τ

=
2x0e1(t2, t1)e1(t1, t0)

2 + x0

(∫ t2
t1
e1(τ, t0)4τ +

∫ t1
t0
e1(τ, t0)4τ

)
=

2x0(1 + t2 − t1)et1−t0

2 + x0

(∫ t2
t1
e1(τ, t1)e1(t1, t0)4τ + et1−t0 − 1

)
=

2x0(1 + t2 − t1)et1−t0

2 + x0

(
et1−t0

∫ t2
t1
e1(τ, t1)4τ + et1−t0 − 1

)
=

2x0(1 + t2 − t1)et1−t0

2 + x0 (et1−t0(t2 − t1) + et1−t0 − 1)

=
2x0(1 + t2 − t1)et1

2et0 + x0et1(1 + t2 − t1)− x0et0

=
2x0e

t1(1 + t2 − t1)

et0(2− x0) + x0et1(1 + t2 − t1)
.

• For t ∈ (t2, t3] with µ(t) = 0, we have

x(t) =
ep(t, t0)

1
x0

+
∫ t
t0
ep(τ, t0)f(τ)4τ

=
e1(t, t0)

1
x0

+ 1
2

∫ t
t0
e1(τ, t0)4τ

=
2x0e1(t, t2)e1(t2, t1)e1(t1, t0)

2 + x0

(∫ t
t2
e1(τ, t0)4τ +

∫ t2
t1
e1(τ, t0)4τ +

∫ t1
t0
e1(τ, t0)4τ

)
=

2x0e
t−t2(1 + t2 − t1)et1−t0

2 + x0

(
e1(t2, t1)e1(t1, t0)

∫ t
t2
e1(τ, t2)4τ + e1(t1, t0)

∫ t2
t1
e1(τ, t1)4τ + et1−t0 − 1

)
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=
2x0e

t−t2+t1−t0(1 + t2 − t1)

2 + x0 (et1−t0(1 + t2 − t1)(et−t2 − 1) + et1−t0(t2 − t1) + et1−t0 − 1)

=
2x0e

t−t2+t1−t0(1 + t2 − t1)

2 + x0et1−t0 ((et−t2 − 1)(1 + t2 − t1) + t2 − t1 + 1)− x0

=
2x0e

t−t2+t1(1 + t2 − t1)

2et0 + x0et−t2+t1(1 + t2 − t1)− x0et0

=
2x0e

t−t2+t1(1 + t2 − t1)

et0(2− x0) + x0et−t2+t1(1 + t2 − t1)
.

Therefore, the general solution for T = [t0, t1] ∪ [t2, t3] is

x(t) =



2x0e
t

et0(2− x0) + x0et
, for t ∈ [t0, t1]

2x0e
t1(1 + t2 − t1)

et0(2− x0) + x0et1(1 + t2 − t1)
, for t = t2

2x0e
t−t2+t1(1 + t2 − t1)

et0(2− x0) + x0et−t2+t1(1 + t2 − t1)
, for t ∈ (t2, t3]

.

Note that all of the above terms, excluding et, are constants because they do not depend on t.

4.3 Particular Solutions

We can now calculate particular solutions of our IVP ,

x4 =

(
1	 1

2
x

)
x, x(0) =

1

5
,

on three different time scales using the general solution we just found. With each successive time

scale we will decrease the gap between the intervals, with the last gap measuring only 0.5 units

wide.

The first time scale we are interested in is T1 = [0, 1] ∪ [3, 5]. Using our general solution, we

obtain the following calculations:

• For t ∈ [0, 1], we have

x(t) =
2x0e

t

et0(2− x0) + x0et
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=
2
(

1
5

)
et

e0
(
2− 1

5

)
+ 1

5e
t

=
2et

(10− 1) + et

=
2et

et + 9
.

• For t = 3, we have

x(3) =
2x0e

t1(1 + t2 − t1)

et0(2− x0) + x0et1(1 + t2 − t1)

=
2
(

1
5

)
e1(1 + 3− 1)

e0
(
2− 1

5

)
+ 1

5e
1(1 + 3− 1)

=
2e(3)

(10− 1) + e(3)

=
6e

9 + 3e

=
2e

e+ 3
.

We can also find the value of x(3) using the simple useful formula as follows

x(3) = x(1) + µ(1)x4(1)

=
2e

e+ 9
+ 2

((
1− 1

2x(1)
)
x(1)

1 + 1
2x(1)

)

=
2e

e+ 9
+ 2

(
6e

(e+ 3)(e+ 9)

)
=

2e(e+ 3) + 12e

(e+ 3)(e+ 9)

=
2e(e+ 9)

(e+ 3)(e+ 9)

=
2e

e+ 3
.

Notice that we arrive at the same value for our solution using the simple useful formula as

we do using the general solution.
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• For t ∈ (3, 5], we have

x(t) =
2x0e

t−t2+t1(1 + t2 − t1)

et0(2− x0) + x0et−t2+t1(1 + t2 − t1)

=
2
(

1
5

)
et−3+1(1 + 3− 1)

e0
(
2− 1

5

)
+ 1

5e
t−3+1(1 + 3− 1)

=
2et−2(3)

(10− 1) + et−2(3)

=
6et−2

9 + 3et−2

=
2et−2

et−2 + 3
.

Therefore, the particular solution for T1 = [0, 1] ∪ [3, 5] is

x(t) =



2et

et + 9
, for t ∈ [0, 1]

2e

e+ 3
, for t = 3

2et−2

et−2 + 3
, for t ∈ (3, 5]

.

Now, for the second time scale, we have T2 = [0, 1] ∪ [2, 5]. Using the general solution, we find

this particular solution to be

x(t) =



2et

et + 9
, for t ∈ [0, 1]

4e

2e+ 9
, for t = 2

4et−1

2et−1 + 9
, for t ∈ (2, 5]

.

Finally, for our third time scale, we have T3 = [0, 1] ∪
[

3
2 , 5
]
. Again, using the general solution,

we arrive at the following particular solution:

x(t) =



2et

et + 9
, for t ∈ [0, 1]

2e

e+ 6
, for t = 3

2

2et−1/2

et−1/2 + 6
, for t ∈

(
3
2 , 5
] .
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Consider our IVP as a differential equation where T = R with the same initial condition

x(0) = 1
5 . Then, to calculate the solution at any value of t ∈ R, we would use

x(t) =
2et

et + 9
.

For each of the above time scales, we found particular solution values depending on where t lived

in the time scale. In Table 4.1 below, we compare the solutions for the left-scattered elements

from each of the time scales with their respective solution in T = R.

T = R T = Ti
t2,i = t2 ∈ Ti xR(t2,i) xT(t2,i) xR(t2,i)− xT(t2,i) µ(ρ(t2,i))

t2,1 = 3 1.38 0.951 0.429 2
t2,2 = 2 0.902 0.753 0.149 1
t2,3 = 3

2 0.665 0.624 0.041 1
2

Table 4.1: Solution values for left-scattered elements in T1, T2, T3 versus their solution values in
T = R.

Notice as the size of the gap µ(ρ(t2,i)) decreases, the difference in the solution values for each

t2,i also decreases. This gave us the idea that as the gap between the intervals of a time scale

narrows, the solution on the time scale may approach the solution on R. In fact, this is the case.

Before we formally state this result, let us look at the general solution on a sequence of time scales.

4.4 A Sequence of Time Scales

Rather than working with individual time scales, we will now focus on a sequence of time scales.

We are still considering our IVP

x4 =

(
1	 1

2
x

)
x, x(m) = x0.

Note that x0 is a constant. We want to analyze the general solution on the time scale

Tn = [m, a] ∪ [a+ δn, b] where m, a, and b are constants and n ∈ N. For all n ∈ N, we define

δn = 1
n where 0 ≤ δn ≤ b−

(
a+ 1

n

)
and tn = a+ 1

n . From Theorem 8, we know our general
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solution has the form

x(t) =
ep(t, t0)

1
x0

+
∫ t
t0
ep(τ, t0)f(τ)4τ

=
e1(t,m)

1
x0

+ 1
2

∫ t
m e1(τ,m)4τ

.

Similar to our process in the previous section, we want to analytically describe the solution on

each interval and at the point after the jump. We will use the same general solution and initial

condition each time.

On Tn = [m, a] ∪
[
a+ 1

n , b
]
, n ∈ N, we have the following calculations:

• For t ∈ [m, a] with µ(t) = 0, we have

x(t) =
e1(t,m)

1
x0

+ 1
2

∫ t
m e1(τ,m)4τ

=
et−m

1
x0

+ 1
2

∫ t
m e

τ−m4τ

=
et−m

1
x0

+ 1
2e
−m
∫ t
m e

τ4τ

=
2x0e

t

2em + x0(et − em)

=
2x0e

t

em(2− x0) + x0et
.

• For tn = a+ 1
n with µ(a) = a+ 1

n − a = 1
n , we have

xn(t) =
e1(t,m)

1
x0

+ 1
2

∫ t
m e1(τ,m)4τ

=
2x0e1

(
a+ 1

n , a
)
e1(a,m)

2 + x0

(∫ a+1/n
a e1(τ,m)4τ +

∫ a
m e1(τ,m)4τ

)
=

2x0

(
1 + a+ 1

n − a
)
ea−m

2 + x0

(∫ a+1/n
a e1(τ, a)e1(a,m)4τ + ea−m − 1

)
=

2x0

(
1 + 1

n

)
ea−m

2 + x0

(
ea−m

∫ a+1/n
a e1(τ, a)4τ + ea−m − 1

)
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=
2x0

(
1 + 1

n

)
ea−m

2 + x0

(
ea−m

(
a+ 1

n − a
)

+ ea−m − 1
)

=
2x0

(
1 + 1

n

)
ea

2em + x0ea
(
1 + 1

n

)
− x0em

=
2x0e

a
(
1 + 1

n

)
em(2− x0) + x0ea

(
1 + 1

n

) .
• For t ∈

(
a+ 1

n , b
]

with µ(t) = 0, we have

xn(t) =
e1(t,m)

1
x0

+ 1
2

∫ t
m e1(τ,m)4τ

=
2x0e1

(
t, a+ 1

n

)
e1

(
a+ 1

n , a
)
e1(a,m)

2 + x0

(∫ t
a+1/n e1(τ,m)4τ +

∫ a+1/n
a e1(τ,m)4τ +

∫ a
m e1(τ,m)4τ

)
=

2x0e
t−a− 1

n

(
1 + a+ 1

n − a
)
ea−m

2 + x0

(
e1

(
a+ 1

n , a
)
e1(a,m)

∫ t
a+1/n e1

(
τ, a+ 1

n

)
4τ + e1(a,m)

∫ a+1/n
a e1(τ, a)4τ + ea−m − 1

)
=

2x0e
t−1/n−m (1 + 1

n

)
2 + x0

(
ea−m

(
1 + a+ 1

n − a
)

(et−a−1/n − 1) + ea−m
(
a+ 1

n − a
)

+ ea−m − 1
)

=
2x0e

t−1/n−m (1 + 1
n

)
2 + x0ea−m

(
(et−a−1/n − 1)

(
1 + 1

n

)
+ 1

n + 1
)
− x0

=
2x0e

t−1/n
(
1 + 1

n

)
2em + x0et−1/n

(
1 + 1

n

)
− x0em

=
2x0e

t−1/n
(
1 + 1

n

)
em(2− x0) + x0et−1/n

(
1 + 1

n

) .
Therefore, the general solution for Tn = [m, a] ∪

[
a+ 1

n , b
]

is

xn(t) =



2x0e
t

em(2− x0) + x0et
, for t ∈ [m, a]

2x0e
a
(
1 + 1

n

)
em(2− x0) + x0ea

(
1 + 1

n

) , for tn = a+ 1
n

2x0e
t−1/n

(
1 + 1

n

)
em(2− x0) + x0et−1/n

(
1 + 1

n

) , for t ∈
(
a+ 1

n , b
]
.
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4.5 Convergence of Solutions

Now, we focus on a sequence of time scales, Tn, that converges to a time scale T in the Hausdorff

metric. That is, we want to show, for a sequence Tn, there exists T such that

lim
n→∞

Tn = T.

The Hausdorff metric measures a distance between two sets, so this limit implies that this

distance between Tn and T goes to 0. Let the space of closed nonempty subsets of R be denoted

by CL(R), and define the metric

d : R× R→ R, d(x, y) = min {|x− y|, 1} .

Using the above metric, we now have the following:

Definition 20 ([6]). Let H(T,Tn) represent the Hausdorff metric, then

H(T,Tn) = max

{
sup
s∈T

d′(s,Tn), sup
t∈Tn

d′(T, t)
}

where

d′(s,Tn) = inf
t∈Tn

d(s, t)

and

d′(T, t) = inf
s∈T

d(s, t).

Since Tn and T are closed,

inf
t∈Tn

d(s, t) = min
t∈Tn

d(s, t)

and

inf
s∈T

d(s, t) = min
s∈T

d(s, t).
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Also, sups∈T d
′(s,Tn) and supt∈Tn

d′(T, t) are bounded above. Thus,

sup
s∈T

d′(s,Tn) = max
s∈T

d′(s,Tn)

and

sup
t∈Tn

d′(T, t) = max
t∈Tn

d′(T, t)

and the Hausdorff metric becomes

H(T,Tn) = max

{
max
s∈T

d′(s,Tn),max
t∈Tn

d′(T, t)
}
.

Using the Hausdorff metric, we can define the distance between two time scales Tn and T.

When we allow this distance to approach zero, the solution xn(t) defined on Tn, approaches the

solution x(t), defined on T. This result is formally stated in the following proposition.

Proposition 1. Let Tn denote the time scale Tn = [m, a] ∪
[
a+ 1

n , b
] (
a+ 1

n < b,∀ n ∈ N
)

and

T = [m, b]. Consider the logistic dynamic equation

x4 =

(
1	 1

2
x

)
x with x(m) = x0. (4.1)

Let xn = xn(t) be a solution of (4.1) on Tn. Then for all t ∈ [m, b],

lim
n→∞

xn(t) =
2x0e

t

em(2− x0) + x0et
.

That is, as Tn → T, xn(t)→ 2x0e
t

em(2− x0) + x0et
for all t ∈ [m, b].

Proof. Let Tn denote the time scale Tn = [m, a] ∪
[
a+ 1

n , b
]

with n ∈ N and T = [m, b]. For all
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n ∈ N the solution of (4.1) on Tn is

xn(t) =



2x0e
t

em(2− x0) + x0et
, for t ∈ [m, a]

2x0e
a
(
1 + 1

n

)
em(2− x0) + x0ea

(
1 + 1

n

) , for tn = a+ 1
n

2x0e
t−1/n

(
1 + 1

n

)
em(2− x0) + x0et−1/n

(
1 + 1

n

) , for t ∈
(
a+ 1

n , b
]
.

Using the Hausdorff metric, we have

H(T,Tn) = max

{
max
s∈T

d′(s,Tn),max
t∈Tn

d′(T, t)
}

= max

{
max
s∈[m,b]

d′
(
s, [m, a] ∪

[
a+

1

n
, b

])
, max
t∈[m,a]∪[a+ 1

n
,b]
d′ ([m, b], t)

}

= max

{
max
s∈[m,b]

{
min

t∈[m,a]∪[a+ 1
n
,b]
|s− t|

}
, max
t∈[m,a]∪[a+ 1

n
,b]

{
min
s∈[m,b]

|s− t|
}}

= max

{
1

n
, 0

}
=

1

n
.

If t ∈ [m, a], then

lim
n→∞

xn(t) = lim
n→∞

2x0e
t

em(2− x0) + x0et
=

2x0e
t

em(2− x0) + x0et
.

Now, consider when t ∈
(
a+ 1

n , b
]
. Since Tn → T, there exists n1 ∈ N such that t ∈ Tn1 . Since

Tn ⊂ Tn+1, t ∈ Tn for all n ≥ n1. Then

lim
n→∞

xn(t) = lim
n→∞

2x0e
t−1/n

(
1 + 1

n

)
em(2− x0) + x0et−1/n

(
1 + 1

n

) =
2x0e

t

em(2− x0) + x0et
.

Therefore, xn(t)→ x(t) =
2x0e

t

em(2− x0) + x0et
for all t ∈ [m, b].
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Notice that x(t) =
2x0e

t

em(2− x0) + x0et
is the solution of our DE on the interval [m, b]. Thus,

using the dynamic logistic equation (4.1) and Hausdorff metric, we were able to show that the

solution to (4.1) converges as Tn converges to T. In other words,

xn(t)→ x(t) =
2x0e

t

em(2− x0) + x0et
.

This convergence is noticable in graphical representations of the solutions to (4.1) on various

time scales. Chapter 5 presents these visual representations.
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CHAPTER 5

A LOGISTIC DYNAMIC EQUATION: GRAPHICAL SOLUTIONS ON THE

DIFFERENTIAL ANALYZER

Differential equations may be solved graphically using a number of computer programs even if no

closed form solutions exist. Although these programs are readily available to us, our work utilizes

Art, the Marshall University Differential Analyzer, to evaluate our IVP x4 =
(
1	 1

2x
)
x with

initial condition x(0) = 1
5 . Art has the same capabilities as computer programs with a few

advantages. The DA allows access to the behavior of each of the derivatives along with the

solution at any time in the domain. These behaviors are represented numerically, using the

counters, and mechanically, using the integrators. The convergence proposition in Chapter 4 was

inspired by the graphical solutions produced by the DA.

5.1 Programming the IVP

It is important to mention that a differential analyzer is designed to model the derivative from

traditional calculus and not necessarily the delta derivative defined in Time Scale Calculus. For

this reason, Art is set up to run the equivalent differential equation x′ =
(
1− 1

2x
)
x and a process

is put into place to solve the logistic dynamic equation x4 =
(
1	 1

2x
)
x. Recall from Chapter 4,

when µ(t) = 0 (T = R), we have

x4 =

(
1	 1

2
x

)
x

equivalent to

x′ =

(
1− 1

2
x

)
x.

Also, recall what our equation looks like using the definition of circle minus:

x4 =

(
1− 1

2x

1 + 1
2µ(t)x

)
x.

So, when µ(t) 6= 0, the differential analyzer is modeling the dynamic equation using only the

numerator on the right-hand side of the equation.
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We will graph the solution on four different time scales beginning with [0, 1] ∪ [3, 5], the time

scale with the largest gap. Each time scale after that will have a gap reduced 0.5 units relative to

the previous time scale, with the last time scale being [0, 1] ∪ [1.5, 5]. To decide how to set up

Art’s avenue of interconnect to run our IVP, we drew a Bush Schematic Diagram (see Figure 5.1)

as mentioned in Chapter 2.
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Figure 5.1: Bush Schematic used to set up x′ =
(
1− 1

2x
)
x on the differential analyzer.

The motion of x, created by integrating x′, has to be sent to multiple locations; it has to turn

the horizontal disk and move the carriage of Integrator IV. When we tried using one integrator to

create the motion for both of these tasks, we were met with resistance as the machine groaned

and rods bent. As a result, we set up two integrators (II and III) to perform the same task of

integrating x′. This allowed us to send the output of Integrator II to turn the horizontal disk of

Integrator IV and send the output of Integrator III to move the carriage of Integrator IV.

Art will be set up to run

x′ =

(
1− 1

2
x

)
x, x(0) =

1

5
, x′(0) =

9

50
.
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We will use a process outlined in the next section to incorporate the circle minus operation into

the mechanics. Notice that now we have two initial conditions x(0) and x′(0). For a first order

dynamic equation, we only need one initial condition, perhaps x(t0). The DA requires x(t0) and

x′(t0) for a first-order differential equation because we need to set the initial value for the output

table as well as the initial value for x′ on an integrator. We obtain x′(0) = 9
50 by substituting

x(0) = 1
5 into our equation and evaluating x′(0).

These initial conditions are entered using counters on Art. One unit in the domain of the

solution of our DE is equivalent to a reading of 250 on a counter. We start with these initial

conditions and obtain all other necessary values along the way. The two integrators that will be

integrating x′ will have initial values set at 45 (on the counters) while the integrator that will be

integrating x will have its initial value set at 50 (on the counter).

Following the initial set up, we are ready to describe the process used to graphically solve our

IVP on Art.

5.2 The Process

The steps we use to solve our particular logistic dynamic equation on various time scales

incorporates the mechanics of Art and the theorry of Time Scale Calculus, particularly the

definition of circle minus. We use the following steps to solve the IVP

x4 =

(
1	 1

2
x

)
x, x(0) =

1

5
, x4(0) =

9

50

over each closed interval of a time scale and jump the gap:

1. Run to the first gap (t = t1) in the time scale T = [0, t1] ∪ [t2, t3] and stop the machine.

2. Record x(t1) and x′(t−1 ) placement on the disk using the counters.

3. Use x(t1) and x′(t−1 ) to calculate x4(t1) using

x4(t1) =
x′(t−1 )

1 + 1
2µ(t1)x(t1)

.

Record this value.
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4. Set the value of the x′ integrators using the counters to x4(t1), calculated in Step 3.

5. Disconnect the lead screws to x′ and lift the pen so we do not plot anything across the gap.

Note that we will use the simple useful formula, Theorem 1(iv), to find x(t2):

x(t2) = xσ(t1) = x(t1) + µ(t1)x4(t1).

6. Run to the end of the time gap (t = t2) and stop the machine.

7. Record x(t2) position using the counter and reset the values of x and x′ on the counters

back to x(t1) and x′(t−1 ), respectively.

8. Disconnect the output table (the pen is where we want it to be at the end of the gap, x(t2))

and reconnect the lead screws to the x′ integrators.

9. Run until the x counter reads the value of x(t2) and stop the machine. This gives us the

x4(t2) value that we use at the beginning of the second interval.

10. Reconnect the output table, drop the pen, and run until the machine shuts off.

This process ensures that we have the correct values for x(t2) and x4(t2) on the counters and

that the pen is located at the correct x(t2) position to begin graphing the solution on [t2, t3].

5.3 Graphical Solutions on Four Time Scales

The four time scales and their respective graphs, after the gap, in Figure 5.2 are as follows:

T1 = [0, 1] ∪ [3, 5] where [3, 5] is the domain for the graph that begins farthest right;

T2 = [0, 1] ∪ [2.5, 5] where [2.5, 5] is the domain for the graph that begins second from the right;

T3 = [0, 1] ∪ [2, 5] where [2, 5] is the graph that begins second from the left; and

T4 = [0, 1] ∪ [1.5, 5] where [1.5, 5] is the graph that begins farthest left.

Note that all of the time scales contain the closed interval [0, 1], so each of the solutions also

contain the graph the appears before the gaps.
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Figure 5.2: Plot of x4 =
(
1	 1

2x
)
x on four time scales. Illustration of the convergence of the

graph as the gap closes.

For each run, we had to record the counters on steps 2, 3, and 7. Table 5.1 is a chart of the

recordings for the four runs. Notice that the readings for x(t1) and x′(t−1 ) are the same in all four

runs. This is because each of our four time scales begins with the same closed interval [0, 1]. Also,

notice the difference in the x′(t−1 ) and x4(t1) values. For the graphs to converge as the gap closes,

x4(t1) must converge to the value as x′(t−1 ). So, not only do the plots represent convergence, the

counters on Art do as well. Notice that as the gap shortens, the values of x4(t1) approach the

value of x′(t−1 ).

µ(t1) x(t1) x′(t−1 ) x4(t1) x(t2)

2 122 93 62.5 257
1.5 122 93 68 233
1 122 93 75 200

0.5 122 93 83 167

Table 5.1: Readings from the counters on Art at different values in the time scale. Notice that as
the gap, µ(t), decreases, the x4(t1) value is approaching the x′(t−1 ) value and the x(t2) value is
approaching the x(t1) value.

Therefore, the graphical solutions of x4 =
(
1	 1

2x
)
x with initial condition x(0) = 1

5 show that

as the gap closes for consecutive time scales, the graph of the solutions converge to the solution

on the limiting interval case, when T = [0, t2]. This is the same result we saw with the analytical

solutions. Art’s ability to produce graphical solutions of our IVP on a number of time scales adds

a visual aspect to our analytical solutions. Most importantly, we are able to see the difference in
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the values of a logistic dynamic equation’s solution for a closed interval versus the value at a point

after the gap. Thus, as the gap in the domain closes for the logistic dynamic equation

x4 =

(
1	 1

2
x

)
x, x(t0) = x0,

the solution converges to

x(t) =
2x0e

t

et0(2− x0) + x0et
,

which is the solution of this equation with T = R on the limiting interval.
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