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ABSTRACT

An important problem in algebraic combinatorics is finding expansions of products of symmetric

functions as sums of symmetric functions. Schur functions form a well-known basis for the ring

of symmetric functions. The Littlewood-Richardson rule was introduced to expand the product of

two Schur functions as a positive sum of Schur functions. Remmel and Whitney introduced an al-

gorithmic way to find the coefficients of Schur functions appearing in the expansion. Haglund et al.

introduced quasisymmetric Schur functions as a refinement of Schur functions. For quasisymmetric

Schur functions, the Littlewood-Richardson rule was introduced to expand the product of a Schur

and quasisymmetric Schur function as the positive sum of quasisymmetric Schur functions. We de-

termine an algorithm similar to the Remmel-Whitney rule to find the coefficients of quasisymmetric

Schur functions appearing in the expansion.

v



CHAPTER 1

INTRODUCTION

Symmetric functions are functions that are invariant under permutation of variables. The

collection of symmetric functions forms a ring. Schur functions are a basis for this ring [6]. There

are connections between Schur functions and the representation theory of Sn [6].

Quasisymmetric Schur functions were introduced by Haglund et al. [1] as a refinement of Schur

functions, and they form a basis for the ring of quasisymmetric functions. Quasisymmetric Schur

functions share many combinatorial properties of Schur functions [1, 2, 3].

The product of two or more Schur functions can be written as a positive sum of Schur

functions. Identifying which functions appear and their coefficients can be challenging and can be

done using the Littlewood-Richardson rule [4].

There is an algorithm that, when given two Schur functions, produces a rooted tree where each

of the leaves is a standard Young tableau. The shape of each such tableau is the index of a Schur

function appearing in the expansion of the product. This algorithm is called the

Remmel-Whitney rule [5]. There is a bijection that establishes the equivalence of the

Littlewood-Richardson rule and the Remmel-Whitney rule [5].

Similar to the algorithm by Remmel and Whitney for the product of two Schur functions, we

found an algorithm for multiplying a Schur function by a quasisymmetric Schur function.

Section 2 covers definitions related to symmetric functions and Schur functions. Section 3

contains the Remmel-Whitney rule along with related definitions and theorems. In Section 4, we

define the quasisymmetric Schur function. Section 5 contains information on the

Littlewood-Richardson rule for quasisymmetric Schur functions, along with an algorithm for

multiplying a particular Schur function and a quasisymmetric Schur function.
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CHAPTER 2

BACKGROUND

This section covers the background information on Schur functions, including definitions and a

proof that Schur functions are symmetric. There are three traditional ways to define Schur

functions; as a determinant, as a quotient of alternants, or as a generating function for

semistandard Young tableaux [6]. We take the third approach in this paper.

Definition 1. An integer partition of n is a nonincreasing sequence of positive integers which

sum to n. Let λ = (λ1, λ2, . . . , λk) be a partition of n. Then λ1 ≥ λ2 ≥ · · · ≥ λk and
∑
λi = n.

Each λi is called a part of λ. The size of λ is n and is denoted |λ|. The Ferrers diagram of λ is a

collection of left-justified boxes where row i contains λi boxes and row 1 is the bottom row,

following the French convention. We denote the cell in the ith row and jth column by (i, j).

For example, one partition of 7 is λ = (5, 2) with the Ferrers diagram as seen in Figure 2.1.

Figure 2.1: The Ferrers diagram of (5, 2).

Definition 2. A semistandard Young tableau (SSYT) of shape λ is a filling of the Ferrers

diagram of a partition of n with positive integer entries such that each row is weakly increasing

from left to right and each column is strictly increasing from bottom to top. The set of all SSYT

of shape λ is represented by SSYT(λ).

One element of SSYT (5, 2) is shown in Figure 2.2.

2 3

1 1 1 2 3

Figure 2.2: An element of SSYT (5, 2).

2



Definition 3. A standard Young tableau (SYT) is a filling of the Ferrers diagram of a partition of

n with distinct entries 1, . . . , n each used exactly once such that each row is strictly increasing

from left to right and each column is strictly increasing from bottom to top.

One element of SYT (5, 3, 2) is shown in Figure 2.3.

4 9

3 6 10

1 2 5 7 8

Figure 2.3: An element of SYT (5, 3, 2).

Definition 4. Let λ = (λ1, λ2, . . . , λk) and µ = (µ1, µ2, . . . , µm) be partitions with µi ≤ λi for all

i. A skew partition (λ/µ) is obtained by taking the diagram of λ and deleting the cells of shape µ

from left to right. The result is called the skew diagram of λ/µ. The size of λ/µ is denoted by

|λ/µ| = |λ| − |µ|.

The diagram for (4, 3, 2)/(2, 1) is shown in Figure 2.4.

λ/µ =

Figure 2.4: The diagram for (4, 3, 2)/(2, 1).

Definition 5. A skew tableau of shape λ/µ is obtained by inserting positive integer entries into

each cell. The tableau is semistandard if the filling is weakly increasing from left to right and

strictly increasing up columns. The tableau is standard if each row is strictly increasing from left

to right and each column is strictly increasing from bottom to top and the entries 1, . . . , |λ/µ| are

each used exactly once.

A skew standard tableau of shape (4, 3, 2)/(2, 1) is shown in Figure 2.5.

Definition 6. The content monomial, also known as the weight, of a tableau T of shape λ is the

monomial xT =
n∏
i=1

xvii , where vi is the number of times the label i appears in T .

3



5 6

3 4

1 2

Figure 2.5: A standard skew tableau for (4, 3, 2)/(2, 1).

The content monomial for the tableau in Figure 2.2 is x31x
2
2x

2
3.

Definition 7. Let λ be a partition. The Schur function Sλ is

Sλ(x1, x2, x3, . . .) =
∑

T∈SSYT(λ)

xT ,

the sum of all content monomials for all T ∈ SSYT(λ).

Most often we consider a finite collection of variables x1, . . . , xn. In Figure 2.6 we see the eight

tableau in SSYT(2, 1) filled with 1’s, 2’s, and 3’s and the sum of the content monomials of each

tableaux in SSYT(2, 1) resulting in S(2,1)(x1, x2, x3).

3

1 2

2

1 2

2

1 1

3

1 1

x1x2x3 x1x
2
2 x21x2 x21x3

2

1 3

3

2 2

3

2 3

3

1 3

x1x2x3 x22x3 x2x
2
3 x1x

2
3

S(2,1)(x1, x2, x3) = 2x1x2x3 + x1x
2
2 + x21x2 + x21x3 + x22x3 + x2x

2
3 + x1x

2
3

Figure 2.6: The Schur function S(2,1)(x1, x2, x3).

Definition 8. A symmetric function is a function f(x1, . . . , xn) such that for every permutation

σ ∈ Sn, σf(x1, . . . , xn) = f(x1, . . . , xn), where σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). This

Sn-action permutes the subscripts of the xi’s.

The function f1(x1, x2, x3) = x1x2 + x2x3 + x1x3 is symmetric. However, the function

f2(x1, x2, x3) = x21x2 + x2x3 + x1x
3
3 is not symmetric since (1, 2)f2 = x22x1 + x1x3 + x2x

3
3 6= f2.

4



Lemma 1. Let λ be a partition. Then Sλ is a symmetric function.

Proof. Let λ be a partition and σ ∈ Sn. We need to show σSλ = Sλ. Since every permutation σ

can be written as a product of adjacent transpositions (i i+ 1), we need to only prove

(i i+ 1)Sλ = Sλ. We do this by showing for some F ∈ SSYT(λ) containing j entries of i and k

entries of i+ 1 there exists some F ′ ∈ SSYT(λ) with k entries of i and j entries of i+ 1.

Suppose F ∈ SSYT(λ) contains the entry i appearing j times and the entry i+ 1 appearing k

times. We now produce F ′ by swapping labels i and i+ 1 in a particular way. If i and i+ 1 are in

the same column, they are fixed in order to preserve the column increasing condition for a

semistandard tableau. We call all other entries of i or i+ 1 free. Observe that the free i’s are all

to the right of the fixed i’s in that row, an the free i+ 1’s are all to the left of the fixed i+ 1’s. So

all free i’s and i+ 1’s are consecutive in each row. In each row, we replace the m free entries of i

and l free entries of i+ 1 with l entries of i and m entries of i+ 1. In that row, m entries of i’s

and l entries of i+ 1’s need to be replaced in increasing order. Observe that this is an involution,

meaning (i i+ 1)[(i i+ 1)](F ) = F , so this produces a bijection between tableaux with content

monomials containing the terms xaii x
ai+1

i+1 and x
ai+1

i xaii+1. The resulting tableau is F ′ ∈ SSYT(λ).

Therefore, (i i+ 1)Sλ = Sλ. So, Sλ is a symmetric function.

Figure 2.7 shows the bijection used to show Schur functions are symmetric. Entries 4 and 5 are

fixed if they appear in the same column and all other 4’s and 5’s are free. Row by row replace i

free 4’s and j free 5’s with j free 4’s and i free 5’s.

5

4 4

3 3 5 5

2 2 3 4 5

1 1 1 1 2 5 5

−→ 5

4 5

3 3 4 5

2 2 3 4 4

1 1 1 1 2 4 4

Figure 2.7: An example of bijection given in Lemma 1 where (i i+ 1) = (4, 5).
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CHAPTER 3

THE REMMEL-WHITNEY RULE

The object of this section is to multiply two Schur functions together and identify what

coefficients appear in the Schur function expansion of their product. The Remmel-Whitney Rule

[5] provides an algorithmic way to find the coefficients of each Schur function appearing in Sλ · Sµ.

The same result can be obtained by using the Littlewood-Richardson rule [4].

To state the algorithm, we first need some background definitions. We then state the

Remmel-Whitney algorithm, the Littlewood-Richardson rule, and show the bijection establishing

their equivalence.

Definition 9. Given a skew partition λ/µ, the reading word of a tableau in SSYT(λ/µ) is

obtained by reading the entries from right to left by starting with the bottom row.

The reading word for the skew shape (4, 3, 2)/(2, 1) in Figure 2.5 is 214365.

Definition 10. Given a partition λ of n, the reverse lexicographic filling of λ, denoted R(λ), is

the unique filling of λ with reading word 123 · · ·n.

Definition 11. The operation λ ∗ µ is defined as the skew diagram of

(λ1 + µ1, λ2 + µ1, . . . , λk + µ1, µ1, . . . , µm)/(µ1)
k where (µ1)

k contains k parts of size µ1.

The skew diagram of skew shape (3, 2) ∗ (2, 2, 1) and R(λ ∗ µ) for λ = (3, 2) and µ = (2, 2, 1) can

be seen in Figure 3.1.

λ ∗ µ = R(λ ∗ µ) = 10

9 8

7 6

5 4

3 2 1

Figure 3.1: The skew diagram of (3, 2) ∗ (2, 2, 1) and R((3,2) * (2,2,1)).

Definition 12 (Remmel, Whitney [5]). The set O(λ ∗ µ) is the set of tableaux T satisfying:

6



1. If x and x+ 1 occur in the same row of the reverse lexicographic filling of λ ∗ µ, then x+ 1

must occur weakly below and strictly to the right of the cell containing x in T .

2. In the reverse lexicographic filling of λ ∗µ, if y occurs in the same column and in a row above

the cell with the entry x, then y must be strictly above and weakly to the left of x in T .

We denote by Oν(λ ∗ µ) the tableaux in O(λ ∗ µ) of shape ν.

By looking at the reverse lexicographic filling of (3, 2) ∗ (2, 2, 1), we verify that the tableaux in

Figure 3.1 are in O((3, 2) ∗ (2, 2, 1)). The two tableaux have distinct shapes.

10

8

6

4 5 9

1 2 3 7

10

8 9

6 7

4 5

1 2 3

Figure 3.2: Two tableaux in O((3, 2) ∗ (2, 2, 1)).

We now detail the algorithm used to generate the elements of O(λ ∗ µ).

Algorithm 2 (Remmel-Whitney rule [5]). To generate the rooted tree whose leaves are elements

of O(λ ∗ µ):

1. Start by using the reverse lexicographic filling of the skew-diagram of λ ∗ µ. For |λ| = n and

|µ| = m, the reverse lexicographic filling of λ ∗ µ will contain entries 1, . . . , |λ|+ |µ| = n+m.

2. Place 1 in a cell. This is the root of the tree.

3. For i = 2, . . . , n+m, do the following at each vertex v in level i− 1: Place i in all possible

ways following the restrictions given in Definition 12. Each distinct placement creates a

filling that becomes a new vertex in the tree, with an edge connected to v.

4. Once all entries 1, . . . , n+m have been placed, the leaves are the fillings in O(λ ∗ µ). To

obtain the summands occuring in the product Sλ · Sµ, we need to replace each leaf of the tree

with the Schur function of the same shape. So, Sλ · Sµ is the sum of the tableaux

7



T ∈ O(λ ∗ µ), given as

Sλ · Sµ =
∑

T∈O(λ∗µ)

Ssh(T ),

where sh(T ) is the shape of T .

Consider the reverse lexicographic filling of λ ∗ µ = (2, 1) ∗ (1) as seen in Figure 3.3. By starting

with the entry 1, we need to look for all positions where the entry 2 can be placed. We need to

apply the first rule in the Definition 12 since 1 and 2 appear in the same row. So, 2 must be

placed weakly below and strictly to the right of 1. There is only one placement for the 2, which is

directly to the right of 1 as seen in Figure 3.3.

Now we need to find all possible positions for the 3. Since the 3 is in the same column and

strictly above the 2, then by the second condition in Definition 12, the entry 3 must be placed

strictly above the 2 and weakly to the left. In order to satisfy the conditions for standard Young

tableaux, the 3 can only be placed above the 1 as seen in Figure 3.3.

Lastly, we need to find all possible positions for the entry 4. Since neither condition in

Definition 12 apply to the position of 4 in the lexicographic filling, then the 4 can be placed in all

positions satisfying the conditions for standard Young tableaux. We then replace each leaf of the

tree with the Schur function of the same shape as seen in Figure 3.3. For a larger example of

Algorithm 2, see Figure 3.6.

Theorem 3. Let λ = (λ1, . . . , λk) be a partition of n. Applying the Remmel-Whitney rule to R(λ)

yields the standard Young tableaux of shape λ, T (λ), with the entries 1, . . . , λ, in row 1,

λ1 + 1, . . . , λ1 + λ2 in row 2, and λ1 + · · ·+ λi−1 + 1, . . . , λ1 + · · ·+ λi in row i.

Proof. Assume λ = (λ1, . . . , λk) is a partition of n. In the Remmel-Whitney rule, we first place 1

in a cell as the root of the tree. Let Ti(λ) be the result of placing entries 1, . . . , i using the

Remmel-Whitney rule and assume Ti(λ) has entries 1, . . . , λ1 in row 1 and λ1 + 1, . . . , i in row 2.

Now we use the Remmel-Whitney rule to show Ti+1(λ) satisfies the desired condition.

If i+ 1, in some row j, is in the same row of R(λ) as i and i+ 1 is directly above some y, then

i+ 1 must be placed strictly right and weakly below i in Ti(λ) and strictly above and weakly left

of y in Ti(λ) by Definition 12. So, i+ 1 must be placed in the same row as i. Since λj ≤ λj−1,

8



4

3

2 1

1

1 2

3

1 2

4

3

1 2

3

1 2 4

3 4

1 2

Figure 3.3: The tree and Schur function expansion for S(1) · S(2,1).

S(1)S(2,1) = S(2,2) + S(2,1,1) + S(3,1)

then the placement of i+ 1 is weakly left of y.

Now we need to consider if i and i+ 1 are not in the same row in R(λ). Then i+ 1 is above

some entry y in R(λ). By Definition 12, i+ 1 must appear weakly left and strictly above y. So

i+ 1 must start a new row.

Therefore, applying the Remmel-Whitney rule to R(λ) yields the standard Young tableaux of

shape λ, T (λ), with the entries 1, . . . , λ in row 1, λ1 + 1, . . . , λ1 + λ2 in row 2, and

λ1 + · · ·+ λj−1 + 1, . . . , λ1 + · · ·+ λk in row k.

9



We now state the Littlewood-Richardson rule following the permutation in [6], and then

conclude by showing that the Remmel-Whitney rule and the Littlewood-Richardson rule are

equivalent.

Definition 13. A lattice word, u = u1, . . . , un, is a sequence of integers such that for each j,

1 ≤ j ≤ n and every i ≥ 1 in the sequence, the number of times i+ 1 appears in u = u1, . . . , uj is

less than or equal to the number of i’s that appear in u = u1, . . . , uj . A lattice word always starts

with 1.

For example, 1211223113 is a lattice word and 122133321 is not a lattice word, because the

number of 3’s in the first seven characters is larger than the number of 2’s.

Definition 14. A Littlewood-Richardson tableau of shape ν/λ and content µ is a semistandard

Young tableau T of shape ν/λ with content monomial xT = xµ11 x
µ2
2 · · ·x

µk
k and the reading word

of T is a lattice word.

We denote by LRµ(ν/λ) the set of Littlewood-Richardson tableaux of shape ν/λ with content

monomial xµ1xµ2 · · ·xµk where µ = (µ1, µ2, . . . , µk).

Theorem 4 (Littlewood-Richardson [4]). The Littlewood-Richardson rule for Sλ ·Sµ is defined as:

Sλ · Sµ =
∑
ν

|ν|=|λ|+|µ|

gνλ,µSν

such that gνλ,µ is the number of tableaux T ∈ LRµ(ν/λ) of shape ν/λ where the reading word of T

is a lattice word and xT = xµ11 · · ·x
µn
n .

A full proof of Theorem 4 took over 40 years [6].

F1 = 2 3

1 2

1 1

F2 = 1 3

2 2

1 1

Figure 3.4: Littlewood-Richardson tableaux of shape (4, 3, 2)/(2, 1) and content (3, 2, 1).

For example, given ν = (4, 3, 2), λ = (2, 1), and µ = (3, 2, 1), we need to fill the the tableaux of

shape ν/λ such that the reading word is a lattice word and the requirements of a semistandard

10



tableau are met. The two tableaux that meet these requirements are seen in the

Littlewood-Richardson tableaux in Figure 3.4 and have reading words 112132 and 112231.

Therefore, the coefficient gνλ,µ is 2.

We now show the equivalence of these two rules.

Theorem 5 (Remmel, Whitney[5]). Let µ = (µ1, . . . , µm), ν = (ν1, . . . , νn), and λ = (λ1, . . . , λp)

such that |ν| = |λ|+ |µ|. Then, gνλ,µ is the number of Q ∈ Oν(λ ∗ µ).

Proof. We need to show that there is a bijection φ : Oν(λ ∗ µ)→ LRµ(ν/λ). Start with a tableau

Q ∈ Oν(λ ∗ µ). Delete T (λ) from Q. For each cell remaining, if the entry x appears in row i of µ

in the reverse lexicographic filling of λ ∗ µ, replace x with i. Since the rows in the diagram of µ

are weakly decreasing from bottom to top, then the number of i’s is greater than or equal to the

number of i+ 1’s. The tableau is in the form of LRµ(ν/λ) where u(φ(Q)) is a lattice word and

xφ(Q) = xµ11 · · ·x
µn
n .

We need to show that there is a bijection ψ such that ψ : LRµ(ν/λ)→ Oν(λ ∗ µ). Start with

F ∈ LRµ(ν/λ), where u(F ) is a lattice word and xF = xµ11 · · ·x
µn
n . For each entry in F , replace all

entries i in F in reverse reading order by the entries in row i of µ in R(λ ∗ µ) from smallest to

largest. This ensures the resulting tableau satisfies the conditions from Definition 12. Finally,

insert T (λ) into the skewed cells to obtain ψ(F ). Then ψ(F ) ∈ Oν(λ ∗ µ). Observe that

(φ ◦ ψ)(F ) = F , (ψ ◦ φ)(Q) = Q, and thus φ is a bijection with inverse ψ.

For example, suppose ν = (4, 3, 2), µ = (3, 2, 1), and λ = (2, 1). We want to use the bijection in

order to obtain tableaux in O(4,3,2)((2, 1) ∗ (3, 2, 1)). Figure 3.4 shows the two possible

Littlewood-Richardson tableaux of shape (4, 3, 2)/(2, 1) with content (3, 2, 1). For each entry in

F1 and F2, replace all entries i in F1 and F2 in reverse reading order by the entries in row i of

(3, 2, 1) in R((2, 1) ∗ (3, 2, 1)) from smallest to largest. Finally, insert T ((2, 1)) into the skewed

cells to obtain ψ(F1) and ψ(F2) as seen in Figure 3.5.

Now start with the tableaux in Figure 3.5, we need to delete T ((2, 1)) from Q1 and Q2. For

each cell remaining, if the entry x appears in row i of (3, 2, 1) in the reverse lexicographic filling of

(2, 1) ∗ (3, 2, 1), replace x with i. Since the rows in the diagram of (3, 2, 1) are weakly decreasing

11



from bottom to top, then the number of i’s is greater than or equal to the number of i+ 1’s. The

tableaux is in the form of LR(3,2,1)((4, 3, 2)/(2, 1)) where u(φ(Q1)) and u(φ(Q2)) are lattice words

and xφ(Q1) = xφ(Q2) = x31x
2
2x3 as seen in Figure 3.4.

9

8 7

6 5 4

3

2 1

Q1 = 7 9

3 4 8

1 2 5 6

Q2 = 4 9

3 7 8

1 2 5 6

Figure 3.5: The reverse lexicographic filling of (2, 1)∗(3, 2, 1) and elements ofO(4,3,2)((2, 1)∗(3, 2, 1)).
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CHAPTER 4

QUASISYMMETRIC SCHUR FUNCTIONS

Quasisymmetric Schur functions were defined by Haglund et al. [1] as a refinement of Schur

functions, meaning each Schur function can be written as a positive sum of quasisymmetric Schur

functions. Quasisymmetric Schur functions retain many of the properties of Schur functions, such

as Robinson-Schensted-Knuth and Littlewood-Richardson rules [2, 3].

In order to define quasisymmetric Schur functions, we first need to define compositions and

quasisymmetric functions. We then define the objects that generate quasisymmetric Schur

functions and conclude by showing quasisymmetric Schur functions refine the Schur functions.

Definition 15. A composition α of n, denoted α |= n, is a sequence of positive integers whose

sum is n. A weak composition α of n is a sequence of nonnegative integers whose sum is n and

parts of size 0 are allowed.

Definition 16. Given a (possibly weak) composition α = (α1, . . . , αk), the diagram of α is the

collection of left-justified boxes with αi cells in row i, where row 1 is the bottom row.

A composition of 10 is (3, 2, 2, 3) and a weak composition of 11 is (4, 1, 0, 2, 4) with diagrams

seen in Figure 4.1.

(3, 2, 2, 3) (4, 1, 0, 2, 4)

Figure 4.1: The diagram of the composition (3, 2, 2, 3) and the weak composition (4, 1, 0, 2, 4).

Definition 17. The partition underlying a composition α is the partition obtained by placing

each part of α in weakly decreasing order to obtain the partition denoted λ(α).

14



The diagram of the partition underlying the composition α = (3, 1, 2, 1, 3), which is

λ(α) = (3, 3, 2, 1, 1), can be seen in Figure 4.2.

α = (3, 1, 2, 1, 3) λ(3, 1, 2, 1, 3) = (3, 3, 2, 1, 1)

Figure 4.2: The partition underlying the composition (3, 1, 2, 1, 3).

Definition 18. A function f(x1, . . . , xn) is a quasisymmetric function if and only if for all

compositions α = (α1, . . . , αs) and 1 ≤ i1 < i2 < · · · < is ≤ N where s ≤ N , the coefficient of
s∏
j=1

x
αj

ij
is the same as the coefficient of

s∏
j=1

x
αj

j .

A quasisymmetric function in three variables is f1(x1, x2, x3) = x21x2 + x21x3 + x22x3. The

function f1(x1, x2, x3) is not symmetric since (1, 2)f1 = x22x1 + x12
2x3 + x21x3 6= f1. Not all

quasisymmetric functions are symmetric, but all symmetric functions are quasisymmetric. The

function f2(x1, x2, x3) = x21x2 + x21x3 + x22x3 + x1x
2
2 + x1x

2
3 + x2x

2
3 is both symmetric and

quasisymmetric.

We are now in a position to define the objects that generate the quasisymmetric Schur

functions.

Definition 19 (Haglund et al. [1]). A semistandard Young composition tableau T is a filling of

α = (α1, . . . , αl) where the entries in the cells must follow three conditions. Let

m = max{α1, . . . , αl}. Create a rectangular filling, T̂ , from T by setting T̂ (i, k) = T (i, k) when

(i, k) ∈ α and T̂ (i, k) =∞ when (i, k) /∈ α and i ≤ l, k ≤ m.

1. The entries in each row of T̂ must be weakly increasing from left to right.

2. The entries in the first column T̂ must be strictly increasing from bottom to top.

3. The following triple condition must be met. For j < i, k < m, and

15



a = T̂ (j, k + 1), b = T̂ (i, k + 1), and c = T̂ (i, k), if a 6=∞ and a ≥ c then a > b. See

Figure 4.3 for the triple configuration.

c b

a

Figure 4.3: Triples in a semistandard Young composition tableau.

We denote the set of semistandard Young composition tableaux of a given shape α as

SSYCT(α).

An example of an element of SSYCT(1, 2, 1) can be seen in Figure 4.4.

T = 3

2 2

1

T̂ = 3 ∞
2 2

1 ∞

Figure 4.4: One element of SSYCT(1, 2, 1).

Lemma 6 (Haglund et al. [1]). Given T ∈ SSYCT(α), the entries in a column of T are all

distinct.

Proof. Since column 1 of T is strictly increasing by definition, then the entries of column 1 of T

are all distinct.

Now we need to show all other entries in a column of T are distinct. Suppose there are two cells

in column k with entries a = b, a appearing below b. Consider a triple of cells consisting of the

entries a, b and c where c is to the left of b as in Figure 4.3. By Definition 19, since rows are

weakly increasing, if a < c, then a < b, but a = b, so we must have a ≥ c. Since a ≥ c and a = b,

then a, b, c do not satisfy the triple rule. Therefore, all entries in a column of T are distinct.

The definition of a quasisymmetric Schur function is similar to the definition of a Schur

function. The quasisymmetric Schur functions are generated by the weights of the semistandard

16



Young composition tableaux of a given shape. We formally define quasisymmetric Schur functions

and show how Schur functions can be decomposed into quasisymmetric Schur functions.

Definition 20 (Haglund et al. [1]). Let α be a composition. The quasisymmetric Schur function

indexed by α is

QSα =
∑

T∈SSYCT(α)

xT .

Consider when α = (1, 2, 1) and n = 4. Figure 4.5 shows the five tableaux in SSYCT(1, 2, 1)

filled with 1’s, 2’s, 3’s, and 4’s and the sum of the content monomials of each tableau in

SSYCT(1, 2, 1), which is QS(1,2,1)(x1, x2, x3, x4).

4

2 3

1

3

2 2

1

4

2 2

1

4

3 3

1

4

3 3

2

x1x2x3x4 x1x
2
2x3 x1x

2
2x4 x1x

2
3x4 x2x

2
3x4

QS(1,2,1)(x1, x2, x3, x4) = x1x2x3x4 + x1x
2
2x3 + x1x

2
2x4 + x1x

2
3x4 + x2x

2
3x4

Figure 4.5: The SSYCT of shape (1, 2, 1) generating QS(1,2,1)(x1, x2, x3, x4).

Theorem 7 (Haglund et al. [1]). Let λ be a partition. Then,

Sλ =
∑

λ(α)=λ

QSα.

Proof. We need to show that there is a bijection ρ from SSYT(λ) to
⋃
α:λ(α)=λ SSYCT(α). We

need to first show that for every T ∈ SSYT(λ), there is a rearrangement of λ that results in a

composition ρ(T ) ∈ SSYCT(α) for some α with λ(α) = λ. We will start by taking the first

column of T ∈ SSYT(λ) and keep it the same in ρ(T ). To place the entries of the second column

of T into the second column of ρ(T ), we will scan down the first column of ρ(T ) and place each

entry of the second column of T in the highest row possible so that each row of ρ(T ) is weakly

increasing, starting with the smallest entry of the second column first. Continue likewise for

remaining columns.
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Now we need to show that the triple conditions are satisfied by ρ(T ). Consider the triple of

cells in Figure 4.3. We need to show if a ≥ c, then a > b. Assume a ≥ c and a < b. Since the

entries in each column of T must be strictly increasing, we know a 6= b. Since a < b, a must be

inserted into ρ(T ) before b. Since a was not inserted next to c, then a < c. This is a

contradiction, so the triple rules are satisfied. For an example of ρ, see Figure 4.6.

Let F ∈
⋃
α:λ(α)=λ SSYCT(α). Define γ(F ) in the following way. Place the entries from column

k in F in column k of γ(F ) so that columns increase from bottom to top. Since the entries in

each column of F were distinct, the columns of γ(F ) are strictly increasing. Since the rows of F

are weakly increasing, then the rows in the new tableau are also weakly increasing. Observe that

γ(ρ(T )) = T for all T ∈ SSYT(λ). Therefore, γ(F ) ∈ SSYT(λ).

We need to show ρ is injective. Suppose ρ(T ) = ρ(S). The entries in each column of ρ(T ) and

ρ(S) are the same. Thus, in T and S, the column entries are the same. Therefore, T = S.

5

4 4

2 3 4 4

1 1 2 2

−→ 5

4 4 4 4

2 3

1 1 2 2

T ρ(T )

Figure 4.6: An example of ρ(T ), where T ∈ SSYT(4, 4, 2, 1).

In Figure 4.7 we see that S(2,1)(x1, x2, x3) written as the sum of QS(1,2)(x1, x2, x3) and

QS(2,1)(x1, x2, x3) by using the bijection ρ from the proof of Theorem 7. The eight composition

tableaux correspond to the eight SSYT in Figure 2.6.
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3

1 2

3

2 2

2

1 1

3

1 1

x1x2x3 x22x3 x21x2 x21x3

QS(2,1)(x1, x2, x3) = x1x2x3 + x21x2 + x21x3 + x22x3

2 3

1

2 2

1

3 3

2

3 3

1

x1x2x3 x1x
2
2 x2x

2
3 x1x

2
3

QS(1,2)(x1, x2, x3) = x1x2x3 + x1x
2
2 + x2x

2
3 + x1x

2
3

Figure 4.7: An example of the quasisymmetric functions QS(2,1)(x1, x2, x3) and QS(1,2)(x1, x2, x3).
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CHAPTER 5

THE LITTLEWOOD-RICHARDSON RULE FOR QSα · Sλ

The object of this section is to develop an algorithm similar to the Remmel-Whitney rule for the

product of a Schur function and a quasisymmetric Schur function. We show that the result of our

algorithm is the same as that obtained by using the Littlewood-Richardson rule for

quasisymmetric Schur functions.

Definition 21. Given compositions β = (β1, . . . , βl) and α = (α1, . . . , αk) with k ≤ l and αi ≤ βi

for all i, define the skew composition β//α as the result of removing the diagram of α from the

diagram of β.

For β = (4, 2, 3, 2, 4) and α = (2, 1, 2), Figure 5.1 shows the diagram of the skew composition

(4, 2, 3, 2, 4)//(2, 1, 2).

Figure 5.1: The skew diagram (4, 2, 3, 2, 4)//(2, 1, 2).

Definition 22. Given compositions β = (β1, . . . , βl) and α = (α1, . . . , αk) with k ≤ l and αi ≤ βi

for all i, define β/α as a skew composition β//γ where γ is any weak composition with γi ≤ βi for

all i and γ+ = α, where γ+ is γ with all 0 parts removed. There may be several distinct β/α for a

given β and α depending on which weak composition is chosen.

For β = (4, 2, 3, 2, 4) and α = (2, 1, 2), two diagrams of a skew composition (4, 2, 3, 2, 4)/(2, 1, 2)

are shown in Figure 5.2.

Definition 23. Given a filling T of a composition β, we define two configurations of cells known

as Type A and Type B triples. A Type A triple is the triple of cells T (j, k) = c, T (j, k + 1) = b,

20



Figure 5.2: Two skew diagrams of (4, 2, 3, 2, 4)/(2, 1, 2).

and T (i, k + 1) = a, where i < j, βi ≤ βj , and k < βi. A Type B triple is the triple of cells

T (j, k) = a, T (i, k) = c, and T (i, k + 1) = b, where i < j, βi > βj , and k ≤ βj .

c b

a

a

c b

Type A Type B

Figure 5.3: The Type A and Type B triples outlined in Definition 23.

Definition 24 (Haglund et al. [3]). Let α, β be compositions such that αi ≤ βi for all i. A

Littlewood-Richardson skew tableau S of shape β/α is a filling of a diagram of β/α with additional

column, called column 0, preceding the first column that is filled with 0’s, where the following

conditions are satisfied:

1. The cells in α are filled with 0’s. If there are multiple 0’s in the same column, we think of

the 0’s as strictly increasing from top to bottom.

2. Each row must be weakly increasing from left to right.

3. All Type A and Type B triples are inversion triples, meaning a > b or a < c.

4. The column reading word (obtained by reading down each column starting with the

right-most column, omitting all 0’s), must be a lattice word.

We denote by LRC(β/α, λ) the set of Littlewood-Richardson composition tableaux of shape

β/α with content monomial xλ1xλ2 · · ·xλk where λ = (λ1, λ2, . . . , λk).
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Consider when α = (2, 1), β = (3, 2, 3), and λ = (3, 2). The only Littlewood-Richardson

composition tableau of shape (3, 2, 3)/(2, 1) with content (3, 2) can be seen in Figure 5.4.

∗ ∗ 1

∗ 1

1 2 2

Figure 5.4: The LRC tableau of shape (3, 2, 3)/(2, 1) with content (3, 2).

Theorem 8 (Haglund et al. [3]). Let α be a composition and λ be a partition. Then,

QSα(x1, ..., xn) · Sλ(x1, ..., xn) =
∑
β

CβαλQSβ(x1, ..., xn)

where Cβαλ is the number of Littlewood-Richardson composition tableaux (LRC) of shape β/α and

has the content monomial xλ1xλ2 · · ·xλk for λ = (λ1, λ2, . . . , λk).

To state the algorithm, we first need some background definitions. We then state the algorithm

for multiplying QSα · S(1), the Littlewood-Richardson rule for quasisymmetric Schur functions,

and show the bijection establishing their equivalence.

Definition 25. A reverse word composition tableau is a composition tableau where the entries

1, . . . , n are placed consecutively across rows from right to left, starting at the bottom row.

For example, Figure 5.5 shows the reverse word composition tableau for α = (3, 1, 3).

7 6 5

4

3 2 1

Figure 5.5: Reverse word composition tableau for (3,1,3).

Definition 26. Let α be a composition of n. Define f(α) as the tableau obtained from the

reverse word tableau T where every x ∈ T will be replaced with x∗ = n− x+ 1. If x < y, then

x∗ > y∗. Also, if ∞∗ = 0, then 0∗ =∞. Observe that x ∗ ∗ = x. We call f(α) the standard

composition filling of α.
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To multiply a Schur function of shape λ = (1) and a quasisymmetric Schur function, we need a

set of rules for inserting n into f(α).

Definition 27. Let T be the reverse standard composition tableau of α = (α1, α2, . . . , αk), where

α |= (n− 1). We insert n into f(α).

1. Let i = min{j : αj = 1}. Then, in f(α), n can be inserted in a new row between any two

rows αj , αj+1, with j < i. Also, n may always be placed in a new row α0 of length 1 below

α1.

2. Let max{αi} = m. In f(α), if for all j < i, αj 6= αi + 1, then n can be appended to αi.

Lemma 9. The above rules for inserting n into a standard composition tableau will result in a

valid composition tableau satisfying the Littlewood-Richardson triple condition.

Proof. We need to show all triples fully contained in f(α) satisfy the triple conditions. First

consider the Type A triples in f(α), labeled with a, b, and c as in Figure 5.3. In the reverse

lexicographic filling of α, a∗ < b∗. Thus, in f(α), a > b. Therefore, all Type A triples satisfy the

inversion triple condition in Definition 24.

Now consider the Type B triples in f(α), labeled with a, b, and c as in Figure 5.3. In the

reverse lexicographic filling, a∗ > c∗ or a = c =∞. Thus, in f(α), a < c or a = c = 0. Therefore,

all Type B triples satisfy the inversion triple condition in Definition 24.

Since f(α) satisfies the triple conditions, we need to show that the triple conditions are still

preserved after inserting n.

Suppose T is a filling obtained by inserting n into f(α) using the condition (1) in Definition 24.

Let i = min{j : αj = 1}. Suppose a Type A triple in f(α) involves n. Since αj ≤ αk for all

k ≥ j + 1, any Type A triple with n as an entry has a = n, so a > b, and the triple condition is

satisfied.

Insert n into its own new row, α′j , between rows αj and αj+1 for j < i. Type B triples occur

when αk > α′j with k ≤ j. This is true for all k ≤ j, thus a = n. So, a > b and the triple condition

is satisfied. Therefore, all triple conditions are satisfied in T for the after insertion by condition

(1).
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Suppose T is a filling obtained by inserting n into f(α) using the second condition. Append n

to the row αi. Any Type A triples involving αj ≤ αi for j < i has αj < αi + 1 and hence does not

involve n. Now we need to consider all triples that include the rows above the row where n was

inserted, αi. Type A triples occur when αk ≥ αi with k > i. For all triples of this type, a = n. So,

a > b and the triple condition is satisfied.

Now consider the Type B triples for k > i when αk < αi + 1. The only Type B triples occur

when αi = αk and are in the form:

c b

a n

Before insertion, there were Type A triples where a > b and this satisfies the Type B inversion

triple condition as well.

Consider the Type B triples for k < i and αk > αi + 1. So, a = n. So, a > b and the triple

condition is satisfied. Therefore, all triple conditions are satisfied in T for the second

condition.

To find QSα · S(1), a rooted tree will be constructed using an algorithm similar to Algorithm 2

where each leaf is a composition of size |α|+ 1.

Definition 28. Let QO(α ∗ (1)) be the set of all tableaux obtained by inserting n into f(α). Let

QOβ(α ∗ (1)) be the set of all tableaux obtained by inserting n into f(α) with shape β/α.

Algorithm 10. To find the expansion of QSα · S(1):

1. Start with the reverse word composition tableau T of shape α.

2. From T , find f(α), the reverse standard composition tableau of shape α. This is the root of

the tree.

3. Do the following to T : Place n in all possible ways following the restrictions given in

Definition 27. Each distinct placement creates a filling that becomes a new vertex in the

tree, with an edge connected to T .
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4. The leaves are the fillings in QO(α ∗ (1)) . To obtain the summands occuring in the product

QSα · S(1), we need to replace each leaf of the tree with the quasisymmetric Schur function of

the same shape. So, QSα · S(1) is

QSα · S(1) =
∑

F∈QO(α∗(1))

QSsh(F ),

where sh(F ) is the shape of F .

In Figure 5.7, contains an example of the product of a Schur function of shape λ = (1) and a

quasisymmetric Schur function of shape α = (3, 1, 3), also denoted as QS(3,1,3) · S(1), by using

Algorithm 10. We can also find the product of QS(3,1,3) · S(1) by using the Littlewood-Richardson

rule. Figure 5.6 shows the Littlewood-Richardson composition tableaux.

∗ ∗ ∗
∗ 1

∗ ∗ ∗

∗ ∗ ∗ 1

∗
∗ ∗ ∗

∗ ∗ ∗
∗
∗ ∗ ∗ 1

∗ ∗ ∗
∗
1

∗ ∗ ∗

∗ ∗ ∗
∗
∗ ∗ ∗
1

Figure 5.6: Littlewood-Richardson composition tableaux for α = (3, 1, 3) and λ = (1).

Similar to the bijection between the tableaux resulting from the Remmel-Whitney rule and the

Littlewood-Richardson tableaux for Schur functions, there is a bijection between the

Littlewood-Richardson composition tableaux and the tableaux in QO(α ∗ (1)).

Theorem 11. Given a composition α and partition λ = (1), |QOβ(α ∗ (1))| = Cβα(1), where Cβα(1)

is the number of Littlewood-Richardson composition tableaux of shape β/α with content (1).

Proof. We need to show that there is a bijection φ : QOβ(α ∗ (1))→ LRC(β/α, (1)). Start with a

tableau T ∈ QOβ(α ∗ (1)) of shape β/α. Now we need to delete the entries 1, . . . , n− 1 and

replace with 0’s considering 0’s in the same column to be strictly increasing from top to bottom.

Replace n with 1 since λ = (1). In order for the resulting tableau to be a Littlewood-Richardson

composition tableau φ(T ) ∈ LRC(β/α, (1)), we need to make sure all triple conditions are

satisfied. By Lemma 9, all triples involving n satisfy the triple conditions. Since we are replacing
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n with 1, then all triples involving 1 satisfy the triple conditions. All other triples contain only 0’s

and are considered to satisfy the triple conditions. Therefore, φ(T ) ∈ LRC(β/α, (1)).

Start with F ∈ LRC(β/α, (1)). Construct γ(F ) in the following manner. First replace the 1

with n. Then place the entries 1, . . . , n− 1 into the empty cells starting in the top row and from

left to right across the row in order to create f(α). For the resulting tableaux to be in the set

QOβ(α ∗ (1)), the triple conditions must be satisfied. Since all triples involving 1 in F satisfy the

triple conditions, then all triples involving n in γ(F ) will satisfy the triple conditions when 1 is

replaced with n. All other triples are in f(α) and satisfy the triple conditions. Therefore,

γ(F ) ∈ QOβ(α ∗ (1)). Observe that γ(φ(T )) = T for all T ∈ QOβ(α ∗ (1)).

Therefore, φ is a bijection. So the number of Littlewood-Richardson composition tableaux in

the set LRC(β/α, (1)), Cβα(1), is the same as the number of tableaux in QOβ(α ∗ (1)), where the

tableaux in QOβ(α ∗ (1)) have the same shape as tableaux in LRC(β/α, (1)).

In this paper, we found an algorithm for multiplying QSα · S(1) similar to the Remmel-Whitney

rule for multiplying Sλ · Sµ. We proved that there is a bijection between the tableaux produced

by the algorithm for multiplying QSα · S(1) and the Littlewood-Richardson compositon tableaux.

For further research, we want to find an algorithm for inserting larger partitions of λ and an

algorithm to obtain f(α) by insertion.
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