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membranes were washed with TBST to remove excess primary antibodies. Incubation for 45 

minutes with appropriate secondary antibodies followed. Immunodetection was performed using 

the enhanced chemiluminescence (ECL) system (Amersham, IL) according to the manufacturer’s 

instructions. Western blot analyses with antibodies against the targeted proteins were performed 

to validate successful viral transfection of the cells.  

  

Flow Cytometry Assay 

 DU145 and TRAMP-C2 cells were checked for different surface Ad receptors such as 

CAR (coxsackie adenovirus receptor) and integrins αVβ3/5. Each was compared against IgG 

control. 10µL of Boss primary conjugated antibody was added for 30 mins at  4ᴼC, aashed 

several times with 2mL 1X PBS and resuspended in 100µL of 1X PBS. Samples were analyzed 

on BD Accuri C6 Flow Cytometery. 

  Adenoviral transduced DU145 and TRAMP-C2 cells were trypsinized and collected. 

Cells were centrifuged at 5000 rpm, washed and suspended in 1% FCS-PBS. This step was 

repeated three times. Samples were prepared and run by a BD Accuri C6 Flow Cytometer (BD 

Bioscience, San Jose, CA). Single cells population was gated and an FL1 & FL4 area histogram 

was drawn and formatted to show only the events inside the single cell region. 

 

Annexin-V Assay 

 Apoptotic cells were analyzed with fluorescein isothiocyanate (FITC) conjugated to 

Annexin-V antibody and Propidium Iodide (PI) from the Annexin-V/FITC Kit (Bender 

MedSystems, Burlingame, CA) following manufacturer's instructions. Cells were trypsinized and 

washed with PBS. Cells were centrifuged and re-suspended in binding buffer. The samples were 
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analyzed with BD Accuri C6 Flow Cytometer (BD Bioscience, San Jose, CA). Annexin-V assay 

experiment was repeated three times and was run as triplicate of technical repeats. Statistical 

analysis was performed with GraphPad Prism 6 statistical software. 

 

UTMD for Prostate Cancer Cells. 

 Human DU145 and murine TRAMP-C2 prostate cancer cells were grown in both Fetal 

Bovine Serum (FBS) rich media and Heat-inactivated FBS media. Targeson (Targeson, Inc. San 

Diego, CA) custom synthesis US contrast agent (perfluorocarbon microbubbles, encapsulated by 

a lipid monolayer and polyethylene glycol stabilizer) were prepared following manufacturer’s 

instructions [53]. Cells were infected with Ad.GFP with 10MOI or with Ad.GFP complexed with 

microbubbles (Targeson) at 10MOI. US exposure was achieved with a Micro-Maxx SonoSite 

(SonoSite, Bothell, WA) US machine equipped with the transducer L25 set at 0.7 Mechanical 

Index (MI), 1.8 MPa for 1 min [53].   

 

Statistical Analysis 

 Statistical analysis was performed using the GraphPad Prism 6 statistical software. 

Comparison of cell death by Annexin-V on adenoviral transduced groups was conducted using 

an ANOVA test with post hoc test Tukey’s multiple comparison test. P-values of less than 0.05 

were considered statistically significant.  
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RESULTS 

Cytological Observations after Adenoviral Gene Transfer 

 The murine TRAMP-C2 and human DU145 prostate cancer cells were transduced with 

an Ad carrying the green fluorescence protein (GFP) (Ad.GFP) (Fig.15) with increasing doses of 

10, 25 and 50 MOI (multiplicity of infection). TRAMP-C2 cells and DU145 cells infected with 

various doses of Ad.GFP showed a dose dependent increase of fluorescence. However, DU145 

cells showed a higher transduction of GFP in comparison to TRAMP-C2 cells at each 

multiplicity of infection.  

 

 

Figure 15. Fluorescence microscopy images of Ad.GFP (10, 25, 50 MOI) transduced TRAMP-

C2 and DU145 cells. We effectively infected TRAMP-C2 cells with Ad.GFP and observed a 

dose-dependent expression of GFP, which was correlated to the increasing amount of Adenoviral 

MOI used.   
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Quantification of the Ad.GFP Viral Uptake 

 Ad.GFP uptake was determined for murine TRAMP-C2 and human DU145 prostate 

cancer cells by using FACS analysis after infecting the cells with 10, 25 and 50 MOI. A 

discrepancy is observed for TRAMP-C2 cells when infected with 10MOI, showing only a 90% 

uptake of Ad.GFP. A dose dependent increase in uptake of Ad.GFP is observed in TRAMP-C2 

cells as the MOI is increased. DU145 cells on the contrary showed a 100% uptake regardless of 

MOI (Fig. 16).    

 

Figure 16. In vitro assessment of Ad.GFP uptake in murine and human carcinoma cell lines. 

Cells were infected at 10, 25 and 50 particles/cells (ppc) of Ad.GFP and harvested at 24 hours 

post-infection to determine the infectivity by FACS analysis.   

 

Quantification of Ad Receptors Present on the Surface of the Cells 

 Surface Ad receptors were determined by Accuri C6 flow cytometry for the percentage of 

expression of Coxsackie Adenovirus Receptor (CAR), integrin αVβ5 and αVβ3 that are known 

to be responsible for the attachment of Ad5 to mammalian cells (Table 2). Both human DU145 

and murine prostate cancer cells showed a similar expression profile for CAR and integrins 
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αVβ3/5. 

Table 2. Determination of the expression of surface Adenoviral receptors by flow cytometry. 

 

 

 

 

 

Verification of Protein Expression by Western Blots 

 The TRAMP-C2 cell line is generated from prostate tumors harvested from a 32-week 

TRAMP mouse.  We carried out infection studies with Ad5 carrying mda-7 or GFP at different 

multiplicities of infection (MOI). Figure 17 shows dose dependent expression of GFP and mda-7 

protein by western blot analysis (Fig. 17). The results show that we effectively transferred to 

murine PC cells a transgene (GFP or mda-7) with Ad5 viruses.  

 

Figure 17. Western blot analysis of TRAMP-C2 and DU145 cells infected with different MOIs 

of Ad.GFP or Ad.mda-7/IL-24. Cell lysates were run on SDS-PAGE and reacted with 

appropriate specific primary and secondary HRP-conjugated antibodies.  Beta actin was used as 

a loading control. 

Cells CAR αVβ5 αVβ3 

DU145 90.08±1.71 95.98±0.17 28.58±1.13 

TRAMP-C2 96.60±0.22 93.9±1.38 32.70±1.97 
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Viral Burst Assay to Assess the Capacity of Replicative HAd5 to Produce Viral Particles 

 The control HEK 293 embryonic kidney cells and human DU145 prostate cancer cells 

showed an increase in viral count at both 24 and 48 hours post infection of 100 pfu/mL and 

1,000 pfu/mL replicative competent HAd5 (CTV). Thus, DU145 and HEK 293 are permissive 

for the replication of HAd5 and would make good animal models for testing the replicative and 

transfection ability of HAd5. However, TRAMP-C2 cells showed a decrease in viral count from 

24 to 48 hours for both pfu of HAd5 indicating a lack of viral replication (Fig. 18). Thus 

TRAMP-C2 cells are non-permissive for replication of HAd5 and would make a good animal 

model only for the transfection ability of HAd5. 

 

Figure 18.  Subconfluent murine and human cell lines were infected with replicative competent 

HAdV at 100 pfu/mL and 1,000 pfu/mL and harvested 24- and 48-hours later.   

 

Annexin-V Staining for Cell Death 

 The apoptotic rate of the transduced cells was quantified by assessing Annexin-V 

expression. The analyzed cells were allocated in a quadrant diagram according to their DNA 
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content and the presence of Annexin-V on the extracellular cell membrane during apoptosis. 

Statistical analysis was run on Annexin-V triplicates using Graphpad Prism 6 software for an 

ANOVA on dead cells with a post hoc test of Tukey’s multiple comparison test (Fig. 19 and 

Table 3). TRAMP-C2 and DU145 cells were undergoing apoptosis and necrosis, collectively 

called as dead cells. Non-transduced cells were compared to Ad.mda-7/IL-24 transduced cells. 

Mean and standard deviation from Annexin-V experiment was calculated for each adenoviral 

treated group. There was an increase in the significance and percentage of cell death that was 

concentration dependent compared to the control. A significant percentage of cell death for 

TRAMP-C2 cells infected with 50MOI was observed in comparison to 10MOI of Ads (Fig. 19 

and Table 3). Cell death observed for TRAMP-C2 cells infected with 10MOI and 25MOI did not 

show any significant difference in comparison to DU145 cells infected with 10MOI. However, 

overall DU145 cells showed more cell death with Ad.mda-7 at 25MOI and 50MOI in 

comparison to TRAMP-C2 cells infected with the same MOI.   

 

Figure 19. Annexin-V/PI staining of TRAMP-C2 and DU145 cells infected with Ad.mda-7/IL-

24.  TRAMP-C2 cells were transduced with Ad.mda-7/IL-24 at 10, 25 & 50 multiplicity of 
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infection (MOI) and harvested at 96 hours post infection and determined by FACS analysis. Bar 

graph represents sum of apoptotic and necrotic cells. 

 

Table 3. ANOVA (Analysis of Variance) significance table with a Post Hoc Tukey’s multiple 

comparison test for Annexin-V assay between TRAMP-C2 and DU145 cells transduced with 

Ad.mda-7/IL-24. * The mean difference is significant at the 0.05 level. 

Comparison between groups Significant? 
TRAMP-C2:Control TRAMP-C2:10MOI Yes 

TRAMP-C2:Control TRAMP-C2:25MOI Yes 

TRAMP-C2:Control TRAMP-C2:50MOI Yes 

TRAMP-C2:Control DU145:Control No 

TRAMP-C2:Control DU145:10MOI Yes 

TRAMP-C2:Control DU145:25MOI Yes 

TRAMP-C2:Control DU145:50MOI Yes 

TRAMP-C2:10MOI TRAMP-C2:25MOI Yes 

TRAMP-C2:10MOI TRAMP-C2:50MOI Yes 

TRAMP-C2:10MOI DU145:Control Yes 

TRAMP-C2:10MOI DU145:10MOI No 

TRAMP-C2:10MOI DU145:25MOI Yes 

TRAMP-C2:10MOI DU145:50MOI Yes 

TRAMP-C2:25MOI TRAMP-C2:50MOI Yes 

TRAMP-C2:25MOI DU145:Control Yes 

TRAMP-C2:25MOI DU145:10MOI No 

TRAMP-C2:25MOI DU145:25MOI Yes 
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TRAMP-C2:25MOI DU145:50MOI Yes 

TRAMP-C2:50MOI DU145:Control Yes 

TRAMP-C2:50MOI DU145:10MOI Yes 

TRAMP-C2:50MOI DU145:25MOI No 

TRAMP-C2:50MOI DU145:50MOI Yes 

DU145:Control DU145:10MOI Yes 

DU145:Control DU145:25MOI Yes 

DU145:Control DU145:50MOI Yes 

DU145:10MOI DU145:25MOI Yes 

DU145:10MOI DU145:50MOI Yes 

DU145:25MOI DU145:50MOI Yes 

 

UTMD for Prostate Cancer Cells. 

 Human DU145 and murine prostate cancer cells were infected either with Ad.GFP or 

complexed Ad.GFP/MB at 10MOI and after 24hours images were taken with fluorescent 

microscopy. US application increased the expression of GFP in comparison to the control or 

Ad.GFP alone group for both DU145 and TRAMP-C2 cells (Fig. 20 and 22). US also allowed 

for the transfection of Ad.GFP in complement rich FBS media for both DU145 and TRAMP-C2 

cells (Fig. 20 and 22).  

 MBs also facilitated the transfection of Ad.GFP in both FBS rich and Heat Inactivated-

complement depleted FBS media (Fig. 21 and 23). Transfection increased further when Ad.GFP 

was complexed with a MB (Ad.GFP/MBs) and US was applied to both DU145 and TRAMP-C2 

cells (Fig. 21 and 23). Similar GFP expression was observed for DU145 when complexed 

Ad.GFP/MBs were incubated with FBS and US was applied regardless of media being used (Fig. 
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21) because FBS contains a complement, which binds to the free Ads on the surface of the 

bubble thereby inactivating the Ads. Similar observation was also recorded for TRAMP-C2 cells 

(Fig. 23). Lastly, unclean complexed Ad.GFP/MBs showed similar GFP expression compared to 

cleaned (FBS incubated) complexed Ad.GFP/MBs in complement rich FBS media (Regular 

media). Highest transfection was observed for DU145 cells that received the unclean (FBS 

untreated) Ad.GFP/MBs and US (Fig. 21).        

 

Figure 20. DU145 cells infected with Ad.GFP at 10MOI and Ultrasound application. 

*Flo:Florescence, HI:heat inactivated, US: Ultrasound, Regular media: contains fetal bovine 

serum (FBS). 
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Figure 21. DU145 Cells infected with Ad.GFP/MBs at 10MOI and Ultrasound application. In 

second column MBs rehydrated with PBS was added separately with Ad.GFP at 10MOI. In the 

third column Ad.GFP/MBs were complexed but not cleaned with FBS before adding it to the 

cells. In the fourth column Ad.GFP/MBs were complexed and cleaned with FBS before adding it 

to the cells.  *Flo:Florescence, HI:heat inactivated, US:Ultrasound, Regular media: contains fetal 

bovine serum (FBS).

 

Figure 22. TRAMP-C2 cells infected with Ad.GFP at 10MOI and Ultrasound application. 
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CHAPTER VI : CONCLUSION AND FUTURE DIRECTIONS 

 In Chapter 1, we reviewed current literature on prostate cancer (PC) and highlighted 

some of the therapeutic options in treating PC. We also reviewed some of the potentials and 

barriers to gene therapy with viral vectors. We chose to study metastatic PC because there are no 

successful treatment modalities available for the disease while treatment options for stage T1/T2 

have decent 5 year survival rates.   

 In Chapter 2 we described the ultrasound targeted destruction of microbubbles as a gene 

delivery system. We reviewed current literature on the different types of available MBs that are 

currently used. We also described the behavior of the MBs when exposed to US and the 

biological changes that are associated with their interactions. Chapter 2 clearly shows that 

together MB and US become a reliable systemic drug delivery system.  

 In Chapter 3, we explored human DU145 and murine TRAMP-C2 PC cells as potential 

animal models for testing the UTMD drug delivery system. Infection studies were carried out to 

establish whether human non-replicative viruses (Ad.GFP and Ad.mda-7/IL-24) and replicative-

competent virus (CTV.mda-7) could be used to determine a therapeutic response in cancer cells. 

We clearly observed that Ad.GFP and Ad.mda-7/IL-24 could infect and transfer their transgene 

in both PC cells, although only CTV.mda-7 could be replicated in DU145 cells. UTMD gene 

delivery system was also tested in an in vitro setting showing an increased enhancement of 

Ad.GFP transgene expression. This clearly showed that US with MBs caused pore formation on 

the plasma membrane thereby increasing the permeability of the membrane to allow increased 

Ad uptake. Thus, animal studies on xenografted DU145 PC studies in immune-compromised 

nude mice and syngeneic model of TRAMP-C2 PC injected in immune-competent mice become 

attractive to test the UTMD gene delivery system. 
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 In Chapter 4, we described our studies of the UTMD gene delivery system for Ad.GFP, 

Ad.mda-7 and CTV.mda-7 in a xenograted DU145 PC model with tumors on both flanks of nude 

mice. Targeson MBs/Ads complexes were injected into the tail vein while only the tumor on the 

right flank was sonoporated. The study was designed to define an improved therapeutic approach 

for delivering Ad.mda-7, which will permit systemic delivery and targeted tumor release by US 

specifically and effectively in the primary tumor. This treatment resulted in a dramatic reduction 

in the size of not only the treated tumor on the right flank, but also of the non-treated tumor on 

the left flank due to mda-7 bystander effect [53]. US-guided focused release of entrapped 

materials from the MBs will increase the delivery specificity and therapeutic efficiency of 

Ad.mda-7 towards PC xenografts. Our findings in combination with the positive results of 

Phase-I Clinical trial with Ad.mda-7 [211] suggest that this cytokine has considerable potential 

as a gene therapy for cancer.  

 In Chapter 5, we described the combined therapy approach of using radiation and UTMD 

for the delivery of Ad.p53, Ad.RB and Ad.p130 in a xenografted DU145 PC model with tumors 

on both flanks of nude mice. Similar to the previous animal study, Targeson MBs/Ads 

complexes were injected into the tail vein while only the tumor on the right flank was 

sonoporated. We demonstrated that combined radiation and UTMD gene therapy enhanced the 

therapeutic benefit of tumor suppressor genes in radiation resistant PC. There was no bystander 

activity that was observed in this study as tumor suppressor genes such as p53, pRb and p130 are 

not secreted proteins. The increased expression of p53, Rb and p130 further proved that UTMD 

targets only the tumor that is sonoporated making it a specific gene delivery therapy system.   

 In addition to the experiments that were performed, we propose to further develop the 

UTMD system using immune-competent animals to facilitate its translation into a clinically 
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feasible technology for the effective delivery of therapeutic genes to treat human PC. Our data 

shows that murine TRAMP-C2 PC cells are efficiently infected by non-replicative Ad.GFP and 

Ad.mda-7/IL-24 using the MB/Adenoviral system cavitated by US, which results in the 

expression of the transduced genes. Additionally, mda-7/IL-24 acts as a pro-apoptotic gene 

resulting in the increased cell death of PC cells. Thus we believe that MBs will effectively shield 

the Ads from immune surveillance in immune-competent mice, and target the delivery of 

Ad.GFP & Ad.mda-7 specifically to PCs. These studies would further establish the efficiency 

and specificity of gene delivery in primary advanced prostate cancer by using an innovative 

system consisting of ultrasound contrast agents, viral vectors and ultrasound waves. 

  In conclusion, our present body of work supports the hypothesis that the UTMD systemic 

gene delivery system we have developed is a promising therapeutic approach for PC that 

deserves further investigation in immune competent organisms to warrant its future translation 

from bench to bedside.  
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