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ABSTRACT

A count data that have excess number of zeros, ones, twos or threes are commonplace in exper-

imental studies. But these inflated frequencies at particular counts may lead to over dispersion

and thus may cause difficulty in data analysis. So, to get appropriate results from them and to

overcome the possible anomalies in parameter estimation, we may need to consider suitable inflated

distribution.

In this thesis, we have considered a Swedish fertility dataset with inflated values at some par-

ticular counts. Generally, Inflated Poisson or Inflated Negative Binomial distribution are the most

common distributions for analyzing such data. Geometric distribution can be thought of as a spe-

cial case of Negative Binomial distribution. Hence we have used a Geometric distribution inflated

at certain counts, which we called Generalized Inflated Geometric distribution to analyze such

data. The data set is analyzed, tested and compared using various tests and techniques to ensure

the better performance of multi-point inflated Geometric distribution over the standard Geometric

distribution.

The various tests and techniques used include comparing the parameters obtained through

method of moment estimators and maximum likelihood estimators. The two types of estimators

obtained from method of moment estimations and maximum likelihood estimation method, were

compared using simulation study, and it is found after the analysis that the maximum likelihood

estimators perform better.

viii



CHAPTER 1

INTRODUCTION

A random variable X that counts the number of trials to obtain the rth success in a series of

independent and identical Bernoulli trials, is said to have a Negative Binomial distribution whose

probability mass function (pmf) is given by

P (X = k) = P (k|p) =

(
k − 1

r − 1

)
pr(1− p)k−r (1.1)

where r = 1, 2, 3, . . . ; k = r, r + 1, . . . and p > 0.

The above distribution is also the “Generalized Power Series distribution” as mentioned in

Johnson et al. (2005)[7]. Some writers, for instance Patil et al. (1984)[9], called this the

“Pólya-Eggenberger distribution”, as it arises as a limiting form of Eggenberger and Pólya’s

(1923)[3] urn model distribution. A special case of Negative Binomial Distribution is the

Geometric distribution which can be defined in two different ways

Firstly, the probability distribution for a Geometric random variable X (where X being the

number of independent and identical trials to get the first success) is given by

P (X = k|p) =


p(1− p)k−1 if k = 1, 2, . . .

0 otherwise.

(1.2)

However, instead of counting the number of trials, if the random variable X counts the number

of failures before the first success, then it will result in the second type of Geometric distribution

which again is a special case of Negative Binomial distribution when r = 1 (first success) and its

pmf is given by

P (X = k) = P (k | p) =


p(1− p)k if k = 0, 1, 2, . . .

0 otherwise.

(1.3)

The support set of this random variable is {0,1,2,. . . } which makes it different from the
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distribution in (1.2). The above model in (1.3), henceforth referred to as “Geometric(p)” has

mean
1− p
p

and variance
1− p
p2

and is the only distribution with non-negative integer support

that can be characterized by the “Memory-less property” or the “Markovian property”. Many

other characterizations of this distribution can be found in Feller (1968, 1969) [4] [5]. The

distribution occurs in many applications and some of them are indicated in the references below:

• The famous problem of Banach’s match boxes (Feller (1968)[4]);

• The runs of one plant species with respect to another in transects through plant populations

(Pielou (1962, 1963)[10][11]);

• A ticket control problem (Jagers (1973)[6]);

• A survillance system for congenital malformations (Chen (1978)[2]);

• The number of tosses of a fair coin before the first head (success) appears;

• The number of drills in an area before observing the first productive well by an oil

prospector.(Wackerly et al. (2008)[13]).

The Geometric model in (1.3) which is widely used for modeling count data may be inadequate

for dealing with overdispersed as well as underdispersed count data. One such instance is the

abundance of zero counts in the data, and (1.3) may be an inefficient model for such cases due to

the presence of heterogeneity, which usually results in undesired over dispersion. Therefore, to

overcome this situation, i.e., to explain or capture such heterogeneity, we consider a ‘two-mass

distribution’ by giving mass π to 0 counts, and mass (1− π) to the other class which follows

Geometric(p). The result of such a ’mixture distribution’ is called the ’Zero-Inflated Geometric’

(ZIG) distribution with the probability mass function

P (k | p, π) =


π + (1− π)p if k = 0

(1− π)P (k | p) if k = 1, 2, . . .

(1.4)

where, p > 0, and P (k | p) is given in (1.3). However the mixing parameter π is chosen such that

P (k = 0) ∈ (0, 1) in (1.4), i.e., it ranges over the interval − p
1−p < π < 1. This allows the

2



distribution to be well defined for certain negative values of π, depending on p. Although the

mixing interpretation is lost when π < 0, these values have a natural interpretation in terms of

zero-deflation, relative to a Geometric(p) model. Correspondingly, π > 0 can be regarded as zero

inflation as discussed in Johnson et al. (2005)[7].

A further generalization of (1.4) can be obtained by inflating/deflating the Geometric

distribution at several specific values. To be precise, if the discrete random variable X is thought

to have inflated probabilities at the values k1, ...., km ∈ {0, 1, 2, ....}, then the following general

probability mass function can be considered:

P (k | p, πi, 1 ≤ i ≤ m) =


πi +

(
1−

m∑
i=1

πi

)
P (k | p) if k = k1, k2, . . . , km(

1−
m∑
i=1

πi

)
P (k | p) if k 6= ki; 1 ≤ i ≤ m

(1.5)

where k = 0, 1, 2, . . . ; p > 0 and πi’s are chosen in such a way that P (ki) ∈ (0, 1) for all

i = 1, 2, ...,m in (1.5). For the remainder of this work, we will refer to (1.5) as the Generalized

Inflated Geometric (GIG) distribution which is the main focus of this work.

We will consider some special cases of the (GIG) distribution such as Zero-One-Inflated

Geometric (ZOIG) distribution in the case k = 2 with k1 = 0 and k2 = 1 or Zero-One-Two

Inflated Geometric (ZOTIG) models. Similar type of Generalized Inflated Poisson (GIP) models

have been considered by Melkersson and Rooth (2000)[8] to study a women’s fertility data of 1170

Swedish women of the age group 46-76 years (Table 1.1). This data set consists of the number of

child(ren) per woman, who have crossed the childbearing age in the year 1991. They justified the

Zero-Two Inflated Poisson distribution was the best to model it. However recently in his Master’s

Thesis, Stewart (2014)[12] studied the same data set and found that a Zero-Two-Three Inflated

Poisson (ZTTIP) distribution was a better fit.

Instead of using an Inflated Poisson model, we will consider fitting appropriate Inflated

Geometric models to the data in Table 1.1. Now, which model is the best fit whether a GIG

model with focus on counts (0, 1), i.e., ZOIG or a GIG model focusing on some other set

{k1, k2, ..., km} is appropriate for the above data will be eventually decided by different model

selection criteria in Chapter 4. In the next chapter, we discuss different techniques of parameter

3



Table 1.1: Observed number of children (=count) per woman

Count Frequency Proportion

0 114 .097
1 205 .175
2 466 .398
3 242 .207
4 85 .073
5 35 .030
6 16 .014
7 4 .003
8 1 .001
10 1 .001
12 1 .001

Total 1,170 1.000

estimation namely, the method of moments (MME), and the maximum likelihood estimation

(MLE). In Chapter 3, we compare the performances of MMEs and MLEs for different GIG model

parameters using simulation studies.
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CHAPTER 2

ESTIMATION OF MODEL PARAMETERS

In this chapter, we estimate the parameters by two well known methods of parameter estimation

namely the method of moment estimations and the method of maximum likelihood estimations.

2.1 Method of Moments Estimation (MME)

The easiest way to obtain estimators of the parameters is through the method of moments

estimation (MME). The rth raw moment of a random variable X following a GIG in (1.5) with

parameters π1, . . . , πm and p can be obtained from the following expression:

E[Xr] =

∞∑
k=0

krP (k|p, πi, 1 ≤ i ≤ m)

=

m∑
i=1

kri πi + (1−
m∑
i=1

πi)

∞∑
k=0

krP (k|p)

=

m∑
i=1

kri πi + (1−
m∑
i=1

πi)µ
′
r(p).

(2.1)

where µ′r(p) is the the rth raw moment of Geometric(p) and can be calculated easily by

differentiating its moment generating function (MGF) given by
p

1− (1− p)et
, i.e.,

µ′r(p) = dr

dtr

(
p

1− (1− p)et

) ∣∣
t=0

.

Given a random sample X1, ...., Xn, i.e. independent and identically distributed (iid)

observations from the GIG distribution, we equate the sample moments with the corresponding

population moments to get a system of (m+1) equations involving the (m+1) model parameters

p, π1, . . . , πm of the form

m′r =
m∑
i=1

kri πi +

(
1−

m∑
i=1

πi

)
µ′r(p) (2.2)

where r = 1, 2, . . . , (m+ 1). Note that m′r =
∑n

j=1X
r
j /n is the rth raw sample moment. The

values of πi, i = 1, 2, ....,m, and p obtained by solving the system of equations (2.2) are denoted

by π̂i(MM) and p̂MM respectively. The subscript “(MM)” indicates the MME approach. Note that

the parameter p is non-negative and hence the estimate must obey this restriction. But there is
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no such guarantee, as such we propose the corrected MME’s to ensure non-negativity of this

moment estimator as

p̂cMM = p̂MM truncated at 0 and 1 and π̂ci(MM) = π̂i(MM) (2.3)

where π̂ci(MM) is the solution of πi in (2.2) obtained after substituting p̂MM .

Consider the case of ZIG distribution when m = 1 i.e., k1 = 0, resulting into only two

parameters to estimate, i.e. π1 and p. The population mean and population variance in this

special case are obtained as:

E(X) = (1− π1)
(1− p)
p

and V ar(X) = (1− π1){1 + π1(1− p)}
(1− p)
p2

(2.4)

Now, in order to obtain the method of moments estimators, we can equate the preceding mean

and variance with sample mean (X̄) and sample variance (s2) respectively. This is an alternative

approach to estimate the parameters instead of dealing with the sample raw moments. Hence we

obtain,

(1− π1)
(1− p)
p

= X̄

(1− π1){1 + π1(1− p)}
(1− p)
p2

= s2 (2.5)

Solving the above equations simultaneously for p and π1, we get, p̂cMM =
2X̄

(s2 + X̄ + X̄2)
and

π̂c1(MM) =
s2 − X̄ − X̄2

s2 − X̄ + X̄2
.

Now let us consider another special case of GIG, the Zero-One Inflated Geometric (ZOIG)

distribution, i.e., m = 2 and k1 = 0 and k2 = 1. It has three parameters π1, π2 and p and to

estimate them we need to equate the first three raw sample moments with the corresponding

6



population moments and we thus obtain the following system of equations:

m′1 = π2 + (1− π1 − π2)
(1− p)
p

m′2 = π2 + (1− π1 − π2)
(p2 − 3p+ 2)

p2

m′3 = π2 + (1− π1 − π2)
(1− p)(p2 − 6p+ 6)

p3
(2.6)

Similarly, another special case of GIG is the Zero-One-Two Inflated Geometric (ZOTIG)

distribution. Here we have four parameters π1, π2, π3 and p to estimate. This is done by solving

the following system of four equations obtained by equating the first four raw sample moments

with their corresponding population moments to have,

m′1 = π2 + 2π3 + (1− π1 − π2 − π3)
(1− p)
p

m′2 = π2 + 4π3 + (1− π1 − π2 − π3)
(1− p)(2− p)

p2

m′3 = π2 + 8π3 + (1− π1 − π2 − π3)
(1− p)(p2 − 6p+ 6)

p3

m′4 = π2 + 16π3 + (1− π1 − π2 − π3)
(1− p)(2− p)(p2 − 12p+ 12)

p4
(2.7)

Algebraic solutions to these systems of equations in (2.6) and (2.7) are obtained by using

Mathematica and are given in Appendix (A). We note that these solutions may not fall in the

feasible regions of the parameter space, so we put appropriate restrictions to these solutions as

discussed for the ZIG distribution to obtain the corrected MMEs.

2.2 Maximum Likelihood Estimation (MLE)

In this section, we discuss the approach of estimating our parameters by the method of Maximum

Likelihood Estimation(MLE). Based on the random sample X = (X1, X2, . . . , Xn), we define the

likelihood function L = L(p, πi, 1 ≤ i ≤ m| X) as follows. Let Yi = the number of observations at

ki with inflated probability, i.e., if I is an indicator function, then Yi =
∑n

j=1 I(Xj = ki),

1 ≤ i ≤ m, which means Yi is the total number of observed counts at ki. Also, let Y . =
∑m

i=1 Yi =

total number of observations with inflated observations, n = total number of observations and,

7



(n− Y .) is the total number of non-inflated observations. Then,

L =

m∏
i=1

{πi + (1−
m∑
l=1

πl)P (ki | p)}Yi
∏

Xj 6=ki

{(1−
m∑
l=1

πl)P (Xj |p)}

=
m∏
i=1

{πi + (1−
m∑
l=1

πl)P (ki | p)}Yi(1−
m∑
l=1

πl)
(n−Y.)

∏
Xj 6=ki

P (Xj |p)
(2.8)

The log likelihood function l = lnL is given by

l =

m∑
i=1

Yi ln{πi + (1−
m∑
l=1

πl)P (ki | p)}+ (n− Y.) ln(1−
m∑
l=1

πl) +
∑

Xj 6=ki

lnP (Xj | p)

But we have, ∑
Xj 6=ki

lnP (Xj | p) = (n− Y.) ln p+ ln(1− p)(
n∑

j=1

Xj −
m∑
l=1

klYl)

hence the log likelihood function becomes

l =
m∑
i=1

Yi ln{πi + (1−
m∑
l=1

πl)P (ki | p)}+ (n− Y.) ln(1−
m∑
l=1

πl)

+ (n− Y.) ln p+ ln(1− p)(
n∑

j=1

Xj −
m∑
l=1

klYl)

(2.9)

Now to obtain the MLEs, we maximize l in (2.9) with respect to the parameters πi, 1 ≤ i ≤ m,

and p over the appropriate parameter space. Differentiating l partially w.r.t the parameters and

setting them equal to zero yields the following system of likelihood equations or score equations.

∂l

∂πi
=

Yi
{πi + (1−

∑m
l=1 πl)P (ki|p)}

−
m∑
i=1

YiP (ki|p)
{πi + (1−

∑m
l=1 πl)P (ki|p)}

− (n− Y.)
(1−

∑m
l=1 πl)

= 0, ∀i = 1, . . . ,m;

∂l

∂p
=

m∑
i=1

Yi(1−
∑m

l=1 πl)P
(p)(ki|p)

{πi + (1−
∑m

l=1 πl)P (ki|p)}
+

(n− Y.)
p

−
(nX̄ −

∑m
l=1 klYl)

(1− p)
= 0

(2.10)

where, P (p)(ki|p) = (∂/∂p)P (ki|p).

At this point, we can not say which of these two estimation techniques (MME or MLE) provide

overall better estimators.To the best of our knowledge, no comparative study has been reported in

8



literature. Further we do not have any closed form expressions for these estimators which makes

it even more difficult to compare their performance. Therefore, we conduct simulation studies in

the next chapter which can provide some guidance about their performances.

9



CHAPTER 3

Simulation Study

We have considered the following three cases for our simulation study:

(i) m = 1, k1 = 0 (Zero Inflated Geometric (ZIG) distribution)

(ii) m = 2, k1 = 0, k2 = 1 (Zero-One Inflated Geometric (ZOIG) distribution)

(ii) m = 3, k1 = 0, k2 = 1, k3 = 2 (Zero-One-Two Inflated Geometric (ZOTIG) distribution)

For each model mentioned above, we generate random data X1, ..., Xn from the distribution

(with given parameter values) N = 10, 000 times. Let us denote a parameter (either πi or p) by

the generic notation θ. The parameter θ is estimated by two possible estimators θ̂
(c)
MM (the

corrected MME) and θ̂ML (the MLE). At the lth replication, 1 ≤ l ≤ N , the estimates of θ are

θ̂
(c)(l)
MM and θ̂

(l)
ML respectively. Then the standardized bias (called ‘SBias’) and standardized mean

squared error (called ‘SMSE’) are defined and approximated as below

SBias(θ̂) = E(θ̂ − θ)/θ ≈ {
N∑
l=1

(θ̂(l) − θ)/θ}/N

SMSE(θ̂) = E(θ̂ − θ)2/θ2 ≈ {
N∑
l=1

(θ̂(l) − θ)2/θ2}/N (3.1)

Note that θ̂ will be replaced by θ̂
(c)
MM and θ̂ML in our simulation study. Further observe that we

are using SBias and SMSE instead of the actual Bias and MSE, because the standardized versions

provide more information. An error of magnitude 0.01 in estimating a parameter with true value

1.00 is more severe than a situation where the parameter’s true value is 10.0. This fact is revealed

through SBias and/or SMSE more than the actual bias and/or MSE.

3.1 The ZIG Distribution

In our simulation study for the Zero Inflated Geometric (ZIG) distribution, we fix p = 0.2 and

vary π1 from 0.1 to 0.8 with an increment of 0.1 for n = 25 and n = 50. The constrained

optimization algorithm “L-BFGS-B” (Byrd et al. (1995))[1] is implemented in R programming

language to obtain the maximum likelihood estimators (MLEs) of the parameters p and π1, and

10



the corrected MMEs are obtained by solving a system of equations and imposing appropriate

restrictions on the parameters. In order to compare the performances of the MLEs with that of

the CMMEs, we plot the standardized biases (SBias) and standardized MSE (SMSE) of these

estimators obtained over the allowable range of π1. The SBias and SMSE plots are presented in

Figure(3.1) and Figure(3.2) for sample sizes 25 and 50 respectively.
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Figure 3.1: Plots of the absolute SBias and SMSE of the CMMEs and MLEs of π1 and p (from
ZIG distribution) plotted against π1 for p = 0.2 and n = 25. The solid line represents the SBias or
SMSE of the CMME. The dashed line represents the SBias or SMSE of the MLE. (a) Comparison
of SBias of π1 estimators. (b) Comparison of SBias of p estimators. (c) Comparison of SMSE of
π1 estimators. (d) Comparison of SMSE of p estimators.

For the ZIG distribution with n = 25, from Figure 3.1(a) we see that MLE outperforms CMME

for all values of π1 with respect to SBias. Here MLE is almost unbiased for all values of π1

beyond 0.4. The SBias seems to be maximum for CMME at 0.2 and for MLE at around 0.1. In

Figure 3.1(b), we again see that MLE uniformly outperforms the CMME and both are increasing

with values of π1. In Figure 3.1(c), MLE consistently outperforms CMME at all points until 0.65
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Figure 3.2: Plots of the absolute SBias and SMSE of the CMMEs and MLEs of π1 and p (from
ZIG distribution) plotted against π1 for p = 0.2 and n = 50. The solid line represents the SBias or
SMSE of the CMME. The dashed line represents the SBias or SMSE of the MLE. (a) Comparison
of SBias of π1 estimators. (b) Comparison of SBias of p estimators. (c) Comparison of SMSE of
π1 estimators. (d) Comparison of SMSE of p estimators.
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after which they both seem to have nearly the same SMSE. For both MLE and CMME, the

SMSE starts off at their highest values and then decreases rapidly until it reaches nearly zero.

The SMSE of MLE consistently outperforms that of CMME in Figure 3.1(d). They both start off

at their lowest values, and increase as values of π1 get higher.

Again MLEs outperform CMMEs with respect to both SBias and SMSE for sample size 50, as

exhibited by Figure 3.2. So we see for the ZIG distribution, the MLEs of the parameters π1 and p

perform better than the CMMEs for all values of π1 we have considered.

3.2 The ZOIG Distribution

In the case of the Zero-One Inflated Geometric (ZOIG) distribution we have three parameters to

consider, namely π1, π2 and p. For fixed p = 0.3 we vary π1 and π2 one at a time for sample sizes

25 and 50. Figure 3.3 presents the six comparisons for π̂
(c)
1(MM), π̂

(c)
2(MM) and p̂

(c)
(MM) with π̂1(ML),

π̂2(ML) and p̂(ML) in terms of standardized bias and standardize MSE for n = 25, varying π1 from

0.1 to 0.5 and keeping π2 and λ fixed at 0.15 and 0.3 respectively. Figure 3.4 shows the same for

n = 50.

In Figure 3.3(a), MLE outperforms CMME at all points with respect to SBias. SBias of MLE

starts above zero and quickly becomes negative, whereas that of CMME is throughout negative.

In Figure 3.3(b), we see that the MLE is almost unbiased for all values of π1, and SBias of

CMME is always negative. Again in Figure 3.3(c), we see that MLE is essentially unbiased but

SBias of CMME is increasing with values of pi1. In Figure 3.3(d), SMSE of CMME and MLE are

both decreasing, but SMSE of MLE stays below that of CMME. In Figures 3.3(e) and 3.3(f),

SMSE of MLE stays constant at 0.55 and 0.05 respectively for all permissible values of π1. Also

CMME performs way worse for both the cases.

In Figure 3.4, we observe similar performance as in Figure 3.3, i.e, MLEs of all the parameters

is outperforming CMMEs with respect to both SBias and SMSE for all considered values of pi1.

In our second scenario which is presented in Figures 3.5 and 3.6 for sample sizes 25 and 50

respectively, we vary π2 keeping π1 and λ fixed at 0.15 and 3 respectively. In Figures 3.5(a), we

see that both MLE and CMME are negatively biased, but MLE is always performing better that

the CMME. However in Figure 3.5(b), MLE starts of with a positive bias and then becomes
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Figure 3.3: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2 and p (from ZOIG
distribution) by varying π1 for fixed π2 = 0.15, p = 0.3 and n = 25. The solid line represents
the SBias or SMSE of the corrected MME. The dashed line represents the SBias or SMSE of the
MLE. (a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons
of SMSEs of π1, π2 and p estimators respectively.
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Figure 3.4: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2 and p (from ZOIG
distribution) by varying π1 for fixed π2 = 0.15, p = 0.3 and n = 50. The solid line represents
the SBias or SMSE of the corrected MME. The dashed line represents the SBias or SMSE of the
MLE. (a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons
of SMSEs of π1, π2 and p estimators respectively.
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unbiased for π2 between 0.2 and 0.3 and eventually ends with a negative bias. SBias of CMME

stays throughout between -0.6 and -0.8. In Figure 3.5(c), we see that MLE outperforms MME

throughout with respect to SBias. From Figures 3.5(d), 3.5(e) and 3.5(f), it is clear that MLE

outperforms MME with respect to SMSE for all permissible values of π2. Thus we observe that

the MLEs of the all three parameters perform better than the MMEs in terms of the both

absolute SBias and SMSE.

In Figure 3.6, we observe similar performance as in Figure 3.5, i.e, MLEs of all the parameters is

outperforming CMMEs with respect to both SBias and SMSE for all values of π2 from 0.1 to 0.5.

3.3 The ZOTIG Distribution

For the Zero-One-Two Inflated Geometric (ZOTIG) distribution we have four parameters to

consider, namely π1, π2, π3 and p. For fixed p = 3 we vary π1, π2, and π3 one at a time from 0.1

to 0.5 for sample sizes n = 25 and n = 50. Thus we have eight comparisons for π̂
(c)
1(MM), π̂

(c)
2(MM),

π̂
(c)
3(MM) and p̂

(c)
(MM) with π̂1(ML), π̂2(ML), π̂3(ML) and p̂(ML). These comparisons in terms of

absolute standardized bias and standardize MSE are presented in Figures 3.7-3.12.

In the first scenario of ZOTIG distribution, which is presented in Figures 3.7 and 3.8, we vary

π1 keeping π2, π3 and p fixed at 0.2, 0.2 and 0.3 respectively. From Figure 3.7(a, b, c, d), we see

that the CMMEs of all the four parameters perform consistently worse than the MLEs with

respect to SBias. However SBias of CMMEs and MLEs are same at π1 = 0.5. Also from parts (e,

f, g, h) in Figure 3.7 concerning the SMSE, we notice that the CMMEs of all the parameters

perform consistently worse than the MLEs. But as in the case of SBias, we see that SMSE of

CMMEs and MLEs are same at π1 = 0.5. In Figure 3.8, for sample size 50 we again observe that

MLE of all the four parameters are outperforming CMME with respect to SBias and SMSE.

In our second scenario which is presented in Figures 3.9 and 3.10, we vary π2 keeping π1, π3

and p fixed at 0.2, 0.2 and 0.3 respectively. We observe some interesting things in these plots.

From Figure 3.9 we see that MLE of both π1 and p is performing better upto π2 = 0.3 with

respect to SBias but after that CMME is performing slightly better than MLE. Also MLE of π2 is

better till 0.3 but after that both MLE and CMME have the same SBias. However we see that

the MLEs of all four parameters perform better than their CMME counterparts with respect to
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Figure 3.5: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2 and p (from ZOIG
distribution) by varying π2 for fixed π1 = 0.15, p = 0.3 and n = 25. The solid line represents
the SBias or SMSE of the corrected MME. The dashed line represents the SBias or SMSE of the
MLE. (a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons
of SMSEs of π1, π2 and p estimators respectively.
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Figure 3.6: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2 and p (from ZOIG
distribution) by varying π2 for fixed π1 = 0.15, p = 0.3 and n = 50. The solid line represents
the SBias or SMSE of the corrected MME. The dashed line represents the SBias or SMSE of the
MLE. (a)-(c) Comparisons of SBiases of π1, π2 and p estimators respectively. (d)-(f) Comparisons
of SMSEs of π1, π2 and p estimators respectively.
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Figure 3.7: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2, π3 and p (from
ZOTIG distribution) by varying π1 for fixed π2 = π3 = 0.2 and p = 0.3 and n = 25. The solid
line represents the SBias or SMSE of the corrected MME. The dashed line represents the SBias
or SMSE of the MLE. (a)-(d) Comparisons of SBiases of π1, π2, π3 and p estimators respectively.
(e)-(h) Comparisons of SMSEs of π1, π2, π3 and p estimators respectively.
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Figure 3.8: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2, π3 and p (from
ZOTIG distribution) by varying π1 for fixed π2 = π3 = 0.2 and p = 0.3 and n = 50. The solid
line represents the SBias or SMSE of the corrected MME. The dashed line represents the SBias
or SMSE of the MLE. (a)-(d) Comparisons of SBiases of π1, π2, π3 and p estimators respectively.
(e)-(h) Comparisons of SMSEs of π1, π2, π3 and p estimators respectively.
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Figure 3.9: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2, π3 and p (from
ZOTIG distribution) by varying π2 for fixed π1 = π3 = 0.2 and p = 0.3 and n = 25. The solid
line represents the SBias or SMSE of the corrected MME. The dashed line represents the SBias
or SMSE of the MLE. (a)-(d) Comparisons of SBiases of π1, π2, π3 and p estimators respectively.
(e)-(h) Comparisons of SMSEs of π1, π2, π3 and p estimators respectively.
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Figure 3.10: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2, π3 and p (from
ZOTIG distribution) by varying π2 for fixed π1 = π3 = 0.2 and p = 0.3 and n = 50. The solid
line represents the SBias or SMSE of the corrected MME. The dashed line represents the SBias
or SMSE of the MLE. (a)-(d) Comparisons of SBiases of π1, π2, π3 and p estimators respectively.
(e)-(h) Comparisons of SMSEs of π1, π2, π3 and p estimators respectively.
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SMSE. For sample size 50 from Figure 3.10, we see that MLEs of all the four parameters are

performing better than the CMMEs with respect to both SBias and SMSE except in the case of

π1, where Sbias of MLE of π1 is larger than that of CMME beyond 0.43.

●
●

●

● ●

0.1 0.2 0.3 0.4 0.5

−
1.

0
−

0.
4

π1

 (a) 

S
B

ia
s

●

●

●

● ●

0.1 0.2 0.3 0.4 0.5

0.
5

1.
5

π1

 (e) 

S
M

S
E

● ●
●

●
●

0.1 0.2 0.3 0.4 0.5

−
1.

0
0.

5

π2

 (b) 

S
B

ia
s

● ●
●

●
●

0.1 0.2 0.3 0.4 0.5
0

2
4

π2

 (f) 

S
M

S
E

● ● ●
● ●

0.1 0.2 0.3 0.4 0.5

−
1.

0
−

0.
2

π3

 (c) 

S
B

ia
s ●

●
●

● ●

0.1 0.2 0.3 0.4 0.5

0.
0

1.
5

3.
0

π3

 (g) 

S
M

S
E

●
● ●

●

●

0.1 0.2 0.3 0.4 0.5

−
1.

0
0.

5

p

 (d) 

S
B

ia
s

●

●

●
● ●

0.1 0.2 0.3 0.4 0.5

0.
0

1.
0

p

 (h) 

S
M

S
E

Figure 3.11: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2, π3 and p (from
ZOTIG distribution) by varying π3 for fixed π1 = π2 = 0.2 and p = 0.3 and n = 25. The solid line
represents the SBias or SMSE of the corrected MME. The dashed line represents the SBias or SMSE
of the MLE. (a)-(d) Comparisons of absolute SBiases of π1, π2, π3 and p estimators respectively.
(e)-(h) Comparisons of SMSEs of π1, π2, π3 and p estimators respectively.
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In the third scenario which is presented in Figures 3.11 and 3.12, we vary π3 keeping π1, π2 and

p fixed at 0.2, 0.2 and 0.3 respectively. Here also we observe similar results as the second case of

ZOTIG distribution, MLEs for all the four parameters are uniformly outperforming CMMEs with

respect to SBias except for π1. Also as before MLEs uniformly outperform CMMEs of all the four

parameters with respect to SMSE.

Thus from our simulation study it is evident that MLE has an overall better performance than

CMME for all the Generalized Inflated Geometric models that we have considered. So in the next

chapter, we consider an example where we fit an appropriate GIG model to a real life data set.
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Figure 3.12: Plots of the SBias and SMSE of the CMMEs and MLEs of π1, π2, π3 and p (from
ZOTIG distribution) by varying π3 for fixed π1 = π2 = 0.2 and p = 0.3 and n = 50. The solid line
represents the SBias or SMSE of the corrected MME. The dashed line represents the SBias or SMSE
of the MLE. (a)-(d) Comparisons of absolute SBiases of π1, π2, π3 and p estimators respectively.
(e)-(h) Comparisons of SMSEs of π1, π2, π3 and p estimators respectively.
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CHAPTER 4

APPLICATION OF GIG DISTRIBUTION

4.1 An Example

In this section, we consider the Swedish fertility data presented in Table 1.1 and try to fit a

suitable GIG model. Since our simulation study in the previous chapter suggests that the MLE

has an overall better performance, all of our estimations of model parameters are carried out

using the maximum likelihood estimation approach. While fitting the Inflated Geometric models,

parameter estimates of some mixing proportions (πi) came out negative. So we need to make sure

that all the estimated probabilities according to the fitted models are non-negative. We tried all

possible combinations of GIG models and then we compared each of these Inflated Geometric

models using the Chi-square goodness of fit test, the Akaike’s Information Criterion (AIC) and

the Bayesian Information Criterion (BIC). While performing the Chi-square goodness of fit test,

the last three categories of Table 1.1 are collapsed into one group due to small frequencies. More

details of our model fitting is presented below.

First, we try with single-point inflation at each of the four values (0, 1, 2 and 3). In this first

phase, an inflation at 2 seems most plausible as it gives the smallest AIC and BIC values 4188.794

and 4198.924 respectively. However the p-value of the Chi-square test is very close to 0,

suggesting that this is not a good model. Next, we try two-point inflations at {0, 1}, {0, 2}, {0,

3}, {1, 2}, etc. At this stage, {2, 3} inflation seems most appropriate going by the values of AIC

(3947.064) and BIC ( 3962.258). But p-value of the Chi-square test close to 0 again makes it an

inefficient model.

In the next stage, we try three-point inflation models, and here we note that a GIG with

inflation set {0, 2, 3} significantly improves over the earlier {2, 3} inflation model (i.e., TTIG).

This ZTTIG model significantly improves the p-value (but still close to 0) while maintaining a

low AIC and BIC of 3841.169 and 3861.428 respectively. The main reason for low p-value is that

this model is unable to capture the tail behavior. The estimated value of the parameters are

(with k1 = 0, k2 = 2, k3 = 3): π̂1 = -0.2340517, π̂2 = 0.2816816, π̂3 = 0.1376353, and p̂ =
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0.4068477 using the Maximum Likelihood Estimation approach. Interpretation of the negative π̂1

is very difficult in this case, perhaps it can be thought of as a deflation point.

Finally, we fitted the full {0, 1, 2, 3} inflated model. We obtained the maximum likelihood

estimates of the model parameters as π̂1 = -2.60853103, π̂2 = -0.92017233, π̂3 = -0.04498528, π̂3

= 0.02737037, and p̂ = 0.59520603. The AIC and the BIC values for this model are 3800.688 and

3826.012 respectively. Which is significantly lower than all the previous models. Also p-value of

the Chi-square test is 0.810944, thus rendering this Zero-One-Two-Three inflated Geometric

(ZOTTIG) model to be a very good fit. For the sake of completeness, we have included a plot of

regular geometric model and the ZOTTIG model in Figure 4.1. It is evident from this plot that

the ZOTTIG model is performing way better than the regular geometric model for the Swedish

fertility data.

4.2 Conclusion

This work deals with a general inflated geometric distribution (GIG) which can be thought of as a

generalization of the regular Geometric distribution. This type of distribution can effectively

model datasets with elevated counts. We have outlined the parameter estimation procedure for

this distribution using the method of moments estimation and the maximum likelihood estimation

techniques. Simulation studies were also performed and we found that MLEs performed better

than the corrected MMEs in estimating the model parameters with respect to the standardized

bias (SBias) and standardized mean squared errors (SMSE). While performing the simulation, we

observed that for certain ranges of the inflated proportions in the GIG models, the computation

algorithm for calculating MLEs did not converge. Nonetheless, we selected all permissible values

and compared the overall performance of the MLEs and CMMEs for three special cases of GIG.

Different GIG models were obtained by analyzing the fertility data of Swedish women, it is found

that the Zero-One-Two-Three inflated Geometric (ZOTTIG) model is a good fit. Because of the

extra parameter(s), the GIG distribution seems to be much more flexible in model fitting than the

regular geometric distribution.
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APPENDIX A

Algebraic Solutions for the Method of Moments Estimators

The general solutions for the system of equations (2.6) obtained using Mathematica is given

below:

π̂1 =
1

2(2m′1 − 3m′2 +m′3)
2
(8m′1

2
+ 7m′1

3 − 24m′1m
′
2 − 24m′1

2
m′2 + 18m′2

2
+ 33m′1m

′
2
2 − 18m′2

3

+ 8m′1m
′
3 − 5m′1

2
m′3 − 12m′2m

′
3 + 6m′1m

′
2m
′
3 + 3m′2

2
m′3 + 2m′3

2 − 2m′1m
′
3
2
)

π̂2 = −1 + 2m′1 +
3(m′1 −m′2)
m′1 −m′3

− 3(m′1 −m′2)m′2
m′1 −m′3

+
1

2(2m′1 − 3m′2 +m′3)
2
(8m′1

2
+ 7m′1

3 − 24m′1m
′
1m
′
2

− 24m′1
2
m′2 + 18m′2

2
+ 33m′1m

′
2
2 − 18m′2

3
+ 8m′1m

′
3 − 5m′1

2
m′3 − 12m′2m

′
3 + 6m′1m

′
2m
′
3 + 3m′2

2
m′3

+ 2m′3
2 − 2m′1m

′
3
2
)− 3(m′1 −m′2)

2(m′1 −m′3)(2m′1 − 3m′2 +m′3)
2
(8m′1

2
+ 7m′1

3 − 24m′1m
′
2 − 24m′1

2
m′2 + 18m′2

2

+ 33m′1m
′
2
2 − 18m′2

3
+ 8m′1m

′
3 − 5m′1

2
m′3 − 12m′2m

′
3 + 6m′1m

′
2m
′
3 + 3m′2

2
m′3 + 2m′3

2 − 2m′1m
′
3
2
)

p̂ =
3(m′1 −m′2)
(m′1 −m′3)

,

where m′r is the rth raw sample moment of the ZOIG distribution.
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For ZOTIG model the Mathematica solutions for the system of equations (2.7) are:

π̂1 =
1

6(6m′1 − 11m′2 + 6m′3 −m′4)3
(1296m′1

3
+ 424m′1

4 − 7128m′1
2
m′2 − 3508m′1

3
m′2 + 13068m′1m

′
2
2

+ 11746m′1
2
m′2

2 − 7986m′2
3 − 17967m′1m

′
2
3

+ 10299m′2
4

+ 3888m′1
2
m′3 − 136m′1

3
m′3 − 14256m′1m

′
2m
′
3

− 3456m′1
2
m′2m

′
3 + 13068m′2

2
m′3 + 15238m′1m

′
2
2
m′3 − 15378m′2

3
m′3 + 3888m′1m

′
3
2 − 696m′1

2
m′3

2

− 7128m′2m
′
3
2 − 3444m′1m

′
2m
′
3
2

+ 9016m′2
2
m′3

2
+ 1296m′3

3
+ 104m′1m

′
3
3 − 2552m′2m

′
3
3

+ 304m′3
4

− 648m′1
2
m′4 + 652m′1

3
m′4 + 2376m′1m

′
2m
′′
4 − 2384m′1

2
m′2m

′
4 − 2178m′2

2
m′4 + 2103m′1m

′
2
2
m′4

+ 135m′2
3
m′4 − 1296m′1m

′
3m
′
4 + 1368m′1

2
m′3m

′
4 + 2376m′2m

′
3m
′
4 − 2420m′1m

′
2m
′
3m
′
4 − 204m′2

2
m′3m

′
4

− 648m′3
2
m′4 + 636m′1m

′
3
2
m′4 + 196m′2m

′
3
2
m′4 − 64m′3

3
m′4 + 108m′1m

′
4
2 − 146m′1

2
m′4

2 − 198m′2m
′
4
2

+ 303m′1m
′
2m
′
4
2 − 63m′2

2
m′4

2
+ 108m′3m

′
4
2 − 146m′1m

′
3m
′
4
2

+ 30m′2m
′
3m
′
4
2

+ 4m′3
2
m′4

2 − 6m′4
3

+ 9m′1m
′
4
3 − 3m′2m

′
4
3
).

π̂2 =
1

3(6m′1 − 11m′2 + 6m′3 −m′4)2
(56m′1

3 − 148m′1
2
m′2 − 54m′1m

′
2
2

+ 249m′2
3

+ 144m′1
2
m′3

− 112m′1m
′
2m
′
3 − 300m′2

2
m′3 + 48m′1m

′
3
2

+ 152m′2m
′
3
2 − 32m′3

3 − 56m′1
2
m′4 + 120m′1m

′
2m
′
4

− 30m′2
2
m′4 − 56m′1m

′
3m
′
4 + 12m′2m

′
3m
′
4 + 4m′3

2
m′4 + 6m′1m

′
4
2 − 3m′2m

′
4
2
)

π̂3 =
−2m′1

2 + 3m′1m
′
2 + 3m′2

2 − 2m′1m
′
3 − 6m′2m

′
3 + 4m′3

2 + 3m′1m
′
4 − 3m′2m

′
4

6(6m′1 − 11m′2 + 6m′3 −m′4)

p̂ =
4(2m′1 − 3m′2 +m′3)

(2m′1 −m′2 − 2m′3 +m′4)

where m′r is the rth raw sample moment of the ZOTIG distribution.
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APPENDIX B

LETTER FROM INSTITUTIONAL RESEARCH BOARD
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Angewandte Mathematik und Mechanik 1 (1923), 279–289 (German).

[4] W. Feller, An introduction to probability theory and its applications, 3rd ed., vol. 1, John
Wiley & Sons, Inc, New York, 1968.

[5] , An introduction to probability theory and its applications, 3rd ed., vol. 2, John Wiley
& Sons, Inc, New York, 1971.

[6] P. Jagers, How many people pay their tram fares?, Journal of the American Statistical
Association 68 (1973), no. 344, 801–804.

[7] N. L. Johnson, S. Kotz, and A. W. Kemp, Univariate discrete distributions, 3rd ed., John
Wiley & Sons, Inc, Hoboken, New Jersey, 2005.

[8] M. Melkersson and D. O. Rooth, Modeling female fertility using inflated count data models,
Journal of Population Economics 13 (2000), no. 2, 189–203 (English).

[9] G. P. Patil, M. T. Boswell, S. W. Joshi, and M. V. Ratnaparkhi, Dictionary and classified
bibliography of statistical distributions in scientific work: Discrete models, vol. 1,
International Co-operative Publishing House, 1984.

[10] E. C. Pielou, Runs of one species with respect to another in transects through plant
populations, Biometrics 18 (1962), no. 4, 579–593.

[11] , Runs of healthy and diseased trees in transects through an infected forest, Biometrics
(1963), 603–614.

[12] P. Stewart, A generalized inflated poisson distribution, Master’s thesis, Marshall University,
2014.

[13] D. D. Wackerly, W. Mendenhall, and R. L. Scheaffer, Mathematical statistics with
applications, 7th ed., Cengage Learning, 2008.

32



Ram Datt Joshi

Department of Mathematics
Marshall University Phone: (304)638-4285
Huntington, WV 25755 Email: joshi3@marshall.edu

Education

• M.A Statistics
Marshall University, Huntington, WV, 2015
Thesis Advisor: Dr. Avishek Mallick

• M.S. Mathematics
Tribhuvan University, Kathmandu, Nepal, 1999

• Bachelor of Science
Tribhuvan University, Kathmandu, Nepal,1997 .

Publications

• United Mathematics ; ISBN 9937-582-17-2
A book for High School level students in Nepal for Grade 11 as a co-author on it.

Working Experience

• Worked as a lecturer of Mathematics at Geomatic Institute of Technology, Purbanchal
University, Nepal from 2008 to 2013.

• Worked as a lecturer of mathematics at National School of Sciences, Kathmandu from 2008
to 2013.

• Worked as a Mathematics teacher at Saraswati Higher Secondary School, Kailali, Nepal
from 2000 to 2008.

• Teaching the courses such as “Using and Understanding Mathematics- A quantitative
Reasoning Approach” and “College-Algebra” at Marshall University as an instructor of
record, Marshall University, West Virginia.

Trainings

• Participated in 15 days long conference on Nonlinear Systems and Summer School,
Kathmandu, Nepal; jointly organized by Embry-Riddle Aeronautical University, USA and
Tribhuvan University, Nepal, during the period of June 3-17, 2013. The courses attended
were:

Advanced Nonlinear Partial Differential Equations(30 hrs)

Numerical methods for Partial Differential Equations with Mat lab (30 hrs)

Nonlinear Analysis (15 hrs).

• Completed a Critical Thinking Workshop Conducted by the Center for Teaching and
Learning, Marshall University, WV.

33



Contributed Talks and Seminars

• Presented a talk on the topic “Generalized Inflated Geometric Distribution” at 99th MAA
Ohio Section meeting held at Marshall University from March 27-28, 2015.

Membership and Affiliation

• Member of American Statistical Association.

• Member of American Mathematical Society.

• Member of America-Nepal Mathematical Society.

• Life member of Nepal Mathematical Society.

Language Proficiency.

• Hindi, Nepali, English and Urdu.

Courses Taken

• Undergraduate Courses at TU, Nepal.
Physics, Chemistry, Mathematics.

• Graduate Courses at TU, Nepal.
Algebra,Mathematical Analysis,Complex variables and Differential Equations, Topology and
Differential Geometry,Mechanics, Functional Analysis and Integration, Integral Transforms,
Dynamics of Viscous Fluids and Distribution Theory.

• Graduate Courses taken at Marshall University, West Virginia.
Advanced Calculus, Game Theory, Probability and Statistics, Biostatistics, Regression
Analysis, Statistical Computation Using R, Stochastic Processes, Advanced Mathematical
Statistics, Multivariate Statistics, Design of experiments and, Survival Analysis.

34


	Marshall University
	Marshall Digital Scholar
	2015

	A Generalized Inflated Geometric Distribution
	Ram Datt Joshi
	Recommended Citation


	tmp.1437486036.pdf.yOet1

