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ABSTRACT 

Dendrimers are hyperbranched polymers with a tree-like structure that can be tuned for size, 

shape, and functionality. Dendrimers have exhibited numerous possibilities in chemical and 

biochemical processes as their use in host-guest systems and controlled gene and drug delivery 

vehicles. Distinct properties of dendrimers, such as well-defined architecture and high ratio of 

functional moieties to molecular volume, make these polymers substantially useful for the 

development of nanomaterials and medicines. It has recently been demonstrated that 

polypropylene-imine (PPI) dendrimers have specific physical properties that are well suited for 

many applications. More specifically, the nitrile-terminated dendrimer creates a unique 

environment that is both aprotic and polar. Increasing interest in the design and use of these 

dendrimer systems has created a need for new methods of physical and chemical 

characterization. The current techniques used for characterization tend to be slow and sample 

limited, even for monodisperse samples. Polydisperse samples are even more analytically 

challenging. This thesis used a rapid and precise analytical framework for the characterization of 

dendrimers by systematically probing the electrospray ionization mass spectrometry (ESI-MS) 

speciation and the gas-phase collision-induced dissociation (CID) fragmentation patterns for 

early generation (PPI) dendrimers. Two isotopically labeled dendrimer species were employed 

for unambiguous assignment of complex structures and mechanisms. Hypothesized mechanisms 

were verified, while one anomaly presented for the β-labeled dendrimer. Also, the fragmentation 

patterns of certain alkali and alkaline earth metal-dendrimer complexes were investigated. These 

complexes of +1 and +2 charges exhibited similar losses, including radicals.   
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CHAPTER ONE 

INTRODUCTION  

INTRODUCTION TO DENDRIMERS 

Dendrimers are hyperbranched polymers with a tree-like structure with size, shape, and 

functionality that can be tuned for a variety of purposes. Their unique structures, unmatched by 

traditional linear polymers, allow for use in a considerable amount of applications stretching 

across many fields. These macromolecules tend to possess distinctive properties such as well-

defined architecture, monodispersity, and high ratio of functional moieties to molecular volume, 

rendering dendrimers highly suitable for many sensitive functions.  

The general architecture of a dendrimer is seen in Figure 1. Instead of the common linear 

form of many polymers, dendrimers branch from a central monomer, or initiator core. Each layer 

of branching constitutes a new generation, indicated by each concentric circle in Figure 1. With 

successive addition of generations, void spaces begin to form within the interior. The periphery 

is created from the packing together of functional groups, dependent upon the composition of the 

monomer, which allows for chemical modification.  

 

Figure 1. General structure of a 4th generation (G4) dendrimer with A) core, B) branching 

interior, C) void spaces, and D) peripheral layer of functional groups. 
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Dendrimer Synthesis 

Dendrimers have two synthetic approaches – divergent and convergent. As the name 

suggests, divergent synthesis begins at a core molecule and grows out to the periphery after 

successive addition of monomers with repeated coupling and activation steps as seen in Figure 

2.1 Inversely, convergent synthesis has a step-wise method where segments of the dendrimers are 

synthesized inwardly from terminal groups as seen in Figure 3. Once the segments, or dendrons, 

are large enough, they are attached to the core. Each form of synthesis has its inherent strengths 

and weaknesses. Divergent synthesis is ideal for large-scale production of dendrimers due to the 

inherent control that exists with the coupling and activation steps. However, because the number 

of branches increases exponentially with increasing generations, the probability of incomplete 

functionalization or undesirable side reactions also increases with divergent synthesis.1  In 

contrast, convergent synthesis provides greater structural control, providing the attractive 

capabilities such as precisely placing functional groups throughout the structure, selectively 

modifying the focal point or the chain ends, and preparing well-defined asymmetrical 

dendrimers. Nevertheless, convergent synthesis pathways suffer such disadvantages as 

significant loss of product with succeeding coupling reactions and steric hindrance that prevents 

synthesis of dendrimers larger than approximately six generations.1 

 

Figure 2. Schematic of divergent dendrimer synthesis beginning with a core molecule and, with 

alternating coupling and activation steps, continuing generation addition. 
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Figure 3. Schematic of convergent dendrimer synthesis in which terminal groups are added to a 

protecting group and, after reaching desired number of generations, attachment to core.  

Historical Background of Dendrimers 

The very idea of a dendrimer-like polymer was envisioned in the early 1970s by Donald 

A. Tomalia, a synthetic polymer chemist for Dow Chemical, whose interest in horticulture fueled 

his desire to synthesize a polymer that exhibited branching, which one might see in biotic 

systems.2 In 1978, Fritz Vögtle et al reported the first dendrimer prototype using cascade 

synthesis with low yields, difficult product isolation, and inability to produce large enough 

molecules.3 The “cascadane” molecule that would later be known as the polypropylene imine 

(PPI) dendrimer required that the terminal cyano groups be reduced in order to increase its 

generation size. The homogeneous reducing agent CoCl2/NaBH4 was first used, which 

presumably complexed with the resulting product, causing the low yields and difficult product 

isolation. Eventually, in a modified synthesis constructed by Mülhaupt and Meijer at DSM, the 

cyano groups were reduced with H2 on Raney cobalt.4  Soon after Vögtle et al had introduced 

their flawed cascadane synthesis, the first true dendrimer was presented in 1984 at the First 

Polymer Conference for the Society of Polymer Science in Japan by the Tomalia group, then 

reported in 1985, wherein the detailed synthesis of the polyamidoamine (PAMAM) dendrimer 

was outlined.5,6 Another notable group in the history of dendrimer discovery is the Meijer group 
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that discovered the potential of these types of polymers to be used as “dendritic boxes” in 1994. 

The group enclosed rose Bengal and p-nitrobenzoic acid molecules inside of a fifth generation 

PPI dendrimer. 7 

Types of Dendrimers 

There are various ways to categorize dendrimers. First, as previously mentioned, 

dendrimers are described by generation number. Each new layer of branching groups added 

comprises another generation. Non-activated end groups of an added generation would be a half-

generation. Below are two examples – Figure 4 exhibits a G1, or first generation, PPI dendrimer, 

whereas Figure 5 shows the closely related G0.5, or half generation, PPI dendrimer. The only 

difference is the terminal functional group in which the full G1 has activated terminal amine 

groups and the G0.5 has non-activated terminal nitrile groups. Dendrimers will also be 

categorized by the monomers that create the branches. The PPI dendrimer is also referred to as 

POPAM, or Polypropylene Amine, designating its propylene amine branches.8 Finally, a 

dendrimer is also defined by its core, as a PPI dendrimer will also be titled as DAB-dendrimer 

for its diaminobutane core.8  

 

Figure 4. PPI dendrimer of 1st generation (G1) with terminal amine groups. This dendrimer is 

activated, allowing addition of more generations. 
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Figure 5. PPI dendrimer of half generation (G0.5) with terminal nitrile groups. Also referred to 

as first generation (G1) nitrile-terminated PPI dendrimer. Reduction of terminal groups must 

occur to create a dendrimer of larger generation. 

 The nitrile-terminated PPI dendrimer described above is the primary focus of this 

research, and will therefore be the dendrimer predominantly discussed. However, it should be 

noted that there are several other dendrimer designs, such as the previously mentioned PAMAM 

dendrimer, as well as Fréchet-type dendrimers with polybenzyl ether branching, or even 

dendrimers with biologically relevant building blocks like carbohydrates, amino acids, and 

nucleotides, all of which could have vastly different applications.8  

Dendrimer Applications 

A great deal of research has shown the numerous ways dendrimers could be used to 

enhance the technology of many different fields. Perhaps most acclaimed is the ability of 

dendrimers to be used in target-specific gene and drug delivery.9,10 Due to the nature of the their 

structure, with its spherical shape and internal void spaces, dendrimers are highly suited for 

encapsulation of drugs. The hydrophobic nature of dendrimer void spaces allows for interactions 

with drugs which are poorly soluble in aqueous solution.10 Furthermore, the high density of 

peripheral functional groups allows dendrimers to provide both electrostatic interaction and 

covalent conjugation upon drug contact to the exterior surface. Any of these three options for 
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drug interaction mechanisms will create viable drug delivery systems, with release of drug at 

target occurring through either environmental changes – such as temperature or pH – effectively 

releasing encapsulated and electrostatically-bound drugs, or chemical or enzymatic hydrolysis of 

covalent dendrimer-drug bonds.10  

In a similar sense, PAMAM and PPI dendrimers have been proven as successful vectors 

in gene therapy, providing more efficient transport of DNA into the cell nucleus than viruses or 

liposomes.10  Not only can this be attributed to the well-defined architecture of the spherical 

polymers, but also the low pKa of their peripheral amine groups. The amines provide a buffer for 

the changing pH of the endosomal compartment, achieving secure delivery of the genetic 

material into the cell.10 

Dendrimers have also found use in catalyst chemistry as carriers for metal nanoparticles. 

The attractive qualities for dendrimer-metal complexes in catalysis include prevention of 

nanoparticle agglomeration, unpassivated confinement of nanoparticles, selective gating of small 

substrates to the encapsulated nanoparticles, and adjustability of dendrimer periphery to control 

solubility of the hybrid nanocomposite.11 Metallodendrimers have four different general 

configurations that are solely dependent on the location of the metal – dendrimer-encapsulated 

metal nanoparticles (DEMNs), dendrimers modified on the periphery with metal ions or 

complexes, core metallodendrimers, and focal-point metallodendrimers.11  Of the four 

configurations, DEMNs tend to be very attractive for many catalytic reactions due to the 

commercial availability of PAMAM and PPI dendrimers, while the other three configurations 

require complete synthesis. 

 A very important palladium-catalyzed reaction in organic chemistry is the Heck reaction, 

a carbon-carbon coupling between aryl halides or vinyl halides and activated alkenes. Phosphine 
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ligands are normally used to stabilize the palladium complex, but due to its toxicity and high 

cost, efforts have been made towards finding operational phosphine-free systems.12 Research has 

shown that PAMAM dendrimers can encapsulate these Pd-nanoparticles to be used for the Heck 

reaction and the yields are fully comparable to that of a classical Heck procedure.13  

 With the aim of refining the design of artificial energy harvesting materials, research 

teams have sought after characteristics responsible for the high levels of efficiency in a wide 

variety of biomolecular systems that could harness solar energy. A key goal has been the 

accomplishment of similar levels of efficiency in synthetically less demanding materials, 

achieved by emulating the photobiological principles of photon capture.14 Dendrimers 

proficiently fulfill this goal. Using a multiplicity of peripheral chromophores, typically in the 

form of benzene rings, these light harvesting molecules absorb photons, producing short-lived 

electronic excited states, then utilize their inherent mechanism for rapid transfer of resulting 

excitation towards a central trapping site – also referred to as a stepwise resonance energy 

transfer (RET).14 This is the same sequence of events that occurs in typical solar energy capture 

materials, but dendrimers provide repeated branching that supports a special proliferation of 

chromophores on the outermost surface, as well as inner, chromophores that act with high 

efficiency as transient hosts for excited energy transfer to the central trap.14 

METHODS OF DENDRIMER CHARACTERIZATION 

 As made apparent by the small glimpse of a much larger picture of amassing dendrimer 

applications, these macromolecules are becoming increasingly vital to a number of scientific 

fields. Increasing interest in the design and use of these dendrimer systems has created a need for 

new methods of physical and chemical characterization. Currently, a wide array of 

instrumentation is used, each having its particular advantages for specific aspects of study. 
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Prevalent features for research include chemical composition, morphology, shape, and 

homogeneity of all types of dendrimers. Depending on desired area of analysis, certain 

instrumentation is more applicable. 

 A widely used routine analysis for dendrimers is nuclear magnetic resonance (NMR). 

NMR is particularly valuable during stepwise synthesis of dendrimers, even in higher 

generations, because it offers information about the chemical transformations undergone by 

peripheral functional groups.15 Organic dendrimers, such as PPI, are commonly observed by 1H- 

and 13C-NMR, but often selective irradiation or more complex pulse sequences are necessary for 

better assignment. Similar examination of change in terminal functional groups can be performed 

with infrared (IR) and Raman spectroscopy.17  

 For such applications as the light-harvesting dendrimer antennas previously discussed, 

UV-Visible spectroscopy (UV-Vis) is preferential for characterization. This form of 

spectroscopy is useful for monitoring dendritic systems in which there is a growth and decay of 

the metal-to-ligand charge transfer band, and the intensity of the absorption band is proportional 

to the number of chromophoric units.15 UV-Vis can also assist in determination of dendrimer 

purity, but this is restricted only to dendrimers with light absorbing functional groups, such as 

azobenzene, in the branches or at the terminal ends.  

 Mass spectrometry is normally considered to be one of the best methods to investigate 

dendrimers with respect to the presence and the nature of structural defects. It allows for 

environment-free conditions, and consequently, is very beneficial to use such instrumentation to 

examine the gas-phase chemistry, providing valuable new insight into properties which cannot 

easily be studied in solution.16 Classical mass spectrometry techniques, such as chemical 

ionization (CI) or fast atom bombardment (FAB) are confined to use for small dendrimers due to 
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their mass limitations, but other techniques frequently used for protein characterization are fitting 

for most dendrimers.15 Soft ionization techniques are employed due to excessive branching in 

dendrimer structures that could be too difficult to define with hard ionization techniques, like 

electron ionization (EI) mass spectrometry. Therefore, characterization of dendrimers is typically 

carried out with matrix-assisted laser desorption ionization time of flight (MALDI-TOF) or 

electrospray ionization mass spectrometry (ESI-MS), which use lasers and electrically-charged 

aerosol droplets, respectively, to ionize the analytes of interest. Both methods of ionization are 

powerful tools for dendrimer analysis due to their capability to gently transfer species from 

solution to the gas-phase while minimizing the fragmentation of the sample, permitting accurate 

molecular weight measurements and minimal sample consumption. 

ELECTROSPRAY IONIZATION MASS SPECTROMETRY 

 For the purposes of this study that focuses on fragmentation of dendrimer species, ESI-

MS is preferentially employed. As previously mentioned, ESI-MS is a soft ionization technique 

that utilizes an applied voltage to ionize an analyte of interest. Remarkably enough, the very idea 

of electrospray ionization was imagined, not by a biochemist in search of better protein 

characterization techniques, but a physical chemist searching for a mass spectrometry method 

that would better suit non-volatile synthetic polymers.18 In 1966, Professor Malcolm Dole of 

Northwestern University conceived the idea of ESI which led to his infamous paper in 1968.19 

The paper detailed his proposal to utilize an ionization method that could take advantage of what 

happens during the evaporation of solvent from a droplet that has a net electric charge. The paper 

also presented his preliminary experimental results using a solution of polystyrene molecules 

infused through a small bore tube maintained at high potential relative to a counter electrode.19 

Purportedly, Dole conceived this idea from learning about the electrospraying of paint on to 
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automobile bodies while working as a consultant for a paint company in Chicago.20 The 

electrospraying of paint relies on maintaining a potential difference between the sprayer and the 

object being painted. The result is enough charge on the paint droplets to attract them toward the 

object being painted, thereby decreasing substantially the loss of paint to the surroundings by 

convection currents.20 However, due to the unavailability of mass analyzers that could detect a 

large enough molecule size, Dole was incapable of using ESI in a mass spectrometer with the 

polystyrene molecules he wanted to examine. It was not until 1982 that the first fully-operational 

ESI-MS was constructed and demonstrated in Dr. John Fenn’s lab at Yale University by a post-

doc student.20 

ESI probe 

ESI is useful for large non-volatile, polar molecules that are heat-labile, normally unable 

to be studied with conventional mass spectrometry methods.21 Analyte in solution is injected into 

the system through the syringe pump. Continuous sample is pumped through a capillary into the 

atmospheric pressure ionization (API) source where it is nebulized with nitrogen gas, rendering 

the sample to gaseous form. An applied voltage, commonly in the range of 2kV-6kV, is applied 

to the needle, spraying the sample solution into a fine mist of charged droplets.18 The ESI probe 

can be seen in Figure 6. 

10 
 



Figure 6. Scheme depicting analyte ionization process from ESI probe to API source. 

 Demonstrated in Figure 6, the sample leaves the ESI probe and enters the API source as a 

large charged droplet, containing both analyte of interest and solvent. The solvent is volatile, 

commonly methanol or acetonitrile. A combination of the nitrogen gas and the relatively low 

atmospheric pressure in the API source promotes solvent evaporation.20 As the solvent 

evaporates, the density of charges on the surface increases to a critical value, known as the 

Rayleigh limit, when Coulomb repulsion overcomes surface tension.22 This phenomenon 

continues until the analyte is almost entirely desolvated.  

Mass Analyzer 

Ions then travel through a heated ion transfer capillary which further aids in desolvation 

of the sample. It is then that the ions are transferred through ion optics into the mass analyzer. 

The mass analyzer is the location of ion storage, ion isolation, collision-induced dissociation 

(CID) and ion scanout.23 A quadrupole ion-trap is the mass analyzer in the instrument used for 

this research. Quadrupole refers to the existences of four parallel metal rods, each opposing rod 

being electrically connected. Between the two pairs of rods, a radio-frequency (RF) voltage is 
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applied, producing a three-dimensional quadrupole field. Ions are driven into the field in the z-

direction as seen in Figure 7. 

 During ion scanout, when an ion of specific mass-to-charge ratio is selected and isolated, 

the RF voltage is increased, causing all other ions to become unstable in the x,y-direction. At this 

point, the ions not selected are ejected from the ion trap. With one single isolated ion of specific 

mass-to-charge ratio, it is now possible to perform collision-induced dissociation. This 

experimental method allows a parent-ion, created from direct ionization by electrospray, to 

collide with helium gas, a neutral collision activation partner. Collisions between the parent ion 

and a neutral target gas are accompanied by an increase in internal energy, which induces 

fragmentation.24 This action is also referred to as tandem mass spectrometry (MS/MS or MSn) 

and results in the creation of daughter ions. Continuing steps of specific daughter ion isolation 

and subsequent collision-induced dissociation can be accomplished, up to n=10, yielding a 

unique fragmentation pathway.  

Figure 7. Cut-out view of quadrupole ion-trap. Ions enter from API source through ion optics, 

propelled in the z-direction by the applied RF voltage on the rods.  
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CHAPTER TWO 

MOTIVATION 

 The primary motivation behind this thesis is to improve upon a rapid and precise 

analytical framework to characterize nitrile-terminated PPI dendrimers. The list of possibilities 

for this particular dendrimer system could be as expansive as its amine-terminated counterpart, 

yet completely distinctive. The absence of any published research to investigate the nitrile-

terminated PPI dendrimer is evident. Nitrile-terminated PPI dendrimers create a unique 

environment which is both aprotic and polar, unlike that of the closely related amine-terminated 

PPI dendrimer. To analyze the structure, and consequently its behavior in gas-phase, of the 

nitrile-terminated PPI dendrimer is to comprehend the capabilities it possesses in future 

applications.  In order to create such an analytical framework, the complete fragmentation 

pathways of such species must be accurately elucidated. This research is designed to develop a 

rapid and precise analytical framework for the characterization of dendrimers by systematically 

probing the ESI-MS speciation and the gas-phase CID fragmentation patterns and mechanisms 

for early generation PPI dendrimers. ESI-MS has not been used extensively for characterizing 

dendrimers; however, it has been successfully applied in the characterization of the structure and 

stability of biopolymers, classical polymers, and non-covalent and organometallic complexes. 

Additionally, understanding the gas-phase chemistry of dendrimers may play a critical role in 

determining the stability of the polymer by providing insight into the physical properties and 

reactions that dominate these particular molecules. The CID-ESI-MS data is most effectively 

used to elucidate structure and mechanistic pathways if it is augmented by computational 

methods which are presented.  
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PREVIOUS ESI-MS DATA 

 Previous research in this lab has been conducted to elucidate pathways of the amine- and 

nitrile-terminated G1 and G2 PPI dendrimers complexed with various metals.25,26 The former, as 

well as previous studies in other lab groups, also conducted research on fragmentation of the 1st 

generation amine-terminated PPI dendrimer in the absence of a metal ion, demonstrating the gas-

phase fragmentation mechanisms of PPI dendrimers as suggested by tandem mass 

spectrometry.25,16,27 Research then focused on nitrile-terminated PPI dendrimers and their 

respective fragmentation pathways.28 The original spectra for both amine- and nitrile-terminated 

PPI dendrimers are displayed in Figures 8 and 9.25,26  

 

Figure 8. MS2 spectra for parent ion of 317 m/z corresponding to 1st generation (G1) amine-

terminated PPI dendrimer fragmenting to one structure of 186 m/z. 
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Figure 9. A) MS2 spectra for parent ion of 301 m/z corresponding to 1st generation (G1) nitrile-

terminated PPI dendrimer having two fragmentation pathways at 260 m/z and 178 m/z. B) MS3 

of 260 m/z daughter ion showing collision-induced dissociation results, demonstrating the 

fragmentation pattern with daughter ions of high state population at 176 m/z and 137 m/z.  
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 The multiple low-energy CID conditions and 30 ms kinetic window used in both 

experiments are not expected to develop an effective internal temperature (Teff) of more than 500 

K. Under these conditions, a simple Eyring analyses of the relative abundance of these ions 

shows that the ΔG‡ for these competing pathways must be less than 10 kJ/mole. 

Notably, the G1 amine-terminated PPI dendrimer has only one pathway of fragmentation 

with parent ion of 317 m/z experiencing a loss of neutral 131 mass units for a daughter ion of 

186 m/z. The mechanism for this fragmentation is presented in Figure 10.25 On the other hand, 

the G1 nitrile-terminated PPI dendrimer has two pathways of fragmentaiton having parent ion of 

301 m/z with a loss of 41 mass units to give a daughter ion of 260 m/z, as well as a loss of 123 

mass units to give a daughter ion of 178 m/z.  

Figure 10. Determined mechanism for loss of neutral 131 fragment seen on right to give 186 m/z 

daughter ion.  

This research seeks to elucidate further down the 260 m/z fragmentation pathway since 

no corresponding pathway exists for the amine-terminated PPI dendrimer. Upon first 

examination of the MS3 for the 260 m/z structure, it would seem as though there are only two 

structures of interest – the two fragments at 176 m/z and 137 m/z. Ab intio quantum calculations 

were performed in order to verify that which is seen in the experimental CID-ESI-MS data. 
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PREVIOUS COMPUTATIONAL DATA  

As previously stated, the CID-ESI-MS is most effective when coupled with 

computational methods. Previous research focused on modeling the gas-phase dissociation 

energy surface for the transition states and respective products resulting from fragmentation of 

the 260 m/z structure.29 This research was accomplished with complete basis set-quadratic 

Becke3 (CBS-QB3) quantum calculations. Normally, the accurate computation of 

thermochemical quantities requires the use of elaborate quantum mechanical methods accounting 

for both static and dynamic electron correlation effects, as well as the limitations of finite basis 

sets. Unfortunately, such methods have very high computational cost and are therefore confined 

to small system investigations. Composite methods have been developed with the aim of 

reaching chemical accuracy in larger systems. The CBS-QB3 method belongs to a family of 

Complete Basis Set (CBS) methods developed by Petersson and co-workers that falls under the 

umbrella of composite methods.30 In these calculations, the following steps are involved. 

Optimization and frequency calculations are performed at the B3LYP/CBSB7 level. Afterwards, 

single point calculations are performed at CCSD(T)/6-31+G(dʼ) and MP4SDQ/CBSB4 levels. 

The total energy is extrapolated to the infinite-basis-set limit using pair natural-orbital energies at 

the MP2/CBSB3 level and an additive correction to the CCSD(T) level.30 Figure 11 graphically 

demonstrates the benefits of using CBS-QB3 quantum methods. Theoretically, exact molecular 

energies are calculated by full electron correlation, or full configuration interaction (Full CI) and 

full basis set of the chemical system, but this is far too computationally expensive.  
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Figure 11. Graphic representation of CBS-QB3 quantum methods. CBS-QB3 composite methods 

have shown accuracy within 1.1kcal/mol in comparison with Gaussian 2 (G2) test set. 

By utilizing CBS-QB3 calculations, the mechanisms, transition states, and respective 

products should have been verified for the 260 m/z pathway, allowing for a precise analysis of 

the G1 nitrile-terminated PPI dendrimer. The resulting CBS-QB3 energy surface is shown in 

Figure 12. All dissociation channel transition states involve an internal nucleophilic attack on a 

carbon adjacent to the positively charged nitrogen. All non-dissociative reaction channels 

involve either a hydride-shift or proton-transfer mechanism resulting in a complex network of 

double bond migrations. Interestingly, the reaction barriers leading to the formation of the 

pyrrolidinium – low abundance in mass spectra with m/z of 139 and 178 – moieties are lower 

than those for the pyrrolinium – high abundance in mass spectra with m/z 137 and 176 – ions. 
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Figure 12. CBS-QB3 energy surface for the gas-phase dissociation pathways of the 260 m/z ion. 

Transition states marked in blue. Six dissociation channels in red yield four products. 
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DATA INCONSISTENCIES AND RESEARCH METHODS 

Clearly, the results obtained from these computational methods indicated a discrepancy 

between theoretical calculations and experimental CID-ESI-MS data. Theoretically, the 

energetically favored pyrrolidinium fragments at 178 and 139 m/z should have higher, or at least 

competing, relative abundances in the CID-ESI-MS spectra. However, as observed in Figure 9B, 

the pyrrolidinium ions are small fractions when compared to the pyrrolinium ions of 176 and 137 

m/z. In order to address such inconsistencies, further research consisted of two areas: synthesis 

of isotopically labeled PPI dendrimers and subsequent kinetic experiments with CID-MS at 

varying activation times (between 3 ms and 3000 ms) with corresponding collision energies. For 

the latter, the hypothesis was that the kinetic window formerly used allowed for too much 

random sampling, creating these misleading state populations. Hypothetically, in order to see 

experimental results more cohesive with theoretical results, the kinetic window must be 

expanded to allow less of the low energy double bond migrations to occur that would lead to the 

pyrrolinium ions. However, upon varying the kinetic window, it was determined that the 260 m/z 

ion was impervious to sampling in the range of kinetic windows available within this technique. 

To unambiguously assign these fragments and the formation mechanisms, isotopic 

labeling is utilized. Due to the extensive branching of these systems, the dissociation studies 

result in fragmentation products of mass-to-charge ratios that can be assigned to multiple 

possible isomers formed by potentially competing mechanisms. CID mass spectra of dendrimer 

complexes with strategically labeled isotopes are compared to systems containing a natural 

abundance of isotopes to determine which atoms and functional groups are involved in the 

reaction, thus providing structural information. Supplemental results include the analysis of G1 

nitrile-terminated PPI dendrimers complexed with alkali and alkaline earth metals.   
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CHAPTER THREE 

EXPERIMENTAL 

MATERIALS 

Acrylonitrile, isopropanol, acetonitrile, methanol, and 2.4 M lithium aluminum hydride 

(LAH) in tetrahydrofuran (THF) were purchased from Acros Organics. Lithium aluminum 

deuteride (LAD), putrescine, succinamide, and d4-succinonitrile were purchased from Sigma 

Aldrich. Diethyl ether, acetic acid, formaldehyde, and potassium acetate were purchased from 

Fisher Scientific. Sodium acetate was purchased from Mallinckrodt. Magnesium hydroxide was 

purchased from Columbus Chemicals Industries. Calcium acetate was purchased from Matheson 

Coleman and Bell (MCB). All CID-ESI-MS experiments were performed with the 

ThermoFinnigan LCQ Ion-Trap Mass Spectrometer and analyzed with Xcalibur software. 

METHODS 

Synthesis of 1st Generation Nitrile-terminated PPI Dendrimer 

In order to synthesize the G1 nitrile-terminated PPI dendrimer, a small-scale modified 

procedure of van der Wal et al is followed.31 The reaction begins with 1,4-diaminobutane, 

commonly known as putrescine, and continues with a four to one Michael addition with 

acrylonitrile in a distilled water environment. Synthesis starts with 0.10 mL of 1,4-

diaminobutane in a 10 mL round bottom flask equipped with a spin vane. Then, 1.0 mL of 

distilled H2O is added to the reaction flask, along with 0.50 mL of acrylonitrile, which is over a 

four to one molar ratio of acrylonitrile to 1,4-diaminobutane. Upon combination, two initial 

layers form – a bottom aqueous layer and top organic layer. While stirring, the reaction flask is 

heated in a hot water bath of 80°C for one hour. The mixture is then left to cool and stir 
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overnight. After one night, the mixture is still in two layers – the top, transparent yellow layer 

with the dendrimer and the bottom, cloudy colorless layer. This reaction is depicted in Figure 13. 

 

Figure 13. Michael addition reaction between 1,4-diaminobutane with acrylonitrile in distilled 

water solvent to give the G1 nitrile-terminated PPI dendrimer.  

Synthesis of Isotopically Labeled Dendrimer Cores 

 In order to unambiguously assign peaks in the mass spectrum, isotopically-labeled 

dendrimers are subjected to collision-induced dissociation. Isotopically-labeled dendrimers are 

synthesized by specifically placed deuterium on the 1,4-diaminobutane core. Deuterium atoms 

are located on the α-carbons – the carbons adjacent to the terminal amine groups – or β carbons – 

the carbons furthest from the terminal amine groups.  

 In order to synthesize the α-labeled core, the reaction begins with succinamide. In a 10 

mL round bottom flask, 0.10 grams of succinamide and 0.20 grams of lithium aluminum 

deuteride (LiAlD4 or LAD) are placed with a stir bar. A rubber septum is placed on top of the 

flask and the flask is purged with N2 gas throughout the whole reduction reaction. Reaction 

vessel is suspended in an ice/acetone bath on a stir plate. Dropwise, about 5.0 mL of THF is 

added with a glass syringe to the succinamide with violent reaction. Once all of the THF is 

added, remove syringe and continue stirring. To make sure there is excess LAD, add one drop of 

water – noticeable reaction shows there is excess LAD, or all succinamide is reacted. System is 
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closed and left to stir overnight. After leaving the reaction to stir, product is quenched with about 

7 mL of isopropanol to remove excess LAD. Once all LAD is quenched, product is vacuum 

filtered, rinsing with diethyl ether. The product filtrate is streamed with nitrogen gas to evaporate 

most of the ether, leaving the α-d4-1,4-diaminobutane. The reaction is displayed in Figure 14.  

 

Figure 14. Reduction reaction of succinamide with LiAlD4 in THF to give α-labeled core.  

 The synthesis for the β-labeled core is similar, except the reaction begins with an 

isotopically labeled molecule – d4-succinonitrile. In a 50 mL pear shaped flask with sideneck 

joint, 0.35 grams d4-succinonitrile is added along with a spin vane. The main neck joint is 

equipped with a 50 mL cylindrical addition funnel with stopcock for gradual addition of reducing 

agent. Nitrogen gas is streamed into the system through a rubber septum on the sideneck joint, 

and a rubber septum closes off the top joint of the addition funnel as well. The entire system is 

also suspended in an ice/acetone bath. Excess dry THF is also used to solvate the d4-

succinonitrile. With a glass syringe, 3-4 mL of dry tetrahydrofuran (THF) is added to solvate the 

succinamide, as well as to allow the reaction to remain stirring during the entire reaction. The 

reaction uses lithium aluminum hydride (LiAlH4 or LAH) as a reducing agent. About 5.0 mL of 

2.4 M LAH in THF is drawn up in a glass syringe and added into the addition funnel with 

stopcock closed. LAH/THF solution is also added dropwise, presenting a very violent reaction. If 
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reaction becomes too solid, excess THF is added to the vessel. To make sure there is excess 

LAH, add one drop of water – noticeable reaction shows all d4-succinonitrile is reacted. The 

reaction is then left to stir overnight. The next day, reaction is quenched with about 8.0 mL of 

isopropanol, vacuum filtered, and rinsed with diethyl ether. Excess ether in product filtrate is 

evaporated off with nitrogen stream. The remaining oily liquid is the β-d4-1,4-diaminobutane. 

The reaction is presented in Figure 15.  

 

Figure 15. Reduction reaction of d4-succinonitrile with LiAlH4 in THF to give β-labeled core. 

Synthesis of Isotopically Labeled G1 Nitrile-Terminated PPI Dendrimer 

 To synthesize both the α- and β-labeled first generation dendrimers, the same procedure 

for the G1 nitrile-terminated PPI dendrimer is followed with a Michael addition reaction with 

four to one ratio of acrylonitrile to the α-d4-diaminobutane or β-d4-diaminobutane in water. The 

α- and β-labeled Michael reactions are displayed in Figure 16 and Figure 17, respectively. 
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Figure 16. Michael addition reaction with α-d4-diaminobutane and acrylonitrile in distilled water 

solvent to give isotopically labeled G1 nitrile-terminated PPI dendrimer. 

Figure 17. Michael addition reaction with β-d4-diaminobutane and acrylonitrile in distilled water 

solvent to give isotopically labeled G1 nitrile-terminated PPI dendrimer.  

Synthesis of 260 m/z structure 

 To verify the starting structure for the MS3 fragmentation pathway, it is valuable to 

directly synthesize the hypothesized structure for the 260 m/z daughter ion and perform MS2 

collision-induced dissociation. Fragmentation patterns are compared for confirmation of initial 

structure. Synthesizing the structure that corresponds to the 260 m/z daughter ion begins much 

like the synthesis of the G1 nitrile-terminated dendrimer. However, instead of using four times 

the molar amount of acrylonitrile, only about two times the molar amount of acrylonitrile is used; 

here, the aim is to only add acrylonitrile to three out of the four available nitrogen bonds. 
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 The synthesis normally begins with about 0.10 mL of 1,4-diaminobutane. The 1,4-

diaminobutane is placed in a 10 mL round bottom flask with about 1.0 mL of distilled water. 

Approximately 0.15 mL of acrylonitrile is added and solution is left to stir at 80°C for one hour. 

At this point in the reaction, excess formaldehyde – about 0.50 mL – and one drop of methanol is 

added. The formaldehyde allows for amine addition to the carbonyl, followed by loss of water. 

The remaining product should be the 1,4-diaminobutane core with three arms and an imine. The 

reaction is shown in Figure 18. 

Figure 18. Michael reaction with 1,4-diaminobutane and acrylonitrile in a distilled water solvent, 

followed by imine formation with excess formaldehyde and methanol to yield 260 m/z product. 

 To form the structure corresponding to the 264 m/z daughter ion, or the 260 m/z structure 

with either α- or β-labeled carbons, synthesis procedure follows along identical to that of the 260 

m/z. Beginning with desired isotopically labeled core, a Michael addition reaction with about 

two times the molar ratio of acrylonitrile in a distilled water solvent is initiated. Reaction is left 

to stir for about 30 minutes. Then excess amount of formaldehyde and one drop of methanol is 

added. These reactions are displayed in Figure 19 and Figure 20.  
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Figure 19. Michael reaction with α-d4-diaminobutane and acrylonitrile in a distilled water 

solvent, followed by imine formation with excess formaldehyde and methanol to yield 264 m/z 

product. 

Figure 20. Michael reaction with β-d4-diaminobutane and acrylonitrile in a distilled water 

solvent, followed by imine formation with excess formaldehyde and methanol to yield 264 m/z 

product. 

Alkali and Alkaline Earth Metal Solutions 

  Adding 0.15 grams of CH3COONa-3H2O to 10 mL of distilled water creates a 0.1M 

sodium acetate solution. Adding 0.21 grams of MgCl2-6H2O to 10 mL of distilled water creates a 

0.1 M magnesium chloride solution. Adding 0.10 grams of CH3COOK to 10 mL of distilled 

water forms a 0.1 M potassium acetate solution. Finally, adding 0.18 grams of Ca(COOCH3)2-

H2O to 10 mL of distilled water forms a 0.1 M calcium acetate solution.  
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Mass Spectrometry 

 Samples used for electrospray are created by combining approximately 0.10 mL of 

concentrated sample, 1.4 mL of a 1:1 mixture of acetonitrile and distilled water, and one drop of 

acetic acid. For the 260 m/z and 260 m/z directly synthesized samples, a 1:1 mixture of methanol 

and distilled water is used instead. Alkali and alkaline earth metal solutions are combined in a 

1:1 ratio with the dendrimer samples and acetic acid is not added. Approximately 0.50 mL of the 

sample is drawn into syringe for automatic dispensing into the mass spectrometer by way of 

syringe pump. Sample is introduced into the system at a flow rate of 6 μL/min with a source 

voltage normally kept around 4.1 kV. Data was collected and taken over a period of 100 total 

scans to be averaged. Activation amplitude and time varied, depending on the purpose, but 

normal activation time of 30 ms with corresponding activation amplitude was most commonly 

used.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

ISOTOPICALLY LABELED DENDRIMERS 

 After synthesis of isotopically labeled species, fragmentation studies are performed. By 

labeling α- & β-carbons in the nitrile-terminated PPI dendrimers, the movement of protons about 

the energy surface is unambiguously determined. Daughter ions differing in mass-to-charge ratio 

are produced depending on the location of deuterium atoms.  

Hypothesized Isotopic Structures  

The hypothesized gas-phase fragmentation mechanisms and resulting daughter ion 

products are outlined in Figure 21 and Figure 22.  The movement of α-deuterium (in red) is 

followed to yield corresponding daughter ions, referred to as deuterated outer carbon structures, 

or DOC. The movement of β-deuterium (in blue) is seen to yield the corresponding daughter 

ions, referred to as deuterated inner carbon structures, or DIC. By comparing the physical CID-

ESI-MS results for the hypothesized isotopically labeled dendrimer fragments, appropriate 

mechanisms and structures are verified or rejected. 
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Figure 21. Hypothesized isotopic structures near the 180 m/z range. Pathways demonstrate many 

double bond migrations and deuteride shifts, as in the CBS-QB3 energy surface.  

Figure 21 begins with the MIN 1A structure, which is the starting point for the 260 m/z 

MS3 pathway. The three other MIN 1A structures – 1A.2, 1A.3, and 1A.4 – are similar imine 

structures resulting from varying α-deuteride shifts with MIN 2A transition state structures. 

Direct dissociation products resulting from internal nucleophilic substitution of MIN 1A 

structures could potentially yield four different structures. The DOC resulting structures could 

have fragments of 182, 181 and 180 m/z. On the other hand, the DIC resulting structure should 

only reveal a direct dissociation product of 182 m/z, with all deuterium atoms on initial β-

carbons. It is important to note that these structures correspond to the saturated ring structure of 

178 m/z in the energy surface in Figure 12.  

DIC 182 
DOC 180 
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After α-deuteride shifts occur in MIN 1A structures to give MIN 2A transition state 

structures, the nucleophilic nitrogen can attack a β-deuterium causing a double bond migration, 

giving an alternative to direct dissociation. The transitions consequential of these double bond 

migrations are represented in the MIN 3A structures – 3A.1, 3A.2, and 3A.3. It is now the 

opposing nitrogen which is nucleophilic and will attack the furthest carbon to form a ringed 

structure with the loss of a secondary amine. The DOC species could produce structures of 179 

m/z and 178 m/z by following this dissociation pathway. The DIC species, however, should once 

again only produce one value for a mass-to-charge ratio – 179 m/z. These structure directly 

correspond to the unsaturated ring structure of 176 m/z in the energy surface in Figure 12.  

The connection between Figure 21 and Figure 22 are the two shared structures – MIN 

2B.1 and MIN 2B.2 The MIN 2B structures are characterized by internal double bond to the 

nitrogen previously nucleophilic in the MIN 2A structures. The molecule can then follow a path 

giving way to a hydride shift from an arm hydrogen, yielding MIN 1A structures. Then 

subsequent nucleophilic substitution for neutral loss of a secondary aldimine results in the four 

possible saturated ring structures. The DOC resulting structures could have mass-to-charge ratios 

of 143 and 142 depending on the loss of a deuterium in the aldimine. Alternatively, the DIC 

resulting structures should only result in one mass-to-charge ratio of 143, since no β-deuterium 

move. 
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Figure 22. Hypothesized isotopic structures near the 140 m/z range. Pathways demonstrate 

double bond migrations and deuteride shifts, as in the CBS-QB3 energy surface.  

 Otherwise, the MIN 2B structures could undergo double bond migration caused by 

nucleophilic attack of the nitrogen on the furthest α-deuterium. This movement results in the 

MIN 3B transition state structures. Similar to the mechanism of MIN 3A structures, the MIN 3B 

structures can form the ring structures of varying mass-to-charge ratios resultant of the 

nucleophilic attack of the nitrogen and subsequent neutral loss of the primary amine. The DOC 

structure can result in mass-to-charge ratios of 141 and 140, while yet again, little movement 

should occur with the β-deuterium, leaving the DIC structure to have only one possible mass-to-

charge ratio of 140.  
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CID-ESI-MS Studies of DOC Structures 

The first isotopically labeled species investigated was the DOC 1st generation nitrile-

terminated PPI dendrimers. The initial CID-ESI-MS spectrum of parent ion 305 m/z is shown in 

Figure 23. The two fragmentation pathways of high population are 264 m/z and 182 m/z, each 

corresponding to the imine species of 260 m/z and ring structure of 178 m/z in the fragmentation 

of the non-isotopic nitrile-terminated PPI dendrimer.  

 

Figure 23. MS2 of DOC 305 m/z synthesized dendrimer conducted at activation amplitude of 

23% and normal activation time of 30 ms resulting in two fragmentation pathways of 264 m/z 

and 182 m/z.  
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 At an attempt to follow hypothesis of varying kinetic window to change state 

populations, various activation times – 3000 ms, 300 ms, 6 ms, and 3 ms – were tested for the 

MS2 pathway. The underlying aim was to increase the population of the 264 m/z for better 

resolution further down this fragmentation pathway. It was determined that the activation time of 

3 ms completed this task fittingly, increasing the relative abundance by over 20%. The resulting 

spectrum with 3 ms activation time is presented in Figure 24.  

Figure 24. MS2 of DOC 305 m/z synthesized dendrimer conducted at activation amplitude of 

42% and faster activation time of 3 ms resulting in the same two fragmentation pathways, but 

larger relative abundance of 264 m/z in comparison to 30 ms kinetic window.  
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Utilizing the larger state population of the 264 m/z daughter ion, further CID-ESI-MS 

was performed on this ion. The resulting fragmentation is shown in Figure 25. Two 

fragmentation pathways of high relative abundances result at 179 m/z and 141 m/z. Compared to 

the hypothesized structures in Figure 21 and Figure 22, respectively, it can be assumed that these 

daughter ion peaks will correspond with the unsaturated ring structures. Further zoom scans were 

performed to see the presence of other hypothesized daughter ion mass-to-charge ratios.  

Figure 25. MS3 of 264 m/z daughter ion at normal kinetic window of 30 ms yielding two 

fragmentation pathways of large relative abundances at 179 m/z and 141 m/z.  

To verify starting 264 m/z structure, a parallel CID-ESI-MS study was performed on the 

directly synthesized 264 m/z structure. The resulting fragmentation pattern is shown in Figure 26 

for comparison. It is clear that the two spectra in Figure 25 and Figure 26 have identical 

fragmentation patterns – therefore the MIN 1A structure is verified. The structures for the 305 

m/z DOC dendrimer and 264 m/z DOC structure are displayed in Table 1.  
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Figure 26. MS2 of directly synthesized DOC 264 m/z species at activation amplitude of 28% and 

activation time of 30 ms yielding daughter ions at 179 m/z and 141 m/z.  

 

m/z 305 m/z 264 m/z 

Verified 

Structure 

  

Table 1. Verified structures for DOC 305 m/z G1 dendrimer and daughter ion of 264 m/z.  
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Zoom scans centered on each mass-to-charge ratio peak of high abundance in the DOC 

MS3 spectrum were taken. The zoom scans correspond to the general range of mass-to-charge 

ratio seen in the hypothesized structures in Figure 21 and Figure 22. The MS3 zoom scan 

centered around 179 m/z is presented in Figure 27. The well-defined leading daughter ion is that 

of the m/z 179. Two other mass-to-charge ratios stand out as structures with noticeable state 

population – 178 m/z and 182 m/z. However, the relative abundances still fall below 10% of the 

179 m/z species. The 178 m/z structure also corresponds to two possible unsaturated ring 

structures, much like that of the 179 m/z species. Alternatively, the 182 m/z peak does 

correspond to a saturated ring structure; 182 m/z is the product of direct nucleophilic substitution 

immediately fragmenting from the 264 m/z. This further reinforces the CID-ESI-MS of the 

original 260 m/z yielding highly populated unsaturated ring structure over saturated ring 

structure coming from direct dissociation.  

Figure 27. Zoom scan around 179 m/z for the DOC MS3 spectrum.  
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 It is also evident from the zoom spectrum that very little isotopic scrambling occurs, even 

for larger kinetic windows. The same abundances were resultant for zoom scans at 3000 ms. The 

179 m/z and 182 m/z can only result from a combination of one deuteride shift and double bond 

migration or direct dissociation, respectively. The low abundances for 181 m/z, 180 m/z, and 178 

m/z in comparison with their respective higher abundance structures suggest only minor 

deviation from the more direct mechanisms to other transition states that arise from further 

deuteride shifting and double bond migration. Also evident through this zoom scan is the 

location and movement of hydrides during fragmentation. The favored mechanisms for the DOC 

264 m/z structure are shown in Figure 28. 
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Figure 28. Favored mechanisms for DOC MIN 1A.1 264 m/z structure yielding predominately 

179 m/z with MIN 2A.1 and MIN 3A.1 transition states and only slight population of saturated 

ring structure of 182 m/z from direct nucleophilic substitution.  

 The zoom scan around the 141 m/z peak seen with high state population in the MS3 is 

shown in Figure 29. Clearly 141 m/z surpasses the relative abundance of all other possible 

structures with 94% higher population than the next closest peak at 143 m/z.  Peaks at 143 m/z 
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and 140 m/z have the next highest state population. By comparing this zoom scan to the 

hypothesized structures in Figure 22, it is once again evident that little deviation from the most 

direct pathways occurs. The structures around this m/z range originate from the 260 m/z MIN 

1A.1 structure through the subsequent transitions leading to the MIN 2B.1 and MIN 2B.2 

transition state structures. It is from these two structures that a hydride shift can lead to direct 

nucleophilic substitution producing the possible 143 m/z structures, or nucleophilic attack of a 

nitrogen on a β-carbon hydrogen with subsequent double bond migration and ring formation to 

yield the 141 m/z structure. Interesting enough, the presence of 140 m/z suggests some deviation 

from direct pathways, as the channel it follows is quite convoluted in comparison.  

Figure 29. Zoom scan around 141 m/z for the DOC MS3 spectrum.  

 The favored mechanisms indicated by the zoom spectrum around 141 m/z are indicated 

in Figure 30. In the first indicated mechanisms for the 179 m/z range, it is suggested that the 
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primary transition states appear to be the MIN 2A.1 and MIN 3A.1 transition state structures 

specified by the higher relative abundances of certain mass-to-charge ratios. Therefore, the only 

mechanisms that will be presented are those originating from the MIN 2B.1 transition state 

structure.  

 

Figure 30. Favored mechanism for formation of highly populated 141 m/z unsaturated ring 

structure from the MIN 1A.1 264 m/z, as well as 140 m/z and 143 m/z ring structures.  
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CID-ESI-MS Studies of DIC Structures 

 By examining the possible structures for the hypothesized transition states and resulting 

fragments for the DIC structures, it is apparent that variation of m/z is not as prominent when 

compared to the varying m/z of the DOC structures. The lack of changing m/z values stems from 

the hypothesis that most of the mechanisms involve movement of α-hydrogens. Investigating 

these structures, however, will still verify or reject the mechanisms set in place by DOC 

structures. The resulting CID-ESI-MS spectrum from the DIC 305 m/z parent ion is presented in 

Figure 31.  

Figure 31. MS2 of DIC 305 m/z synthesized dendrimer conducted at activation amplitude of 17% 

and normal activation time of 30 ms resulting in two fragmentation pathways of 264 m/z and 182 

m/z. 
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 The MS2 fragmentation for the DIC presents the same daughter ions as the DOC. This 

suggests that the 264 m/z is, in fact, the same starting structure as the structure which was 

verified for the DOC dendrimer. The true structures for the DIC 305 m/z and 264 m/z are 

displayed in Table 2.  

m/z 305 m/z 264 m/z 

Verified 

Structure 

  

Table 2. Verified structures for DIC 305 m/z G1 dendrimer and daughter ion of 264 m/z. 

 Again, the strategy of changing the kinetic window to allow for a higher abundance of the 

264 m/z pathway was employed. Since smaller kinetic windows yielded higher relative 

abundance, times were only varied at windows smaller than the standard 30 ms activation time. 

The 3 ms activation time proved to be too small for the DIC dendrimer for reasons unknown. 

However, activation times of 6 ms and 4 ms resulted in appropriate spectra. It was determined 

that 4 ms yielded the best relative abundance for the 264 m/z fragment; the spectrum is presented 

in Figure 32 showing, again, a growth in state population of approximately 20% when compared 

to the 30 ms spectrum. 
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Figure 32. MS2 of DIC 305 m/z synthesized dendrimer conducted at activation amplitude of 43% 

and activation time of 4 ms resulting in same two daughter ions as previous spectrum, however a 

20% relative abundance increase for the 264 m/z daughter ion.  

 Further fragmentation was explored for the 264 m/z of larger population resulting from 

the 4 ms kinetic window. The CID-ESI-MS of daughter ion 264 m/z fragments into two 

noticeable m/z – 179 and 140 – as seen in Figure 33. As previously mentioned, the DIC 

structures lack variation of m/z, but can still be used for verification. The movement of any β-

deuterium occurs mostly in the 140 m/z range. This is further indicated by the differing daughter 

ion fragments of the DIC and DOC in this range – DIC exhibits a highly populated state of 140 

m/z whereas DOC exhibits highly populated state of 141 m/z. The disagreeing m/z between the 

DIC and DOC are explained through mechanisms and will be discussed.  
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Figure 33. MS3 of 264 m/z daughter ion at normal kinetic window of 30 ms yielding two 

fragmentation pathways of large relative abundances at 179 m/z and 140 m/z. 

 Similar to the DOC dendrimer investigation, the major DIC dendrimer MS3 daughter ions 

are explored further with zoom scans around each peak. This allows for comparison to the 

hypothesized structures and transition states, leading to determination of correct mechanisms 

with appropriate hydride shifts and double bond migrations.  
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Examination of the zoom scan around the 179 m/z in Figure 34 reveals agreement with 

hypothesized structures. Little to no movement of the deuterium atoms creates only two notable 

m/z peaks – 179 m/z and 182 m/z. Visibly, 179 m/z is the principle structure when paralleled 

with the 182 m/z of less than 2% relative abundance. By comparison with hypothesized 

structures, it is evident that the current transition states, structures, and mechanisms are in 

agreement with the DIC dendrimer fragmentation around 179 m/z.  

Figure 34. Zoom scan around 179 m/z for the DIC MS3 spectrum. 

 The mechanisms for DIC dendrimer mirroring those of the DOC dendrimer are presented 

in Figure 35. The hypothesized structures for 179 m/z and 182 m/z of the DIC dendrimer have 

various possible mechanisms and transition states that would yield the same m/z, however since 

the mechanisms were specific for the DOC dendrimer, the two mechanisms shown for the DIC 

dendrimer must be the pathway of fragmentation. 
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Figure 35. Favored mechanisms for DIC MIN 1A.1 264 m/z structure yielding predominately 

179 m/z with MIN 2A.1 and MIN 3A.1 transition states and only slight population of 182 m/z 

from direct nucleophilic substitution. 
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Figure 36. Zoom scan around 140 m/z for DIC MS3 spectrum.  

 The zoom scan around the peak of second highest relative abundance in the MS3 – 140 

m/z – is featured in Figure 36. Evaluation of this zoom scan in comparison with the DIC 

structures hypothesized in Figure 22 confirms mechanisms, yet also raises questions. The m/z of 

largest state population is clearly that of 140 m/z; this agrees with the hypothesized structures as 

the only logical transition states and mechanisms for the unsaturated ring structure all result in 

140 m/z. The peak at 143 m/z, though a mere 6% of the 140 m/z peak, is also anticipated as it 

represents the saturated ring structure from direct nucleophilic substitution which remains at low 

relative abundance as all other saturated ring structures have demonstrated. The corresponding 

mechanisms for the DIC structures as related to those of the DOC structures are presented in 

Figure 37.  
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Figure 37. Favored mechanism for formation of highly populated 140 m/z unsaturated ring 

structure from the MIN 1A.1 264 m/z, as well as the 143 m/z ring structure. 

What is questionable is the existence of a peak at 141 m/z; though miniscule, the 141 m/z 

peak has a relative abundance of about 4%. There are only three possibilities that could account 

for the appearance of a 141 m/z peak. First, the 141 m/z could be appearing if the saturated ring 

products lost two of the deuterium atoms resulting in a mass-to-charge ratio of 141 as opposed to 

143. This is highly unlikely as the spectrum lacks a peak at 142 m/z which supports the 
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assumption that the saturated ring structure does not lose a β-deuterium as it does the α-

deuterium evidenced in the DOC dendrimer spectrum. The next possibility for the appearance of 

141 m/z is the result of a β-deuteride shifting to the methyl arm. This is a slightly more 

reasonable explanation, however this would insinuate that the mechanism leading from the 264 

m/z MIN 1A.1 structure to the MIN 2A.1 transition state is incorrect, which would invalidate 

many other mechanisms. Also, if a β-deuteride shifted to the methyl arm transitioning from the 

MIN 1A.1 structure, this would complicate things mechanistically, as a double bond would be 

placed in the middle of the carbons on the core. This is also unlikely – a logical first step for 

many of the mechanisms hypothesized creates an imine double bond in which the pi electrons 

can move to the electrophilic nitrogen if necessary. The final plausible explanation for 

appearance of a 141 m/z peak is an incorrect mechanism for the transition between MIN 1A.2 

and MIN 2A.2 – instead of another α-hydride shift (or α-deuteride in the DOC structures), a β-

deuteride shift could be occurring. In order for this to be feasible, the β-deuteride shift would 

have to be followed by α-hydride shift to the adjacent carbon. This elaborate, yet most 

reasonable mechanism is shown in Figure 38.  

Figure 38. Proposed mechanism for MIN1A.2 transition to MIN 2A.2 explaining appearance of 

141 m/z in DIC MS3. 
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ALKALI AND ALKALINE EARTH METAL-DENDRIMER COMPLEXES 

 The CID-ESI-MS of various alkali and alkaline earth metals complexed with the G1 

nitrile-terminated PPI dendrimer were investigated in hopes of revealing more about how 

changing the metal affects the fragmentation pathways of the dendrimer. By utilizing metal ions, 

the labile proton does not have to be considered in the mechanism. 

Sodium-Dendrimer Complex 

 Sodium-dendrimer complexes were created by utilizing the G1 nitrile-terminated PPI 

dendrimer of 300 g/mol and adding a sodium acetate solution. Complex was electrosprayed and 

consequently subjected to CID giving the MS2 spectrum in Figure 39. 

Figure 39. MS2 of sodium-dendrimer complex with activation time of 30 ms.  

 The parent ion of 323 m/z accounts for a singly charged complex between one dendrimer 

molecule and one sodium ion. When subjected to CID, the parent ion yields a primary daughter 
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ion of 270 m/z, corresponding to a neutral loss of 53 amu. A loss of 53 amu would indicate loss 

of acrylonitrile.  

 Subsequent CID of the 270 m/z daughter ion was performed resulting in the spectrum in 

Figure 40. The fragmentation of the 270 m/z structure yields two daughter ions of 229 m/z and 

217 m/z. The loss of neutral 41 amu from the 270 m/z to the 229 m/z daughter ion indicates loss 

of an arm, causing imine formation. The daughter ion at 217 m/z results from another loss of 53 

amu which corresponds, again, to loss of acrylonitrile. The structures and resulting daughter ions 

are outlined in Table 3.  

Figure 40. MS3 of sodium-dendrimer complex with activation time of 30 ms.  
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Fragment 

(m/z) 

CID 

Phase 

Structure Resulted 

from loss of 

(amu): 

Resulted 

from loss of 

(structure): 

323 MS 

 

N/A N/A 

270 MS2 

 

53 
 

229 MS3 

 

41 CH3-CN 

217 MS3 

 

53 
 

Table 3. Sodium-dendrimer complex fragmentation structures. 
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Potassium-Dendrimer Complex 

Potassium-dendrimer complexes were created by utilizing the G1 nitrile-terminated PPI 

dendrimer of 300 g/mol and adding a potassium acetate solution. Complex was electrosprayed 

and consequently subjected to CID giving the MS2 spectrum in Figure 41. 

 

Figure 41. MS2 of potassium-dendrimer complex with activation time of 30 ms.  

 The parent ion of 339 m/z corresponds to a singly charged complex between one 

dendrimer molecule and one potassium ion. Fragmentation of the 339 m/z parent ion was very 

sensitive; more activation amplitude applied caused all fragments in the ion-trap to be ejected. 

The resulting spectrum in Figure 41 is the only way to see daughter ions. The 339 m/z structure 

has two fragmentation pathways at 286 m/z and 247 m/z. Further CID experiments could not be 

performed due to the aforementioned sensitivity. Table 4 indicates the corresponding structures 

for the mass-to-charge ratios. 
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Fragment 

(m/z) 

CID 

Phase 
Structure 

Results 

from loss 

of (amu): 

Results from 

loss of 

(structure): 

339 MS 

 

N/A N/A 

286 MS2 

 

53 
 

247 MS2 

 

92 
 

+ 

 ∙CHCN  

Table 4. Potassium-dendrimer complex fragmentation structures. 

 The loss of a neutral 53 amu, much like in the sodium-dendrimer CID-ESI-MS, from the 

parent ion of 339 m/z results in the 286 m/z potassium-dendrimer daughter ion. The daughter ion 

at 247 m/z results from the same loss of 53 amu (acrylonitrile) with subsequent loss of the CH-

CN radical. 

55 
 



Magnesium-Dendrimer Complex 

Magnesium-dendrimer complexes were created by utilizing the G1 nitrile-terminated PPI 

dendrimer of 300 g/mol and adding a magnesium chloride solution. Complex was electrosprayed 

and consequently subjected to CID giving the MS2 spectrum in Figure 42. 

Figure 42. MS2 of magnesium-dendrimer complex with activation time of 30 ms.  

 The parent ion for the magnesium-dendrimer complex is 312 m/z. This, as well as the 

presence of two peaks in the single m/z of 312, indicates that the complex is doubly charged. 

This implies the presence of two dendrimer molecules per one Mg2+ ion. Fragmentation of the 

parent ion results in a surplus of daughter ions. The determined structures for daughter ions and 

neutral losses are listed in Table 5.  
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Fragment 

(m/z) 

CID 

Phase 
Structure 

 Loss of 

(amu): 

Loss of 

(structure): 

312 

m=624 
z=2 

MS 

 

N/A N/A 

286  

m=572 
z=2 

MS2 

 

52 ∙CHCHCN  

260  

m=520 
z=2 

MS2 

 

104 

∙CHCHCN 

+ 

∙CHCHCN 

Table 5. Magnesium-dendrimer complex fragmentation structures.  
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Calcium-Dendrimer Complexes 

 Calcium-dendrimer complexes were created by utilizing the G1 nitrile-terminated PPI 

dendrimer of 300 g/mol and adding a calcium acetate solution. Complex was electrosprayed and 

consequently subjected to CID giving the MS2 spectrum in Figure 43. 

Figure 43. MS2 of calcium-dendrimer complex with activation time of 30 ms.  

 The parent ion of 320 m/z has a primary daughter ion at 293 m/z. The 320 m/z ion is 

doubly charged due to the presence of two peaks in the 320 m/z range. The 320 m/z parent ion is 

comprised of two dendrimer molecules and a one Ca2+ ion. Another notable daughter ion is at 

272 m/z. Table 6 shows the determined structures for daughter ions and corresponding losses. 
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Fragment 

(m/z) 

CID 

phase 
Structure 

Loss of 

(amu): 

Loss of 

(structure): 

320 

m=640 
z=2 

MS 

 

N/A N/A 

293 

m=586 
z=2 

MS2 

 

54 ∙CH2CH2CN 

272 

m=544 
z=2 

MS2 

 

96 

CH3CH2CN 

+ 

CH3CN 

Table 6. Calcium-dendrimer complex fragmentation structures. 
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CHAPTER FIVE 

CONCLUSIONS 

Mass spectrometry has proven to be a useful analytical tool in the probing of complex, 

hyperbranched polymers. This thesis used a rapid and precise analytical framework for the 

characterization of dendrimers by systematically probing the electrospray ionization mass 

spectrometry (ESI-MS) speciation and the gas-phase collision-induced dissociation (CID) 

fragmentation patterns for G1 nitrile-terminated polypropylene imine (PPI) dendrimers. Two 

isotopically labeled dendrimer species were employed for unambiguous assignment of complex 

structures and mechanisms. Hypothesized mechanisms were verified, again reinforcing the 

existence of inconsistency between experimental CID data and highly accurate CBS-QB3 

quantum calculations. While one anomaly presented for the β-labeled dendrimer and a possible 

mechanism was presented, further experimentation is necessary to determine the exact cause for 

its creation. Also, the fragmentation patterns of certain alkali and alkaline earth metal-dendrimer 

complexes were investigated. These complexes of +1 and +2 charges exhibited similar neutral 

losses of acrylonitrile and acetonitrile. Losses of radicals also appeared for potassium-, 

magnesium-, and calcium-dendrimer complexes as the only possible explanation for specific 

losses, such as 54 amu. However, substituting the labile proton with a metal ion exhibited 

different fragmentation mechanisms than those of the protonated nitrile-terminated PPI 

dendrimer. 
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APPENDIX B 

SUPPLEMENTARY SPECTRA 

This appendix contains representative raw mass spectra for the monotopic 
protonated, isotopically labeled, and alkali/alkaline-earth metal complexed dendrimers. 

 

Protonated G1 nitrile-terminated PPI dendrimer – MS2 301 m/z at 30 ms time: 

Protonated G1 nitrile-terminated PPI dendrimer – MS2 301 m/z at 1000 ms time: 

 

ms2_301_18_2_30#1-99 RT: 0.01-1.26 AV: 99 NL: 5.34E6
T: + c Full ms2 301.20@18.00 [ 80.00-320.00]
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Protonated G1 nitrile-terminated PPI dendrimer – MS2 301 m/z at 5 ms time: 

 

Protonated G1 nitrile-terminated PPI dendrimer – MS3 260 m/z at 30 ms time: 

 

 

 

 

ms2_301_30_5#1-30 RT: 0.01-0.34 AV: 30 NL: 4.42E6
T: + c Full ms2 301.20@30.00 [ 80.00-320.00]

80 100 120 140 160 180 200 220 240 260 280 300 320
m/z

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
Ab

un
da

nc
e

178.3

260.1

301.2

176.2137.1 179.5 260.9259.496.1 301.9300.5123.1 219.0 284.3109.1 161.2 207.183.9 243.0

ms3_260_21_30_2#1-100 RT: 0.01-1.60 AV: 100 NL: 6.90E5
T: + c Full ms3 301.20@18.00 260.10@21.00 [ 80.00-320.00]
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Protonated G1 nitrile-terminated PPI dendrimer – MS3 260 m/z at 3000 ms time: 

 

Protonated G1 nitrile-terminated PPI dendrimer – MS3 260 m/z at 1000 ms time: 

 

 

ms3_260_15.5_3000#1-100 RT: 0.10-16.32 AV: 100 NL: 1.71E6
T: + c Full ms3 301.20@20.00 260.10@15.50 [ 80.00-320.00]
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ms3_260_16_1000_2#2-100 RT: 0.07-6.40 AV: 99 NL: 7.54E5
T: + c Full ms3 301.20@18.00 260.10@16.00 [ 80.00-320.00]
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Protonated G1 nitrile-terminated PPI dendrimer – MS3 260 m/z at 5 ms time: 

 

Protonated G1 nitrile-terminated PPI dendrimer – MS3 260 m/z; zoom scan at 176 m/z: 

 

ms3_260_32_5#1-30 RT: 0.00-0.40 AV: 30 NL: 1.24E6
T: + c Full ms3 301.20@18.00 260.10@32.00 [ 70.00-320.00]
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ms3_301_E17_T30_260_E20_T30#1-100 RT: 0.02-1.79 AV: 100 NL: 4.61E4
T: + Z ms3 301.20@17.00 260.10@20.00 [ 171.30-181.30]
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Protonated G1 nitrile-terminated PPI dendrimer – MS3 260 m/z; zoom scan at 137 m/z: 

 

DOC G1 nitrile-terminated PPI dendrimer – MS2 305 m/z at 30 ms time: 

 

ms_2_305_E23_T30#1-20 RT: 0.05-1.01 AV: 20 NL: 7.78E5
T: + c Full ms4 305.20@0.00 305.20@0.00 305.20@23.00 [ 80.00-350.00]
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DOC G1 nitrile-terminated PPI dendrimer – MS2 305 m/z at 3000 ms time: 

 

 

DOC G1 nitrile-terminated PPI dendrimer – MS2 305 m/z at 300 ms time: 

ms_2_305_E17_T3000#1-20 RT: 0.29-5.85 AV: 20 NL: 1.43E6
T: + c Full ms4 305.20@0.00 305.20@0.00 305.20@17.00 [ 80.00-350.00]
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ms_2_305_E19_T300#1-19 RT: 0.01-1.28 AV: 19 NL: 9.61E5
T: + c Full ms4 305.20@0.00 305.20@0.00 305.20@19.00 [ 80.00-350.00]
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DOC G1 nitrile-terminated PPI dendrimer – MS2 305 m/z at 6 ms time: 

 

 

ms_2_305_E30_T6#1-20 RT: 0.00-0.91 AV: 20 NL: 7.63E5
T: + c Full ms4 305.20@0.00 305.20@0.00 305.20@30.00 [ 80.00-350.00]
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DOC G1 nitrile-terminated PPI dendrimer – MS2 305 m/z at 3 ms time: 

 

 

DOC G1 nitrile-terminated PPI dendrimer – MS2 at 3000 ms; MS3 264 m/z at 6 ms time:  

 

ms_2_305_E42_T3#1-20 RT: 0.03-0.93 AV: 20 NL: 5.96E5
T: + c Full ms4 305.20@0.00 305.20@0.00 305.20@42.00 [ 80.00-350.00]
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ms_3_305_E17_T3000_264_E35_T6#1-20 RT: 0.16-6.00 AV: 20 NL: 5.86E4
T: + c Full ms6 305.20@0.00 305.20@0.00 305.20@17.00 264.10@0.00 264.10@35.00 [ 80.00-350.00]
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DOC G1 nitrile-terminated PPI dendrimer – MS2 at 6 ms; MS3 264 m/z at 30 ms time: 

 

 

DOC G1 nitrile-terminated PPI dendrimer – MS2 at 3 ms; MS3 264 m/z at 30 ms time: 

ms_3_305_E30_T6_264_E26_T30#1-20 RT: 0.03-0.99 AV: 20 NL: 1.07E5
T: + c Full ms5 305.20@0.00 305.20@0.00 305.20@30.00 264.10@26.00 [ 80.00-350.00]
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ms_3_305_E42_T3_264_E28_T30#1-20 RT: 0.04-1.08 AV: 20 NL: 9.52E4
T: + c Full ms5 305.20@0.00 305.20@0.00 305.20@42.00 264.10@28.00 [ 80.00-350.00]
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DIC G1 nitrile-terminated PPI dendrimer – MS2 305 m/z at 30 ms: 

 

 

ms2_305_E17_T30#1-100 RT: 0.00-2.09 AV: 100 NL: 1.67E5
T: + c Full ms2 305.20@17.00 [ 80.00-320.00]

80 100 120 140 160 180 200 220 240 260 280 300 320
m/z

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
A

bu
nd

an
ce

182.4

264.2

305.3
183.3181.5 306.0140.2 263.3 264.8223.199.9 234.2 284.6 293.2164.6 199.0111.2 128.788.2

73 
 



DIC G1 nitrile-terminated PPI dendrimer – MS2 305 m/z at 6 ms: 

 

DIC G1 nitrile-terminated PPI dendrimer – MS2 305 m/z at 4 ms: 

 

ms2_305_E28_T6#1-100 RT: 0.01-1.98 AV: 100 NL: 1.01E5
T: + c Full ms2 305.20@28.00 [ 80.00-320.00]
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ms2_305_E43_T4#1-100 RT: 0.01-1.97 AV: 100 NL: 2.58E4
T: + c Full ms2 305.20@43.00 [ 80.00-320.00]
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DIC G1 nitrile-terminated PPI dendrimer – MS2 at 4 ms; MS3 at 30 ms: 

 

DIC G1 nitrile-terminated PPI dendrimer – MS2 at 4 ms; MS3 at 6 ms: 

 

ms3_305_E43_T4_264_E20_T30#1-99 RT: 0.01-2.37 AV: 99 NL: 2.16E4
T: + c Full ms3 305.20@17.00 264.20@20.00 [ 80.00-320.00]
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ms3_305_E43_T4_264_E30_T6#1-100 RT: 0.02-2.28 AV: 100 NL: 8.88E3
T: + c Full ms3 305.20@17.00 264.20@30.00 [ 80.00-320.00]
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Sodium-G1 dendrimer complex – MS2 of 323 m/z at 30 ms: 

 

Sodium-G1 dendrimer complex – MS3 of 270 m/z at 30 ms: 

 

ms2_323_29_30#1-100 RT: 0.00-1.16 AV: 100 NL: 2.34E6
T: + c Full ms2 323.40@29.00 [ 85.00-350.00]
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ms3_270_16.5_1000#1-100 RT: 0.01-6.36 AV: 100 NL: 9.14E4
T: + c Full ms3 323.40@29.00 270.30@16.50 [ 80.00-350.00]
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Potassium-G1 dendrimer complex – MS2 of 339 m/z at 30 ms: 

 

 

Magnesium-G1 dendrimer complex – MS2 of 312 m/z at 30 ms: 

 

 

ms2_312_22_30_2#1-100 RT: 0.00-1.15 AV: 100 NL: 5.14E6
T: + c Full ms2 312.50@22.00 [ 90.00-320.00]
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Calcium-G1 dendrimer complex – MS2 of 320 m/z at 30 ms: 

 

 

 

ms2_320_E19_T30#1-100 RT: 0.01-1.18 AV: 100 NL: 1.65E7
T: + c Full ms2 320.20@19.00 [ 90.00-350.00]
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