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ABSTRACT 

 

Paracrine factor Desert hedgehog (Dhh) is essential for mouse spermatogenesis. 

 

However, the specific receptor of Dhh during spermatogenesis is unknown. This study aims to 

test the hypothesis that Ptchd3, a male germ cell-specific gene acts as a receptor for Dhh in 

spermatogenesis. In this study, a transgenic mouse model with Ptchd3 gene deletion was first 

successfully established. Then, in vivo fertility assay and in vitro analysis were performed on 

Ptchd3 null mutant male mice. The data obtained from the in vivo fertility experiments indicates 

that there is no statistical significance in offspring litter number (p-value 0.7973) and litter size 

(p-value 0.3648) among mutant, heterozygote and wild-type male mice. The data of in vitro 

sperm assay reveals that the abnormality /normality ratio of sperm morphology in Ptchd3 null 

mice demonstrates no statistical difference with that in wild-type mice (Tukey test interval ±4.7 

to ±12.8). Taken together, these findings clearly attest that Ptchd3 is not essential for mouse 

spermatogenesis and fertility. However, whether Ptchd3 functions as a Dhh receptor remains 

undetermined. The knowledge gained from this research into the function of Ptchd3 on 

spermatogenesis could give us a better understanding of the Dhh signaling pathway in testis. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

 

The Development of Male Reproductive System 

 

Stem cell differentiation occurs during embryonic development. During this process, 

pluripotent stem cells turn into multipotent stem cells in different tissues (Eckfeldt et al. 2005). 

However, it is the cellular environments that allow them to become an organ-specific cell lineage 

(Rossant, 2001). At 9.5 days post coitum (dpc) in the mouse embryo, the bipotential primordia 

still have the ability to differentiate into testes or ovaries (Yao et al. 2003). These gonadal 

primordia, containing relatively undifferentiated cells that express transcriptional factors, are 

going to respond to signaling cues mediating the differentiation. One of these transcriptional 

factors is Steroidogenic factor 1(Sf1), whose expression regulates the adrenal and gonadal 

development and is localized in the urogenital ridge (Val at al. 2003) (Ikeda et al.1996) (Park et 

al.2007). 

The crucial transcription factor that leads to testis development is the expression of testis 

determining factor of the Y chromosome, Sry. This factor starts the arrangement of testis cords 

and differentiation of Sertoli cells by interaction with the transcription factors, Sry- containing 

gene 9 (SOX9), Sf1, Wilms’ tumor (Wt1), and the GATA4 transcriptional factor (Fig. 1) 

(Koopman et al. 1991) (Huang et al. 1999). 

Sertoli cells provide metabolic and structural support later on during the spermatogenesis 

process and are localized in the seminiferous tubule. They will become activated by the follicle 

stimulating hormone (FSH). Sertoli cells retain the gonadal primordial cells inside testis cords at 

12.5dpc in mice. This retention is going to maintain the germ cells in G1 of mitosis, and prevent 
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them from entering meiosis, which will occur later on after birth (McLaren, 1988). During this 

process, Sertoli cells mediate the testis tissue differentiation by releasing anti-Müllerian hormone 

(AMH) (Fig. 1). This hormone makes the female ducts (mesonephric ducts) retract (Haider, 

2004). As a result, Sertoli cells promote the presence of fetal Leydig cells. The Leydig cells, 

another type of somatic cells inside the testis and different from the Sertoli cells, does not express 

Sox9 or Sry. Their differentiation is regulated in a paracrine way from an indirect signaling of the 

Sertoli cells that express Sox9, Sry, desert hedgehog (DHH) and platelet-derived growth factors 

(PDGFs). Null mutants of Dhh or PDGFs had produced mice with the phenotypes that showed an 

incomplete differentiation of Leydig cells (Fig. 1) (Barsoum and Yao, 2006). Nevertheless, when 

the differentiation of Leydig cells occurs in a proper way, they will secrete insulin-like factor 3 

(INSL3), which makes the testis descend, providing an adequate temperature for stem cells to 

undergo male germ cell differentiation and development inside the testis (Fig. 1). 

Later on Leydig cells regulate the expression of transcriptional factors such as paired box 

gene 2 (Pax2), Pax8, lens intrinsic membrane 1 (Lim1) and empty spiracle homologue gene 

(Emx2) to differentiate the Wolffian ducts. This process begins with the degeneration of the 

pronephros and the transformation of the mesonephros to the Wolffian ducts at E 9-10 in mice. 

The Wolffian ducts originate from the mesonephric mesenchyme, creating the epithelial tubes of 

the duct (Barsoum and Yao, 2006). The Wolffian ducts near the testis develop into the 

epididymis. 

The middle and posterior parts of the Wolffian ducts become the vas deferens and the 

seminal vesicle respectively (Lipschutz et al. 1999). After that, Leydig cells secrete testosterone at 

approximately E 15 to help the development of secondary sexual characteristics and male brain 

differentiation (Haider, 2004). 



3 

 
 

 

This process and regulation of the development of the male reproductive system has to 

occur fast since the embryo at early stages has the ability to become either female or male 

(Palmer and Burgoyne, 1991) (Eicher and Washburn, 1986) (Yao et al. 2003). In mice, this time 

frame is of 10.5 dpc-12.5dpc (Hacker et al. 1995). An interruption of Sry expression for 24 hours 

may cause a reversal from male to female since the cells may enter meiosis and produce ovaries 

instead (Eicher et al. 1995) (Nagamine et al. 1998) (Washburn et al. 2001). 

For humans, Sry is a critical gene that is required to mediate male sex determination. 

 

However, this is not the case with mice, M33, Emx2 and Lhx9 (lens intrinsic membrane homeo- 

box 9 gene) are also required. If one of these genes is absent, it can make a reversal from male to 

female by degenerating the Wolffian ducts at E13.5 (Brennan and Capel, 2004). 
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(Barsoum and Yao 2006) 

Fig 1. The major components in the development of the male reproductive system. For 

the purpose of this study, we will focus on how Dhh and its hypothetical receptor 

Ptchd3 act during spermatogenesis. 
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Testis Anatomy 

 

The testis is composed of several cell types. This section will discuss how all of them are 

involved in the testis development. The testis will start to develop when the germ cells migrate to 

the genital ridge then to the gonads (Harikae et al. 2013). The cells will become encased in the 

testis cord (Svingen and Koopman, 2013). When the germ cells are localized in the gonads the 

process of differentiation will start. The testis starts to develop after the expression of Sry in 

Sertoli cells. Before this step both male and female reproductive systems are basically the same. 

As mentioned previously, after the Sry expression, Sertoli cells differentiate and originate a 

cascade of events. Sry will need to be expressed in a gradient for a specific time to activate the 

expression of Sox9. The expression of Sox9 will be localized in the primitive gonad, which will 

become testis tissue. However, the number of gonad cells expressing Sox9 should be high 

otherwise the testis development will not continue and a sex reversal will occur. There are three 

mechanisms to prevent sex reversal, first by Sox9 expression, second by fibroblast growth factor 9 

(FGF9) expression and third by cell proliferation. 

Therefore, for the first mechanism, cells in the gonad that are expressing Sox9 will start 

recruiting adjacent cells and change their cell fate (from a gonad to a testicular fate) (Svingen 

and Koopman, 2013) (Palmer and Burgoyne, 1991). Prostaglandin D2 (PGD2) is also involved 

in this process, by inducing Sox9 expression (Wilhelm et al. 2005). Second, FGF9 expression is 

needed to maintain the proper number of cells. Some studies believe that the function of FGF9 

might be to mediate the expression of Sox9 like PGD2. However, others believe that FGF9 acts 

as a repressor of the pre-ovary genes (Kim et al. 2006) (Jameson et al. 2012). Third, Sry will 

make the cells that express Sox9 start dividing at a faster rate than the ones that do not express 

Sox9. As a result, the number of cells that express Sox9 is increased (Schmahl et al. 2000). The 
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cells that come from this lineage will activate Sox9, which will allow them to change the cell 

fate this time to become pre-Sertoli cells (Sekido and Lovell-Badge 2008). 

The pre-Sertoli cells will then organize themselves as the epithelium of the testis cords, 

retaining the germ cells in the lumen, where they will become mature Sertoli cells (Svingen and 

Koopman, 2013). The testis cord is composed of the Sertoli cells, which surround the germ 

cells, an exterior layer of peritubular myoid cells (PMCs) and an extracellular matrix (ECM) for 

establishing structural support (Svingen and Koopman, 2013). Sertoli cells are important in the 

establishment of testis vascularization and differentiation of peritubular myoid cells (Brennan 

and Capel, 2004). Sertoli cells and the PMCs create the basal lamina to divide the testis cord and 

the interstitial compartments (Skinner et al. 1985). Later on the testis cord will create loops that 

will be separated by the interstitial cells and will be elongated to give rise to the seminiferous 

epithelium (Archambeault and Yao, 2010) (Clermont and Huckins, 1961). The interstitium is 

composed of mesenchymal tissue, fetal Leydig cells (FLCs), and a blood vasculature (Svingen 

and Koopman, 2013). 

The fetal Leydig cells (FLCs) on the other hand develop by paracrine trigger Dhh 

(Barsoum et al. 2009) (Huang and Yao, 2010) (Barsoum and Yao, 2010). Some Leydig cells 

form from the same precursor cells as the Sertoli cells, while the remaining are from perivascular 

progenitor cells, which are found in the mesonephric–gonadal junction (DeFalco et al. 2011) 

(DeFalco et al. 2013).The progenitor cells express Notch and androgens. Notch signaling is going 

to trigger the release of testosterone, which is necessary to maintain the proper number of 

progenitor cells (Barsoum and Yao, 2010) (Tang et al. 2008).  

To originate the vasculature of the testis, endothelial cells separate from the arteries of the 

mesonephric plexus, acquire motility, and move through the testis to the anti-mesonephric region 
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(Coveney et al. 2008). It is in the anti-mesonephric region where they will be organized to form the 

coelomic vessel, the primary artery in the testis. The arterial network within the testis arises from 

the coelomic vessel and will branch to the tunica albuginea and the testis interstitium, and finally 

connect the rete of the testis (Brennan et al. 2003) (Bott et al. 2006) (Barsoum and Yao, 2006). The 

testis network venous on the other hand originates from the mesonephros, localized in the rete 

testis. The rete testis is localized in the top part of the seminiferous tubules and helps in moving the 

sperm from the tubules to the efferent tubules to mediate the ejaculation process. 

Testis is covered by a protective tissue, which is composed of the tunica albuginea, 

smooth muscles and contractile cells (Middendorff et al. 2002) (Setchell et al. 1994). This 

protective tissue not only guards the testis but also is important for the blood flow and sperm 

movement (Setchell et al. 1994). 

The nerves, nevertheless, so far have not been found to be essential during fetal testis 

development. But in adult testis they are involved in the regulation of hormones and are known to 

play a role during spermatogenesis (Chow et al. 2000) (Frankel and Ryan, 1981). 

Spermatogenesis 

Spermatogenesis. Spermatogenesis is the production of sperm from stem cells. This 

process takes about 34 days in mice and 74 days in humans. It occurs in the testes within the 

seminiferous tubules, where developing male germ cells and Sertoli cells are present (Gilbert, 

2000) (Fan et al.2006).  

Sertoli cells provide sufficient structural support to prevent the blood from contacting 

with developing male germ cells. They also provide nutrients necessary for male germ cells 

during spermatogenesis. The process of male germ cell development starts in the embryonic stage 

where primordial germ cells proliferate while migrating to the testis (Gilbert, 2000) (Wolpert et 
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al. 2002). These cells do not complete mitosis prior to the birth of the organism; therefore they 

are retained in the G1 phase of the cell cycle (Wolpert et al. 2002). Once the male mouse is born, 

the cell cycle is resumed and germ cells go on mitosis to produce more stem cells or 

spermatogonia (diploid 2n) (Fig. 2). Mitosis will follow, producing primary spermatocytes 

(diploid 4n) (Fig. 2) (Gilbert, 2000) (Wolpert et al. 2002). In order to get haploid cells, primary 

spermatocytes enter meiosis I to produce secondary spermatocytes (haploid 2n), which 

subsequently undergo meiosis II to produce spermatids (haploid n) (Fig. 2) (Gilbert, 2000) 

(Wolpert et al. 2002). When spermatids are formed, they need to pass through a process of 

cellular differentiation from being round spermatids to elongating spermatids and then to mature 

sperm (fig.2) (Gilbert, 2000) (Wolpert et al. 2002). Sperm continue maturation in the epididymis 

before ejaculation (Gilbert, 2000).

Fig 2. First wave of mouse spermatogenesis: Mouse male germ cell differentiation 

and development. 
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Sperm Modification in the Epididymis. The sperm need one to two week transition in the 

epididymis before acquiring all the modifications that are needed to reach full maturation (Dacheux 

and Dacheux, 2014). The correct microenvironment in the epididymis is essential for sperm motility. 

This environment is usually controlled by β-defensin, a polar molecule that is divided by 

hydrophobic and charged regions (Yeung et al. 1992). As its name suggests, β-defensin act as an 

antimicrobial defense (Zasloff, 2002). One of the membrane ion channels that β-defensin has been 

associated is Ca2+ channel. 

Ca2+ is an important ion for the capacitation of the sperm. The process of sperm capacitation 

occurs when the sperm travels along the epididymis, where Ca2+ concentration increases by twofold 

higher from the caput to the cauda (Hoskins et al. 1983). Bin1b, a rat defensing, was found to 

produce different binding sites on the immature sperm, which seems to help sperm acquire Ca2+, to 

facilitate the development of sperm motility (Zhou et al. 2004). 

The first modification occurs when the sperm has to travel through the anterior epididymis, 

where water reabsorption is found. The water movement is controlled by the aquaporin channels that 

dictate the ionic composition (Dacheux and Dacheux, 2014). The contact of the sperm flagellum with 

this ionic composition generates the migration of the remaining cytoplasmic germ-cell and thus the 

first beating of the sperm (Dacheux and Dacheux, 2014). The cytoplasmic germ-cell forms a 

structure called cytoplasmic droplet (Dacheux and Dacheux, 2014). The specific function of this 

modification is unknown. However, it has been found that when the sperm travels from the anterior 

part through the epididymal caput, the cytoplasmic droplet moves from the beginning to the end of 

the middle piece of the flagellum (Dacheux and Dacheux, 2014). It has been found that abnormal 

migration of the cytoplasmic droplet leads to the reduction of sperm fertility (Cooper, 2005). 

The following sperm modifications occur when the sperm continues to move through the 

epididymis. It is this period that changes in the lipid and protein composition of the sperm 
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membrane have been observed (Scott et al. 1967) (Dacheux and Voglmayr, 1983). The membrane 

proteins undergo proteolytic cleavages, which occur at the beginning of the epididyimal transit 

(Dacheux and Dacheux, 2014). In this process, the electrostatic interaction will mediate the 

absorption of luminal epididymal proteins at the sperm surface and the integration of other proteins 

into the plasma membrane (Dacheux and Dacheux, 2014) found to produce different binding sites on 

the immature sperm, which seems to help sperm acquire Ca2+, to facilitate the development of 

sperm motility (Zhou et al. 2004). 

Male Fertility and Ciliopathies 

A previous report showed that approximately 10-15% of human couples in European 

countries had conceiving problems. From this 10-15%, 60% of the cases were due to male fertility 

problems (Nieschlag and Behre, 1997). Previous studies revealed diverse causes of male infertility, 

for example, the spermatozoa number. A human ejaculation contains an average of 180 million 

spermatozoa (66 million/ml). However, usually only one spermatozoa fertilizes the egg, which 

means that the strategy is not cost-efficient. 

Other studies investigated sperm morphology and motility (MacLeod and Gold, 1951). The 

motility of the sperm is important, since it allows the sperm to travel a long distance from the 

vaginal tract to the oviduct where the egg resides. Nevertheless, the morphology of the sperm is 

equally important since it allows the sperm to penetrate the corona radiata of the egg and fertilize it. 

Lindemann (2010) called this process the Mother Nature’s Triathlon. 

Nevertheless, the majority of infertile men show sperm with reduced or absent motility. 

Researchers have found that in most cases this motility problem arises from disruption in the 

formation of the flagellum (Escalier and David, 1984) (Chemes et al. 1998). The flagellum of the 

sperm is a type of modified cilium. Some researchers have discovered that the significance of 
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looking into the male sperm is not just to develop new techniques and medication for male fertility, 

but also to understand other diseases. Men who suffer from infertility also have problems with cilia 

elsewhere. Problems or disruption in cilium formation are called ciliopathies. The cilia are important 

for left to right side patterning that occurs during embryogenesis. 

Kartagener’s syndrome is a ciliopathy that often causes a shift of the organ from the left side 

to the right side, and causes patients to also suffer from chronic bronchitis and infertility. The defects 

during the cilium development result in the sperm missing motor proteins, which makes the sperm 

unable to move (Lindemann, 2010). 

Brunner et al. (2008) and other researchers have looked at the function of retinitis pigmentosa 

GTPase regulator gene (Rpgr), a gene that is found in ciliated tissue. Some patients that suffered 

retinitis pigmentosa were also found to produce high abnormality in their sperm (Miendl et al. 1996) 

(Roepman et al. 1996). The retinitis pigmentosa is a condition that cause the loss of cells in the 

retina. Brunner hypothesized that Rpgr interacts with a microtubule protein that is in charge of 

mediating the intraflagellar transport (IFT) in the testis, resulting in defects of the spermiogenesis 

process (Kierszenbaum, 2002). 

Another ciliopathy at which researchers have looked is the Bardet-Biedl syndrome (BBS). 

This condition displays different symptoms that vary from individuals even if they are related. Some 

of the symptoms can be light sensitivity, similar to the retinitis pigementosa, polydactyly and 

infertility. Mouse studies have shown that blocking some BBS proteins results in mouse infertility, 

since sperm are unable to form the flagella. The sperm heads are present but there is no evidence of 

the flagella (Davis et al. 2007). 

On the other hand, Hall et al. (2013) studied 5-azacytidine induced gene 1 (Azi1) null mice 

and found that this mutation led to absent or truncated sperm flagella. Similar to Rpgr, Azil1 seems 
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to also interact with IFT during the formation of the flagellum. However, different from null BBS 

mice, this null mutant also exhibited some morphological problems in the head of the sperm. 

Mus musculus as a Model 

 

Mus musculus, commonly known as the mouse, is currently one of the principal organism 

models to study developmental diseases. Scientists have used mice to understand numerous diseases 

due to gene similarities (99%) that mice share with humans (Waterston et al. 2002). Even though 

chimpanzee and other primates are more closely related to humans, the cost associated with mouse 

maintenance is relatively lower. Another benefit is that mice reproduce fast (≈19-20 days) and the 

litter size is higher than other mammalian models, allowing the analysis and comparison of multiple 

siblings. In addition, the mouse genome has already been sequenced which allows the comparison of 

diverse sequences to determine the relation among organisms. 

Gordon and Ruddle (1981) were the first to generate a stable germ-line transmission of the 

mutant mice. This discovery allows companies to nowadays generate multiple commercial mutant 

traits, which make the biomedical research more accessible. Researchers can now make simple 

breeding events and produce their desired trait. Nevertheless, there are also companies and 

universities like University of California-Davis (UC-Davis) who have developed new strategies to 

produce a customized mutant mouse for their clients. Different technologies, such as the one from 

UC-Davis, give scientists the flexible tools to perform diverse genetic experiments, studying the 

function of the gene of interest. The common technology that is used in mice is the production of a 

knockout mouse line of the gene of interest. When producing a gene knockout in a mouse, the 

scientist beforehand needs to know or have an idea of the function of the gene of interest. If the 

expression of the gene is predicted to be essential for the mouse embryo to develop, the scientist or 

companies could use the Cre-LoxP technology to produce a tissue specific mutation (also called 

conditional knockout). Cre is a bacteriophage gene that allows scientists to generate a tissue specific 
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deletion by catalyzing the DNA recombination in loxP sites, leaving the essential genomic areas for 

the organism life intact. The loxP site is a small sequence (34bp) that is also derived from 

bacteriophage. It is composed of 8 bp in the middle and 13bp in both ends. The base pairs at the ends 

are repeatedly inverted. The Cre-LoxP technology, could also be used as an inducible Cre, which 

allows scientists to trace patterning during the embryonic development. This technology is also 

capable of being used to mediate insertions and translocations. Nevertheless, it is the deletion of this 

technology that is the most common application to be used to study a gene’s function. 

The Cre-LoxP works by having two loxP sites (34 bp) before and after the sequence of 

interest (Brocard et al. 1998). In order to mediate the deletion, both loxP sites should be oriented to 

the same direction. This will allow the deletion of part of the loxP sites by Cre recombinase, similar 

to an endonuclease. What occurs is that the loxP target locus will be cut into three pieces. The middle 

piece is going to include the sequence of interest (targeted gene). The ending two pieces will be 

united. Thus, after union, the middle piece is deleted from the genome. 

The University of California-Davis has created the CHORI-Sanger-UCDavis (CSD) 

technology to generate a chimeric mouse, which can be used to produce either a conventional 

knockout (deletion in all tissues), wild-type, or conditional knockout (tissue specific deletion) 

mouse. The mutational result will depend on the different breeding strategies. 

Hedgehog Signaling Pathway 

Hh Signaling in Drosophila melanogaster. Hedgehog (Hh) functions as a ligand in the 

hedgehog signaling pathway, which starts with the secreted Hh protein ligand binding to the 

membrane receptor Patched (PTCH). PTCH usually acts as a negative regulator of another 

membrane protein Smoothened (SMO) (Gilbert, 2000) (Wolpert et al. 2002) (Rahnama et al. 2004) 

(Cohen, 2003). The binding of Hh and PTCH releases the inhibitory effect of PTCH on SMO. 
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Consequently, SMO is activated and initiates a signal transduction cascade, CI (Cubitus Interruptus) 

will become activated by a cytoplasm complex (composed of Costal-2, Fu (Fused) and suppressor of 

fused (SuFu) which interacts with microtubules. Activated CI will translocate from the cytoplasm to 

the nucleus. In the nucleus, CI acts as a transcription factor to activate gene expression of target 

genes. (Gilbert, 2000) (Wolpert et al. 2002). 

Like the majority of other proteins that play a role during cell proliferation and development, 

Hh was first discovered in Drosophila melanogaster by Christiane Nusslein- Volhard and Eric F. 

Weischaus in 1980 in their attempt to look for mutation that interrupted the Drosophila larva body 

plan (Gupta et al. 2010). Since then, three Hh homolog genes were discovered in vertebrates, Indian 

Hedgehog, Desert Hedgehog (Dhh) and Sonic Hedgehog (Shh) (Sahin et al.2014).  

Shh Signaling Pathway. Sonic hedgehog signaling in vertebrates is similar to Hh signaling 

that occurs in fruit flies. The main difference is that there are multiple Patched homologues in 

vertebrates, including Ptch1 (Patched1), Ptch2 (Patched2), and the recently-discovered Ptchd3. Also, 

there are three CI homologs Gli1, Gli2 and Gli3. However, not all Gli work as an activator of gene 

expression. For example, Gli1 is an activator of gene expression, while Gli2 or Gli3 can act as either 

activator or repressor of gene expression. In mammals, the cytoplasmic complex is composed of 

Stk36 (homologue of Fu), SuFu, and Gli. Sufu interacts with the microtubules to activate Gli (Fig. 

3). As mentioned previously, activated Gli enters the nucleus and mediates changes in gene 

expression (Fig. 3). 
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Models for Hh/Shh Signaling. Interestingly, Hh/Shh is important during left-right (L-R) 

patterning and is one of the pathways that are involved in ciliogenesis. In Drosophila melanogaster, 

the Hh gene is known to be a segment polarity gene, which is important in establishing the L-R axis 

and anterior-posterior (A-P) axis (in limb development). The Shh signaling has been shown to be 

either short-range or long-range signaling (Cohen, 2003). There are currently two published models 

that explain how Shh acts as a morphogen (autocrine) and an unpublished model that argues against 

the previously established ones. The first and more known model is called the Spatial model (or 

more known as the French’s flag model) (Wolpert et al. 2002). In this model, signaling occurs in a 

concentration gradient, where different concentration will specify different cell fate. The second 

model is called the temporal model where the important part is not the concentration but the time of 

exposure of the ligand (Harfe et al. 2004). And the third model is proposed by Zhu, et al. 

(unpublished data), where Shh influences the early patterning of progenitor cells either by 

concentration or the time of exposure; however, the final cell fate is determined by the downstream 

signaling and cellular proliferation. 

Shh in Organogenesis. Hh is involved in the development of fruit flies, playing a role in the 

Fig 3. Sonic hedgehog signaling pathway 
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segmentation, wing, legs and brain development (McMahon, 2000). However, in vertebrates Shh 

(Hh homologue) is important in early embryonic patterning and morphogenesis of multiple organs. 

Sonic hedgehog determines digit number and digit patterning in the limb. Deletion of Shh expression 

leads to digit loss (Zhu et al. 2008). Also, Shh acts on the eye development. The eye development in 

the embryo starts to form as a single unit and sonic hedgehog allows it to split as two different fields. 

Mutation in Shh during the eye development does not allow eye splitting and result in a cyclops 

mutation (Gilbert, 2000). Sonic hedgehog has also been associated with the development of the 

patterning of the gut tube and its down-regulation is involved in the specification of the pancreas. 

When Shh is not down-regulated, the cell fate is inverted and begins to develop into the intestine 

(Gilbert, 2000). 

Shh in Cancer. Sonic hedgehog not only is important during embryonic patterning but also 

regulates adult tissue homeostasis in both invertebrates and vertebrates (Ingham and McMahon, 

2001). Mutation in the Shh pathway has been associated with cancer development and proliferation. 

Over 14 types of cancers have been found to have a mutation that leads to the activation of the Shh 

signaling pathway (Cohen, 2003). Some of these cancers include breast and liver cancer, esophageal 

carcinoma, basal cell carcinoma and medulloblastoma (Taipale and Beachy, 2001) (Rubin and de 

Sauvage, 2006). Type I cancers are usually associated with an independent activation of the 

pathway. Type II cancers are activated by an autocrine and ligand dependent signaling, where tumor 

cells and neighboring cells are expressing Shh and responding to the ligand. 

Finally, type III cancers signal Shh in short-range, which promotes growth and proliferation 

of the cancer cells (Scales and de Sauvage, 2009) (Rubin and de Sauvage, 2006). Many scientists 

try to understand how Shh signaling behaves in a natural environment to predict the behavior of 

cancer cells. This research potentially leads to cancer treatments. 

Shh in the Male Reproductive System. Shh signaling is involved in different adult tissues 



 
 

 
17 

that are important for reproduction. Sonic Hedgehog is involved in the development of prostate and 

external genitalia. Some studies have found its expression in the three regions of the adult mouse 

epididymis, cauda, corpus and caput (Fig. 4) (Turner et al. 2006) (Walterhouse et al. 2003). This 

finding is important, because a similar process occurs in the human epididymis. This tissue is 

divided into three intraregional segments. Many genes, including Hh, mediate the regulation of these 

segments (Turner et al. 2004). It seems that Shh recruits other proteins to create this patterning. 

Interestingly, when Turner et al. (2006) looked closer into the pattern, they found that Hh targets 

were not expressed during adult epididymis maturation; neither the receptors nor transcriptional 

factors of the pathway. 

Shh expression in the epididymis seems to be important in maintaining the luminal 

microenvironment conductivity, which is a determining factor for sperm maturation (Turner and 

Howards, 1978) (Yeung and Cooper, 2002). Disruption in the Shh pathway had resulted in reduced 

sperm motility, demonstrating that Shh indeed has a role in spermatogenesis (Turner et al. 2006). 

Before the characterization of Ptchd3, Ptch2 was known to be the receptor with highest 

expression in the testis, followed by a low expression of Ptch1 (Mäkelä et al. 2011). Ptch2 is 

expressed at the early stages of spermatogenesis (Fig. 5). However, previous studies conducted 

with Ptch2 null mice had shown no significant difference in mouse fertility (Carpenter et al. 1998) 

(Nieuwenhuis et al. 2006). These findings suggest that Ptchd3 could be the principal receptor for 

Hh during spermatogenesis since its expression is in the late stages of spermatogenesis 

(roundspermatids-sperm) (Fan et al. 2007). Ptch1 had been found to be expressed in the interstitial 

cells, myoid cells and Leydig cells (Bitgood et al. 1996) (Clark et al. 2000). Ptch1 had been shown 

to be necessary for Leydig cell differentiation at embryonic stages (Yao and Capel, 2002). Gli1 is 

expressed in various germ cells from spermatogonia to round spermatids (Fig. 5) (Kroft et al. 2001) 
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(Mäkelä et al. 2011). Kroft et al. (2001) analyzed the ectopic Gli1 in spermatocytes and concluded 

that this transcriptional factor made the cells stop the meiotic cycle, indicating that Hh is required 

for proper spermatogenesis. 

Ptch1, Ptch2, Smo and Fu, are expressed in both mitotic and meiotic murine germ cells. This 

is another piece of evidence that these cells have receptors required for Hh ligand response 

(Szczepny et al. 2006) (Morales et al. 2009). 
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Fig 4. Hedgehog signaling in the testis and epididymis. Sonic hedgehog (blue) is 

expressed in all parts of the epididymis, while Desert hedgehog (red) is expressed 

in the testis and has especially been associated with Sertoli cells. This figure is 

modified from the report (Cooke and Saunders, 2002).  
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Fig 5. Hedgehog signaling components and their mRNA expression 

during spermatogenesis. This figure is modified from the report 

(Szczepny et al. 2006). 
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Desert Hedgehog during Spermatogenesis 

 

Desert hedgehog (Dhh) plays a critical role in the spermatogenesis process, such as the 

development of the testis and the maturation of sperm (Szczepny et al. 2006). Dhh is the only 

hedgehog protein expressed in Sertoli cells during organogenesis (Fig. 4) (Szczepny et al. 2006). 

Dhh helps differentiation of the fetal Leydig cells. At 11.5 dpc Sertoli cells begin to 

produce Dhh which allows the differentiation of Leydig cells to start. Leydig cells produce 

androgen, which is critical for developing male accessory organs. Yao and Capel (2002) simulated 

a Dhh null mutant using inhibitors of the pathway and observed that the number of Leydig cells 

was reduced albeit still present, which indicated that there was a genetic redundancy and that other 

Hh might play a role during this process. Genetic redundancy is not a surprise because Huang and 

Yao (2010) found that Shh mRNA was also expressed in the testis. Other studies have looked into 

the Dhh/Ptch1 signaling and found that the specification or differentiation of Leydig cell lineage 

occurs because Dhh acts to upregulate the expression of steroidogenic factor 1 (Sf1) and P450 side 

chain cleavage (Scc) expression in Ptch1-expressing precursor cells, which are found in the outer 

part of the testis cords (Yao et al. 2014). 

Researchers had successfully produced a Dhh null mouse strain. The severity of the 

mutation depends on the genetic background of the mouse. Some mutants remain with normal 

testis but fail to produce mature sperm, while others end up with feminized external genitalia 

(Bitgood et al. 1996). On the other hand, other mice present problems in the testis patterning and 

produce irregular development of peritubular myoid cells, apolar Sertoli cells, lack of basal 

lamina, and anastomotic testis cords (Pierucci-Alves et al. 2001). Szczepny et al. (2006) 

confirmed these studies after generating a Dhh null mutant and found that males were infertile 

and did not produce mature sperm, indicating that the process of cellular differentiation was 
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affected at some point. Bitgood et al. (1996) also generated a mouse strain with a Dhh null allele. 

They found that the mutant mouse at 18.5 dpc exhibited small testis. These could be explained by 

the insufficiency of germ cells in the testis tubules and also the presence of residual Sertoli cells. 

After mutant males were born, the testis increased in size due to the continuation of germ cell 

mitotic cycle at 2-3 days post-partum (dpp). However, the mutant testis never reached the normal 

size afterward. At 10 dpp, meiosis begins. The haploid round spermatids form around 19- 21 dpp 

and the spermatozoa are released into the lumen of the semiferous tubules at 5-6 weeks post-

partum. Dhh seems to be important during this process of germ cell differentiation and 

development. 

 

Overview of Ptchd3 

 

A previous study from our lab was the first to characterize a putative hedgehog receptor 

named Ptchd3, which is a male germ cell-specific gene. On sperm, the Ptchd3 protein was found 

in the mid-piece, and this location was conserved in humans, mice and rats (Fan et al. 2007). 

Ptchd3 seems to fit well as the candidate receptor of Dhh during spermatogenesis. This proposed 

research tries to test if Ptchd3 is the essential receptor of Dhh in this process. During the 

characterization of this membrane protein Ptchd3, two transcript isoforms were found in mouse 

testis: Ptchd3a (the predicted protein product contains 410 amino acid residues) and Ptchd3b (the 

predicted protein product contains 906 amino acid residues) (Fan et al. 2007). Both isoforms 

were found to be transcribed on postnatal day 14. Ptchd3 gene is on chromosome eleven in mice 

and chromosome ten in humans. The Ptchd3b protein has a charge of -12.5, molecular weight of 

101,813.36 g/mol and an isoelectric point of 5.1235. The presence of the 12 transmembrane 

domains in Ptchd3b (Fig. 6) is an indicator that this protein is a membrane protein. The presence 

of PTCH domain, sterol sensing domain (SSD) and resistance –nodulation-division (RND) super 
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family domains indicate that it might have multiple biological functions (Fig. 6), such as the 

regulation of embryonic stem cells (Fig. 26). 

Gharamani Seno et al. (2011) studied Ptchd3 in humans and found that this gene had copy 

number variant (CNV) in people. The CNV was found to be a product of a single ancestral event 

present in 0.6-1.6% of people with European ancestors. The expression of this gene was seen in 

different areas of the human body, but with highest expression in testis, lymph nodes and tongue. 

He concluded that Ptchd3 was a non-essential gene at least in humans and its expression could 

increase fecundity but its absence did not cause infertility. Another study conducted by Smith et 

al. (2013) performed germ lines analysis to look at the genes that might be involved in colorectal 

tumorigenesis. He found that two patients of his study carried a truncated mutation in Ptchd3. 

After making a comparison of this mutation and somatic mutations in the wild-type allele that 

seen in the tumor patients, he concluded that Ptchd3 was a tumor-suppressor and its mutation 

predisposed an individual to colorectal cancer. 

Ptchd3 is present in different organisms (Fig. 27), for example in C. elegans (Soloviev et 

al. 2011). However, contrary to Ptchd3 in mouse, in C. elegans it is expressed in multiple tissues. 

Soloviev et al. (2011) investigated the temporal and spatial pattern of Ptchd3 expression in C. 

elegans during the embryonic development. He found that in C. elegans Ptchd3 was essential to 

the survival of the embryo when it was transitioning to the larval stage. 
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Fig 6. Ptchd3 gene and protein structure. (A) The Ptchd3 gene consists of 4 exons. (B)The 

conserved protein domains of Ptchd3 were analyzed at www.ensembl.org. Ptchd3a has two 

transmembrane domains and Ptchd3b has ten transmembrane domains. Ptchd3b also 

possesses a sterol sensing domain (SSD), Patched domain, two AcrB (Cation/multidrug 

efflux pump) domains and three RND superfamily domains (Fan et al. 2007). (C) Ptchd3b 

protein sequence was analyzed at the University of College London MEMSAT3 web server 

to obtain the protein topology, which consists of 12 transmembrane domains. 

   1                                                 2    3                                     4 
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CHAPTER 2 

 SPECIFIC AIMS AND HYPOTHESIS 

Objective and Specific Aims 

 

The purpose of this research is to study if Ptchd3 has a function during spermatogenesis by 

observing the effects of Ptchd3 knockout in Mus musculus. 

Specific Aim 1: Generation of Ptchd3 Knockout Mice. There were no Ptchd3 knockout 

mice commercially available when this project was initiated. Therefore, generation of a Ptchd3 

knockout mouse line was greatly needed in order to study this gene’s function in vivo.  

Specific Aim 2: In Vivo Fertilization Analysis. To assess if Ptchd3 plays a critical role 

during mouse spermatogenesis, we had to test the fertility of Ptchd3 knockout mice.  

Specific Aim 3: In Vitro Sperm Analysis. There are many approaches to test male 

infertility, and one of them is to analyze sperm morphology (Lindemann, 2010) (MacLeod and 

Gold, 1951). It has been shown that Ptchd3 is located in the mid-piece of the sperm tail (Fan et al. 

2007), where mitochondria are present and produce the required energy for sperm movement. Thus, 

we decided to in vitro assess sperm motility in Ptchd3 knockout mice.  

Hypothesis 

This study aims to test the hypothesis that Ptchd3 (Patched domain containing 3), a male 

germ cell-specific gene whose expression pattern is conserved in humans, mice and rats, acts as a 

receptor for Dhh in mouse spermatogenesis. 
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CHAPTER 3 

 MATERIALS AND METHODS 

 

 

Generation of Mutant Mice and Genotypic Analysis 

 

Mutant Generation. The Ptchd3 knockout chimeric male mice were generated at University 

of California- Davis under the project CSD 24758 of Knockout Mouse Project.  

The chimeric mice, BL3085-6, which contained an allele of Ptchd3tm1a Wtsi were 

transferred to Marshall University animal facility and crossed with C57BL/6 female mice to 

produce F1 Ptchd3+/- heterozygous mice (Fig. 7). The F1 mice were inter-crossed to obtain Ptchd3-

/- homozygous knockout mice. 

The animal care and experiments described within were reviewed and approved by the 

Institutional Animal Care and Use Committee of Marshall University, and were performed in 

accordance with the Guiding Principles for Care and Use of Laboratory Animals. 

DNA Extraction. Once the offspring were approximately one month old, about 2-3mm of 

the tails was cut for DNA extraction. The tails were digested by using 75μL of 50mM NaOH and 

heating at 95ºC for 30 min. Then 75μL of 50mM HCl and 15μL of 1M Tris HCl were added to 

complete the digestion process. The extracted DNA solution was then stored at 4ºC. 

PCR. The mouse genotype was determine by polymerase chain reaction (PCR) of the 

genomic DNA that was obtained from the tail. The primer pairs used to detect the knockout 

amplicon (389bp) were Ptchd3-loxF GAGATGGCGCAACGCAATTAATG and Ptchd3-R 

CAACTGTATCCCTCAAGAAACAAGCC (Fig. 8). The other set of primers, Ptchd3-F 

GCATGGCTGACTCACTTTCTTGACC and Ptchd3-ttR 
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GGGTTATATTTTGGGATTGCTGGCCC were used to detect the wild-type amplicon (543bp) 

(Fig. 8). The PCR mix and PCR cycles are described in the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data collection 

Fig 7. Generation of the Ptchd3 knockout mice and experimental design. 
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In Vivo Fertilization 

Experimental cages were established in order to determine if Ptchd3 mutant male mice were 

infertile or not. Male mice around the same age (approx. two months old) were selected in every 

repetition. Having age-matched controls allowed to reduce the bias. All experimental cages 

contained one male and two females. Litter size and litter number were recorded for a period of two 

months.  

Mouse Dissection and Sample Collection 

 

The mice were euthanized using a CO2 chamber. Once they didn’t show any sign of 

breathing or movement, cervical dislocation was performed on the mouse. For sperm morphology, 

the male mouse was dissected to collect both testis and cauda epididymis (Fig. 9). First, 70% ethanol 

was put in the abdomen to start the dissection and to avoid having animal hair contaminate the

Fig 8. A schematic diagram of the positions of the PCR primers and the antigen region 

recognized by the antibody Ptchd3-Ab1 on the targeted allele. 
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sample. Once the cut was made, the fat was pulled out, allowing the testes to be seen more clearly 

for their removal. The testes were collected and kept either at-20°C for RT- PCR analysis, or in 4 

% paraformaldehyde for histology. The testes could also be used as fresh samples for RT-PCR or 

Western blot analysis. In order to get the percentage of testis body weight, their weight was 

measured with an analytical balance and then the testis body weight was calculated using the 

formula below: 

  

 Testis body weight =(
𝑇𝑒𝑠𝑡𝑖𝑠

𝐵𝑜𝑑𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 ) x100. 

 

 
 

 

 
 
 

Sperm Analysis and Abnormality 

 

To perform sperm analysis, first the epididymis was cut and placed in 1.5 mL of 1X PBS. 

The sperm sample was filtered to avoid big pieces of tissues (for obtaining a pure sperm sample)  

Fig 9. Dissection of mouse testis and epididymis. The illustration shows how the male mouse 

is dissected and the testis and sperm are collected. 
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and spin down in the Eppendorf centrifuge 5415D for five min at 8000 rpm. In order to observe 

the sperm nucleus, DAPI was added and incubated at room temperature for 15 min using the 

rotator. The DAPI blue fluorescence stain would help to have a better visualization of the sperm 

head where the sperm nucleus is located. The DAPI staining serve as a confirmation to avoid bias 

when the abnormal/normal ratio of sperm morphology was performed (Fig. 16). The samples 

were analyzed on Leica DMI 4000B fluorescent microscope. The images (phase contrast and 

fluorescence) were captured with Leica DFC 400 digital camera. 

%Abnormality =(
𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑆𝑝𝑒𝑟𝑚

𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑝𝑒𝑟𝑚
) x 100 

Statistical Analysis 

 

The data obtained from the experimental cages (litter size, litter number, testis body 

weight, sperm morphology and sperm motility) were analyzed using t-test (Microsoft Excel) or 

one-way ANOVA. The standard deviation and mean of each genotype was determined. The 

formulas used for standard deviation and mean are described below: 

T-test statistical analysis 

Average= 
∑ 𝑛1+𝑛2+𝑛3+⋯

𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑐𝑒 𝑎𝑛𝑎𝑙𝑦𝑧𝑒
 

Standard Deviation= 
√∑(𝑋−𝑋)²

𝑛−1
 

To corroborate the data, SAS and Prism statistical programs were used. An example of 

the commands used to run SAS program is indicated below. 

- 
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SAS 9.4 

 

Version: Example 

 

PROC MEANS DATA=mice; 

Var abnormality; 

CLASS genotype; 

RUN; 

 

PROC UNIVARIATE DATA=mice PLOT NORMAL; 

VAR abnormality; 

BY genotype;  

RUN; 

 

PROC ANOVA 

DATA=mice; 

CLASS genotype; 

MODEL abnormality=genotype; 

MEANS genotype/Tukey; 

RUN; 

 

RT-PCR 

 

RNA Extraction. The RNA was extracted by the method of Chomczynski and Sacchi 

(1987). When the testes were removed, they were cut in halves and the epithelial layer was 

removed and discarded. The remaining tissue was placed in a 1.5 mL tube with 300μL of TRIzol 

reagent (from Life Technologies). The samples were mixed, homogenized and vortexed until 

completely dispersed. After that, 60µL of chloroform was added. The sample was vortexed for 15 

sec, and incubated for ten min under RT. Later the sample was centrifuged for ten min at 12,000 g 

at 4°C. The aqueous phase was transferred to a new tube and the remaining was discarded. Then 

150µL of 2-propanol was added and was vortexed for ten sec and incubated at RT for ten min. 

After that, the sample was centrifuged for ten min at 12,000 g at 4°C. The supernatant was 

discarded by pipetting and the RNA pellet was washed with 250μL of 70% ethanol in nuclease-

free water. 
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Then the pellet sat at RT for about ten min for air dry. In order to finish the RNA extraction, 

40µL of nuclease free water was added to the sample and the concentration was then measured 

by the Nanodrop spectrophotometer. 

RT-PCR. Once the RNA concentration was determined by the Nanodrop, the Transcriptor 

First Strand cDNA Synthesis Kit (by Roche) was used to obtain the cDNA, which was used as a 

template for PCR. To make RNA-primer mix, 1μg of total RNA was added to a PCR tube with 

addition of 2μL of Random Hexamer Primer (from Roche) and 10μL of nuclease free water. The 

sample was then denatured at 65°C in the thermo cycler for ten min. After denature, the sample 

was immediately placed on ice. Then the next components were added in the following order, first 

the Reverse Transcriptase Reaction Buffer, 5x (4μL), second Deoxynucleotide Mix, 10mM (2μL) 

and finally the Reverse Transcriptase (0.5μL). Then the sample was mixed by gently pipetting and 

spin down for 30s. After that, the sample was placed in the thermo cycler and incubated ten min at 

25°C, followed by 60 min at 50°C and finally five min at 85°C. At this point, the cDNA was 

generated and used for the next experiment. 

The cDNA was then used as the PCR template. The primers for β-actin were (5’-GTG 

GGC CGC TCT AGG CAC CAA-3’ and 5’-CTC TTT GAT GTC ACG CAC GAT TTC-3’). 

The primers FP1: 5′-CACCCAGCTCATCTACTTAGC-3′ and RP1: 5′- 

CTACAAATTTAACACAGCCTCG-3′ were used to produce an amplicon of 524bp to detect the 

short isoform, Ptchd3a (Fig. 10). The primers FP1: 5′-CACCCAGCTCATCTACTTAGC-3′ and 

RP2: 5′-GAGCAGGGTTGTTCCTGTATAG-3′ were used to produce an amplicon of 700bp to 

identify the long isoform, Ptchd3b (Fig. 10) (Fan et al. 2007). 
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The primers for the short isoform Ptchd3a 

Forward Primer-FP1: 5′-CACCCAGCTCATCTACTTAGC-3′ 

Reverse primer RP1: 5′-CTACAAATTTAACACAGCCTCG-3′ 

These primers can generate a PCR amplicon of 524 base pairs (bp).  

The primers for the long isoform Ptchd3b 

Forward Primer-FP1: 5′-CACCCAGCTCATCTACTTAGC-3′ 

Reverse primer RP2: 5′-GAGCAGGGTTGTTCCTGTATAG-3 

 

 

 

 

 

 

 

 

Fig 10.  Position of the RT-PCR primers on the mouse Ptchd3 gene. 
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Sequencing 

Sample Preparation. After obtaining the positive RT-PCR product we proceeded to make 

an additional round of PCR by adding 1 µL of the sample to five different PCR tubes containing 

the PCR mix  (making a total of 50 µL reaction volume). Once the reaction was finished the 

volume of each PCR tube was combined for the PCR purification. 

PCR Purification. Once the PCR samples were prepared, we used the QIAquick PCR 

Purification Kit to clean the samples. First PB was added and mixed, followed by the addition of 

10µ of 3 M sodium acetate. The samples were added to the QIAquick columns and centrifuged at 

13,000 rpm for one min. After that, the flow-through was discarded and 750µ of PE buffer was 

added to the columns, followed by a centrifugation at 13,000 rpm for one min. An additional 

centrifugation was performed to remove the excess of the PE buffer. The column was removed 

from the collection tube and placed in a new 1.5 mL microcentrifuge tube. After that, the DNA 

was eluted by adding 50µL of EB buffer and centrifuged at 13,000 rpm for one min. 

Sequencing. The purified PCR products were sent to the genomic core facility at Marshall 

University for conventional sequencing. The DNA sequence and corresponding protein sequence 

were analyzed by CLC Main Workbench 6.0 and the MAMSAT3 web server provided by the 

University of     College London. 

Histology 

Mouse testes were collected and preserved in 4 % paraformaldehyde. The fixed testes were 

then sent to John C. Edwards School of Medicine at Marshall University for slide preparation. The 

testes were embedded in paraffin and cut with a microtome (six micron thickness). Tissue slides 

were stained with hematoxylin and eosin. The slides were observed under Leica DMI 4000B 
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microscope and the images were captured with Leica DFC 400 digital camera. 

Immunostaining 

The dissection was performed as described previously in section 3.3 to obtain and isolate 

the epididymis in 1.5 mL of PBS. Then the epididymis was cut about ten times and left at RT for 

15 min to allow the sperm to move out from the tissue. The sperm sample was filtered through a 

mesh to clear out big pieces of tissues, and then centrifuged at 5000 rpm for three min. After that, 

the supernatant was discarded and the sperm pellet was washed and suspended in 500μLof PBS 

with 0.3% bovine serum albumin in two different 1.5 mL tubes. 200μL of the sperm suspension 

was added. One tube contained 10μg/mL of primary antibody (Ptchd3-Ab1), and the other did not 

(control). Both tubes were incubated at RT for 45 min and centrifuged at 5000 rpm for four min. 

After centrifugation, the sperm sample was washed and suspended with 500μL 1 of PBS with 

0.3% bovine serum albumin. Then the secondary antibody (Alexa Fluor 488-conjugated goat 

anti-rabbit antibody) and DAPI (to observe the nucleus) were added (Fan et al. 2007). After that, 

the tubes were covered with aluminum foil to avoid light exposure and incubated at RT for 45 

min by rotation. After incubation, the sample was centrifuged at 5000 rpm for 3 min to discard 

the supernatant. Finally, the sperm pellet was resuspended in 200μL of PBS. 10μL of the sperm 

suspension was placed on a glass slide, covered with a glass cover slip, and observed under 

Leica DMI 4000B fluorescent microscope. The images (phase contrast and fluorescence) were 

captured with Leica DFC 400 digital camera.
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Fig 11. Antibody recognition of Ptchd3. The antibody recognition site is located in the 

first extracellular loop. 
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Western Blot 

 

Preparation of the Testis Protein Sample. The testes were isolated from the mice and 

one of them was cut in half with a blade. Half of the testis was placed in 1.5 ml microcentrifuge 

tube, and the other half was saved for RT-PCR. The epithelial layer was removed with a 

tweezer. The testis was spun down for several seconds. Then 5 µL of SDS, 5 µL of ABSF and 

250 µL of RIPA buffer were added (the final SDS concentration was 0.2%). Then the sample 

was placed on ice for ten min. After that, the sample was sonicated for 15 min. After sonication, 

the sample was centrifuged at 12,000 rpm, 4˚C for 15 minutes. The supernatant was saved as the 

testis protein sample. The protein concentration was measured by Nanodrop. 

Protein Separation. 0.1 mg of the testis protein sample was added to 2µL 6xR (DTT) 

and/or 6xNR protein loading buffer, and heated at 100˚C for three minutes. After that the 

sample was spun down and kept on ice until being loaded to the gel. Afterwards 500ml of 1X 

SDS running buffer was added into the running tank so that it would fully cover the inner gel 

and half of the outer space of the running cassette. Then the protein samples (10 µL of testis 

protein sample and 7.5 µL of protein marker) were loaded into the gel wells. The gel was run at 

80V for 10 min, followed by 100V for 1h. After running, the gel was removed from the cassette 

and the lowest part of the gel was discarded. The nitrocellulose membrane was placed in 

methanol and then washed 2x with distilled water and then everything (the sponges, filter 

papers, gel and membrane) was submerged in the wet transfer buffer for 15 minutes. Then the 

sandwich was built by placing the sponge, followed by filter paper (after every addition the 

assembled materials were rolled with a 2ml pipet to remove any bubbles) membrane, gel, filter 

paper and finally a sponge to close the cassette. The cassette was placed in the transfer box, 

which contained enough transfer buffer, and run at 100V for one hour to transfer the proteins to 
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the membrane. 

Probing. The membrane was first blocked in 5% nonfat milk in TBST buffer (50mM 

Tris (pH 7.5), 150 mM NaCl, 0.1% Tween-20) for one hour at RT. After that the primary 

antibody Ptchd3-Ab1 (1:500 dilution, 10µL in 5 mL of TBST) was added. The membrane was 

incubated overnight at 4ºC with rotation. After incubation, the membrane was rinsed twice with 

TBST, and then underwent one 15 min wash, followed by 3X wash (five min each) with TBST. 

All washing steps were done with shaking. After washing, the secondary antibody (mouse anti-

rabbit, AP conjugated) was added (1:8000 dilution, 1µL in 8mL of TBST) and the membrane 

was incubated at RT for one hour with shaking. After incubation with the secondary antibody, 

the membrane was washed as described above. The membrane visualization was developed by 

adding 4mL of color solution (Promega). 

Sperm Motility Analysis 

To perform sperm motility assay, first the epididymis was cut and placed in 1.5 mL of 

1X PBS. The 1.5 ml of sperm sample was filtered through a nylon mesh to avoid big pieces of 

tissue, transferred to a microcentrifuge tube, and then spun down in the Eppendorf centrifuge 

5415D for one min at 8000 rpm. Later, the supernatant was taken out and discarded. 500 µL of 

1X PBS was added and the sperm pellet was re-suspended by pipetting. After that, the sample 

was incubated at 36˚C for five min. 100µL of the sperm sample was taken out and diluted in 

1mL of 1 X PBS. Later, 20µL of the sperm sample was mounted on a glass slide and observed 

under Leica DMI 4000B microscope. The videos were taken with a 3 MP resolution camera. 

The beating of the sperm was quantified for a minute for both wild-type and knockout sperm. 

The data was analyzed by t-test. 
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CHAPTER 4 

RESULTS 

To date, there are no published studies on Ptchd3 function in Mus musculus. Previous 

studies have just looked at the tissue expression of this transmembrane protein. In order to 

determine the function of an interested gene, researchers normally begin with an over-expression 

or knockout approach. Because this is the first study on Ptchd3, no Ptchd3 mutant mice are 

commercially available. In order to obtain Ptchd3 knockout mice in our laboratory, a custom- 

made transgenic mouse was first generated by UC Davis KOMP Repository Knockout Project. 

The resultant chimeric male mice were then transferred to Marshall University to produce Ptchd3 

mutant mice. 

 

Ptchd3 Knockout 

The targeting vector Ptchd3-tm1a (KOMP) wtsi used to generate the chimeric 

males was illustrated below (Fig. 12). If successful, this targeting strategy would result 

in a mutant Ptchd3 mRNA (including endogenous exon1 and inserted EN2, IRES, LacZ 

and Poly A), which is expected to have reading frame shift and produce a truncated 

protein in the mutant mice. 
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Genotyping 

In a previous study (Fan et al. 2007), the expression of Ptchd3 was described and a 

particular pattern of expression was observed in the mouse testis. This expression suggests that 

Ptchd3 might be involved in spermatogenesis. To address Ptchd3’s function, we adopted the 

gene targeting strategy. Two chimeric male mice were transferred from UC Davis to Marshall 

University, and subsequently mated with C57 Black females to produce the offspring. Only 

one chimeric male was able to transmit mutant Ptchd3 allele to its progeny (in other words, 

progeny with heterozygous genotype). The offspring genotypes were determined by PCR on 

the tail genomic DNA using the primers Ptchd3-loxF and Ptchd3-R, which identified the 

Ptchd3 wild-type mice with an amplicon of 543 bp and knockout mice with an amplicon of 

389 bp (Fig. 13).

1 

Splicing 

acceptor 
Splicing 

donor  
Splicing 

acceptor 

IRES pA lacZ En2  

Splicing 

donor  

Fig 12. Mutation strategy used to generate Ptchd3 knockout mice 
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In Vivo Fertilization Data 

The in vivo fertilization experimental cages were established to monitor the offspring litter 

number and litter size. The one way-ANOVA test generated by Prism reveals no significant 

difference for litter number (p-value of 0.7973) (Fig. 14) and litter size (p-value 0.3648) (Fig. 15). 

These in vivo fertilization results clearly demonstrate that Ptchd3 is not essential for 

mouse fertility. 

 

WT 

 543 bp 
KO 

389 bp 

Fig 13. Genotyping of the Pthcd3 transgenic mice. PCR and gel electrophoresis was 

performed to identify mutant mice. 
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Fig 14. In vivo fertilization assay. Each experimental cage contained one male 

and two females. The data were collected from three wild-type, thirteen 

knockout and seven heterozygous male mice. A one way-ANOVA test 

generated by Prism software reveals a p-value of 0.7973. 
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Fig 15. In vivo fertilization assay. Each experimental cage contained one 

male and two females. The data were collected from three wild-type, 

thirteen knockout and six heterozygous mice. A one way-ANOVA test 

generated by Prism software reveals a p-value of 0.3648. 
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In Vitro Sperm Morphology Analysis 

The results obtained from the experimental cages for the in vivo fertilization somehow 

were not expected from a testis specific protein whose expression is conserved in the sperm of 

different mammals. Thus, we further analyzed sperm morphology in vitro. The 

abnormality/normality ratio was obtained by quantifying the sperm with abnormal morphology 

(Fig. 16) divided by the total sperm. The one way-ANOVA data reveals that there is some 

statistical significance (p-value 0.041*) (Fig. 17). Tukey test (performed on SAS 9.4) was then 

performed to determine which groups were statistically significant with one another. The 

comparison between KO and WT (interval ±4.7 to ±12.8) and HT and WT (interval ±6.9 to 

±10.9) showed no statistical significance, since both comparisons were able to include zero. 

However, the comparison between KO and HT (interval ±0.4 to ±11.6) showed a statistical 

significance, since the values did not include zero. Nevertheless, this statistical significance might 

be explained by a bias (e.g. human factor) when we calculated the sperm abnormality or lower 

sample size. 
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Normal 

Sperm 

A 

B 

Abnormal 

Sperm 

Fig 16. Sperm morphology of Ptchd3 knockout mice. A) Black arrow 

shows an abnormal sperm while red arrow represents a normal one. B) 

DAPI staining of sperm nucleus. The samples were analyzed by Leica 

DMI 4000B fluorescent microscope. The images were captured with 

Leica DFC 400 digital camera. 
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Fig 17. Sperm morphology analysis. The data were collected from three wild-

type, thirteen knockout and eleven heterozygous mice. A one way-ANOVA test 

generated by Prism software reveals a statistical significant (p-value 0.041*). 
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Testis Body Weight 

We then measured body and testis weight of wild-type, heterozygous and null mutant 

mice, and analyzed the ratios of testis to body weight. The one-way ANOVA indicates that there 

is no significant difference (p-value 0.0638) among the three tested groups (Fig. 18). 
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Fig 18. Analysis of testis body weight. The data were collected from three 

wild-type, fourteen knockout and nine heterozygous mice. A one way-

ANOVA test generated by Prism software reveals a p-value of 0.0638. 
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RT-PCR 

To determine the mRNA expression levels of Ptchd3 in mutant and wild-type mice, semi- 

quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on cDNAs 

derived from the testis. After reverse transcription, one set of primers (Fp1/RP1) was used to 

amplify the short Ptchd3 isoform Ptchd3a and the other set of primers (FP1/RP2) to amplify the 

long Ptchd3 isoform Ptchd3b (Fan et al. 2007). The RT-PCR would reveal how the knockout 

strategy works at the transcriptional level. We run β-actin as a control since it is a housekeeping 

gene, and its expression should be the same among different samples. We observed a constant 

expression of β-actin in different samples, which was expected (Fig. 19a). 

However, the RT-PCR for Ptchd3b as well as Ptchd3a (data not shown) shows a slightly 

higher amplicon (≈ approximate 80 bp) in the knockout mice, as compared with that in the wild-

type mice (Fig. 19b). This result validates that the knockout strategy was successful at the mRNA 

level. However, the RT-PCR for Ptchd3b as well as Ptchd3a (not indicated below) shows a slightly 

higher amplicon (≈ approximate 80 bp) for the knockout than the wild-type (Fig. 19b).  
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Fig 19. RT-PCR A) β-actin RT-PCR shows that all samples have similar 

expression. B) The result shows the expression of Ptchd3b isoform in 

both knockout (Approx. 780bp) and wild-type mice (700bp). 
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Immunofluorescence 

The RT-PCR result indicated that we did not detect any wild-type mRNA in the knockout 

testis. To confirm that the Ptchd3 protein was indeed altered in the knockout mice, we conducted 

immunofluorescence on the sperm by using the antibody Ptchd3-Ab1, which recognizes the first 

extracellular loop of the Ptchd3 protein (Fig. 11). However, we observed the similar fluorescent 

pattern in the mid piece of both wild-type and knockout sperm (Fig. 20). This result indicates that 

the truncated Ptchd3 produced by the knockout strategy still contains the antigen site recognized by 

the antibody Ptchd3-Ab1, and is still able to get to the sperm plasma membrane. 
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Fig 20. Immunofluorescent assay of mouse sperm. The antibody Ptchd3-Ab1 was used in the 

immunofluorescent assay on the wild-type (panels D-F) and Ptchd3 knockout sperm (panels A- 

C).  Panel A and D: DAPI staining in the sperm nucleus. Panels B and E: phase contrast. Panel C 

and F: Alexa-488 green fluorescence. Green fluorescence was found in the mid piece of both 

wild-type and knockout sperm. 
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Sequencing 

The RT-PCR analysis on the Ptchd3 knockout testis revealed an unexpected PCR 

amplicon (≈ 780bp) (Fig. 19). In order to determine that this amplicon was not due to a result of 

non-specific amplification or contamination, the PCR product (≈ 780bp) was purified and further 

analyzed by DNA sequencing. 

The result obtained from DNA sequencing indicated that appearance of the unexpected 

PCR product (≈ 780bp) likely stems from the methodology implemented in the generation of 

Ptchd3 transgenic mice. The mutant mice were generated via conventional insertion, predictably 

resulting in a frameshift mutation and the production of truncated/non-functional Ptchd3a and 

Ptchd3b proteins. We found that the inserted DNA, causing the truncated protein, was from 

partial exon 2 of mouse En2 (homeobox protein engrailed-2) (Fig. 21). The sequence data also 

showed that the antibody (Ptchd3b-Ab1) recognition site was not changed in the truncated 

protein (Fig. 21), which was the reason that we still could observe immunofluorescent staining 

on the knockout sperm (Fig. 20). The truncated protein sequence was analyzed at the 

MAMSAT3 web server provided by the University of College London. The result shows that 

truncated Ptchd3 only has two transmembrane domains (Fig. 22), as compared with the wild-

type protein which has twelve transmembrane domains (Fig. 6). 
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Fig 21. Sequencing analysis of mutant Ptchd3 (Ptchd3-EN2-KOMP). The sequence reveals that 

115 bp of exon 2 of mouse engrailed-2 (highlighted in green) was inserted between exon 1 and 

exon 2 of  the authentic Ptchd3 mRNA, resulting in truncated and partially mis-translated 

protein 370 amino acid residues (from a reading frame of 1113 bp), (stop codon TGA was 

highlighted in red). The antigen site recognized by the antibody Ptchd3-Ab1 was highlighted in 

yellow. 
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Fig 22. Protein topology of mutant Ptchd3. The protein topology was analyzed on the 

MAMSAT3 web server provided by the University of College London. The truncated and 

partially mis-translated mutant Ptchd3 protein (from a reading frame of 1113 bp) was predicted 

to possess two transmembrane domains instead of twelve transmembrane domains of the wild-

type protein. 
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Testis Histology 

Testis histology was carried out to determine whether Ptchd3 knockout affected 

spermatogenesis inside the testis. As shown in Fig. 23, there were not any noticeable changes in 

the histology between wild-type and knockout testis. The seminiferous tubules in the knockout 

testis appear normal and contain male germ cells at different developmental stages (Fig. 23). 

Spermatozoa are seen in both wild-type and knockout lumens (Fig. 23). This result indicates that 

spermatogenesis was not compromised without Ptchd3. In other words, Ptchd3 is not required for 

germ cells to complete the differentiation and development from spermatogonia to spermatozoa. 

 

 

 

  

Fig 23. Histology analysis. Tissue slide (H&E staining) from (A) WT and (B) KO testis was 

observed with Leica DMI 4000B microscope. Normal spermatogenesis was seen in the KO 

testis. 
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Western Blot 

 To further confirm Ptchd3 knockout at the protein level, we performed Western blot. The 

protein samples were prepared from wild-type and knockout testis. The antibody Ptchd3-Ab1 

was used as the primary antibody. Even with multiple attempts, we could not obtain a clean blot 

(Fig. 24), suggesting that the antibody Ptchd3-Ab1 might not be suitable for western blotting.  

 

 

 

 

 

 

 

 

Fig 24. Western blot on testis protein samples. The primary antibody was Ptchd3-Ab1 

(2.5µg/mL) and the secondary antibody was mouse anti-rabbit, AP conjugated (0.1 µg/mL). 

The first two lanes show the knockout samples (non –reducing (NR) and reducing (R)). The 

last two lanes show the wild-type samples (non –reducing (NR) and reducing (R)). No 

specific band was detected in the samples. 

Ladder    NR           R         NR           R 

 

 

KO                        WT 

 

Protein 



57 

 
 

 

Sperm Motility Analysis 

There are many studies that can be performed to assess male fertility, such as in vivo 

fertilization, sperm morphology, sperm shape, sperm quantity, and sperm motility. Our result of in 

vivo fertilization and sperm morphology clearly demonstrate that there is no significant difference 

between wild-type and Ptchd3 knockout mice. However, the Ptchd3 protein is known to be 

localized in the sperm mid-piece, an area that is rich in mitochondria. Mitochondria in the sperm 

serve as an energy generator providing the ATP necessary for the sperm movement. As Gharamani 

Seno et al. (2011) pointed out, Ptchd3 could play a role in proper sperm motility. To test this, we 

examined sperm movement on wild-type and knockout sperm. The number of sperm movement 

(sperm beating) in one minute was recorded. The t-test (performed on Microsoft excel) showed 

that there was no significant difference in sperm movement (p-value of 0.1452) (Fig. 25). Thus, 

Ptchd3 is not necessary for sperm motility. 
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Fig 25. Sperm motility assay. The number of sperm movement (beating) was counted by eye 

under Leica DMI 4000 microscope. Twenty wild-type sperm and twenty knockout sperm 

were analyzed. A t-test statistical analysis shows no significant difference between KO & WT 

(p- value 0.1452).  
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CHAPTER 5 

   CONCLUSIONS   

This study was pursued to investigate Ptchd3’s biological function(s) in mouse. Ptchd3 

was previously identified as a male germ-cell specific gene in mouse (Fan et al. 2007). The 

deduced Ptchd3 protein contains a Patched domain, which is known as a binding structure for 

Hedgehog (Hh) ligands (including sonic hedgehog Shh, Indian hedgehog Ihh and desert 

hedgehog Dhh) (Fan et al. 2007). Dhh has been previously shown to be essential for testis 

development and spermatogenesis (Szczepny et al. 2006). Thus, in this study, we aim to test 

the hypothesis that Ptchd3 functions as a Dhh receptor and is required for mouse 

spermatogenesis. 

We used a range of approaches in this study, including genetics, cell biology, molecular 

biology, biochemistry, microscopy and bioinformatics. The collected data support the 

following conclusions.  

Our genotyping, RT-PCR and sequencing results confirm that we were able to 

successfully generate a transgenic mouse line with conventional Ptchd3 knockout. This 

knockout approach resulted in the production of a mutant Ptchd3 protein that was truncated, 

partially mis-translated, and was still able to reach the sperm plasma membrane. 

Similar to the findings in human study (Gharamani Seno et al. 2011), our study 

indicates that Ptchd3 is not essential for the mouse life. The knockout mice lived healthy 

without having any overt changes in body growth, body weight, and behavior.  

We were able to observe male germ cells at all developmental stages in the knockout 

testis. We also found that, contrary to Dhh mutant mice (Bitgood et al. 1996), no Pthcd3 null 
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mice displayed feminized external genitalia (data not shown). Therefore, Ptchd3 is not required 

for mouse testis development and is dispensable for mouse spermatogenesis. These results 

point out that there might be other mechanisms to maintain cell proliferation and differentiation 

from spermatogonia to spermatozoa. 

Our data indicate that Ptchd3 mutant mice had the capability to reproduce without 

any problem, which was like a previous study on null Ptch2 mice (Carpenter et al. 1998). 

Thus, like Ptch2, Ptchd3 is not vital for mouse fertility. Also, a recent study in humans 

reported that null PTCHD3 did not cause infertility (Gharamani Seno et al. 2011).  

There was no significant difference of sperm movement between knockout and wild-

type sperm, which indicates that Ptchd3 is not critical for mouse sperm motility. 

Our in vitro sperm morphology assay indicated that there was no statistical 

difference between Ptchd3 knockout sperm and wild-type sperm. The lack of statistical 

significance between wild-type and knockout in the sperm morphology assay as well as in 

other assays (in vivo fertilization and testis body weight) might be due to low numbers of 

WT, which can create a bias and reduce the statistical power. However, the sperm 

morphology assay indicated that there was statistical difference between Ptchd3 knockout 

sperm and heterozygous sperm. One explanation might be that mutant Ptchd3 protein folds 

in a delicate way so that the net functional outcome is even worse. Otherwise, the 

complexity of mouse genetic background may be accounted for that observation. 

Taken together, these findings clearly disprove our working hypothesis. However, our 

data cannot completely rule out the possibility that Ptchd3 might function as one of the Dhh 

receptors. 
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CHAPTER 6 

DISCUSSION AND FUTURE STUDIES   

Our results demonstrate that mouse Ptchd3 is not an essential gene in life, testis 

development, spermatogenesis, and sperm physiology (morphology, motility and fertility). 

These findings are somewhat surprising, since Ptchd3 gene is conserved in many organisms 

(Geer et al. 2010) and its protein is found on the mid-piece of mouse, rat and human sperm 

(Fan et al. 2007). On the other hand, based on protein domain structure, Ptchd3 belongs to the 

patched family, which is the membrane receptor for hedgehog ligands (including sonic 

hedgehog, Indian hedgehog and dessert hedgehog) and has six members identified so far 

(including Ptch1, Ptch2, Ptchd1, Ptchd2, Ptchd3 and Ptchd4) (Geer et al. 2010). Hence, genetic 

redundancy may compensate the loss of one particular family member, such as Ptchd3 in this 

study. With this regard, Ptch1 and Ptch2 indeed have been shown to be expressed in 

developing germ cells in testis (Mäkelä et al. 2011) and may functionally exchange with 

Ptchd3. Interestingly, previous studies also showed that Ptch2  null mice were fertile 

(Carpenter et al. 1998) (Nieuwenhuis et al. 2006). Thus, it is possible that there are multiple 

Dhh receptors in testis and losing any one of them does not visibly compromise testis 

development, spermatogenesis and fertility.   

Interestingly, genetic redundancy for the PTCH family members has been reported 

lately. Adolphe et al. (2014) studied null Ptch1, null Ptch2 and double mutant mice, in order to 

assess the function of the PTCH family members in epidermal development. They found that 

null Ptch1 alone produced some defects in epidermal development but the cells still were able 

to develop eventually. However, the loss of both Ptch1 and Ptch2 inhibited the epidermal 

lineage specification and differentiation (Adolphe et al. 2014).  
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Therefore, in order to study genetic redundancy that might occur during testis 

development and spermatogenesis, double null mutants of the PTCH family members need to 

be generated.  In addition, future studies are needed to determine whether Ptchd1, Ptchd2 and 

Ptchd4 are also expressed in male germ cells. 

Thus far, Ptchd3 is the only family member that has been shown on sperm (Fan et al. 

2007). Since our data reveal that deletion of Ptchd3 does not affect sperm physiology, we 

predict that other patched family member(s) may be present on sperm. This interesting 

prediction needs to be addressed in the future. 

This study did not directly examine whether Ptchd3 functions as one hedgehog 

receptor. In the future, Ptchd3 may be ectopically expressed in a suitable mammalian cell line, 

and then hedgehog-Ptchd3 binding assay should be performed. 

The antibody Ptchd3-Ab1 used in this study recognizes an antigen between amino acid 

residues 131-150 of both Ptchd3 isoforms (Fan et al. 2007). Although this antibody works in 

immunofluorescent assay, apparently it is not suitable for Western blotting. In addition, this 

antibody also recognizes the mutant Ptchd3 protein from the mutant mice. In the future, an 

antibody targeted to the carboxyl-terminus and working in immunoblotting should be 

developed and then applied to differentiate the wild-type and mutant Ptchd3 protein. 

The procedure used to count sperm movement in this study is subjected to human bias 

and thus is not ideal. In the future, a better protocol to determine sperm motility is greatly 

needed.  
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APPENDIX B 

REGULATION OF PTCHD3 EXPRESSION 

The expression of Ptchd3 in different cell types was analyzed on Ensembl.  

 

 

 

 

 

 

 

 

Fig 26. Regulation of Ptchd3 expression. This analysis shows that Ptchd3 has some promoters 

associated with embryonic stem cells (ES), embryonic stem cells hybrid (ESHyb), or mouse 

embryonic fibroblast cells (MEF). 
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APPENDIX C 

PTCHD3 TAXONOMIC TREE 

The FASTA sequence of the Ptchd3 protein was analyzed in both NCBI (Blast) and 

Ensembl to generate a taxonomic tree of its different homologs. 

 

 

 

 

 

Fig 27.  Ptchd3 homology tree. The taxonomic tree analysis was generated by Ensembl. It 

can be seen here that the Ptch3 protein homolog is found in multiple organisms, suggesting 

that Ptchd3 might have a conserved and important function during germ-cell 

differentiation. 
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APPENDIX D 

GENOTYPING 

Table 1. PCR mix 

 

H2O                       23.6µL 

10X Buffer                  3µL  

Dntps                        0.6µL 

Primer Forward        0.6µL 

Primer Reverse        0.6µL 

Taq                           0.6µL 

Total                       28.4µL 

 

DNA: 1µL of tail genomic DNA 

 

Table 2. PCR Cycle 

1   94.0 ͦ C    0h 3 m 0s 

2   94.0 ͦ C    0h 0 m 30s 

3   60.0 ͦ C    0h 0 m 30s 

4   72.0 ͦ C    0h 1m 20s-239 

5   72.0 ͦ C    0h 6 m 0s 

6   25. 0 ͦ C  24h 0 m 0s 
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Table 3. Gel (1.5%) 

 

Agarose                     0.6 grs 

TAE                            40 mL 

Ethidium Bromide          3μL 

*Running the Electrophoresis Gel 

110 volts for 45 min-50 min 

10 to 15 µL of DNA sample to a 1.5% gel 
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                                    APPENDIX E 

                                  RT-PCR 

 

 

Table 4. RT-PCR mix 

H2O                            23.2 µL 

10X Buffer                       3 µL 

Dntps                             0.6 µL 

Primer Forward             0.6 µL  

Primer Reverse              0.6 µL 

Taq                                 0.6 µL 

  

Total: 29.52 µL DNA: 2 µL 

 

*Follows the same steps of the genotyping in the previous appendix. 
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APPENDIX F 

WESTERN BLOT 

Table 5. Recipe for the Radioimmunoprecipitation assay (RIPA) lysis buffer 

RIPA Lysis Buffer                            For 1L 

0.137 M NaCl                         27.4 mL 5M NaCl (8.01g) 

20mM Tris pH 8.0                         20mL 1M Tris pH 8.0 

10% glycerol                                     100mL glycerol 

1% NP-40                                     10mL NP-40 or alternative 

0.1% SDS                                      10mL 10% SDS 

0.1% Na Deoxtcholate              1 g Na Deoxycholate 

                                                  832.6 mL DDH20 

 

* The buffer is autoclaved and stored at 4˚C. 
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Table 6. Recipe for the SDS gel (resolving and stacking gel) 

Resolving Gel 10%                   Stacking Gel 5% 

4.9 mL DH20                    3.6 mLDDH20 

2.5 mL AA/BIS                  0.63 mL AA/BIS 

2.5 mL Tris pH 8.8                  1.25 mL Tris pH 6.8 

0.1 mL 10% SDS                  50 µL 10% SDS 

50 µL 10% APS                  25 µL 10% APS 

 5 µL TEMED                                5 µL TEMED 

 

Table 7. Recipe for the wet transfer buffer and the SDS running buffer 

Wet Transfer Buffer             10 X SDS Running Buffer 

Tris base 3.03g                        Tris base 30.2g 

Ciclyne 14.4g                                    Glycine 144g 

Methanol 200 mL                        10g SDS 

800 mL DH2O                        1000 mL DH2O 
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