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ABSTRACT 

 

The lateral giant neuron in the crayfish is a neuron that controls the reflexive escape response; 

the context and experience-dependent tuning of this response is critical for survival. Serotonin 

modulates synaptic responses in this neuron, and social experiences (stress) changes the 

modulatory role of serotonin. I investigated the mechanisms of induced synaptic response 

changes and serotonergic modulatory changes after silver nanoparticle exposure to ask if 1) 

contaminant induced stress changes serotonergic modulation in a manner consistent with social 

stress and 2) shed light on potential neurotoxic effects of widely used, but poorly understood 

nanomaterials. Our data show that stress induced by exposure to silver nanoparticles changes 

excitability of this neuron. Integrating these data concerning environmental stress with prior 

knowledge of behavioral and electrophysiological correlates of social stress we can ask if 

changes induced in synaptic responses and modulation induced by stressors of different kinds are 

generalizable.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 Marshall University in Huntington, WV, is located next to the Ohio River, which is an 

important transportation avenue as well as a source of drinking water for many in the Ohio 

Valley region. According to a toxic release inventory analysis conducted by the Environmental 

Protection Agency (EPA) Ohio River Valley Water Sanitation Commission, the Ohio River was 

ranked as the number one river in the country for receiving chemicals from 2001 to the time of 

the report (2013) (Ohio River Valley Water Sanitation Commission, 2013). With a number of 

industrial plants alongside the river and minimal governmental involvement with waste disposal 

regulations, the assumption can be made that many waste products are deposited into the Ohio 

River with no regulation and no detection methods after disposal, including waste from the fast-

growing nanomaterial industry. Chemical discharge into the Ohio River is occurring at alarming 

rates and with the progressively greater use of nanoparticles, through applications ranging from 

clothing to wound dressings and technology, and no oversight for waste disposal, aquatic 

organisms in the Ohio River system are inevitably being impacted by these particles (Ray et al., 

2009). Because the Ohio River is likely being polluted with nanoparticles, it is vital that their 

potential for harm is investigated as early as possible to control further nanoparticle disposal into 

this important drinking water source.  

 Despite the abundant use of nanoparticles, research investigating their potential for 

neurotoxic damage is still needed. Studies have shown that nanoparticles can have detrimental 

effects in numerous organisms including mitochondrial damage and genotoxicity in mammalian 

cells (Asharani et al., 2009). Though nanoparticle use is increasing, the neurological effects of 

nanoparticle exposure are still poorly understood. The abundant use, potential for human and/or 
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environmental harm, and lack of published health assessments on nanomaterials all present a 

need for investigation into the potential toxicity of the materials which prompted the EPA to 

classify nanomaterials as an “Emerging Contaminant” in 2014 (United States Environmental 

Protection Agency, 2014). Silver nanoparticles (AgNP) are very commonly used for their 

antibacterial properties and are applied to a variety of products ranging from medical tools to 

home goods and athletic clothing. However, with this increased use of AgNP, waste from 

nanoparticle use is greater than ever.  

One very sensitive measurement of the health of an ecological system is the neurological 

health of the organisms living in the water. Because reflexes are a measure of an organism’s 

health (Walker, 1990), a change in reflexive behaviors would be indicative of the pollutants 

manipulating the organisms’ nervous systems. A change in an organism’s nervous system will 

inevitably cause changes in the organism’s behavior. These changes made as a result of exposure 

to pollutants can be informative when assessing the health of an environment. This study 

attempted to assess the neurotoxic effects of AgNP exposure on the crayfish reflex circuit, a 

behavioral response where modification would be bioindicative, and that is crucial for survival in 

the wild.  

Using AgNP as an ecologically relevant environmental stressor, this study aimed to 

address the generalizability of the stress response in the crayfish escape reflex. This reflex circuit 

is commonly used to assess social stress paradigms and crayfish are often used as a bioindicator 

species for the health of the ecological system (Schilderman et al., 1999). Because crayfish are a 

bioindicator species, addressing the generalizability of their stress response could provide 

researchers with a model system for assessing stress on the nervous system incurred as a result of 

environmental stress. A lack of a generalized stress response to environmental stressors (like 
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AgNP exposure) could be indicative of an erratic and disorganized response further suggesting 

that the stressor may be unfamiliar to the crayfish.  

 

Silver Nanoparticles in the Environment  

 Because the particle integrity and aggregation of AgNP is largely dependent upon the pH 

of the media - which is itself dictated by the presence of salts in the water - an ecologically 

relevant concentration is difficult to estimate (Gagne et al., 2013). Additionally, the electrostatic 

strength of the solution can affect AgNP aggregation with low ionic strength repelling aggregates 

and high ionic strength banishing the repulsion energy barrier (Bae et al., 2013). AgNP integrity 

has also been linked to the presence of ligands and organic materials present in the water as well 

as the capping agent utilized to prevent aggregation (El Badawy et al., 2010). Additionally, some 

nanoparticles, including AgNP, have been shown to reform after dissolution, resulting again in a 

high surface-area to volume ratio and further contributing to complications involving their 

detection in the environment (Jones et al., 2011). El Badawy et al. (2010) established that of the 

most commonly used capping agents, PVP-coated AgNP were most likely to maintain their zeta 

potential, or dispersion, in changing water chemistry, giving them the greatest potential for 

mobility. However, Doolette et al. (2013) established that when PVP-coated AgNP reached 

waste water treatment plants, not only would their surface coating likely be compromised, 

affecting their size, but also were transformed to ionic silver by sludge treatment. This 

transformation does not hinder the filtration system, but would likely have a negative impact on 

aquatic microbial communities, as already established (Mitrano et al., 2011). Because the 

environmental fate and agglomeration/dissolution tendencies are still relatively unknown, 
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determining the concentration of AgNP in a given water system is very difficult (Gottschalk et 

al., 2013).  

Researchers with interest in the potential effects of nanoparticles in the environment have 

sampled their local watersheds and have found a wide range of concentrations. Mitrano, et al. 

(2011) found AgNPs in wastewater effluents at concentrations of 100 ng/L [0.0001 ppm] and a 

concentration of dissolved Ag+ (a breakdown product of AgNP) of 60 ng/L [0.00006 ppm] in 

Black Hawk and Boulder, Colorado. Another group of researchers tested several Colorado 

waters and effluents upstream and downstream of several industrial plants and found a range of 

.3-1800 ng/L [0.003-18 ppm] of AgNP (Wen et al., 2002). This range is an indication that the 

presence of AgNP in water can vary tremendously, therefore making it difficult to pinpoint a 

specific ecologically relevant concentration. Whiteley et al. (2013) highlighted the challenges in 

AgNP risk assessment in an attempt to estimate the quantity of AgNP released per year. Given 

the varied surface reactions of AgNP to media components and consequent variable nanoparticle 

stability, ecologically relevant levels of AgNP are not available at this time, though with the 

growing interest in their anti-bacterial properties, AgNP have been proposed as an alternative 

water filtration system in developing countries (Mpenyana-Monyatsi et al., 2012). However, as 

this study showed, most of the AgNP applied to the filter materials had degraded into Ag+ after 

30 min. of filtration. Thus, the filter deposited Ag+ into the drinking water at a concentration 

higher than that which is recommended by the World Health Organization at the cost of 

removing the bacteria. So, while the application of AgNP to filtration systems may not be in use 

now, many are seeking their feasibility in the near future, inevitably leading to more AgNP being 

introduced to water systems. 
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Asharani et al. (2008) studied oxidative stress in zebrafish after exposure to AgNP 

concentrations ranging 1-100 ppm. In order to maintain some constancy and comparability, other 

researchers have used this range of concentrations as a wide “blanket” concentration range until 

further ecological information is available (Struzynski et al., 2013). For the purposes of this 

study, we used concentrations 1ppm, 5 ppm, 10 ppm, and 50 ppm, which are standard in the 

AgNP research community. This wide range of concentrations should be applicable for inferring 

the potential toxicity of concentrations found in a variety of ecological systems as well as 

assessing the potential consequences of a large influx of AgNP, such as would be seen in an 

accidental spill. In additional support for the use of this concentration range, Mirzajani, et al. 

(2014) found that 1 ppm and 5 ppm were the minimal concentrations necessary to induce 

inhibition and death in Bacillus thuringiensis, a likely target organism; thus, for AgNP to be 

effective in their intended purpose, bacteria would need to be exposed to concentrations in the 

range of those used in this study.  

 

Toxicity of Silver Nanoparticles  

 AgNP have been so widely utilized because of their anti-bacterial properties (Tian et al., 

2007, Yoon et al., 2007). AgNP are applied to numerous medical products to prevent wound 

infection and, in turn, aid in proper healing. In addition to these medical uses, AgNP are also 

applied to a variety of consumer products boasting antibacterial properties, like cosmetics and 

clothing. With no regulation for application or waste disposal in place, the influx of AgNP into 

the waterways is greater than ever. Benn et al. (2010) showed that through average use of AgNP 

treated products, a consumer could release up to 470 µg Ag into the sewage system each day. 

This estimation includes only the release of Ag from consumer products (athletic T-shirt, 
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toothpaste, detergent, and shampoo), excluding the release from AgNP coated medical products. 

Though their antibacterial properties are the primary cause for their use, Bondarenko et al. 

(2013) wrote in a comprehensive review of AgNP toxicity that the inhibitory effects of AgNP on 

bacteria, the target organism, are less than that of the inhibitory effects on non-target organisms, 

like crustaceans and other aquatic species. So, for their application to be effective for the 

purposes advertised, AgNP would need to be applied to consumer products in concentrations that 

have shown to be harmful to non-target organisms. The use of these nanoparticles for consumer 

anti-microbial purposes at concentrations that are harmful to the aquatic food-web is cause for 

concern and raises the need to evaluate regulatory application and disposal procedures.  

 Considerable research has been dedicated to determining the causes of AgNP toxicity. 

From this research a number of studies have shown that AgNP break-down, resulting in ionic 

silver (Ag+), is responsible for at least some of their toxic effects (Blinova et al., 2013, Newton et 

al., 2013). However, several other studies have shown that AgNP toxicity cannot be fully 

explained by liberated Ag+, but the nanoparticle itself causes cellular damage independent of the 

Ag+ content present (Carlson et al., 2008, Griffitt et al., 2008, Laban et al., 2010). In fact, it is 

likely that AgNP are toxic through a different mechanism than that of Ag+. AgNP mode of 

toxicity is most commonly attributed to cell membrane damage (Shahverdi et al., 2007) where 

Ag+ toxicity is likely a result of its interaction with protein thiol groups, rendering protein, 

including enzymes, inactive (Matsumura et al., 2003). Thus, enveloping the nanoparticles in 

coatings designed to prevent agglomeration and break-down, as is commonly done, may not 

mitigate their harmful effects. Ahamed et al. (2008) showed that polysaccharide-coated AgNP, 

when compared to non-coated AgNP, had more of an effect on the viability of mouse embryonic 

stem cells. This difference in effects suggests that the surface chemistry of the nanoparticle can 
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have different effects depending on the coating applied to the material. Lu et al. (2010) showed 

that citrate-coated AgNP were toxic after being exposed to sunlight while polyvinylpyrrolidone 

(PVP) -coated AgNP showed no cytotoxicity after three-week exposure to sunlight. From these 

findings, they suggest that PVP-coated AgNP should be used in day-to-day application. This 

suggestion, along with other promptings, has lead to PVP-coated AgNP being among the most 

popular AgNP for use in consumer products. However, other studies have shown that PVP-

coated AgNP are also toxic and their common use should be reconsidered (Foldbjerg et al., 

2009). In fact, Bondarenko et al. (2013) showed that overall, in existing literature, uncoated 

AgNP were less inhibitory to bacteria than PVP-coated AgNP. Additionally, PVP-coated AgNP 

aggregate more quickly, so they are more likely to fall into the sediment, therefore increasing the 

risk of ingestion by benthic species (Kwok et al., 2012). Due to the conflict in literature 

regarding the toxicity of coated vs. uncoated AgNP, as well as the abundant use of PVP-coated 

AgNP, this study will attempt to address the toxicity of PVP-coated AgNP. 

 

Mechanisms of Toxicity 

  Though the modes of AgNP toxicity are still largely unknown, plenty of research has 

shown that AgNP are, indeed, toxic to many organisms. Heat shock protein 70 is a sensitive 

bioindicator of organisms undergoing stress (Ait-Aissa et al., 2000). Ahmed et al. (2010) 

identified that AgNP induce the up-regulation of heat shock protein 70, indicating a toxic effect 

of 50 and 100 ppm concentrations of AgNPs on Drosophila melanogaster larvae. Ahmed et al. 

(2010) discovered an increase in caspase-3 and caspase-9, proteases involved in the apoptosis 

pathway, showing that Drosophila melanogaster larvae began undergoing apoptosis after 24 hr. 

exposure to 50 and 100 ppm AgNP. Apoptosis in zebrafish embryos has also been identified 
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after exposure to 50 ppm AgNPs in the presence of common nanoparticle stabilizers (Asharani et 

al., 2008). Few studies have assessed the potential neurotransmitter disruption as a result of sub-

lethal AgNP exposure. Of the existing available studies, Hadrup and Lam (2014) showed that 

oral dosage of 2.25 mg/kg body weight/day in rats induced changes in noradrenaline, dopamine, 

and serotonin concentrations in the brain. Zhaowei et al. (2009) found significant impairments to 

voltage-gated sodium channels in the rat hippocampal CA1 neurons after exposure to 5 × 10−5 

g/ml [0.05 ppm]. These channels are involved in cellular processes such as action potential 

generation and propagation, so disruption of these channels could cause a disruption of cellular 

function. 

 Because of their characteristically high surface area to volume ratio (Christian et al., 

2008) nanoparticles have the potential for surface-level reactions that could be detrimental to an 

organism, like their target organism bacteria. Silver is traditionally thought to be anti-bacterial 

because of its interference with –SH groups on enzymes, a crucial component for the integrity of 

protein structure (Jeon et al., 2003). AgNP are thought to be toxic to bacteria through their 

interaction with the bacterial membrane, creating perforations that increase leak and disrupt ionic 

balance, eventually resulting in cell death (Sondi and Salopek-Sondi, 2004). In support of this 

mode of toxicity for bacteria, Yoon et al. (2007) tested the resistance of Eschericia coli and 

Bacillus subtilis to AgNP exposure and showed that E. coli were more resistant to AgNP toxicity 

than B. subtilis. E coli have an outer membrane that is constructed mostly by tightly packed 

lipopolysaccharide molecules, creating a more resistant barrier to the nanoparticles. A number of 

proteins associated with cell wall management and oxidative stress mitigation have been 

identified and targeted in studies attempting to understand the causes for AgNP toxicity. Alanine 

dehydrogenase, for instance, is involved with peptidoglycan cell well synthesis and its 
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expression increased under AgNP exposure, suggesting that AgNP influence the peptidoglycan 

cell wall layer in bacteria (Mirzajani et al., 2014). This effect is thought to be a result of the 

attraction caused between the positively charged Ag and negatively charged bacterial membrane 

(Mpenyana-Monyatsi et al., 2012). 

While the exact molecular mechanism behind nanoparticle toxicity to non-target 

organisms is still largely unknown, some findings have pointed to the possible causes for 

toxicity. Because AgNP are non-specific, it is likely that their route of toxicity to non-target 

organisms is similar to that of bacteria, thus their toxicity has been linked to significant damage 

to cell membrane integrity (Foldbjerg et al., 2009, Ahmed et al., 2010, Haberl et al., 2013). This 

compromise in the cell membrane would disrupt ionic balances crucial for cellular function and 

could cause the cell to be vulnerable to AgNP infiltration, leading to intracellular damage. 

Several studies have shown that nanoparticles also cause the generation of reactive oxygen 

species (ROS) which lead to oxidative stress (Hsin et al., 2008). In support of this method of 

toxicity, AgNP have been shown to cause up-regulation of proteins involved in neutralizing 

oxidative states (Mirzajani et al., 2014). This up-regulation, however, is accompanied with a 

down-regulation in proteins involved in cellular proliferation, suggesting that the cell is 

consumed with the need for survival and has compromised growth in order to do so. Because 

ROS are highly reactive, they can lead to significant cell damage via DNA damage, lipid 

peroxidation, and other signaling disruptions. Oxidative stress can cause a cascade of reactions 

including, at its mildest, transcription of antioxidant enzymes. With increase in ROS an increase 

in cellular response occurs including pro inflammatory responses, and at a maximum ROS level, 

compromised mitochondrial membrane and electron transport chain disruption, which can result 

in cell death (Manke et al., 2013). Oxidative stress was induced in Drosophila melanogaster 
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after exposure to 50 and 100 ppm AgNP for one and two day exposure periods (Ahmed et al., 

2010). Genotoxic damage has been observed in fish heart and gill cell lines after exposure to 8, 

16, 32, 64 ppm AgNP and is the presumed effect of ROS generation (Taju et al., 2014). 

Significant increases in ROS were found in THP-1 monocytes which correlated with DNA 

breakage and apoptosis and necrosis after exposure to 5 ppm AgNP for six hours. Hsin et al. 

(2008) showed that 5 and 50 ppm AgNP exposure caused intracellular ROS generation, leading 

to apoptosis in cultured mouse fibroblast and rat vascular smooth muscle cells. Concentrations 

10 and 50 ppm AgNP induced oxidative stress leading to DNA damage in C. Elegans (Hunt et 

al., 2013); in A549 human alveolar epithelial cells, 50, 100, and 200 ppm AgNP exposure had 

toxic effects in the cells, likely via ROS-dependent toxicity in the cells and disruptioin of 

proliferation through cell-cycle phase arrest (Chairuangkitti et al., 2013). Oxidative stress has 

also been described in the crayfish hepatopancreas after exposure to 1, 5, 10, and 50 ppm AgNP 

(Struzynski et al., 2013). Kim et al. (2009) showed that the increase in oxidative stress after 

AgNP exposure is a direct effect of nanoparticle exposure independent of the toxicity induced by 

Ag+ released inside the cells. 

 A second proposed mechanism of toxicity is the cardiac dysfunction resulting in impeded 

blood flow. Asharani et al. (2008) quantified zebra fish embryo growth and development 

inhibition after AgNP exposure at concentrations 50 and 100 µg/ml. These researchers proposed 

that exposure to increasing concentration of AgNP impeded blood flow to the brain and spinal 

cord, resulting in abnormal growth. A potential cause for this cardiac irregularity is thought to be 

the interaction between AgNPs and cardiac muscle. AgNPs could directly or inadvertently block 

energy supplies to cardiac muscles (possibly through inducing oxidative stress), causing the heart 

muscles to weaken beyond ability to restore normal blood flow to developing tissues. Asharani et 
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al. (2008) found multiple morphological defects in zebrafish larvae after 50 and 100 ppm AgNP 

exposure. Another study attempted to assess the potential for organismal adaptation after pre-

exposure to sub-lethal concentrations of AgNP. Results showed that pre-exposure of nematodes 

to lower concentrations of AgNP did not increase resistance to AgNP later, but rather increased 

stress by inducing deformations and/or immobility (Ellegaard-Jensen et al., 2012). AgNP also 

suppressed growth in C. Elegans larvae at concentrations 5, 10, 25, and 50 ppm (Hunt et al., 

2013). 

 

Cellular Uptake and Bioavailability of Silver Nanoparticles  

 Because AgNP and cellular structures are similar in size and because of the positively 

charged surface chemistry of AgNP, it is likely that the nanoparticles interact with cell 

membranes, creating pores and additionally compromising cell membranes. This interaction has 

been shown to lead to quick uptake of AgNP into the cell (Gaiser et al., 2009, Lu et al., 2010, 

Sirimuthu et al., 2010). In fact, this increase in permeability by pitting the cell membrane is 

thought by some to be the method through which AgNP are toxic to bacteria (He et al., 2012). 

Not only have AgNP shown their ability to penetrate cell membranes, but they have also shown 

biopersistance and biological barrier penetration. One study showed that Sprague-Dawley rats 

were able to clear ingested AgNP from most tissues, but were unable to clear the nanoparticles 

from the testes or brain, suggesting that while AgNP can cross biological barriers, exudating 

them back across biological barriers is not easily achieved (Lee et al., 2013). This biopersistence 

in the brain and testes indicates that while AgNP may be able to cross the blood-brain and blood-

testes barriers, clearing the nanoparticles across those barriers presents further complications. 

Gagne et al. (2013) assessed AgNP bioavailability in freshwater mussels. They showed that 
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smaller nanoparticles (20nm) formed nano-sized aggregates, which were then ingested by 

mussels. They then showed that Ag+ was liberated from AgNP by H2O2 interaction with the 

metallic AgNP surface in the tissues. This liberation of Ag+ in tissues of the organism caused a 

series of toxic effects, including lipid peroxidation in the gills and digestive gland and a 

compromised immunocompetence. AgNP have been proposed as a targeted drug delivery 

system, carrying the drug to the target area across biological barriers, then releasing the active 

Ag+ to induce toxicity in the target cells (Liu et al., 2010). However, given variable surface 

reactions and biopersistence of AgNP, it is important to consider the possible ramifications of 

this application. 

 

Crayfish as a Model for Toxicity 

Because aquatic animals will be healthy – and therefore will show healthy behaviors and 

physiological characteristics – if the animal lives in a well-suited environment, these 

characteristics and behaviors that change as a result of a changing environment can then be used 

to ascertain the health of that given home environment (Depledge and Galloway, 2005). 

Bioindicator species are species that readily present reflections of their environment. Ecological 

relevance and susceptibility to environmental stressors are two of the characteristics that define a 

bioindicator species (Kuklina et al., 2013). Crayfish are among the more commonly used 

bioindicator species because of their susceptibility to environmental stressors and their 

ecological relevance and widespread distribution. Additionally, crayfish are known to respond to 

environmental stressors with quick, adaptive changes that can be easily monitored (Bierbower 

and Cooper, 2009). Schilderman et al. (1999) conducted a study in the river Meuse located in 

western Europe using crayfish as a bioindicator for the environmental quality of the river. 
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Because crayfish are known to accumulate metallic pollutants in their tissues, these researchers 

measured the amount of heavy metal residue present in the crayfish hepatopancreas (a filtering 

organ similar to the mammalian liver) caught in the river Meuse against sediment and water 

samples from the same locations. From their findings showing reliable representations of 

inorganic and organic pollution between different geographical locations, they recommend that 

crayfish be used to assess water quality of river systems. Crayfish are also known to alter their 

behavior, specifically their escape responses, in dramatic ways as a result of their changing 

environment (Edwards et al., 1999, Schapker et al., 2002). Thus there is a precedent for use of 

crayfish in assessing environmental toxicity. This established precedent, in addition to the well 

characterized neurological system, makes the crayfish an ideal model for assessing the sub-lethal 

effects of AgNP on aquatic species. 

Considerable research has been conducted to ascertain the effects of AgNP on a variety 

of species. Much of the research that has been done shows the adverse effects of AgNP, usually 

by means of describing the point of lethality in a given model system. However, little is known 

about the adaptive mechanisms that are launched in response to this toxicant. Describing sub-

lethal effects of AgNP exposure can give us an idea of how the exposed organisms change in 

order to deal with the stressor. Using the base knowledge of adverse effects of AgNP exposure, 

we can now investigate more sensitive adaptive responses of crayfish, an aquatic species that is 

likely already being exposed to AgNP in nature. Crayfish are a keystone species, meaning any 

harmful effect on crayfish would cause residual harm to the ecological system as a whole. This 

investigation will not only add to the growing knowledge base of AgNP toxicity, but will also 

shed light on the adaptive responses of crayfish to environmental stressors.  
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Reflexes as a Measure of Physiological Stress 

 Reflexes have long been used as a measure of physiological health (Walker, 1990). 

Medical doctors have used the patellar reflex, for instance, to assess health for many years and a 

slow or absent reflexive response is understood as an indication of stress on the physiological 

health of the individual. Reflexes are an automated response to a given stimulatory input. 

Therefore, when a reflex is slow, or missing entirely, the assumption can be made something in 

the path between the sensory neurons and the efferent neurons is disturbed. In such a simple 

system, a disturbance is an indication of physiological stress because the quick reflexive 

response depends on available resources for fast synaptic communication; therein lies the 

justification for the use of a reflexive circuit as a measure of physiological health.  

The crayfish lateral giant is a command neuron that responds to perceived attacks to the 

abdomen with a stereotyped escape reflex (Edwards et al., 1999). A command neuron is a single 

neuron that evokes the response of other cells, which results in a specific behavioral response. 

The command-nature of the lateral giant means that recording the activity of this single neuron 

can provide direct information about the subsequent behavioral activity of the animal. The lateral 

giant is a segmented neuron whose circuit consists of entirely electrical synapses (Zucker et al., 

1971). This informational transmittance system allows for the greatest possible efficiency in cell 

communication. Stimulation of this neuron evokes a stereotypical, long lasting excitatory post-

synaptic potential (EPSP) (Vu et al., 1997). The EPSP is characterized by depolarization of the 

cell relative to the strength of the stimulus. If the cell reaches threshold, an action potential is 

fired, generating a reflexive behavioral response. If the EPSP does not reach threshold, the cell 

repolarizes and does not fire an action potential, so the animal does not perform the tail-flip 

behavior. Because the LG escape reflex is a carefully tuned neural circuit, any change to the 
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EPSP is indicative of the organism remodeling the existing system; thus the study of this circuit 

can elucidate overall neurological effects of introduced stressors. Investigating synaptic changes 

between an afferent sensory neuron and the lateral giant as a result of AgNP exposure will shed 

light on potential neurotoxic effects of these materials. Further, researching the subtle changes 

that an organism must make in order to acclimate to the new surroundings will elucidate sub-

lethal effects of AgNP.  

 The crayfish lateral giant-mediated escape circuit is made up entirely of electrical 

synapses, meaning that the communication from segment-to-segment is direct, fast, and directly 

proportional. A mechanosensory afferent neuron in the tail fan - which is innervated by the hairs 

on the tail fan - receives a signal and transmits that signal to the lateral giant neuron dendrites as 

well as interneurons through electrical synapses (Araki et al., 2005); the input from both the 

mechanosensory neurons and the interneurons produces the alpha and beta components of the 

lateral giant EPSP, respectively. If the stimulus is strong enough to prompt the lateral giant 

response to reach the point of threshold, the lateral giant then transmits the signal to the 

neuromuscular neurons, prompting the tail flip. The EPSP generated in the lateral giant after 

stimulation is a disynaptic response; the ⍺ component is characterized by fast depolarization, 

which is then followed by the slow, but greater amplitude depolarization making the β 

component of the EPSP. Measuring the response of this reflexive circuit allows for a direct 

measurement of the animal’s behavior as well as the lack of behavior (measured in EPSPs) 

which is vital for the understanding of the circuit’s modulation and disruption.  
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Serotonin Modulation  

 One key neurotransmitter that plays a large role in the functionality of the crayfish 

nervous system is serotonin (5-HT). 5-HT is a biogenic amine that binds to a metabotropic 

receptor in the cell membrane. 5-HT acts through both hormonal release and synaptic release in 

the crayfish nervous system (Musolf et al., 2009). 5-HT receptors vary in form and function, 

though their presence and function is conserved across species with the exception of 5-HT3 

subtype. 5-HT receptors (with the exception of 5-HT3 mentioned previously) are G-protein 

coupled receptors that send chemical signals via a second messenger. That second messenger 

causes a cascade of effects in the cell, ultimately resulting in a net change in cellular properties. 

Gs protein activation causes an excitatory effect through the increase in cyclic AMP, protein 

kinase A, and adenyl cyclase. Gi activation results in an inhibitory effect by decreasing adenyl 

cyclase and cyclic AMP, as well as the opening of K+ channels, hyperpolarizing the cell. Go 

protein decreases the neurotransmitter release by shutting down Ca2+ channels. Each receptor has 

a different affinity for the amine, so the concentration of amine present in the synaptic cleft 

affects the receptors that will be activated, therefore changing the net effects of the 

neurotransmitter by means of second messenger cascade. This concentration-dependent 

activation affects the net effects of the amine on the cellular properties and allows for short and 

long-term plasticity. The ability for one neuromodulator to have opposing effects in a single 

neural circuit enables the animal to employ an efficient and appropriate response to a changing 

environment. With this available modulatory ability, it is not surprising that lateral giant 

excitability, and subsequent tail-flip escape behavior is modulated by 5-HT (Figure 1).  

 



 

 17 

 The concentration of 5-HT at a synapse can have excitatory or inhibitory effects on a cell 

and this concentration-dependent response is also influenced by the rate of application (Teshiba 

et al., 2001) (Figure 2). This effect is also plastic as the social history of the animal has a meta-

modulatory effect on the excitability of the lateral giant. The same concentration and rate of 

application regimen in socially subordinate animals causes inhibition of the lateral giant, while 

the opposite effect of 5-HT on the lateral giant excitability is seen in socially dominant animals 

(Yeh et al., 1996, Krasne et al., 1997, Panksepp and Huber, 2002, Cattaert et al., 2010, Issa et al., 

2012). Studies have shown that this modulatory effect on membrane resistance - increasing or 

decreasing excitability of the cell in a concentration-dependent manner - can have dramatic 

effects on an organism’s behavior. However, this effect is not static, but rather it can also 

decrease the excitability of the lateral giant when external influences warrant changes (Yeh et al., 

1997). The proposed mechanism through which this modulation is achieved is a change in 

receptor density on the membrane (Yeh et al., 1996, Huber et al., 1997). These studies showed 

that the rate of change in lateral giant excitability after social interaction is slow, which likely 

Figure 1 Sample Lateral Giant Recording Under Testing Conditions. Crayfish lateral giant 
(LG) recordings during 5-HT perfusion. Baseline recordings are taken while fresh crayfish 
saline is cycled through bath (black trace). 5-HT application typically causes LG to increase 
in excitability (as indicated by the increased voltage on the blue trace). After 5-HT is washed 
out by crayfish saline it is expected to decrease again, though the control animals in this 
experiment consistently maintained LG excitability after 5-HT washout, as indicated by the 
black trace. 
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reflects the time it takes for a cell to adjust transcriptional factors and turn over the receptors 

present in the membrane (Yeh et al., 1997). Because 5-HT concentration manipulations cause 

more pronounced changes in the β component than the ⍺ component, it is thought that the 

modulatory action of 5-HT on this cell lies in the the β order of this response (Antonsen and 

Edwards, 2007).The vast knowledge of how 5-HT’s modulatory role is influenced by stress is the 

basis for studying the serotonergic modulatory changes after AgNP exposure.  
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Figure 2 Rate/Dose Dependent Lateral Giant Response to 5-HT. Teshiba et al. (2001) showed 
rate/concentration dependence of lateral giant (LG) excitability to 5-HT modulation. A includes a 
schematic depicting the neural connections of the lateral giant neuron with mechanosensory neurons 
shown on the far left. Those innervate both the LG and interneurons. The synapse from 
mechanosensory neurons directly onto the lateral giant produces the alpha component of the LG EPSP 
while the synapse from interneurons to LG produces the beta component of LG EPSP. B1 depicts the 
lateral giant excitatory post-synaptic potential (EPSP) over the course of fast 5-HT application (10 min) 
at a high (50 µM) concentration. LG was depressed for this course of application. B2 shows LG’s 
response to slow application (45 min) of high concentration (50 µM) 5-HT perfusion. In this 
time/concentration application, LG’s response is excitatory. B3 shows LG response to fast high 
concentration application held over a long period of time (45 min). In this time/concentration course, 
LG is depressed. B4 shows fast application of low concentration 5-HT (0.01 µM) held over 45 min. In 
this time/concentration course LG response is excitatory. Figure used with permission from the Society 
of Neuroscience Central Office [57].  
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Stress Response in Crayfish 

 Stress and anxiety (in the absence of a stressor), have been shown in invertebrates and the 

mechanisms underlying the stress response in invertebrates have been a topic of study for many 

years. The perception of danger which underlies stress manifests itself in behavioral adaptations 

that are intended to deal with the stressor appropriately. In crayfish, an hypothalamic-pituitary-

adrenal (HPA) homologue neuroendocrine system, called the X-organ/sinus gland, responds to a 

stressor by secreting hyperglycemic and steriodostatic hormones (Lorenzon et al., 2005). The X-

organ neural cells project forward into the sinus gland, where they terminate (Hartenstein, 2006). 

Crustacean hyperglycemic hormone (cHH) is synthesized in the X-organ and secreted through 

the sinus gland located in the crayfish eyestalk. Amines such as serotonin and dopamine are 

known to play an important role in the secretion of cHH, which directly influences the 

circulating glucose levels (Lorenzon et al., 2005). Serotonin has been shown to increase the 

levels of circulating cHH (Lee et al., 2001), while dopamine was shown to inhibit the cHH 

secretion from the sinus gland (Sarojini et al., 1995). Fossat et al. (2014) showed that stressed 

crayfish who had undergone electrical impulses had behavioral adaptations indicative of anxiety 

as well as elevated 5-HT levels in the brain. Further, they demonstrated, through 5-HT injection, 

that the behavioral adaptations were controlled by the 5-HT levels and were homologous to other 

vertebrate anxiety paradigms. This finding provides support for the generalizability of stress 

research in invertebrates and suggests that the simpler, more conserved stress response of the 

crayfish can be a model system for the study of stress and anxiety.  

 Furthermore, increased levels of cHH have been seen after exposure to environmental 

stressors, such as increase in water temperature and changing salinity, but were not seen in 

eyestalkless crustaceans experiencing the same environmental stressor, providing further 
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evidence that the crayfish stress response is mediated by the X-organ/sinus gland secretion of 

cHH and that cHH levels change in response to environmental stress, further demonstrating the 

activity of this stress response to a variety of stressors. Exposure to the toxicant copper induced 

higher levels of blood glucose in shrimp, an effect that was shown to be caused by proportional 

secretion of cHH from the eyestalk organs (Fossat et al., 2014). The causative effects of an 

environmental toxicant on cHH and the subsequent rise in blood glucose levels provides further 

support for our methodology. It is presumed that, because AgNP are known to cause oxidative 

stress, which in turn negatively impacts physiological health, this potential neurotoxicant will 

cause synaptic changes in the reflex circuit. These changes are likely to be manifestations of an 

increase in 5-HT levels in the brain, which would lead to increases in circulating cHH, and 

higher blood glucose levels, resulting in an end effect of changes in the cell membrane.  

 

Generalized Stress Response 

 Comparative biologists often attempt to find generalizable models for translational 

research. Because crayfish have a stereotyped social stress response that is well defined and 

relatively easy to study, more interest has been garnered for using this invertebrate and its 

reflexive responses as a model for stress response. This easily assessed stress response, coupled 

with the fact that crayfish are indicator species, makes this organism an attractive candidate for 

testing the stress that environmental contaminants are causing on aquatic organisms, and 

extrapolating what kind of stress that may cause for mammalian species, like humans.  

 A generalized stress response can be an advantage when an organism has a commonly 

occurring stressor in its natural environment. For instance, it would be advantageous for a 

population of animals to respond to the same stressor in a predictable and organized manner. 
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Crayfish social interactions are an example of the benefits of a generalized stress response. One 

can predict, based on an individual’s social history, the response of that particular individual to 

an agonistic encounter as well as lingering effects that dictate how that individual would respond 

to further stimulation. The length of the fight and the frequency of future fights can also be 

predicted when the social history of the individual is known; therefore, the generalized social 

stress response in crayfish can result in shorter and fewer fights (Herberholz et al., 2001), likely 

preventing further physical harm to the crayfish involved. Without a generalized response to 

agonistic encounters, crayfish would likely fight longer, more frequently, and would see many 

more injuries and deaths as a result. In this case, a generalized stress response has likely evolved 

to maintain the population in an organized manner. We know that this organized lateral giant 

response to social stress utilizes the same machinery and neurotransmitter for dichotomous end 

behavioral effects. 

 Of course, while humans have a relatively generalized stress response (Selye, 1956), we 

do not respond to different types of stressors with identical responses, but rather with the same 

set of mechanisms. So, humans respond to social stressors with the same HPA axis and same 

hormones as they do physical stressors - the difference seen in behavioral response therein lies in 

specific biochemical pathways. Responses to stressors can be tailored to the specific stressor by 

the behavioral adaptions of the individual (Biondi and Picardi, 1999). While studying stress in 

humans can be enlightening, these contextual, individualistic responses to stress can be 

confusing and difficult to measure. However, studying stress in a simpler system, like the 

crayfish tail-flip reflex circuit, can begin to address the basic effects of a stressor. This neural 

circuit of escape behavior has already been shown to respond to stressful experiences, such as 

social dominance shifts, with synaptic changes in excitability and serotonergic role changes (Yeh 
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et al., 1997, Issa et al., 2012). Our understanding of this stereotyped adaptive behavior in 

crayfish makes it an excellent model for investigating the neurophysiological changes caused by 

environmental toxicants. We know the neural remodeling that occurs as a result of social stress, 

but social stress is a common, natural stressor for the crayfish, as their social status is determined 

by fighting (Huber et al., 1997) and encounters are predominately agonistic. We, however, do 

not know what remodeling must occur to accommodate an unnatural stressor, like an 

environmental contaminant. Once it is clear that the stressor does, indeed, disrupt the reflex 

circuit more complex questions can be built on this knowledge base. 

Social stress is experienced by most animals in some form, whether it be caused by 

agonistic encounters, resource abandonment, or changes in the established social hierarchy. 

While the gross responses to stress are not always similar across species, the conservation of 

certain coping mechanisms, like the HPA axis, glucocorticoid secretion, and use of 

neuropeptides like 5-HT, is well described in vertebrates. As Summers (2002) discusses, while 

the behavioral outputs of the activity of these mechanisms will likely be different among 

different species, the commonality between taxa likely provided a framework from which 

species could develop an appropriate, adaptive behavioral response to the stressors they face. 

This specialized, but pseudo-generalized response is beneficial to employ when organisms face 

stressors that are common and context-specific for their given environment. For instance, 

crayfish respond to social stress in predictable ways, but the response is dependent on the social 

status of the animal. Thus, their stress response is systematic but also flexible enough to change 

with their changing social context. This flexible, yet mechanistic system allows both for the 

efficiency of having a generalized response system - so one does not need to develop and 

maintain multiple systems for every given stressor - as well as the appropriate response with the 
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necessary magnitude that the stressor requires. 5-HT is used by crayfish to modulate the lateral 

giant excitability after social encounters. However, while the same neurotransmitter is used in 

both situations, the subordinate and dominant animals’ lateral giant neurons have markedly 

different responses to stimulation. This modulation circuit utilizes the same mechanisms to 

generate two opposite responses through the activation of specific receptor types.  

 Anxiety-like behavior has recently been shown in crayfish (Fossat et al., 2014) with 

similar behavioral endpoints as seen in rodents in the elevated plus maze after experiencing 

electric shock training. Previously it was questioned as to whether invertebrates were capable of 

exhibiting anxiety because it is a more complex emotion that is present when the stressor is not 

immediately distinguishable. The experimenters used electric shock to stress crayfish, then put 

them in a maze with light and dark arms. Crayfish typically explore their surroundings, but 

prefer to remain in shaded areas most of the time (Yamane and Takahata, 2002). The crayfish 

who had been exposed to electric shock avoided the light arms or hesitantly paused before 

entering them - a behavior that very similarly reflects risk-assessment behavior shown in rodents 

(Griebel et al., 1997). In both cases, the behavioral output, risk-assessment in rats or hesitation in 

crayfish, was achieved via 5-HT pathways. When Fossat et al. (2014) injected unstressed 

crayfish with 5-HT their time spent in light arms decreased further demonstrating the 

dependency of this behavioral response on 5-HT. Similarly, the risk-assessment behavior in 

rodents described by Griebel et al. (1997) was found to be sensitive to 5-HT as well; however an 

anxiolytic effect was seen with drugs that target 5-HT1A receptors, meaning that the anxious 

behavior decreased with activity of 5-HT1A, a receptor whose action is typically inhibitory 

(Griebel et al., 1997). So, while it would seem that similar biochemical pathways are at play in 

these two stress responses, the activity of the receptors’ second messenger determines the 
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behavioral output of the animal. This distinction is particularly relevant when considering the 

behavioral output of the crayfish escape reflex. While the effects of 5-HT are well understood, 

prior exposure to stress (AgNP exposure) likely influences the 5-HT receptors that are present in 

the lateral giant membrane, which would determine the behavioral output as an effect of the 

second messenger cascade stemming from the type of 5-HT receptor present at the time of 5-HT 

perfusion. 

 However, a generalized stress response may not always be appropriate. Responding to 

environmental stressors, like an influx of AgNP, in the same manner as one responds to a social 

interaction could result in an inappropriate and potentially harmful stress response. Crayfish 

undergo social stress often because their social dominance hierarchy is determined through 

agonistic encounters. This social interaction is something that crayfish have, presumably, 

evolved to deal with appropriate modulation. However, we have not yet established the stress 

response launched in this system as a result of environmental stressors, like AgNP. Testing 

adaptive responses that are necessary for accommodating a sub-lethal stressor is a sensitive and 

useful tool for understanding the modulation that occurs due to AgNP exposure. Given the prior 

knowledge of crayfish reflex modulation after social stress, we can use our results to ask 

questions regarding the generalizability of the crayfish stress response.  

 

Motivations  

 This project aimed to assess the potential neurotoxic effects of silver nanoparticles as 

well as ascertain the generalizability of the stress response in this neural system. Because stress 

is known to alter the excitability of the lateral giant (Yeh et al., 1997) and AgNP cause oxidative 

stress in crayfish (Struzynski et al., 2013) the hypothesis that drove this project was that AgNP 
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interfere with the excitability of the lateral giant and 5-HT-mediated neuron excitability. The 

findings from this project show a loss of fine-tuning control over the crayfish escape reflex 

circuit as a result of silver nanoparticle exposure. These results confirm the neurotoxicity of 

silver nanoparticles through disruption of a normally finely-tuned, efficient system and bring to 

light broader implications regarding the generalizability of stress. 
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CHAPTER 2 

MATERIALS, METHODS AND RESULTS 

Materials and Methods  

  Animals. Procambarus clarkii (crayfish) adults 4-6 cm in length were used to collect 

data. Crayfish were freely moving and kept physically, visually, and chemically isolated in 1 L 

tanks at least one week before and during treatment. Ambient room temperature was recorded 

each morning and evening and large temperature fluctuations were noted. Crayfish were exposed 

to AgNP via aquaria water for chronic (two weeks) or acute (overnight) treatment periods. 

Concentrations were 1 ppm, 5 ppm, 10 ppm, and 50 ppm. With the exception of 50 ppm chronic 

treatment, each concentration was tested in acute and chronic treatment periods. This wide 

treatment range was selected to maintain consistency and develop comparable data to previous 

work investigating toxicity of AgNP in aquatic organisms (Asharani et al., 2008). Additionally, 1 

µg/ml [1 ppm] and 5 µg/ml [5 ppm] have shown to be the minimum concentrations necessary to 

induce toxicity in Bacillus thuringiensis, a potential target organism for the antibacterial effects 

of AgNP (Mirzajani et al., 2014). Crayfish were assigned at random to treatment groups and  

treatments were scheduled at random using a random number generator to avoid experimenter 

bias. 50 ppm chronic treatment showed lethality, which was not the aim of this project, so 50 

ppm chronic treatments were terminated after two deaths.   

A total of 147 crayfish were used for the purposes of this project. Of those, there were 75 

complete data sets that could be used for analysis. The number of complete data sets used for 

analyses were the following: Control n=10, 1 ppm acute n=8, 1 ppm chronic n=10, 5 ppm acute 

n=9, 5 ppm chronic n=10, 10 ppm acute n=7, 10 ppm chronic n=10, 50 ppm acute n=9. 
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Silver Nanoparticles. 20 nm PVP-coated AgNP powder (99% purity) was ordered from 

NanoAmor (Houston, TX). AgNP were kept in dark container at all times.  AgNP were dispersed 

into a 100 ppm stock solution of crayfish aquaria water. This solution was sonified to achieve 

maximum nanoparticle dispersion, then wrapped in aluminum foil to limit light exposure and 

kept at room temperature. The stock solution was diluted to desired concentrations before 

treatment. Any agglomeration visible in the container was dispersed again before diluting.  

Serotonin Solution. 50 µM serotonin solution was made using crayfish saline and 

serotonin creatinine sulfate complex (Sigma-Aldrich). The solution was made no more than 24 

hours before use and was kept refrigerated with limited light exposure at all times.  

Experimental Preparations. Animals were cooled in ice water for 18-20 minutes to 

induce anesthesia. Cold submersion is an accepted form of inducing anesthesia in these animals. 

Anesthetization was confirmed by testing for a tail-flip reflex response to stimulation on the tail 

fan. Once the animal was no longer responsive to tail fan stimulation (a state confirming the 

anesthetization of the animal), the nerve cord leading to the brain was cut so that all input to the 

brain was terminated, thus the animal was no longer conscious. Antennae, appendages, and 

dorsal exoskeleton were removed. The ventral exoskeleton, head, and tail fan were kept intact, 

with the exception of cutting a small window in the rostral end of the telson exoskeleton in order 

to expose underlying terminal ganglion (A6) nerves more effectively. The nerve cord was 

exposed by removing surrounding tissues and musculature as cleanly as possible without 

damaging the nerve cord. Specifically, the uropod and telson musculature was removed as 

completely as possible. While nerves were left intact as much as possible, some animals’ nerves 

feeding into flexor muscles were cut to prevent movement while the experiment was in progress; 

these nerves were always cut at the furthest point possible from the neuropil. A small piece of 
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Sylgard was placed underneath A6 to stabilize the ganglion for experiments. The partially 

dissected animal was then carefully moved to another dish containing about 18 ml of cool (19°C) 

crayfish saline and was pinned to Sylgard lining (Figures 3 and 4). 

 

 

Figure 3 Experimental Preparation. Crayfish abdominal nerve cord with 
surrounding musculature removed. Terminal ganglion (A6) is indicated in white 
circle. 
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Electrophysiology. Micropipettes were prepared using a micropipette puller 

(Flaming/Brown Micropipette Puller: Model P-97). Micropipettes were placed bottom-down into 

a tube containing 3 M KCl then stored in a humid container overnight to allow the tip to fill with 

3M KCl without the influence of static electricity, which alters the resistance of electrodes. A 

syringe was used to fill micropipettes completely with 3M KCl. Recording electrodes 20-40 MΩ 

were used to record excitatory post-synaptic potentials (EPSP), resting membrane potential, 

membrane resistance, and cellular threshold before, during, and after washing the nerve cord 

with serotonin (described below). A silver/chloride interface electrode connected to the 

electrophysiological recording instruments was inserted into the micropipette and used to 

amplify current flow information from the cell to the computer software. An air-float table was 

Figure 4 Experimental Preparation Magnified. Crayfish terminal ganglion (A6). 
Root nerves 2 and 3 indicated in white circle. Lateral giant (LG) integration 
center indicated in red. 
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used to stabilize the prep and micromanipulators only when vibration was exceptionally 

noticeable and could potentially distort the electrophysiological recordings.  

Recording electrodes were inserted into the integrating center of the LG A6. A 

stimulatory suction electrode was suctioned onto the 2nd and 3rd root of A6. Stimulus was 

delivered in variable amplitude, depending on the resistance of the cell; amplitudes applied 

ranged from 1.75-9V. Stimuli had a duration of 0.2 ms and began immediately upon the pressing 

of the spacebar. Cellular threshold was determined using stepwise stimulation. When a stimulus 

evoked an action potential, that stimulation level (amplitude) was considered threshold. Half of 

cellular threshold was used for recording EPSP. When a cell did not reach threshold before 

recording, half of the largest EPSP evoked was used. During recording, a perfusion pump cycled 

fresh crayfish saline (~18℃) into the bath and waste was removed at the same rate. Stimulus 

was applied via the suction electrode every three minutes for the entirety of the experiment. 

Baseline recording was at least 30 minutes (ten stimulus responses) or until the evoked EPSP 

was stable. Following baseline recording, 50 µM serotonin saline solution was bathed onto the 

cell at 1ml/min using a peristaltic pump. The bath serotonin concentration reached 50 µM after 

about 30 minutes. Evoked EPSP during serotonin exposure was recorded for 45 minutes (15 

stimulus responses). The pump was switched back to crayfish saline for another 75 minutes (25 

stimulus responses) (Figure 5). 
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Data Analysis. Only complete data sets were included in analysis. If the recording 

electrode or suction electrode had been manipulated in any way during the recording period, that 

data set was excluded from analysis. The electrophysiology software Clampfit 10.0 was used to 

collect EPSP data, including alpha (where possible) and beta components. These quantified data 

were normalized where each individual’s data were normalized to its own baseline values. The 

data were then run through an unpaired t-test repeated measures analysis including an f-test using 

GraphPad Prism version 6 for Mac OS X. F-test is an accepted measure of variability differences 

between groups. A significant finding in an f-test suggests that the two groups tested have 

different variability.  

Figure 5 Experimental Timeline. Baseline recordings taken over first 30 min. of experiment. 
First dotted line indicates start of 5-HT drip. For 45 min. 50 µM 5-HT solution is pumped into 
the saline bath at a rate of 1ml/min. Peak 5-HT concentration in the bath is reached at 30 min. 
indicated by the second dotted line. Crayfish saline is pumped into saline bath at a rate of 
1ml/min for the remainder of the experiment and is presumed to have washed out 5-HT 
completely after 30 min. indicated by the third dotted line. Black triangles at the top of the 
figure represent rising and falling 5-HT in the bath. Solid horizontal line depicts a hypothetical 
recording during the experimental trial.  
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Results 

Increased excitability. Crayfish treated with AgNP showed a trend toward increased 

excitability during 5-HT perfusion and after 5-HT washout compared to control animals. Though 

not significant, this trend could suggest a change in the modulatory action of 5-HT on the LG. 

While 5-HT normally causes increased excitability in the LG, the AgNP treated crayfish show an 

exaggerated and longer lasting excitability under 5-HT perfusion compared to control animals 

(Figures 6 and 7). This excessive increase in LG excitability under 5-HT perfusion is 

uncharacteristic in this normally very finely-tuned, system. Over-excitability points to a loss of 

control over the circuit, which could be detrimental to the crayfish.  
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Figure 6 Representative Findings. Representative figures from control crayfish (A) and 5 
ppm chronically treated crayfish (B). -30 – 0 min. baseline recording. Thickness of black bar 
at the top of the figures represents the concentration of 5-HT in the bath at the time of 
recording. 
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Chronic Treatment vs. Acute Treatment. Chronically treated animals showed more 

exaggerated effects of AgNP on LG excitability during and after 5-HT perfusion than acutely 

treated animals. While this trend is not significant, it does allow for some inferences regarding 

the method by which AgNP can be neurotoxic. Because LG is known to be modulated by 5-HT 

and 5-HT’s action on LG is metamodulated by the crayfish’s context, it is reasonable to postulate 

that the crayfish’s environment stimulates biochemical changes in the LG, specifically changes 

in the 5-HT receptor density, type, or second messenger cascade. Thus, the context in chronically 

treated animals has more time to influence the biochemical changes that are suspected to be 

made. Biochemical changes such as receptor density and type take time, therefore acutely treated 

Figure 7 Results of AgNP Effects on 5-HT Modulation. Results depicting the normalized EPSP 
amplitude of the lateral giant in response to electric shock mimicking a natural stimulus. 
Treatment regimens are shown in parts per million. Solid bars show baseline recordings for 
each treatment group normalized to 1. Gray bars show lateral giant response to shock during 5-
HT perfusion taken as a mean of the response during 5-HT application. Striped bars show 
lateral giant response to shock after the washout of 5-HT from the bath taken as a mean of the 
washout period.  



 

 36 

animals likely have not had the time needed to make the receptor turnovers that would make 

them more susceptible to 5-HT modulation. Additionally, AgNP have shown potential for 

bioaccumulation. This bioaccumulation is likely to have greater neurotoxic effects in chronically 

treated animals due to the greater accumulation and longer exposure period. This, compounded 

with the more time-consuming protein transcription that may take place as a result of exposure, 

could point to an increasing neurotoxic potential as crayfish are exposed to AgNP in their native 

habitat. 

Variability. While there was a clear trend of increased excitability after AgNP, the 

results from this experiment were not statistically significant. Upon further examination, the lack 

of statistical significance appears to be caused by variability within treatment groups. While the 

trend suggests increased excitability of LG after AgNP exposure, the variability within treatment 

groups was very high. However, the individuals’ responses over the entire recording was 

consistent. This result suggests that crayfish do not have a systematic response to AgNP 

exposure. While most crayfish responded to AgNP exposure by increasing LG excitability under 

5-HT modulation, some crayfish did not. In fact, this increase in variability is significantly 

different from the variability seen in the control group and treatment groups 5 ppm chronic 

(p=0.003) and 10 ppm chronic (p < 0.0001), suggesting a disorganized and somewhat chaotic 

response to AgNP exposure (Fig. 8). Not only does this increase in variability point to neurotoxic 

effects of AgNP, it also speaks to the generalizability of stress. Crayfish do not have a 

characteristic response for this stressor as they do with social stress. A varied and 

uncharacteristic response suggests that in this modulated escape-reflex system, stress is not 

generalizable.  
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 Additionally, the variability between chronically treated crayfish in 5ppm concentrations 

was significantly higher than those in acute treatment of the same concentration (p=0.0326). A 

similar finding was discovered in crayfish chronically treated in 10 ppm concentrations with 

greater variability than those in acute treatment of the same concentration (p=0.0001). An 

increase in variability after longer exposure to AgNP would suggest that the effects of AgNP are 

greater with longer exposure, meaning that the stress response of the crayfish is likely time-

dependent.  

 

Decreased Muscle Mass. Anecdotal findings suggest that chronic exposure to AgNP 

causes a decrease in muscle mass. This change in muscle mass was not quantified for this 

Figure 8 Results of AgNP Effects on Variability. Standard deviation of lateral giant 
response to shock during entire experimental protocol. (****p<0.0001,**p<0.005; 
###p=0.0001,#p<0.05) Asterisk indicates significance against control, pound sign indicates 
significance against acute treatment of same concentration. 
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project, though the quantification of this decrease in muscle mass could be achieved in future 

studies. Representative examples of the differences in muscle mass are shown in Figure 9.  
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A 

B 

Figure 9 Decreased Muscle Mass. Representative example of control animal abdominal muscle 
tissue (A). Bottom figure representative example of decreased muscle mass observed in some 
chronically AgNP treated crayfish. Crayfish was treated with 1 ppm AgNP chronically (B).  
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Behavioral Changes. Anecdotal accounts of erratic behavior were noted in many 

chronically AgNP treated animals. Much of the erratic behavior was characterized by lethargy. 

Chronically treated crayfish stopped grappling for food and often stayed in the same position for 

multiple days (Figure 9 A). A few displayed exceptionally erratic behaviors such as that shown 

in Figure 9 (B).  

 

Conclusions. Setting an appropriate gain for this tail-flip response is important for 

crayfish survival (Antonsen and Edwards, 2007). Over-excitability of the lateral giant neuron 

when that increased excitability is not necessary can cause the animal to tail-flip into the water 

column, which would make it more visible to predators, potentially resulting in detriment. 

Figure 10 Behavioral Results. Image on left shows 10 ppm chronically treated crayfish 
displaying lethargic behavior (A). B shows 5 ppm chronically treated crayfish displaying 
erratic, unusual behavior.   

A B 
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Comparatively, decreased excitability that is inappropriate for the animal’s situation would likely 

result in the crayfish’s death. As seen in this experiment, most animals treated with AgNP had an 

increased excitability compared to control animals exposed to the same stimulus level. This over-

excitability indicates that the gain of the neural circuit was disrupted, which, in nature, could 

result in the animal putting itself in harm’s way by propelling into the water column when the 

situation does not require it to do so.  

 The suspected change in receptor density that follows AgNP exposure is likely a 

manifestation of the loss of fine-tune control over the crayfish LG-mediated escape circuit. This 

system is normally carefully modulated by 5-HT which causes increases or decreases in LG 

excitability as needed and with the appropriate magnitude. After AgNP exposure most crayfish 

exhibited excessive excitability under 5-HT perfusion suggesting a change in 5-HT receptor 

density that goes beyond what is necessary. The loss of fine-tune control over this system, an 

escape circuit which is necessary for survival, is evidence for the neurotoxicity of AgNP. 

Additionally, the difference in variability between chronically and acutely treated crayfish 

provides further support for this difference being a manifestation of receptor change. Changing 

the receptors present in a membrane takes time and an acutely present stressor, while likely still 

acting as a stressor, does not allow the animal the time necessary to change the receptors 

necessary for the response seen in chronically treated animals.  
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CHAPTER 3 

GENERAL DISCUSSION AND IMPLICATIONS 

 When crayfish encounter social stressors, the LG responds to 5-HT by either increasing 

or decreasing excitability, a well-characterized and predictable behavioral response. A crayfish’s 

survival is dependent on setting the proper gain for the LG mediated escape reflex. The circuit 

should be set in a way that elicits a response of the appropriate magnitude for the crayfish’s 

given circumstances. Thus, any change in the excitability of the LG neuron in this circuit can be 

indicative of the crayfish remodeling the gain of the escape reflex circuit. Crayfish have a well 

developed generalized response to social stressors and adjust the LG response appropriately; 

however, it would appear as though crayfish do not have a similarly organized, systematic 

response developed for dealing with AgNP exposure. Chronic AgNP treatment in high 

concentrations caused increased variability in the crayfish escape reflex. This increased 

variability within treatment groups is highly suggestive of a loss of control over what is normally 

a very organized, systematic behavioral response. Loss of control over such an important system 

which is vital for their survival is an alarming and unexpected response from such a resilient 

bioindicator species. 

Time-Dependency of LG Response 

 Duration of AgNP treatment had a significant effect on the excitability of LG in 5 and 10 

ppm treatment groups. The difference seen between chronically treated and acutely treated 

crayfish is likely a similar effect to that seen in crayfish after social pairings. Yeh et al. (1996) 

saw a change in LG excitability after prolonged pairing with other crayfish. Specifically, the 

difference seen between longer paired crayfish was an altered effect of modulation on the LG. 

The altered effect of 5-HT modulation on LG was thought to either be due to a change in 
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receptor density or a change in the gain of particular receptors’ signaling pathway. This context-

dependent plasticity of the modulatory action on LG allows for fine-tuning of the crayfish’ 

behavior in changing social contexts.  

 Teshiba et al. (2001) showed timing-dependent 5-HT modulatory effects on the LG with 

fast and slow application of 5-HT. When high 5-HT concentrations are perfused quickly, the cell 

shows inhibitory response to stimulation; thus, the effects of a great influx of 5-HT quickly onto 

the cell membrane inhibits the cell’s ability to depolarize. They propose that this inhibition is 

likely due to the signaling effects of one type of receptor (producing inhibitory effect in this 

case) interfering with the second modulatory receptor type’s ability to generate a depolarizing 

effect. When 5-HT was added at a slower rate LG’s response to stimulation was facilitory. This 

facilitation is likely because the type of modulatory receptors being activated first were 

facilitory, which allowed for their action on the cell to dominate the net effect that was observed. 

The activation of one modulatory pathway before another is likely dependent on the threshold of 

each, thus, the possibly faster, higher threshold pathways were activated with faster, higher 

concentrations of 5-HT, but the lower threshold facilitory pathway is activated with more gradual 

application of the same concentration.  

 

Biological Applications of Time/Dose LG Response  

 Teshiba et al. (2001) proposed that there may be a biological correlate for the fast/slow 

application regimens often used in 5-HT modulation LG studies. They propose that 5-HT 

released by a serotonergic neuron that has contact with the dendritic segments of each ganglion 

could mimic the effects seen with the high concentration, fast application of 5-HT onto LG. The 
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slower application regimens may be a reflection of the 5-HT circulating in hemolymph, which 

would, presumably, reach the cell more slowly, therefore having a slower effect on the cell. 

 5-HT is known to influence the posture behavior in crayfish, with injection of 5-HT 

causing more aggressive posture. Because 5-HT1⍺Pro receptors are clustered on the flexor 

neuromuscular regions, which play a role in posture, the activation of these receptors could cause 

the changes seen with 5-HT injection (Spitzer et al., 2007). The inhibitory effects seen in the LG 

may be a result of activation of 5-HT1⍺Pro as activation of this receptor by meta-

Chlorophenylpiperazine (mCPP) – (a 5-HT1⍺Pro agonist) caused an inhibitory response, therefore 

the receptor may be activated by fast, synaptic application of 5-HT (Yeh et al., 1997). The 

facilitory response to 5-HT seen in crayfish may be due to the action of 5-HT1⍺Pro or 5-HT2βPro as 

⍺-Me5-HT, an agonist for these receptors, resulted in the facilitory effects of 5-HT⍺. This 

facilitory effect could be a correlate of biological release of 5-HT from the pericardial organs 

into the blood. 5-HT receptor gene expression is thought to be linked to crayfish social status, 

though summed mRNA contents did not show significant differences between social groups. 

Therefore, the effects of social interactions on 5-HT-mediated responses are likely a result of a 

specific pattern of 5-HT receptor gene expression throughout the crayfish’ nervous system 

(Edwards and Spitzer, 2006), not simply more or less 5-HT receptors. While these specific 

receptor subtypes may not be responsible for the LG tail-flip, similar models of a change in net 

effect after the activation of a specific receptor type could be at work. Localization of receptors 

and density of specific receptor types in confined regions could result in the dual 5-HT 

modulatory effects seen in LG. 

 Slow application of 5-HT has the most pronounced effects (a greater amplitude) on the β 

component of the LG EPSP (Antonsen and Edwards, 2003). This component-specific effect 
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implies that the modulatory effects of 5-HT seen in this experiment were likely through the 

mechanosensory interneurons that link to LG dendrites. The magnitude and direction of change 

seen in the EPSP after slow application of a high 5-HT concentration could mimic a 

physiological release of 5-HT from the pericardial organs with 5-HT slowly reaching the cell 

through the blood (Antonsen and Edwards, 2007). The net effects of 5-HT on the LG neural 

circuit are thought to be the result of activating second messenger cascades through binding to 

specific 5-HT receptor types (Araki et al., 2005). Specifically, the net effects seen in the crayfish 

5-HT response are thought to be mediated by cyclic adenosine monophosphate (cAMP) which is 

produced by adenylyl cyclase. By blocking adenylyl cyclase, Araki et al. (2013) showed that the 

effects of 5-HT are cancelled when cAMP is not activated and they proposed that 5-HT’s site of 

action likely lies in the sensory afferent neurons. Therefore, the effects of 5-HT perfusion after 

AgNP exposure seen in this study could be a manifestation of 5-HT receptor turnover in the 

sensory afferent neurons in the tail fan or could be due to modulatory action located on the 

central dendrites of LG (Bacque-Cazenave et al., 2013) or a combination of both biochemical 

changes. However, it is clear from the increased variability with longer exposure to higher 

concentrations of AgNP, crayfish are not employing the same biochemical mechanisms within 

the treatment groups, resulting in different net effects on the cell and ultimately different 

behavioral endpoints.  

 

Generalized Stress Response 

 In the beginnings of psychological stress research and the development of what is now 

considered psychological dogma, researchers investigated the components of the human stress 

response. Many theories were developed regarding the generalizability of the stress response, 
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including Selye’s famous general adaptation syndrome theory (Selye, 1956). This theory 

proposes that stress response evoked by different stress forms is the same, thus different types of 

stressors would elicit identical responses within an individual as well across several individuals. 

The general adaptation syndrome theory, however, has been challenged by many studies 

showing that the preparedness of the individual is more of a determinant of the stress response 

than the stressor itself (Biondi and Picardi, 1999). Indeed, inter-individual variation has been 

seen in groups with similar work loads and even similar perceptions of their work loads. 

However, this variation was observed when the individuals faced an unfamiliar, demanding 

stressor as opposed to stress they encounter as part of their daily experience. Additionally, the 

biochemical mechanisms employed to deal with a given stressor were still thought to be 

generalizable. It would appear as though, when facing a novel stressor, crayfish do not achieve 

the same behavioral modifications seen when they undergo a familiar stressor, like social stress. 

However, while the behavioral endpoint is markedly different, it is possible that the same 

biochemical machinery is at work, but is not being used in the organized, carefully tuned manner 

as it is normally employed. Similarly, it is unknown as to whether the same biochemical 

pathways are in use to produce the decreased muscle mass seen in some chronically treated 

crayfish. It is possible that the crayfish lost their ability to carefully set the gain of this system 

because the resources necessary to do so were allocated instead to the more urgent need for 

survival. This allocation of resources to survival could explain the lethargic and even erratic 

behavior because, in both instances, crayfish did not move from one location for long periods of 

time, sometimes days. What was counterintuitive then, was the increase in lateral giant 

excitability after chronic exposure to AgNP. Lethargic crayfish with symptoms of starvation 

would not be expected to be more excitable than crayfish with normal behavior. While the 
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increased excitability was not statistically significant, there was a clear trend indicating that 

crayfish who had been exposed to AgNP for chronic periods would be more likely to perform a 

tail flip under 5-HT perfusion. Given that crayfish’s responses were different under 5-HT 

exposure, it is likely that the tail-flip differences seen between control and treatment groups is 

highly 5-HT dependent.  

 

Decreased Biologically Available 5-HT 

Because 5-HT is utilized as a hormone, neuromodulator, and neurotransmitter in crayfish, 

if AgNP induced stress caused the crayfish to exhaust their 5-HT resources, artificial 

introduction of high concentrations of 5-HT to cell through perfusion (like that used in this 

study) could be over-exciting the receptors present on the membrane resulting in a somewhat 

chaotic response. If AgNP caused 5-HT to be released onto the lateral giant in higher 

concentrations as a result of increased stress response, the receptors present on the membrane 

would be downregulated in order to prevent toxicity due to over excitation. Though, if 5-HT was 

less available because of resources being allocated elsewhere, then the receptors would have 

been upregulated due to lack of activity. Some evidence for this hypothesis was seen in 

preliminary (unpublished) data showing 5-HT present on the A6 ganglion after AgNP exposure. 

In this study, AgNP treated animals had less 5-HT fluorescence on the A6 ganglion than that 

seen in control animals. Additionally, chronically treated animals showed more consistency in 

location of 5-HT fluorescence where 5-HT fluorescence location in acutely treated animals was 

less consistent. 5-HT fluorescence that was observed in chronically treated animals was most 

consistently in the posterior region where the hindgut neurons (responsible for hindgut 

modulation) are located (Musolf et al., 2009). So the specific serotonergic activity while 
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undergoing AgNP is still relatively unknown, these data are suggestive that there is a change. If 

the cell had adjusted the number of receptors present on the membrane to accommodate the 

lower levels of 5-HT seen in these preliminary data, when the cell was exposed to high 

concentrations of 5-HT over a long period of time through perfusion, it may have been 

mimicking an over-excitation that would not be realistic if the animal had decreased levels of 

biologically available 5-HT. Thus, the cell would display non-adaptive characteristics like erratic 

responses of unpredictable magnitude. So, the toxicity of AgNP could lie in the decrease of 

biologically available 5-HT, not the change in receptors on the membrane.   

 Summers (2002) suggests that groups of crayfish employing the same biochemical 

mechanisms to generate different behavioral outputs is likely indicative of contextual adaptive 

evolution. For instance, agonistic encounters are common among crayfish, though if dominant 

and subordinate animals had a static response to social encounters plasticity of behaviors - and 

dominance heirarchies - would be lost. Having the ability to adapt to changing cultural contexts 

with different behavioral endpoints while using the same machinery can be very advantageous to 

an animal. Edwards and Spitzer (2006) further discuss the advantages - and necessity - of plastic 

behavioral outputs to variable contexts. Crayfish constantly receive input from their 

environment, which in part governs their cellular response to further input. With a changing 

environment influencing LG response to stimulation, one can see the benefit of modulating 

existing response systems to achieve variable behavioral responses. However, with the disruption 

of this generalized response, AgNP pose a threat to the adaptability to their changing 

environment. If the animals cannot match their environmental challenges quickly enough with 

appropriate responses, AgNP could be detrimental to the health of crayfish as well as their 

surrounding aquatic ecosystem. 
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Conclusions  

 The findings from this study indicate that, in the crayfish tail-flip reflex circuit, stress is 

not generalizable. When crayfish are faced with social stressors, the LG responds to 5-HT 

perfusion by either increasing or decreasing excitability, a well-characterized and predictable 

response. A socially subordinate crayfish will respond to 5-HT with decreased LG excitability 

while socially dominant animals respond to 5-HT perfusion with increased LG excitability. 

These adaptive responses to contextual changes are thought to be mediated by three types of 5-

HT receptors. Two 5-HT receptors are responsible for the short-term change in LG excitability in 

response to a social context shift. A third type of receptor replaces these receptors and is 

responsible for the long-lasting LG response enhancement after 5-HT is no longer present (Yeh 

et al., 1996). The organized response of the crayfish escape circuit to social context is in stark 

contrast to the response seen in the current study to AgNP exposure. Crayfish have evolved a 

systematic response to social stress because agonistic encounters are the means by which they 

develop their social hierarchy. Therefore, social stress is a common, normal stressor that the 

crayfish would “expect” to encounter; thus it is logical that the crayfish would need an 

appropriate and quick response to this stressor to deal with it effectively and efficiently. 

However, AgNP in particular are a recent environmental contaminant that crayfish are certainly 

facing, yet it would appear as though they do not have a similar, systematic response developed 

for dealing with this type of stressor. Erratic and disorganized LG response to 5-HT is suggestive 

of a loss of efficient fine-tuned control of this escape circuit, which has been replaced with a 

chaotic and costly response. This increased variation and erratic magnitude of response shows 

that the escape circuit is disturbed in an unusual manner. 
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 Crayfish are an important indicator species that are typically fairly resilient to changing 

environments - manifest in their ability to withstand harsh environments as well as 

environmental changes. The erratic response seen in this study should be an indication to us that 

AgNP which are being deposited into water systems are foreign to crayfish, and they do not have 

an appropriate, adaptive response for it, which is very harmful. Their response should raise alarm 

for us that we too may have unpredictable, erratic, and potentially dangerous responses to the 

same toxicant. While many stressors elicit a predictable response, mediated by the same 

mechanisms, it seems as though this type of stressor is an exception to the rule, and possibly the 

stress responses that have developed over many trials are not equipped to handle them. While  

the aim of this study was not to address AgNP regulation, the findings do suggest that the 

projection for increasing, unregulated use can be harmful to aquatic species like crayfish, and 

subsequently the surrounding aquatic ecosystem. The direction of AgNP use should be carefully 

considered and its application in consumer products evaluated. 
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