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ABSTRACT 

The crayfish Cambarus veteranus is near extinction in its historic range of the Upper 

Guyandotte River watershed. The biggest threats to C. veteranus are mining and road 

construction. Mining has been a continuous activity in the southern coalfields where the crayfish 

has historically been found, yet little is known about how much land cover change the practice 

has done to the region. Crayfish act as important organisms within aquatic ecosystems and 

without them, those systems are often degraded. Quantifying the change in land cover is 

important to understanding threats to C. veteranus for future protection of the crayfish and its 

habitat. Using twelve Landsat satellite images from 1973-2013, I performed a supervised land 

cover classification to track land cover change within the Upper Guyandotte River watershed. 

There was an overall 5.5% change in land cover with a significant decreasing trend in forested 

area over time. In addition to overall land cover changing, three, out of seven, subwatersheds 

where C. veteranus was historically found saw significant decreasing trends in forested area as 

well. The last known location of C. veteranus is within one of those three watersheds. This 

increased disturbance from mining likely explains the near extinction of Cambarus veteranus. 

Without further protection and monitoring the land cover, the crayfish is likely to go extinct 

within its native West Virginia range. 

 

 

 

 

 



 
 

CHAPTER 1 

INTRODUCTION 

Mining and the Environment 

Coal is historically West Virginia’s largest industry. Coal was first discovered in West 

Virginia in 1742, but extensive mining did not occur until the mid-1800s; mining reached a peak 

in 1947, producing over 173 million tons of coal that year (WVGES 2004). Mining still provides 

more than $6 billion to the state’s economy, generates thousands of jobs, and produces over 120 

million tons of coal annually (West Virginia Coal Association 2012). The majority of West 

Virginia’s coal mining currently is underground mining, but surface mining makes up more than 

40% of the mining practices and techniques in the state (WV Coal Association 2012). Surface 

mining can fall into three categories: contour mining, area mining, and mountaintop removal 

mining (Lindberg et al. 2011, WV Coal Association 2012). Mountaintop mining involves 

clearing forests, stripping the topsoil and using explosives to break up rocks to get to a coal 

seam. The excess rock and topsoil, or overburden, is pushed into adjacent valleys, creating valley 

fills (Hartman et al. 2005, Palmer et al. 2010, Lindberg et al. 2011). 

Mountaintop mining causes large impacts on nearby streams and biota as well as streams 

miles away from the active mine. Valley fills bury headwater streams, causing changes in flow 

patterns as well as changes to water chemistry and biota (Hartman et al. 2005, Bernhardt and 

Palmer 2011, U.S. EPA 2011). Waters downstream of surface mines also have decreased pH, 

higher conductivity, higher concentrations of chemical ions such as K
+
, Na

+
, and Cl

−
, and sulfate 

(SO4
2-

), as well as increased levels of toxic metals such as cadmium (Cd), zinc (Zn), and 

selenium (Se), and impaired macroinvertebrate communities (Pond et al. 2008, Palmer et al. 

2010, Petty et al. 2010, U.S. EPA 2011 Lindberg et al. 2011, Bernhardt et al. 2012).  
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Underground mining and surface mining can also produce acid mine drainage (AMD) 

which is created from the reaction of water combining with oxygen and pyrite to form iron oxide 

and sulfuric acid (U.S. EPA 2011, Bott et al. 2012). Long-term treatment of streams is required 

where acid mine drainage has occurred due to acid water draining out of abandoned underground 

mines or streams being directly exposed to coal material from mountaintop mining. Acid mine 

drainage pollutes nearby streams and impacts waterways for miles downstream (Lindberg et al. 

2011, Bott et al. 2012). The results of mining are numerous and often extremely damaging to the 

environment. 

Monitoring Land Use Changes Due to Surface Mining 

Coal mining is the leading cause of land use change in the central Appalachian Mountain 

region of the United States (Townsend et al. 2009, Bernhardt and Palmer 2011). Monitoring land 

use changes is important for resource management and assessing environmental impacts. One 

way to quantify land use and land cover (LULC) change, such as changes in vegetation through 

time, is through analysis of remotely sensed satellite images. Satellite remote sensing offers a 

way to monitor large areas of land at frequent time intervals, often at a low cost. The USGS 

Landsat program has collected satellite images since 1972 at a temporal resolution of 16-18 days.  

Using remote sensing to monitor land use changes enacted by coal mining has had some 

moderate success. Most studies find that mining, both surface and open pit mining, creates 

disturbance in vegetation over time and poses significant threats to the surrounding environment 

(Prakash and Gupta 1998, Lu et al. 2007, Latifovic et al. 2005, Charou et al. 2010, Townsend et 

al. 2009, Tian et al. 2013). Land cover maps classified based on spectral signatures are used to 

monitor changes in the landscape, often looking at changes in vegetation due to clear-cutting, 

mining, and urbanization (Cohen et al. 2002, De Fries et al. 1998, Healey et al. 2005, Masek et 
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al. 2008, Sader et al. 2003, Singh et al. 1997). Different land cover types can be separated based 

on their spectral signatures, such as deciduous vs. evergreen forest, disturbed vs. non-disturbed 

areas, and changes in urbanized areas (Peijun et al. 2010, Sader et al. 2003, Townsend et al. 

2009). Surface mines are easily identifiable due to their distinct shapes on the landscape but they 

can be spectrally similar to other land cover types; active mines can be confused with urbanized 

areas or reclaimed mines with grassland or pasture (Latifovic et al. 2005, Townsend et al. 2009).  

Few remote sensing studies have been performed on the southwestern part of West 

Virginia, also known as the Southern Coalfields. The majority of mining activity in the state 

occurs in the southern coalfields region (West Virginia Coal Association 2012), yet little is 

known about the amount of change that has occurred due to mining. The first goal of this study is 

to use supervised classification of Landsat satellite images to map the changes that have occurred 

in a section of the Southern Coalfields over a forty-year period.  

Crayfish 

Crayfish, also commonly called crawdads or mudbugs, are one of the largest and most 

important benthic macroinvertebrates in freshwater aquatic systems (Taylor et al. 2007). 

Crayfish act as key species in many food webs. They can act as prey for animals such as 

raccoons, fish, and hellbenders (Peterson et al. 1989, Hill and Lodge 1999). Crayfish also 

function as omnivores and detritivores, feeding on macrophytes, periphyton, algae, and other 

macroinvertebrates (Chambers et al. 1990, Creed Jr. 1994, Charlebois and Lamberti 1996, 

Vollmer and Gall 2014). Crayfish can have drastic impacts on community structure and function 

(Lodge et al. 1994, Wilson et al. 2004, Brown and Lawson 2010). Without crayfish, many 

aquatic systems would not function properly. 
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There are over 640 species of crayfish in the world, and the Southern Appalachian 

Mountains of the southeastern United States represents one of the two centers of crayfish 

diversity worldwide (Crandall and Buhay 2008). Within West Virginia, there are roughly 30 

species of crayfish (Loughman 2015). The greatest threats West Virginia crayfish face are 

anthropogenic, such as mountaintop removal, roadway construction, and the introduction of 

invasive species like Orconectes rusticus and Orconectes virilis (Loughman et al. 2009, 

Loughman and Welsh 2010, Swecker 2012). One of the most imperiled crayfish in the state, 

Cambarus veteranus (the Guyandotte River Crayfish), is currently receiving federal attention. 

The U.S. Fish and Wildlife Service recently proposed to list Cambarus veteranus, along with 

Cambarus callainus (the Big Sandy crayfish) as an endangered species (U.S. Fish and Wildlife 

Service 2015).  

Cambarus veteranus was historically found in the Guyandotte River system and 

Bluestone River system in Logan, Mercer, and Wyoming counties in streams 10-20 m in width 

with fast flowing pools (Jezerinac et al. 1995). It can also be found in parts of eastern Kentucky 

and southwestern Virginia (Loughman 2014, Jezerinac et al. 1995). The last statewide crayfish 

survey was performed in the summers of 1988 and 1989, where only forty-nine individuals were 

captured from three watersheds of the seven watersheds it had previously been known to occur. 

Jezerinac et al. (1995) noted that streams that were suitable for the crayfish were not occupied 

because of pollution from coal dust and organic matter. There has been little effort to document 

and monitor crayfish populations in West Virginia since Jezerinac’s survey. In 2001, Cambarus 

veteranus was thought to be extirpated from its historic range (Jones et al. 2010) until it was 

discovered again in 2009 in the Guyandotte River basin by Loughman and Welsh while 

completing a new statewide crayfish survey (Loughman 2014). A second population of C. 
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veteranus was discovered in the Tug Fork and Dry Fork of the Big Sandy River basin (Foltz 

2013, Loughman 2014). Upon the results of genetic testing it was determined that the population 

in the Tug Fork was a new species, Cambarus callainus, separate from Cambarus veteranus 

(Thoma et al. 2014). Within West Virginia, C. veteranus can now only be found at one historic 

site: Pinnacle Creek in the Upper Guyandotte River watershed (Loughman 2014). 

Due to the endangerment of C. veteranus, it is extremely important to better understand 

the cause of its decline. By mapping the land cover changes over a long period of time within the 

watershed where the crayfish is found, I plan to compare mining-related land cover changes to 

the declining range of crayfish in the region. Using satellite imagery, large land cover changes 

can be tracked and monitored. If large changes occur near the historic sites of C. veteranus I can 

map those changes over time and show that those changes caused the crayfish to no longer be 

present at certain sites within the watershed. Mapping land cover change may provide insight 

into crayfish decline in West Virginia and help identify actions that may be taken to avert the 

extinction of C. veteranus from its native West Virginia range. 

METHODS 

Study Area 

The study area is located in the Upper Guyandotte River watershed in the southwestern 

part of West Virginia. The watershed is over 673 km
2
 and drains around 2432 km

2
 from parts of 

Raleigh, Logan, and Mingo Counties and all of Wyoming County; the area is mostly forested 

and coal mining is the largest industry in the watershed (Downing et al. 2013, Upper Guyandotte 

Watershed Association 2006). Cambarus veteranus has historically been found in the 

Guyandotte River system and Bluestone River system in Logan, Mercer, and Wyoming counties 

(Jezerinac et al. 1995) (Figure 1). Loughman (2014) found that while the specimens held by the 
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United States National Museum (USNM) are C. veteranus, they most likely came from Crane 

Creek in the Big Sandy River Basin and not the Bluestone system as no other specimens of C. 

veteranus have been found in that system since its recording in 1900. For the purpose of this 

study, I focused on the Upper Guyandotte River watershed exclusively.  

 
Figure 1. Map depicting Cambarus veteranus capture locations within the Upper Guyandotte 

River watershed and HUC 12 subwatersheds. 
 
Image Acquisition 

I used USGS Landsat satellite images for this study. I chose Landsat imagery because it 

is free and has images collected every 16-18 days dating back to 1972. I was able to obtain 

images from 1973 to 2013, a forty year time series, to use for this study. Another advantage to 

using Landsat imagery is that Landsat is always trying to improve upon their dataset and has 

produced a new product, the Climate Data Records (CDR). The CDR eliminates much of the 

pre-processing, like correcting for radiance and reflectance, researchers normally must do before 
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using the images for analysis. The CDR images come pre-processed to surface reflectance and 

top-of-atmosphere (TOA) reflectance for Landsat 4-5 TM and beyond (there is no CDR for 

Landsat MSS images). I used TOA-CDR images whenever possible in this study. 

Images were chosen based on cloud cover, season, and frequency. Townsend et al. (2009) 

suggested that smaller time intervals (<10 years) would be better to observe land use changes 

due to mining, so images were picked on an interval of 3-5 years. This selection process led to 

three Landsat MSS images, seven Landsat 4-5 TM TOA-CDR images, one Landsat 7 ETM+ 

image, and one Landsat 8 OLI TOA-CDR image. I could not use a Landsat7 ETM+ CDR image 

due to imperfections in the image. Table 1 summarizes the satellite and image information used 

in this study. 

Table 1. List of satellites and dates used in the study. 

Satellite Acquisition Date Path/Row 

Landsat 1-5 MSS 9/3/1973 

9/23/1976 

9/24/1981 

19/34 

Landsat 4-5 TM 9/17/1984 

9/26/1987 

9/21/1991 

8/31/1995 

9/24/1998 

18/34 

Landsat 7 ETM+ 9/8/2001 

Landsat 4-5 TM 9/11/2005 

9/3/2008 

Landsat 8 OLI 9/17/2013 

 

Image Pre-Processing 

Using Erdas-Imagine (v. 14), all images were clipped to the Guyandotte River watershed 

boundary, using the shapefile of the HUC8 watershed boundaries provided by Natural Resources 

Conservation Service. All images were then radiometrically corrected as follows. Because I did 

not have Landsat CDR images for Landsat MSS or ETM+, I had to correct for radiance and 
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reflection. The Landsat MSS images and the Landsat 7 ETM+ image were corrected by 

converting raw DNs to at-satellite radiance (Equation 1) to at-sensor reflectance (Equation 2) in a 

multi-step process (Chander and Markham 2003).  

(Eq. 1)   Lλ =   
       –       

         –         
   (QCAL – QCALMIN) – LMINλ  

Where: 

Lλ = Spectral radiance at the sensor's aperture [W/(m2 sr pm)] 

Qcal = Quantized calibrated pixel value [DN] 

Qcalmin = Minimum quantized calibrated pixel value corresponding to LMIN^ [DN] 

Qcalmax = Maximum quantized calibrated pixel value corresponding to LMAX) [DN] 

LMINλ = Spectral at-sensor radiance that is scaled to Qcalmin [W/(m
2
 sr µm)] 

LMAXλ = Spectral at-sensor radiance that is scaled to Qcalmax [W/(m
2
 sr µm)]  

 

 (Eq. 2)    ρp = 

         
 

             
 

Where: 

ρp  = unitless planetary reflectance; 

Lλ = Spectral radiance at the sensor's aperture [W/(m2 sr pm)] 

d = earth–sun distance in astronomical units 

ESUNλ =  mean solar exoatmospheric irradiances 

θs = solar zenith angle in degrees 

 

After the Landsat MSS images were resampled from 60 meters to 30 meters and all 

TOA-CDR raw DNs were scaled by a factor of 0.0001 (USGS 2014), the twelve images 

underwent dark object subtraction (DOS) (Chavez 1996) and were used in the classification 

process. 

Image Classification 

I performed a supervised minimum distance land cover classification on all twelve 

images using Erdas-Imagine (v.14). I selected training areas based on previous knowledge of the 

area and clear visual cues (e.g. surface mines, roads, grassland, forest). Signatures were sorted 

into three classes: Forest, Mining Activity/Urban, and Non-forest. The Forest class was 
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identified as any kind of forested area. I used 36 training sites for the classification. Mining 

Activity/Urban consisted of active mines, valley fills, reclaimed land, open grassland, roadways, 

and small urbanized areas. Because of the variety of land cover types I used twice as many 

training sites for this class than I did for the forest. The non-forest class was used to classify 

water and anything else that didn’t fall into the other two classes; I used ten training sites for the 

classification. 

I layerstacked the raw spectral bands and a number of derived products. Table 2 shows 

the spectral bands and indices used for each classification. To increase the separability of classes, 

I used various indices derived from the raw spectral bands. The Normalized Difference 

Vegetation Index (NDVI) is a measure of the ratio of near-IR to red reflectance: 

(Eq. 3)   NDVI = (NIR – RED) / (NIR + RED) 

The NDVI measures vegetation productivity, meaning that vegetated areas are highly reflective 

so it is useful in identifying highly vegetated and bare areas (Lyon et al. 1998, Peijun et al. 2010, 

Pettorelli et al. 2005, Sader et al. 2003).  

Other indices like principle component analysis (PCA) and Tasseled-Cap (Brightness, 

Greenness, and Wetness) are also useful in monitoring land cover (Cohen et al. 1998, Collins and 

Woodcock 1996, Franklin et al. 2002, Myint et al. 2008, Townsend et al. 2009). Both PCA and 

Tasseled Cap reduce the number of components in an image so that fewer bands can be used. 

Another index, derived from Tasseled Cap is the Disturbance Index (DI) which is useful in 

monitoring forest and vegetation change (Healey et al. 2005, Masek et al. 2008). The DI is 

derived by rescaling the Tasseled Cap bands. For example, rescaling Brightness:  

(Eq. 4)   Br = (B – Bµ) / Bσ 
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Where, Bµ is the mean brightness and Bσ is the standard deviation of the brightness index. Once 

Brightness, Greenness, and Wetness have been rescaled they are combined into a new equation:  

(Eq. 5)   DI = Br – (Gr + Wr) 

Disturbed areas should then have high positive Br and low negative Gr and Wr values. After a 

number of trials figuring out which combination of bands worked best, the first two principle 

components were used for all images, Tasseled Cap used on all but the OLI image, and the 

Disturbance Index used only in the MSS images.  

  Finally, I used image texture to help separate land cover types. Texture can differentiate 

plant communities as well as urban areas (Gallardo-Cruz et al. 2012, Stefanov et al. 2001). 

Texture of an image is measured by applying different mathematical formulas to the image and I 

found that when the mean Euclidean distance was applied it showed the best texture of roadways 

and mines for the red band in each year. So for the MSS images, I used the image texture of band 

2 and the rest of the images I used the image texture of band 3. 

Table 2. The bands and indices used in the supervised classification. 

Year Bands Used 

1973 

1976 

1981 

Spectral bands 1-4, Tasseled Cap, Principle Component 1 and 2, DI, NDVI, Texture-

Band 2 

1984 

1987 

1991 

1995 

1998 

2001 

2005 

2008 

Spectral bands 1-5 and 7, Tasseled Cap, Principle Component 1 and 2, NDVI, Texture-

Band 3  

2013 Spectral bands 1-7, Principle Component 1 and 2 , NDVI, Texture-Band 3 

 

Once I classified all images, I found the overall area (ha) of each class for each year and 

the area of each class for the HUC 12 subwatersheds where C. veteranus was found historically. 
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Because change is localized and crayfish do not move great distances, it was important to look at 

the subwatersheds as a way to measure whether mining activity had an impact on the crayfish’s 

decline over time.  

Trend Analysis 

 To test for significant change in area over time I ran a Mann-Kendall (MK) test. The MK 

trend test was initially developed to analyze trends in water quality and is a useful test for 

seasonal and other time series data (De Beurs and Henebry 2004, Hirsh and Slack 1984, Yue and 

Wang 2004). The test assesses if there is trend over time and whether the trend is positive or 

negative. It is a non-parametric test and does not require normality; it assumes all observations 

are independent when no trend is present. I performed the MK test with XLStat (v. 

2015.4.01.20780) in Excel (v. 14.0.7153.5000). 

Accuracy Assessment of Image Classification 

 I used Erdas-Imagine to assess the accuracy of the classification. To measure the 

accuracy of the classified images, I created a total of 250 ground truth points. Points were created 

randomly, and with some user-defined points to ensure all classes were covered in the analysis. I 

assigned actual land cover class using the original Landsat images to measure. The accuracy 

assessment then produced an error matrix, accuracy totals, and Kappa coefficients, which I used 

to measure the accuracy of my classifications. 

RESULTS 

Land Cover Change 

Over a forty year time span, the Upper Guyandotte River watershed has remained mostly 

forested with an ever increasing amount of mining activity (Table 3) (Appendix A). Forested 

land takes up over 90% of the land cover in any given year while mining activity or urbanization 
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accounts for about 2-8% of land cover over time; non-forest, consisting primarily of water, only 

consists of less than 1% of the land cover over time (Table 4).  

Table 3. The area (ha) of each class over time in the Upper Guyandotte River watershed.  

 Forest Mining Activity/Urban Non-forest Total 

1973 238,819.59 7,078.14 17.28 245,915.01 

1976 241,679.16 4,218.21 17.64 245,915.01 

1981 241,178.22 4,564.17 172.62 245,915.01 

1984 235,726.74 9,753.48 434.79 245,915.01 

1987 235,279.44 9,922.95 712.62 245,915.01 

1991 234,624.78 10,999.62 290.61 245,915.01 

1995 235,994.85 9,652.77 267.39 245,915.01 

1998 232,774.47 12,721.23 419.31 245,915.01 

2001 233,103.60 12,529.89 281.52 245,915.01 

2005 231,934.05 13,749.48 231.48 245,915.01 

2008 229,750.56 15,955.29 209.16 245,915.01 

2013 225,021.06 20,589.75 304.20 245,915.01 

 

Table 4. The percent area of each class over time. 

 Forest Mining Activity/Urban Non-forest 

1973 97.11 2.88 0.01 

1976 98.28 1.72 0.01 

1981 98.07 1.86 0.07 

1984 95.86 3.97 0.18 

1987 95.68 4.04 0.29 

1991 95.41 4.47 0.12 

1995 95.97 3.93 0.11 

1998 94.66 5.17 0.17 

2001 94.79 5.10 0.11 

2005 94.31 5.59 0.09 

2008 93.43 6.49 0.09 

2013 91.50 8.37 0.12 

 

While the mining activity/urban class consists of various kinds of land cover, from 

roadways to small towns to mines and valley fills, the greatest changes within this class are 

clearly due to surface mining. It is easy to see this change from the decade of 1991-2001 (Figure 

2). The mines have distinct, irregular shapes and visibly show the increased mining activity. It is 
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also possible to see where mines have been reclaimed because they change classes from Mining 

Activity/Urban to Forest.

 

Figure 2. Land use changes from 1991-2001. It is easy to spot the changes in landscape due to 

mining in the northern part of the watershed.  

 

With non-forest taking up less than 1% of the area in any given year, land cover changes 

occur only between forest and mining. A distinct trend of forest loss and increased mining 

activity can be seen over time (Figure 3 and 4). There was an overall 5.61% decrease in forested 

area and a 5.49% increase in mining activity from 1973 to 2013. There was an overall 5.5% 
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decrease in forested area from 1973 to 2013. The Mann-Kendall tests shows that the downward 

trend in forest area is significant (Kendall’s tau = -0.818, p < 0.0001), as is the upward trend of 

mining activity (Kendall’s tau = 0.818, p < 0.0001). 

 
Figure 3. The area (ha) of forest land cover over time. There was a distinct downward trend of 

forested area in the Upper Guyandotte River watershed. 

 

 
Figure 4. The area (ha) of mining activity/urban land cover over time. There was a distinct 

upward trend of disturbed area in the Upper Guyandotte River watershed. 
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Cambarus veteranus. By looking at the area of the subwatersheds where the crayfish has 

historically been found, greater changes in area can be more evident and indicate a cause for the 

crayfish’s decline. The total area of each watershed varies (Figure 5), but some watersheds 

experienced greater changes in area over time than others (Figures 6-12).  

 
Figure 5. The total area (ha) of each subwatershed where C. veteranus has historically been 

found. 
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Figure 6. The area of Barkers Creek HUC 12 subwatershed. The area did not experience a 

significant change in forested area over time (Kendall’s tau: 0.152, p = 0.293). 

 

 
Figure 7. Area of Pinnacle Creek HUC 12 subwatershed. The area did experience a significant 

decline in forested area over time (Kendall’s tau: -0.848, p < 0.0001). 
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Figure 8. Area of Indian Creek HUC 12 subwatershed. The area did experience a significant 

decline in forested area over time (Kendall’s tau: -0.788, p < 0.0001). 

 

Figure 9. Area of Little Huff Creek HUC 12 subwatershed. The area did not experience a 

significant change in forested area over time (Kendall’s tau: -0.182, p = 0.069). 
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Figure 10. Area of Turkey Creek HUC 12 subwatershed. The area did not experience a 

significant change in forested area over time (Kendall’s tau: -0.062, p = 0.559). 

 

 
Figure 11. Area of Cabin Creek HUC 12 subwatershed. The area did not experience a significant 

change in forested area over time (Kendall’s tau: -0.121, p = 0.316). 
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Figure 12. Area of Huff Creek HUC 12 subwatershed. The area did experience a significant 

decline in forested area over time (Kendall’s tau: -0.697, p < 0.0001). 
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Table 5. The area (ha) of forest and mining activity classes for each watershed over time. 

 

Barkers 

Creek 

Pinnacle 

Creek 

Indian 

Creek 

Little 

Huff 

Creek 

Turkey 

Creek 

Cabin 

Creek  

Huff 

Creek 

Forest 

1973 9165.15 14587.74 11016.72 10385.55 11418.21 8765.37 13419.63 

1976 9331.65 14712.3 11011.59 10502.55 11634.48 8932.68 13494.42 

1981 9435.78 14651.55 10941.21 10471.32 11554.38 8822.79 13469.31 

1984 9148.77 14354.1 10737.72 10059.21 11288.25 8578.98 13267.62 

1987 9170.1 14273.55 10808.82 10271.88 11324.07 8606.79 13220.28 

1991 9269.91 14243.13 10719.45 10328.67 11322.99 8704.53 13203.54 

1995 9342.54 14431.41 10929.33 10418.58 11557.08 8790.66 13306.68 

1998 9184.86 14044.23 10744.65 10344.78 11354.85 8674.74 13104.27 

2001 9336.69 14030.55 10650.69 10370.88 11420.73 8797.32 13029.75 

2005 9377.01 13740.57 10618.47 10380.51 11457.81 8788.77 12842.82 

2008 9359.82 13657.95 10483.65 10309.23 11409.39 8792.01 12866.58 

2013 8486.73 13087.26 10576.17 10334.61 11392.56 8311.41 13123.98 

Mining Activity/Urban 

1973 389.43 205.2 17.73 176.13 415.98 300.51 151.83 

1976 223.29 80.28 23.31 58.41 200.07 132.48 76.59 

1981 118.8 141.03 93.69 90.36 280.53 238.41 99.72 

1984 400.05 432.36 295.29 472.32 527.49 469.26 304.29 

1987 372.96 501.75 222.3 275.4 472.23 434.07 348.48 

1991 282.51 547.38 314.82 232.83 506.88 358.47 368.91 

1995 211.5 354.69 105.21 142.92 274.05 267.75 265.5 

1998 365.85 731.88 286.92 214.2 466.38 381.42 466.56 

2001 217.26 750.6 383.85 190.8 405.45 262.53 541.44 

2005 177.57 1044.09 413.82 181.17 370.35 276.48 729 

2008 194.67 1123.92 550.08 252.09 421.38 272.7 706.14 

2013 1067.13 1687.05 458.28 226.98 434.7 753.21 448.74 

 

Land Cover Accuracy Assessment 

 Accuracy was high for the land cover classifications, with overall accuracy over 90% or 

better the majority of the time (Table 6). Forest was mapped at a very high level of accuracy 

across the forty year time span, with 2013 having the lowest user’s accuracy for forest at 

87.34%. Non-forest was less accurate as the other two classes overall, but classified highly 

accurately in most years. Due to the small amount of area of non-forest in 1973 and 1976, the 
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class had 0% accuracy. Any pixels that were labeled as non-forest in the assessment were not 

correctly classified. With the class being of little concern to land cover change, the poor accuracy 

is not a large worry in the early years for this study. Non-forest had the worst user’s accuracy in 

1987, correctly being classified only 60% of the time, but was highly accurate 85-100% in all 

other years. The mining activity/urban class was classified highly accurately over most years 

(83-100%), with 2013 having the worst producer’s accuracy of 72.62%. The user’s accuracy was 

more accurate than the producer’s accuracy for mining activity/urban land cover but the Kappa 

coefficients were the highest out of the three classes in almost all years.  

Table 6. Percent producer’s and user’s accuracy of mapped cover classes over time and Kappa 

coefficient for each class in each year. 

 

Overall 

Accuracy 

Overall 

Kappa 

Coefficient Class 

Producer's 

Accuracy User's Accuracy 

1973 

 

91.60% 

 

0.8238 

Non-forest       ---   --- 

Forest 98.03% 90.85% 

Mining 

Activity/Urban 83.33% 98.77% 

1976 91.20% 0.8302 

Non-forest       ---   --- 

Forest 90.58% 93.98% 

Mining 

Activity/Urban 91.96% 98.10% 

1981 95.60% 0.9221 

Non-forest 90.00% 90.00% 

Forest 98.41% 95.38% 

Mining 

Activity/Urban 93.27% 97.00% 

1984 92.00% 0.8519 

Non-forest 100.00% 85.71% 

Forest 98.58% 89.68% 

Mining 

Activity/Urban 82.95% 98.65% 

1987 93.60% 0.8899 

Non-forest 100.00% 60.00% 

Forest 95.08% 96.67% 

Mining 

Activity/Urban 90.91% 100.00% 

1991 96.80% 0.9257 

Non-forest 96.00% 92.31% 

Forest 99.44% 97.28% 

Mining 

Activity/Urban 86.67% 97.50% 
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1995 94.80% 0.8843 

Non-forest 100.00% 86.21% 

Forest 98.86% 95.58% 

Mining 

Activity/Urban 78.00% 97.50% 

1998 95.20% 0.9019 

Non-forest 92.00% 88.46% 

Forest 100.00% 94.77% 

Mining 

Activity/Urban 83.87% 100.00% 

2001 97.20% 0.9474 

Non-forest 100.00% 92.59% 

Forest 98.05% 97.42% 

Mining 

Activity/Urban 94.37% 98.53% 

2005 95.2% 0.9150 

Non-forest 96.00% 88.89% 

Forest 97.81% 95.04% 

Mining 

Activity/Urban 90.91% 97.56% 

2008 96.00% 0.9320 

Non-forest 100.00% 80.00% 

Forest 96.69% 97.50% 

Mining 

Activity/Urban 94.29% 99.00% 

2013 88.80% 0.7946 

Non-forest 92.00% 85.19% 

Forest 97.87% 87.34% 

Mining 

Activity/Urban 72.62% 93.85% 

 

DISCUSSION 

 Land cover change was expected for the Upper Guyandotte River watershed given the 

history of mining within the area. The supervised classification mapped an overall 5.5% decrease 

in forested area. The forest was lost to either mining or roadway. There are not many large urban 

areas within the watershed so most of what got classified as mining activity/urban was either a 

roadway or mining activity (e.g. active surface mine, valley fill, refuse structure). The change 

from forest to mine/road has only increased with time. Roads create pollution in the form of 

sediment with mines acidifying waters, increasing ion concentrations, releasing toxic metals into 

the waterways, and burying headwaters with valley fills (Bernhardt and Palmer 2011, Bernhardt 
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et al. 2012, Pond et al. 2008, U.S. EPA 2011). An increase in mining activity will have a 

negative impact on anything living downstream, including Cambarus veteranus. 

The change in the area for the Upper Guyandotte River watershed was significant, but the 

change in subwatersheds reveals more about the impact of mining on the decline of C. veteranus 

than the overall loss of forest. Since C. veteranus has not been found in some of the watersheds 

since 1947 or even 1900, it is difficult to determine exactly when the crayfish stopped occurring 

within those watersheds. The 1988-89 survey though showed C. veteranus in three 

subwatersheds from which I could evaluate whether mining had an impact on crayfish decline. 

Those three subwatersheds underwent significant decline in forested area from 1973 to 2013. In 

two out of the three subwatersheds, C. veteranus is no longer found. With mining significantly 

increasing over time within the three subwatersheds and the environmental degradation mining 

causes it is likely that mining has caused Cambarus veteranus to become nearly extinct within its 

native West Virginia range. 

 While overall accuracy was high for all years, there was still some confusion between 

classes in the classified images. Some of this confusion within the classification is most likely 

due to mixed pixels. For example, vegetation overhangs many of the smaller roads in the 

watershed, so roads seem patchy within the classification. Reclaimed mine land also introduces 

error. Reclaimed land was included in the mining activity/urban land cover class because 

reclaimed lands are often hydrologically different to surrounding forest areas and have different 

vegetation composition as well (Holl 2002, Miller and Zegre 2014, Simmons et al. 2008, Wiley 

et al. 2001). While most reclaimed mines did get classified as mining activity in each year, 

reclaimed mines caused confusion between mining activity and forest. The edges of surface 

mines also might have created mixed pixels as mines just abruptly stop at the edge of the forest 
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with no real transition. The non-forest land cover class was highly accurate for most years, but 

1973 and 1976 saw poor accuracy due to a lack of open water. The class was used to classify 

mainly water bodies and the R. D. Bailey Lake, which was constructed in 1980 (Beanblossom 

2010), is the largest water body that can be seen within the Landsat images. Thus, it is not 

surprising that there was poor accuracy for the non-forest class in those years because there was 

no lake yet to classify.  

 While most of the original Landsat images had little cloud cover, atmospheric 

interference also probably had an impact on classification accuracy. Cloud cover masks would 

have been helpful for some images, like 1976 and in particular 2013, where cloud cover 

interfered the most with the classification process. Because of the cloud cover in 2013, mining 

activity was overestimated and adding another image to the time series would help clarify how 

much land cover actually changed. The cloud cover though did not change the fact that there was 

a downward trend of forest loss within the watershed over forty years.   

Supervised classification of the Upper Guyandotte River watershed revealed that mining 

has caused a significant change in the land cover over the past forty years from 1973-2013. 

Using Landsat imagery is a useful resource in monitoring land cover change with high accuracy 

over a large area and could be useful in continuing to monitor the watershed as surface mining is 

not decreasing within the watershed. With the increase of mining activities, Cambarus veteranus 

has nearly gone extinct and without further protection and monitoring, this endangered crayfish 

will be lost in West Virginia.  
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Appendix A: Classified Images 

 

Figure 2.1. Classified image of September 1973. 
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Figure 2.2. Classified image of September 1976. 
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Figure 2.3. Classified image of September 1981. 
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Figure 2.4. Classified image of September 1984. 
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Figure 2.5. Classified image of September 1987. 
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Figure 2.6. Classified image of September 1991. 
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Figure 2.7. Classified image of August 1995. 
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Figure 2.8. Classified image of September 1998. 
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Figure 2.9. Classified image of September 2001. 
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Figure 2.10. Classified image of September 2005. 
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Figure 2.11. Classified image of September 2008. 
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Figure 2.12. Classified image of September 2013. 
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Appendix B: Area of Pinnacle Creek HUC 12 subwatershed over time. 

 

Figure 3.1. Classified image of Pinnacle Creek HUC 12 subwatershed in 1973 with the historic 

site of Cambarus veteranus.  
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Figure 3.2. Classified image of Pinnacle Creek HUC 12 subwatershed in 1976 with the historic 

site of Cambarus veteranus.  
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Figure 3.3. Classified image of Pinnacle Creek HUC 12 subwatershed in 1981 with the historic 

site of Cambarus veteranus.  
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Figure 3.4. Classified image of Pinnacle Creek HUC 12 subwatershed in 1984 with the historic 

site of Cambarus veteranus.  
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Figure 3.5. Classified image of Pinnacle Creek HUC 12 subwatershed in 1987 with the historic 

site of Cambarus veteranus.  
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Figure 3.6. Classified image of Pinnacle Creek HUC 12 subwatershed in 1991 with the historic 

site of Cambarus veteranus.  
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Figure 3.7. Classified image of Pinnacle Creek HUC 12 subwatershed in 1995 with the historic 

site of Cambarus veteranus.  
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Figure 3.8. Classified image of Pinnacle Creek HUC 12 subwatershed in 1998 with the historic 

site of Cambarus veteranus.  
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Figure 3.9. Classified image of Pinnacle Creek HUC 12 subwatershed in 2001 with the historic 

site of Cambarus veteranus.  
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Figure 3.10. Classified image of Pinnacle Creek HUC 12 subwatershed in 2005 with the historic 

site of Cambarus veteranus.  
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Figure 3.11. Classified image of Pinnacle Creek HUC 12 subwatershed in 2008 with the historic 

site of Cambarus veteranus.  
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Figure 3.12. Classified image of Pinnacle Creek HUC 12 subwatershed in 2013 with the historic 

site of Cambarus veteranus.  
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