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ABSTRACT 

Sepsis is a serious life threatening medical emergency which, if not treated properly, oftentimes 

results in organ failure and death. Current sepsis treatment protocols are largely centered on the 

use of antibiotics and supportive care. Recent studies have suggested that antibiotics fail to be 

effective for sepsis treatment when administered during hypo-dynamic phase of sepsis that is 

usually characterized by the presence of a cytokine storm. As such, there is an urgent need to 

develop novel therapeutic drugs that target the inflammatory cytokines that are secreted as a 

result of increased reactive oxygen species. Cerium oxide nanoparticles (CeO2) have been shown 

to act as anti-inflammatory and anti-oxidant agent. More recently, they have been shown to 

attenuate polymicrobial insult-induced mortality in Sprague Dawley rats. Here, we investigated 

whether CeO2 nanoparticles can attenuate splenic damage in this animal model of sepsis. A 

single intravenous dose (0.5 mg/kg) of CeO2 nanoparticles attenuated the sepsis-induced loss in 

splenic cell structural integrity. These improvements in splenic structure were accompanied by a 

decrease in expression of late phase pro-inflammatory cytokine high mobility group box 1 

(HMGB1) along with reduced bacterial load in the blood and peritoneal fluid of septic animals. 

Taken together these findings suggest that CeO2 nanoparticles can be used to attenuate 

polymicrobial insult-induced splenic damage in Sprague dawley rats. 
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CHAPTER 1 

INTRODUCTION 

The term sepsis was first coined by Hippocrates who described sepsis as a process by 

which flesh rots and foul air develops near swamps (Marshall 2008). Scientists like Robert Koch, 

Louis Pasteur, and others postulated that microbial invasion was the prime cause of sepsis but 

they were not able to determine the type of pathogen responsible for the disease with any 

certainty at that time (Wilmut, Wongtawan et al. 2011). In non-coronary intensive care units, 

sepsis is the most common cause of mortality (Mayr, Yende et al. 2013). Sepsis is a serious 

medical condition whose incidence is increasing by approximately 13% each year (Messori, 

Fadda et al. 2014). This multifactorial disorder is characterized by widespread systemic 

inflammation that can lead to organ failure and death if not properly controlled. Sepsis is thought 

to occur as a result of infection by bacteria (gram positive and gram negative), fungi, and viruses 

that can rapidly progress in the aged and immunocompromised patients (Nasa, Juneja et al. 

2012). How sepsis causes organ failure is not well understood, but it is thought that the systemic 

inflammation caused by uncontrolled immune response results in release of several cytokines 

and inflammatory mediators that affect the vasculature. These inflammatory mediators disrupt 

the endothelial barrier and increase the vascular permeability which can lead to the development 

of hypotension and blood clots in the periphery. Each year approximately 700,000 cases of septic 

patients are admitted to the hospitals and nearly $16 billion is spent to treat the hospitalized 

patients (Garber, Gibney et al. 2002).  

Sepsis usually starts with the invasion of an infectious agent at the local or systemic level 

and gradually results in development of the systemic inflammatory response syndrome (SIRS) if 

the infectious agent overwhelms the initial immune response. Although SIRS is seen in other 
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conditions such as pancreatitis, trauma and burns, it is differentiated in sepsis by the presence of 

an infectious agent (Balk 2014). SIRS/sepsis is characterized by marked increase in 

inflammatory cytokine levels including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-

1β), and interleukin-6 (IL-6) in the earlier stages and by high mobility group box 1 (HMGB1) 

during the later phase (Schulte, Bernhagen et al. 2013). While sepsis is generally thought to be 

pro-inflammatory in nature, it has been recently proposed that the uncontrolled hyper-

inflammatory state is usually followed or counteracted by compensatory anti-inflammatory 

response syndrome (CARS) that tries to protect the host from excessive inflammatory insult 

(Ward, Casserly et al. 2008). If the infection is not checked, SIRS can overwhelm the CARS 

response which can lead to the development of septic shock and multiple organ dysfunctions. 

Although previous studies have focused on detecting different microorganisms responsible for 

sepsis, the recent approach has centered on identifying the relation between sepsis and the 

immune response. The SIRS response is caused by an excess production of reactive oxygen 

species (ROS) and reactive nitrogen species (RNS) that adversely affect the normal cellular 

processes (Biswal and Remick 2007). While it remains unclear whether mitochondrial 

dysfunction is the initiating cause of the excess ROS formation or whether increased ROS 

amplifies ROS production cycle in the mitochondria (Galley 2011). Given the role that ROS is 

thought to play in sepsis progression, it has been hypothesized that anti-oxidants may be a 

beneficial strategy to treat sepsis. The current treatment regime of sepsis largely resides on the 

use of antibiotics and intravenous fluids which are largely ineffective in the final stages of sepsis 

(Daniels 2011).  

In recent years the study of nanotechnology has given rise to several anti-oxidants that 

exhibit auto-regenerative properties. The cerium oxide nanoparticle (CeO2) is one of those 
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compounds that is currently used as a polishing agent in industry and as a catalyst to improve 

fuel combustion (Dunnick, Pillai et al. 2015). In the biomedical field, CeO2 nanoparticles have 

been shown to treat cancer (Pesic, Podolski-Renic et al. 2015), stroke (Estevez, Pritchard et al. 

2011) and diabetes (Rocca, Moscato et al. 2015). Recent studies have also shown that these 

nanoparticles are capable of preventing cell damage and death induced by ROS because of their 

anti-oxidant properties (Arya, Sethy et al. 2014). Whether nanoceria can be used to treat splenic 

damage seen in sepsis is not well understood. 

Specific Aim 1 

To determine whether CeO2 nanoparticles can attenuate sepsis induced splenic damage. 

Hypothesis 

CeO2 nanoparticles will attenuate sepsis induced structural damage in spleen and also 

attenuate expression of HMGB1 in spleen. 

Specific Aim 2 

To determine whether CeO2 nanoparticles can attenuate polymicrobial insult associated 

increase in microbial load in blood and peritoneal fluid.  

Hypothesis 

CeO2 nanoparticles will attenuate the sepsis associated increase in bacterial number in 

blood and peritoneal fluid. 
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CHAPTER 2  

REVIEW OF LITERATURE 

The current chapter provides a review of literature regarding sepsis as well as the 

potential applications of nanotechnology in the treatment of inflammatory diseases.  The 

following research topics are discussed: 1. Etiology and pathophysiology of sepsis, 2. Splenic 

dysfunction in sepsis, 3. Current research on sepsis and its management, and 4. Nanomedicine 

and applications of CeO2 nanoparticles for the treatment of inflammatory diseases. 

Etiology and Pathophysiology of Sepsis 

Sepsis is a serious pathological condition that is on constant rise and ranks among the top 

ten mortality causing diseases in United States (Mayr, Yende et al. 2013). Each year 

approximately 700,000 cases are registered in the United States and nearly 200,000 cases result 

in death (Burchardi and Schneider 2004). The major causes of sepsis are bacterial infection 

followed by fungi, viruses, and parasites (Tupchong, Koyfman et al. 2015). The process of sepsis 

normally begins with the entry of an infectious agent into the host. When the invading pathogen 

is highly infectious with a very short incubation period, an uncontrolled immune response can 

arise. This response is characterized by the release of several inflammatory cytokines such as 

TNF-α, IL-1β and IL-6 that further drive sepsis progression (Tupchong, Koyfman et al. 2015). 

The resulting “cytokine storm” is known as systemic inflammatory response syndrome (SIRS) 

and is characterized by increase in body temperature greater than 38 °C or less than 36 °C, 

increase in heart rate above 90 beats/minute, increase in respiratory rate above 20 breaths/minute 

along with change in white blood cell count with greater than 12,000/µL or less than 4,000/µL 

(Comstedt, Storgaard et al. 2009). Usually, the inflammatory insult can be successfully brought 

under control with appropriate medical intervention in a timely manner. However, without 
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intervention, SIRS can damage the vascular endothelial barrier resulting in the leakage of plasma 

into the extracellular space (Jacobson and Garcia 2007).  A loss in circulating volume, in turn, 

can result in the development of hypotension and decreased supply of nutrients to the 

metabolically active cells. These sequences of events result in septic shock and can progress to 

multiple organ dysfunctions. Failure of four or more organs usually account for 65% of the 

deaths in hospitalized patients (Grozdanovski, Milenkovic et al. 2012). Thus far, clinical trials to 

improve sepsis survival have been for the most part ineffective. Although not fully understood, it 

is thought that differences in sepsis severity and sepsis classification have complicated clinical 

progress. According to the American College of Chest Physicians/Society of Critical Care 

Medicine consensus, sepsis is defined as the presence of at least two SIRS criteria in the 

presence of an infectious agent while severe sepsis is characterized by sepsis plus marked 

hypotension/hypo perfusion and multiple organ failure (Martin 2012).  

At the cellular level, the immune response starts with the interaction between the 

lipopolysaccharide (LPS) portion of gram negative bacteria and the cluster of differentiation 14 

(CD14) co–receptor (Sagy, Al-Qaqaa et al. 2013). CD14 is a glycosylphosphatidylinositol 

anchored protein that occurs in a receptor form and as a soluble protein in the circulating blood 

stream. The LPS-CD14 complex binds to the toll-like receptor 4 (TLR-4) which undergoes 

oligomerization and initiates downstream intracellular signaling (Van Amersfoort, Van Berkel et 

al. 2003). Activation of TLR-4 receptors results in propagation of signals in one of two 

downstream effector pathways, the myeloid differentiation primary response gene 88 (MYD-88) 

dependent and independent pathways (Van Amersfoort, Van Berkel et al. 2003).  

The MYD-88 is a signaling protein with unknown function and contains a C-terminal 

toll/interleukin receptor (TIR) domain and an N-terminal death domain (Deguine and Barton 
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2014). This signaling adaptor protein recruits inter leukin-1 receptor associated kinase 4 

(IRAK4) and upon activation causes activation of downstream protein tumor necrosis receptor-

associated factors (TRAF) (Deguine and Barton 2014). The TRAF 6, a member of the TRAF 

protein family, then activates transforming growth factor beta-activated kinase (TAK1), a serine-

threonine kinase that further propagates the signal through the nuclear factor kappa B (NF-κB) 

and mitogen activated protein kinase (MAPK) pathways (Akira and Takeda 2004). The NF-κB is 

a transcription factor that is responsible for the synthesis and release of several inflammatory 

mediators. 

The MYD-88 independent pathway requires adaptor molecules TIR-domain-containing 

adapter-inducing interferon-β (TRIF) and thyroid receptor activator molecule (TRAM) for TLR-

3 and TLR-4 signaling (Bagchi, Herrup et al. 2007). TRAF3 recruited by TRIF is involved in the 

activation of downstream interferon regulatory factor 3 (IRF3) which is necessary for NF-κB late 

phase activation (Bagchi, Herrup et al. 2007). IRF3 and NF-κB activation in turn leads to 

production of interferons that are responsible for protecting the host against invading bacteria, 

viruses, and fungi. 

The inflammatory process is involved in the release of chemical mediators such as 

histamines, cytokines, and prostaglandins from macrophages, neutrophils, and lymphocytes. 

These inflammatory mediators act in both an autocrine and paracrine manner on various cell 

types. The activation of immune cells also results in production and release of nitric oxide (NO). 

NO is an anti-microbial agent and at the same time, a potent vasodilator (De Cruz, Kenyon et al. 

2009). NO in conjunction with inflammatory cytokines lead to vasodilation and disruption of 

endothelial barrier that can result in plasma leakage, subsequent hypo perfusion, and multi-organ 

failure (Hauser, Matejovic et al. 2008). 
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Splenic Dysfunction in Sepsis 

The spleen, the body’s largest lymphoid organ, plays an important role in protecting the 

host against pathological agents and also acts as filter for circulating blood (Altamura, 

Caradonna et al. 2001). One of the major functions of spleen is the modulation of the immune 

response and maintenance of peripheral tolerance (Bronte and Pittet 2013). The spleen is also 

required for the activation and differentiation of T and B lymphocytes upon invasion by 

pathogenic microorganisms (Liu 1997). As such, diminished or impaired splenic function in 

patients is associated with high risk of severe sepsis.  

Studies have shown that the removal of the spleen is associated with a 10-20 fold higher 

risk of sepsis and sepsis-induced mortality (Tarantino, Scalera et al. 2013). The depletion of 

functionally matured T-helper cells directly affects the ability to generate immune responses 

against invading pathogens. Previous studies in animal models of sepsis have shown that 

apoptosis of lymphocytes is mediated by both death receptor and mitochondrial pathways 

(Hotchkiss, Swanson et al. 1999). Overexpression of the B cell lymphoma-2 (Bcl-2) anti-

apoptotic protein increased survival in septic animals by preventing mitochondrial damage 

(Hotchkiss, Swanson et al. 1999, Iwata, Stevenson et al. 2003). Similarly, others have reported 

that blockage of the apoptosis antigen 1 (Fas) death receptor is also associated with improved 

survival following a septic insult (Ayala, Chung et al. 1999). More recently, it has been shown 

that levels of HMGB1, a late phase inflammatory cytokine is associated with splenomegaly. In 

addition, the administration of anit-HMGB1 antibodies attenuated splenomegaly (Valdes-Ferrer, 

Rosas-Ballina et al. 2013) suggesting that therapeutic approaches to target HMGB1 could 

attenuate sepsis associated splenic dysfunction and lymphocyte apoptosis. 
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Current Research on Sepsis and its Management 

Understanding the pathogenesis of sepsis is of paramount importance to developing 

optimal therapeutic strategies. Because of the difficulties associated with performing invasive 

studies in humans, most of the initial sepsis research is done in animals. Commonly used sepsis 

animal models include: a) the lipopolysaccharide model (LPS), b) inoculation of live bacteria, c) 

cecal ligation and puncture (CLP), d) colon ascendens stent peritonitis (CASP), and e) 

polymicrobial sepsis (fecal peritonitis/ cecal inoculum) (Buras, Holzmann et al. 2005). Each 

model of sepsis has unique advantages and disadvantages. The LPS model of sepsis is quick in 

onset and more aptly describes the cytokine storm seen in human sepsis (Doi, Leelahavanichkul 

et al. 2009). In comparison, studies that apply live bacteria usually involve only type of bacteria 

(Gram-negative or gram-positive) and do not mimic the polymicrobial nature of human sepsis 

(Doi, Leelahavanichkul et al. 2009). To overcome these deficiencies, researchers have developed 

a fecal peritonitis of sepsis model that is polymicrobial in nature. However, even this animal 

model is not error free, as the sudden onset of microbial colonization typically does not mimic 

the gradual progression of sepsis seen in humans. Nonetheless, the amount of bacterial load can 

be controlled in this model and as such the variability associated is low (Garrido, Figueiredo et 

al. 2004). The CLP model of sepsis is currently considered as the gold standard model of sepsis 

(Dejager, Pinheiro et al. 2011). This model involves ligation of and puncture of cecum through 

which the cecal material extrudes over time into peritoneal space (Nemzek, Hugunin et al. 2008). 

A major disadvantage of this model is the variability in response seen from one animal to other 

due to the differences in the amount of cecal content that extrudes into the peritoneal space 

(Dejager, Pinheiro et al. 2011). As such, the choice of model used is typically based on the 

hypothesis of the study.  
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The initial studies regarding sepsis treatment were, for the most part, based on identifying 

the type of bacteria and treating them with suitable antibiotics. Recent studies suggest that 

antibiotics play an important role in the early stages of sepsis where they tend to prevent their 

multiplication giving the host immune system tries to clear the infection from the circulation 

(Daniels 2011). However, it has also been shown that administration of antibiotics at later phases 

of sepsis is of little benefit as it is the cytokine storm that causes the multi-organ failure and 

septic shock (Ferrer, Martin-Loeches et al. 2014). With increasing antibiotic resistance and delay 

in administration, research regarding sepsis treatment has shifted towards the development of 

anti-oxidants that could scavenge ROS and prevent the cytokine storm associated organ failure 

(Andrades, Morina et al. 2011).  

Oxidative stress occurs when there is an imbalance between production of ROS and the 

total antioxidant capacity of the cell (Galley 2011). Oxidative stress has been shown to initiate 

activation of the redox sensitive transcription factor nuclear factor-kappa-B (NF-κB) in septic 

patients (Macdonald, Galley et al. 2003). It is thought that this transcription factor is responsible 

for the synthesis of the inflammatory mediators which initiate the development of the SIRS 

response (Arnalich, Garcia-Palomero et al. 2000). What causes the ROS that initially activates 

NF-ĸB is currently unknown. While the mitochondria are the major ROS producing organelles of 

the cell, it is unclear whether mitochondrial dysfunction precipitates the oxidative stress or 

conversely, whether oxidative stress contributes to mitochondrial failure and the generation of 

ROS (Galley 2011). Lowes and colleagues, have shown that intravenous administration of potent 

antioxidants such as MitoQ and MitoE that specifically accumulate in mitochondria can attenuate 

LPS-induced increases in IL-6 levels and increase animal survivability (Lowes, Webster et al. 

2013). In another study, Zapelini and co-workers, demonstrated that the administration of NAC 
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several hours after the induction of sepsis by CLP attenuated cytochrome-c release from 

mitochondria along with mitochondrial swelling (Zapelini, Rezin et al. 2008). While these 

studies were targeted at observing the effects of anti-oxidants in sepsis on mitochondria, it 

should be noted that small levels of anti-oxidants were also present in cytoplasm. As such, it is 

difficult to specifically determine the role of mitochondrial dysfunction might play in sepsis 

progression. Nonetheless, other studies using different anti-oxidants including vitamin E (Yao, 

Carlson et al. 2015), vitamin C (Kim, Ha et al. 2015), and melatonin (Kleber, Kubulus et al. 

2014) have also shown survival benefit in animal models of sepsis when given in combination 

with conventional antibiotic and intravenous fluid therapy.  

Nanomedicine and Applications of CeO2 Nanoparticles for the Treatment of Inflammatory 

Diseases 

Nanotechnology is characterized by the study and application of matter at the atomic and 

molecular level (Patil, Mehta et al. 2008). Nanomedicine is one particular area of 

nanotechnology of increasing importance. At outgrowth of this area is the development of 

nanoparticles or nano-devices for the treatment of several different pathologies including cancer 

(Paulmurugan, Bhethanabotla et al. 2015), stroke (Panagiotou and Saha 2015), and diabetes 

(Sharma, Sharma et al. 2015). Nanoparticles are particles between 1 and 100 nm in size. As 

particle size decreases, the surface to volume ratio greatly increases which can lead to increased 

therapeutic efficacy (Jena, Mishra et al. 2013). Of particular interest, researchers are now trying 

to employ the use of nanoparticles in the treatment of pathological diseases that are characterized 

by increased ROS. Elevated levels of ROS are seen in stroke, sepsis, diabetes, and other 

cardiovascular pathologies. Currently, conventional anti-oxidants such as edaravone or N-acetyl 

cysteine are being used to treat stroke and Parkinson’s disease (Lapchak 2010). While effective 
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in action, one of the major drawbacks with this treatment is the need for repetitive administration 

over long periods of time. In contrast nanotechnology has given rise to several nanoparticles that 

act as catalytic ROS scavengers that can function for long periods of time in the body. One such 

compound are the SOD-conjugated poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles 

developed by Reddy and coworkers to treat cerebral ischemia reperfusion injury in rats (Reddy 

and Labhasetwar 2009). Similarly platinum nanoparticles have also been shown to possess 

catalase mimetic activity that can be used to scavenge superoxide and even increase life span in 

C. elegans (Kim, Shirasawa et al. 2010). 

Cerium oxide (CeO2) nanoparticles are perhaps the most widely used anti-oxidant 

nanoparticles in the biomedical field. Cerium belongs to the lanthanide series of transition metals 

and it exhibits that capability to cycle between Ce
+3

 and Ce
+4

 depending on the surrounding 

environment (Pulido-Reyes, Rodea-Palomares et al. 2015). This unique property of nanoceria 

allows it to scavenge ROS for an extended period of time. Furthermore, in therapeutic doses 

these nanoparticles have been shown to be largely non-toxic (Hirst, Karakoti et al. 2013). CeO2 

nanoparticles have been shown to inhibit the progression of ovarian cancer (Giri, Karakoti et al. 

2013) and decrease insulin resistance (Rocca, Moscato et al. 2015) in animal models. Kolli and 

coworkers demonstrated that these nanoparticles can also inhibit the development of 

monocrotaline induced right ventricular hypertrophy by scavenging ROS (Kolli, Manne et al. 

2014). Similarly, Oro and coworkers, have shown that CeO2 nanoparticles can attenuate carbon 

tetrachloride-induced liver fibrosis by attenuating the expression of the EPX, NCf1 and NCf2 

proteins that are involved in oxidative stress (Oro, Yudina et al. 2015). In addition, CeO2 

nanoparticles have also been shown to possess anti-bacterial activity (Shah, Shah et al. 2012). A 

study by Babu and coworkers, demonstrated that gold supported CeO2 nanoparticles exhibited a 
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strong inhibitory effect on Bacillus subtilis, Salmonella enteritidis, Escherichia coli, and 

Staphylococcus aureus (Babu, Anandkumar et al. 2014).  In an in vivo model, CeO2 

nanoparticles have been shown to reduce sepsis induced mortality by scavenging reactive oxygen 

species in the liver (Manne, Arvapalli et al. 2015) and kidneys (Selvaraj, Nepal et al. 2015). 

Whether, CeO2 nanoparticles provide protection against sepsis induced splenic damage is not 

known. 

Nanotechnology is a recent scientific discipline that has its branches rooted in several 

fields including medicine. Recently, nanotechnology has given rise to new devices that can 

effectively clear bacteria from the circulation (Kang, Super et al. 2014) along with various 

nanoparticles that are anti-microbial (Ramalingam, Rajaram et al. 2014) and anti-inflammatory 

(Lai, Shieh et al. 2015) in nature. Cerium oxide (CeO2) nanoparticles exhibit potent anti-oxidant 

activity (Caputo, De Nicola et al. 2015) and can exist in both oxidized and reduced states 

(Walkey, Das et al. 2015). This latter ability provides CeO2 nanoparticles with the capacity to 

absorb free radicles. Recent studies have suggested that these particles may be useful for treating 

several pathologies including cancer (Pesic, Podolski-Renic et al. 2015), cardiovascular disease 

(Kolli, Manne et al. 2014), and diabetes (Pourkhalili, Hosseini et al. 2011). Previous work has 

also shown that CeO2 nanoparticles can act as a superoxide dismutase mimetic (Korsvik, Patil et 

al. 2007) and this property has been exploited for the treatment of right ventricular hypertrophy 

(Kolli, Manne et al. 2014), hypoxia (Arya, Sethy et al. 2013), endometriosis (Chaudhury, Babu 

et al. 2013), wound healing (Chigurupati, Mughal et al. 2013) and autoimmune encephalitis 

(Eitan, Hutchison et al. 2015). In addition, other investigation has shown that CeO2 nanoparticles 

can inhibit the growth of pathogenic bacteria such as E. coli and B. subtilis by adsorbing on to 

their membranes (Pelletier, Suresh et al. 2010).  
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Previous work by our laboratory has demonstrated that CeO2 nanoparticles can prevent 

polymicrobial insult-induced mortality, decreased systemic cytokine levels and attenuated liver 

and renal failure (Manne, Arvapalli et al. 2015). The action of CeO2 nanoparticles on a spleen 

following polymicrobial insult is not known. Our findings suggest that a single dose treatment 

with CeO2 nanoparticles can be used to attenuate splenic damage, reduce the levels of the pro-

inflammatory cytokine high mobility box group 1(HMGB1) and that these findings were also 

associated with decreased bacterial load in the circulation.  
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CHAPTER 3 

MATERIALS AND METHODS 

CeO2 Nanoparticle Characterization 

Nanoparticles were purchased from US Research Nanomaterials Inc. (Houston, TX) and 

characterized. Structural characterization of the CeO₂ nanoparticles was performed using a JEOL 

JSM-6320F field emission scanning electron microscope (FESEM).  The particle size of the 

CeO2 nanoparticles was determined by transmission electron microscopy using a JEOL JEM-

2010 transmission electron microscope (TEM) operated at 300 Kev. Energy dispersive X-ray 

spectroscopy was performed to determine the purity of sample. 

Animal Model of Polymicrobial Sepsis and Therapeutic Intervention 

Ten week old male Sprague Dawley rats were purchased from Hill-Top laboratories and 

housed two-per cage at 22 ± 2° C with a 12:12 light-dark cycle. Animals were allowed to 

acclimate to their surroundings for two weeks before any experimentation. Animals were fed 

with standard rodent chow and had access to food and water ad libitum during the entire study. 

All surgical procedures were performed in accordance with the guidelines provided by the 

Marshall University Institutional Animal Care and Use Committee (IACUC) and The 

Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). Briefly, 

animals were deeply anesthetized under isoflurane and a small mid ventral incision of 0.5 cm 

was made. Sham controls and CeO2 nanoparticles only groups were injected with 5 ml/kg of 5% 

sterile dextrose solution intraperitoneally. The incision was closed with 3-0 silk sutures as 

described elsewhere. For sepsis and sepsis+CeO2 nanoparticles groups, animals received a cecal 

inoculum of 600 mg/kg BW in 5 ml/kg BW of 5% sterile dextrose solution intraperitoneally. 

Cecal material was collected from the caecum of healthy rats following sacrifice under isoflurane 
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anesthesia. Two hundred microliters of sterile distilled water was injected intravenously via the 

tail vein to animals in the sham control and sepsis groups while the CeO2 and sepsis + CeO2 

groups received CeO2 nanoparticles (0.5 mg/kg) in 200 µl of sterile distilled water as described 

previously (Manne, Arvapalli et al. 2015).  Animals were randomly assigned to one of the four 

groups and were sacrificed at 3 h and 18 h after sepsis induction to study the molecular events 

during early and late phases of sepsis.  

Collection and Preservation of Spleen 

Animals from different groups were sacrificed under anesthesia at 3h and 18h after sepsis 

induction. Peritoneal fluid was collected with a sterile syringe while whole blood was collected 

through cardiac puncture. Spleen was collected and washed with Krebs–Ringer bicarbonate 

buffer (KRB) to remove any blood, blot dried and frozen in liquid nitrogen. Spleens were stored 

at -80°C for further experiments. 

Histology 

Frozen spleens were sectioned (8μm) using Leica CM1950 cryostat onto poly-L-lysine 

coated slides at -18°C and then stored at -80°C. Hematoxylin and eosin staining was performed 

using BBC Biochemical H & E staining kit (Cat No. NC9960321, Fisher Scientific, Pittsburgh, 

PA) on frozen spleen sections to visualize the change in red pulp and white pulp morphology 

with sepsis and CeO2 nanoparticle treatment. Briefly, frozen sections were washed with running 

tap water and stained with Harris hematoxylin for 5 min. Slides were then washed with water for 

1 min and then with acid wash for 45 s. This was followed by washing and incubation with 

blueing solution for 15 s. Slides were washed again, incubated with 70% alcohol for 30 s and 

Eosin for 1 min. After alcohol dehydration and xylene clearing the splenic morphology was 

visualized using an Evos XL microscope (Life technologies, Grand Island, NY). 
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SDS-PAGE and Immunoblotting 

Approximately 50 mg of frozen spleen tissue was measured and pulverized in liquid 

nitrogen. Four hundred and fifty microliters of T-PER (Pierce, Rockford, IL, USA) containing 

1% protease and phosphatase inhibitors (P8340 and P5726, Sigma- Aldrich, St. Louis, MO, 

USA) was added to the sample, the samples homogenized and then centrifuged at 5,000 x g for 

15 min at 4°C to collect the supernatant. The 660 nm assay (Pierce, Rockford, IL, USA) was 

performed to determine the protein content in the supernatant and the samples were normalized 

with T-PER and 4x Laemlli buffer to obtain equal protein concentration across all samples. Forty 

micrograms of protein were loaded in 10% PAGEr Gold Precast gel (Lonza, Rockland, ME) and 

transferred to nitrocellulose membranes as described elsewhere (Selvaraj, Nepal et al. 2015). 

Nitrocellulose membranes were then blocked with 5% milk in Tris-Buffered saline with 0.05% 

Tween-20 (TBST) for 1h at room temperature, washed three times with TBST and probed with 

antibodies specific for Bax, cleaved caspase 3, caspase 3, HMGB1, and GAPDH (Cell Signaling 

Technology, Danvers, MA). Membranes were incubated with primary antibody for 16 h at 4° C 

and washed three times with TBST for 5 min each. After incubation with a secondary anti-rabbit 

antibody (Cell Signaling Technology, Danvers, MA) for 1 h at room temperature, 

immunoreactivity was visualized using Super signal West Pico Chemiluminescent substrate 

(Pierce, Rockford, IL, USA) and quantified using Fluorchem 9900 software (Protein Simple, 

Santa Clara, CA). Protein expression relative to glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) was used to normalize protein expression. 

Bacterial Cultures 

Whole blood was collected via cardiac puncture and peritoneal lavage fluid was obtained 

using a sterile syringe. Blood and peritoneal lavage samples were serially diluted in sterile saline 
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and plated on sheep’s blood agar/ nutrient agar plates. Plates were incubated overnight at 37° C 

and colony counts were determined 24 hours later. Colony counts were expressed as CFU/ml of 

fluid and then converted to a logarithmic scale for statistical analysis. 

Statistical Analysis 

Results are presented as mean ± standard error of mean. One way analysis of variance 

(ANOVA) was performed to detect significant differences in means. Post hoc comparisons were 

done using a Student Newman Keul’s test for normally distributed samples or a Kruskal-Wallis 

one-way ANOVA by ranks for samples exhibiting a non-normal distribution. A probability value 

of P < 0.05 was considered to be statistically significant. 
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RESULTS 

Nanoceria Characterization 

Field emission scanning electron microscopy demonstrated that the nanoparticles were 

round to spherical in shape (Figure 1A). Transmission electron microscopy demonstrated the 

typical lattice structure of the nanoparticles with an approximate diameter of 10-20 nanometers 

(Figure 1B). 

Cerium Oxide Nanoparticles Attenuate the Splenic Damage Induced by Polymicrobial 

Sepsis 

Compared to that observed in the controls, polymicrobial sepsis did not result in 

extensive splenic damage/necrosis in early stages (3h) of sepsis (Figure 2, A-D). Conversely, in 

the latter stages of sepsis (18h) polymicrobial insult appeared to result in the loss of lymphocyte 

rich white pulp (Figure 2, E, and G). Cerium oxide nanoparticle treatment appeared to attenuate 

the loss of white pulp in at the 18h time point (Figure 2, G and H). 

Cerium Oxide Nanoparticle Treatment Attenuates Sepsis Associated Increases in Splenic 

HMGB1 Expression 

Previous studies have shown sepsis is associated with a massive increase in the splenic 

levels of HMGB1 (Valdes-Ferrer, Rosas-Ballina et al. 2013).  Consistent with this finding, 

HMGB1 expression was increased with sepsis at 3h and 18h after induction (Figure 3A). 

Consistent with our histological findings of improved tissue splenic structure, nanoparticle 

treatment decreased HMGB1 levels at 18h time point (Figure 3A). 
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Apoptosis is not a Major Pathway for Splenic Cell Death in the Polymicrobial Inoculum 

Sepsis Model 

Although recent data has suggested that lymphocyte apoptosis in the spleen is increased 

in the cecal ligation and puncture sepsis model (Hotchkiss, Coopersmith et al. 2005) we did not 

find similar evidence in the CI model. Specifically, sepsis did not appear to increase the levels of 

apoptotic proteins Bax, cleaved caspase 3 and caspase 3 in the spleen (Figure 4A, B, and C). 

Similarly, treatment with CeO2 nanoparticles did not appear to affect splenocyte death.  

Cerium Oxide Nanoparticles Attenuate Bacterial Load in The Blood And Peritoneal Fluid 

of Septic Animals 

The number of CFU in the blood and peritoneal fluid were significantly increased at 18h 

in the septic animals which were decreased with nanoparticle treatment (Figure 5, A-B). 
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Discussion 

Despite considerable improvements in medical technology, millions of people die from 

sepsis each year. With growing antibiotic resistance and the emergence of new pathogens, the 

need to develop new safe and effective drugs is of paramount significance. CeO2 nanoparticles 

are potent anti-oxidants and that they might be beneficial for the treatment of cancer (Giri, 

Karakoti et al. 2013), stroke (Estevez, Pritchard et al. 2011) and other diseases characterized by 

increased systemic ROS levels. Recent studies have shown that cerium oxide nanoparticles are 

effective able to reduce mortality in Sprague Dawley rats subjected to polymicrobial insult 

(Manne, Arvapalli et al. 2015). Conversely, other work has suggested that CeO2 nanoparticles 

may be toxic to cells and that they might cause tissue damage and remodeling (Aalapati, 

Ganapathy et al. 2014). Why different studies may arrive at different results is currently 

unknown, but could be related to differences in nanoparticle size, shape and charge (Das, 

Dowding et al. 2013). In an effort to better understand the relationship between nanoparticle 

morphology and biological activity, we first characterized the particles using electron 

microscopy. Consistent with our previous data (Manne, Arvapalli et al. 2015), nanoparticles 

were spherical in shape with an average size of 10-30nm in diameter (Figure 1). 

Previous studies have shown that there is loss in white pulp (lymphocytes) in spleen with 

sepsis. To confirm whether CeO2 nanoparticles can prevent the loss of white pulp, hematoxylin 

and eosin staining was performed on frozen spleen sections. CeO2 nanoparticle treatment 

attenuated the loss of white pulp which appeared to maintain the structural integrity of spleen 

(Figure 2). Using the mouse CLP sepsis model, Hotchkiss and colleagues, demonstrated that 

apoptosis is the major mechanism of lymphocyte cell death in spleen with sepsis (Hotchkiss, 

Tinsley et al. 1999). In particular, they found that sepsis was associated with a significant amount 
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of CD4+ T cell death. To investigate whether a similar phenomenon occurs in our animal model, 

immunoblotting was performed to evaluate the expression of apoptotic regulators Bax, cleaved 

caspase 3 and caspase 3. Interestingly, we failed to find any sepsis-associated increase in cell 

death. Why our results might differ from those found by Hotchkiss and co-workers is not entirely 

clear, but might be due to difference in the sepsis model used. Unlike the CLP model which 

exhibits a slow septic progression, the cecal inoculum model is rapid in onset. As such, the cell 

death seen in the cecal inoculum model may occur via necrosis rather than apoptosis. Similarly, 

because the T cells make up only a small percentage of the total spleen cell number, it is possible 

the presence of T cell apoptosis could be obscured or diluted by looking at apoptotic events using 

whole organ lysates. Repeating these studies after the isolation of specific cell types prior to 

investigating apoptotic signaling may be beneficial in furthering our understanding of the roll 

that cellular apoptosis may play in the spleen of animals subjected to the cecal inoculum model 

of sepsis.  

Recent studies have shown that HMGB1, a nuclear protein, is released during late phase 

of sepsis into circulation and that it is highly correlated with organ failure and sepsis progression 

(Huang, Tang et al. 2010, Wang, Ward et al. 2014). Several clinical trials have also demonstrated 

high levels of HMGB1 in blood of septic patients (Angus, Yang et al. 2007) and that 

administration of anti-HMGB1 antibody has been shown to be organ protective (Qin, Wang et al. 

2006).  In relation to this, Jared and coworkers, have shown that the removal of the spleen can be 

protective in some instances of sepsis as it appears to reduce circulating HMGB1 levels (Huston, 

Wang et al. 2008). Here, for the first time, we show that intervention with CeO2 nanoparticles 

can attenuate the levels of HMGB1 in septic spleen (Figure 3). Whether this decrease in HMGB1 
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alone can explain the increased animal survival seen in CeO2 treated animals is currently unclear 

and will require further investigation.  

In an effort to extend our findings on the therapeutic efficacy of CeO2 nanoparticles, we 

next evaluated the bacterial load in blood and peritoneal fluid of septic animals. Spleen plays an 

important role in immune mediated bacterial clearance and that loss in splenic function would 

attenuate the pathogen clearance. Here we found that treatment with the CeO2 nanoparticles was 

associated with diminished bacterial load in both the blood and peritoneal fluid (Figure 4). 

Whether this attenuation is due to a direct effect of CeO2 nanoparticles on splenic lymphocyte 

population, the liver Kupffer cells or circulating monocytes is not known and is a potential 

subject for future investigation.  
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FIGURES 

Figure 1  Characterization of CeO2 nanoparticles.  

A) Field emission scanning electron microscopy (FESEM) B) Transmission electron microscopy 

(TEM) C) Energy dispersive X-ray spectroscopy (EDS). 
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Figure 2 CeO2 nanoparticles attenuate severe sepsis induced inflammatory damage in 

spleen. 

A-D) Hematoxylin and eosin (H&E) staining of 3h time point spleen sections imaged at 200× 

magnification - Control, CeO2, Sepsis, and Sepsis + CeO2. E-H) Hematoxylin and eosin (H&E) 

staining of 18h time point spleen sections imaged at 200× magnification - Control, CeO2, Sepsis, 

and Sepsis + CeO2  (n=3/group). Note: loss of white pulp in sepsis 18h (arrow). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

25 

Figure 3 CeO2 nanoparticles attenuate severe sepsis induced increase in expression of pro-

inflammatory cytokine HMGB1. 

 *P<0.05 compared to control group, $ P<0.05 compared to CeO2 group and # P<0.05 compared 

to sepsis group. (n=6/group). 
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Figure 4  Cecal inoculum method of polymicrobial sepsis does not induce caspase 3 

mediated apoptosis in spleen. 

 A) Total protein levels of Bax at 3h and 18h in Control, CeO2, Sepsis, and Sepsis + CeO2 

groups. B) Levels of cleaved caspase 3 at 3h and 18h in Control, CeO2, Sepsis, and Sepsis + 

CeO2 groups. C) Total levels of caspase 3 at 3h and 18h in Control, CeO2, Sepsis, and Sepsis + 

CeO2 groups. (n=6/group).  
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Figure 5 CeO2 nanoparticles attenuate bacterial load in blood and peritoneal fluid of septic 

animals.  

A) Bacterial load in blood  

B) Bacterial load in peritoneal fluid  

*P<0.05 compared to control group, $ P<0.05 compared to CeO2 group and # P<0.05 compared 

to sepsis group. (n=6/group).
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CHAPTER 4 

CONCLUSIONS 

Sepsis is the leading cause of death in non-coronary intensive care unit in United States 

(Mayr, Yende et al. 2014). Current treatment regimens are largely supportive in nature and fail to 

address the uncontrolled immune response in severe sepsis. CeO2 nanoparticles exhibit potent 

anti-inflammatory activity and that they may have biomedical use for the treatment of stroke 

(Estevez, Pritchard et al. 2011), cancer (Gao, Chen et al. 2014), hepatic steatosis (Oro, Yudina et 

al. 2015) and diabetes (Hosseini, Baeeri et al. 2013).  These particles can also be used to treat 

severe sepsis in Sprague Dawley rats that are subjected to either a LPS (Selvaraj, Nepal et al. 

2015)or a polymicrobial sepsis insult (Manne, Arvapalli et al. 2015). Here we investigated 

whether CeO2 nanoparticles can effect/attenuate splenic damage in Sprague Dawley rats 

subjected to polymicrobial insult. Our data suggest the following:  

1. Histological investigation demonstrated that CeO2 nanoparticle treatment is associated 

with an attenuation of sepsis induced splenic damage. Specifically, we found that 

treatment with CeO2 nanoparticles decreased the loss of white pulp when compared to 

septic animals, 

2. CeO2 nanoparticle treatment functioned to decrease sepsis associated increases in splenic 

HMGB1 expression in the hypo dynamic phase of sepsis. 

3. CeO2 nanoparticle treatment attenuated the bacterial load in the blood and the peritoneal 

fluid of septic animals. 

4. Neither sepsis nor CeO2 nanoparticle treatment affected the protein expression of 

apoptotic regulators in the spleen. 
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Future Directions 

The current study investigated whether CeO2 nanoparticles can attenuate splenic damage 

in the polymicrobial model of sepsis. While the preliminary results indicate that CeO2 

nanoparticle treatment confers some degree of splenic protection, the exact mechanism of action 

is currently unclear. Previous studies have shown that CeO2 nanoparticles accumulate in the 

spleen (Selvaraj, Nepal et al. 2015) and in the liver Kupffer cells (Tseng, Lu et al. 2012) when 

administered intravenously. Whether CeO2 nanoparticles are taken by lymphocyte population or 

the splenic cords after intravenous injection is not known. Determining the site of CeO2 

localization by the isolation of the different splenic cell types and quantification of ceria levels 

by induction coupled plasma mass spectroscopy (ICP-MS) is likely to be invaluable in helping to 

establish where the CeO2 nanoparticles might exert their beneficial effects. Previous studies by 

Hotchkiss and colleagues, demonstrated that sepsis is associated with increased apoptosis of 

splenic CD4
+
, CD8

+
 T cells and CD 19 positive B cells (Hotchkiss, Tinsley et al. 1999). 

Additional experiments using immunohistochemistry to examine the effects of sepsis and the 

nanoparticle treatment on the number of these different cell types is needed to further confirm 

that CeO2 nanoparticles act by modulation of lymphocyte function. 

The sepsis model used in the current study involves administration of a single bolus of 

known quantity of cecal material into peritoneal cavity. Although polymicrobial in nature, it 

more closely models the onset of septic symptoms seen in the LPS model rather than that 

observed in human patients. As such, future experiments using the CLP model which better 

mimics the progression of sepsis seen in humans are likely need to better establish the potential 

efficacy of this nanoparticle based treatment. Similarly, in the current study CeO2 nanoparticles 

were administered at the same time as sepsis induction. It is not known whether CeO2 
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nanoparticles can provide the same degree of therapeutic efficacy when administered during later 

phases of sepsis that is characterized the presence of severe hypotension and uncontrolled 

cytokine storm. Further experiments to test this hypothesis would be very beneficial in 

determining the clinical potential of our approach.  
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