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ABSTRACT

This thesis covers the basic aspects of time scale calculus, a branch of mathematics combining

the theories of differential equations and difference equations. Using the properties of time scale

calculus we analyze a second order homogeneous dynamic equation with constant coefficients, in

particular, y∆∆− 1

6
y∆ +

1

8
y = 0. Following the analysis, this problem will be graphically evaluated

using Marshall University’s Differential Analyzer, affectionately named Art. A differential analyzer

is a machine that mechanically integrates by way of related rates of rotating rods. The process

for making the jump between intervals on a time scale will be discussed, and the behavior of the

solution as the gaps decrease will be evaluated.

vii



CHAPTER 1

Introduction

Time scales calculus is the marriage of discrete and continuous analysis that was formally

conceived in a PhD dissertation by Stefan Hilger in 1988. This new branch of mathematics

allowed for differential equations and difference equations to be defined simultaneously. For

instance, if one wanted to work on a combination of intervals and discrete points, they would have

to use differential equation theorems and definitions on the intervals, and difference equation

theorems and definitions on the discrete points. Time scales calculus allows us to work on these

combination of intervals and points with a newly defined dynamic equation. The cornerstone of

time scales calculus is the forward jump operator which allows us to travel between consecutive

points, regardless of whether these points are dense or there is a gap between them. Dr. Martin

Bohner and Dr. Allan Peterson formalized the material presented in Hilger’s dissertation, as well

as contributions from a variety of sources, to author the book, Dynamic Equations on Time

Scales - An Introduction with Applications. In the end, this book reads similar to an introductory

analysis book, starting with defining the basic definitions and functions, and building all the way

to differentiation and integration, then transitioning into a “differential equation-esque” text.

These “differential equations” on a time scale, referred to as dynamic equations, prevents us from

needing to prove both continuous and discrete results, and in the end give results for a domain

called a time scale.

This thesis is the study of second order dynamic equations with constant coefficients. The

interest revolves around the behavior of the solutions of dynamic equations of this sort on time

scale composed of a sequence of two compact intervals. Primarily, we will look at the relationship

of the behavior of solutions to these dynamic equations as the gap between the two compact

intervals decreases.
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CHAPTER 2

Fundamentals of Time Scales Calculus

2.1 Basic Terms

Time scales calculus is a branch of mathematics that gained notoriety through a PhD dissertation

by Stefan Hilger in 1988. Time scales calculus fills the gap between differential equations and

difference equations. Differential equations are evaluated over a compact set or interval whereas

difference equations are evaluated on a discrete set. Prior to the formation of time scales calculus,

if one wanted to evaluate a problem involving both dense and discrete sets, the problem would

have to be evaluated in parts using both methods, differential and difference equations. The

development of time scales allows for the problems to be solved in one step, and in some instances,

avoids proving a result multiple times. At its core, time scales calculus operates on sets called time

scales, denoted T, which are arbitrary nonempty closed subsets of real numbers. Common sets

such as R,Z and N, as well as closed interval sets like [0, 1] are time scales, while Q and (0, 1) are

not time scales. Once differentiation and integration are introduced, a second type of time scale

must be defined. If a time scale T has a left scattered maximum m, then Tκ is defined as follows:

Tκ = T− {m}

If the time scale T does not have a left scattered maximum them we simply define Tκ ≡ T. The

use for this subset of the time scale will become more evident once the derivative and integral

have been defined on a time scale. In time scales calculus, we define a forward and a backward

jump operator. These operators help define subsequent terms on a time scale, provided they exist.

Definition 1. Forward Jump Operator [2]

For every t ∈ T the forward jump operator σ : T→ T is defined as

σ(t) := inf{s ∈ T : s > t}.

2



Definition 2. Backward Jump Operator [2]

For every t ∈ T the backward jump operator ρ : T→ T is defined as

ρ(t) := sup{s ∈ T : s < t}.

Notice that if t is a maximum of T, then we define σ(t) = t, and if t is a minimum of T, then we

defined ρ(t) = t.

Based on the forward and backward jump operators, elements within time scales can be

classified in several ways. An element, t, is said to be right-scattered if σ(t) > t, while t is said to

be left-scattered if ρ(t) < t. If an element is simultaneously left-scattered and right-scattered, the

element is said to be isolated. An element, t, is said to be right-dense if t < sup T and σ(t) = t,

while t is said to be left-dense if t > inf T and ρ(t) = t. If an element is simultaneously left-dense

and right-dense, then the element is referred to as dense. Finally the graininess function is

defined. The graininess of a time scale gives one the idea of how sparse or dense the elements of

the time scale are relative to each other.

Definition 3. Graininess Function [2]

For every t ∈ T the graininess function µ(t) : T→ [0,∞) is defined as

µ(t) = σ(t)− t

2.2 Differentiation

Similar to traditional calculus, differentiation is possible within a time scale. However, the

definition must be altered so that it will fit within constraints of a time scale. In time scale

calculus, the derivative is referred to as the delta (or Hilger) derivative and is defined as follows:

Definition 4. [2] Assume f : T→ R is a function and let t ∈ Tκ. Then we define f∆(t) to be

the number (provided it exists) with the property that given any ε > 0, there is a neighborhood U

of t (U = (t− δ, t+ δ) ∩ T for some δ > 0) such that

∣∣[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]
∣∣ ≤ ε|σ(t)− s| for all s ∈ U . (2.1)

3



Because of the way the delta derivative is defined, we can see the need for Tκ. If the derivative

was defined on just the regular time scale, T, then if one tried to evaluate the derivative at a left

scattered maximum point, then the derivative would essentially jump out of the time scale, so we

must stop it one element short so that the derivative can be defined for all elements in the time

scale.

Just as we can define what it means to take a derivative, we can also give a classification to

functions which are able to be differentiated. This class of functions are said to be

pre-differentiable.

Definition 5. [2] A continuous function f : T→ R is called pre-differentiable with (region of

differentiation) D, provided:

1. D ⊂ Tκ

2. T \D is countable

3. T \D contains no right scattered elements of T.

4. f is differentiable for every t ∈ D.

Notice here that the region with which we can take a derivative is not necessarily the entirety

of the time scale. Also it is important to be aware, and in most cases, it is easier to say what is

not in the region of differentiation, D, than what the region will contain, and that is because

T \D must be countable.

Now we must introduce the following theorem to establish some important properties of the

delta derivative.

Theorem 1. [2] Assume f : T→ R is a function and let t ∈ Tκ. Then we have the following:

1. If f is differentiable at t, then f is continuous at t.

2. If f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
. (2.2)

4



3. If t is right-dense, then f is differentiable at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s
. (2.3)

exists as a finite number. In this case

f∆ = lim
s→t

f(t)− f(s)

t− s
. (2.4)

4. If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f∆(t). (2.5)

Part 4 of Theorem 1 is referred to as the Simple Useful Formula, and is used to find

appropriate values of a function on a time scale while jumping a gap, among several other uses.

Using the parts in this theorem as the basic properties of the delta derivative, we can begin to

prove properties about the delta derivative by highlighting the differences between the derivative

on a time scale and the derivative not on a time scale.

Just like a derivative on a compact interval, the delta derivative on a time scale has properties

concerning the derivative of sums and products of functions. Thus we have the following theorem

detailing those derivatives:

Theorem 2. [2] Assume f, g : T→ R are differentiable at t ∈ T. Then:

1. The sum f + g : T→ R is differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t).

2. For any constant α, αf : T→ R is differentiable at t with

(αf)∆(t) = αf∆(t).

5



3. The product fg : T→ R is differentiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

4. If f(t)f(σ(t)) 6= 0, then 1
f is differentiable at t with

(
1

f

)∆

(t) = − f∆(t)

f(t)f(σ(t))
.

5. If g(t)g(σ(t)) 6= 0, then f
g is differentiable at t and

(
f

g

)∆

(t) =
f∆(t)g(t) + f(t)g∆(t)

g(t)g(σ(t))
.

Finally, we need to define what it means to take a second derivative on a time scale. Suppose

we wish to evaluate the derivative of f∆(t) on Tκ which happens to have a left-scattered

maximum. We know we cannot evaluate a derivate at a left-scattered maximum. Therefore we

need to redefine Tκ for when we take higher ordered derivatives.

Definition 6. [2] For a function f : T→ R we shall talk about the second derivative f∆∆

provided f∆ is differentiable on Tκ2 = (Tκ)κ with derivative f∆∆ =
(
f∆
)∆

: Tκ2 → R. Finally, for

t ∈ T, we denote σ2(t) = σ(σ(t)) and ρ2(t) = ρ(ρ(t)).

2.3 Integration

Integration is also possible on a time scale, however, similar to the delta derivative there are some

adjustments that must be made to integration on the real line to make it well defined on a time

scale. So, before we can define what it means to integrate on a time scale, we must first define

two function characteristics.

Definition 7. [2] A function f : T→ R is called regulated provided its right-sided limits exisits

(they are finite) at all right-dense points in T and its left-sided limits exist (finite) at all left-dense

points in T.

6



Definition 8. [2] A function f : T→ R is called rd-continuous provided it is continuous at

right-dense points in T and its left-sided limits exists (they are finite) at left-dense points in T.

The set of rd-continuous functions f : T→ R will be denoted as

Crd = Crd(T) = Crd(T,R)

We also establish some properties about regulated and rd-continuous functions in an attempt to

better understand them. This theorem will take properties of functions that we are familiar with,

and expand on their meaning in terms of regulated and rd-continuous.

Theorem 3. [2] Assume f : T→ R

1. If f is continuous, then f is rd-continuous.

2. If f is rd-continuous, then f is regulated.

3. The forward jump operator σ is rd-continuous.

4. If f is regulated or rd-continuous, then so is f(σ(t)).

5. Assume f is continuous. If g : T→ R is regulated or rd-continuous, then f ◦ g has that

property as well.

So now that we have established the properties of regulated and rd-continuous functions, we

can begin discussing what it means to be able to integrate a function on a time scale.

Traditionally, when thinking about integration, we know that if we integrate some function f(t)

we obtain some function F (t), and at the same time, we can take the derivative of our new

function, F (t), and we will arrive back to our original function, f(t). Because of this relationship,

integration is sometimes referred to as anti-differentiation.

Theorem 4. Existence of Pre-Antiderivative [2]

Let f be regulated. Then there exists a function F which is pre-differentiable with region of

differentiation D such that

F∆(t) = f(t) holds for all t ∈ D (2.6)

7



Definition 9. [2] Assume f : T→ R is a regulated function. Any function as defined in Theorem

4 is called a pre-antiderivative of f. We define the indefinite integral of a regulated function f by

∫
f(t)∆t = F (t) + C, (2.7)

where C is an arbitrary constant and F is the pre-antiderivative of f. We define the Cauchy

Integral by ∫ s

r
f(t)∆t = F (s)− F (r)

for all r, s ∈ T. A function F : T→ R is called an antiderivative of f : T→ R provided

F∆(t) = f(t) for all t ∈ Tκ.

In traditional calculus, we are able to integrate a function, differentiate the result, and return

to our original function. However in a time scale, we are only able to differentiate over the

function’s region of differentiation, a subset of the time scale. What this means is that if we take

a regulated function and differentiate it, our region of differentiation may not be the entire time

scale. So if we integrate the resulting function, in an attempt to return to the original function,

the time scale on which it is defined will not be the same. So with a regulated function, we are

not able to freely differentiate and integrate back and forth, as we might lose elements within our

time scale. However, with an added constraint, we are able to achieve this desired result.

Theorem 5. Existence of Antiderivatives [2]

Every rd-continuous function has an antiderivative. In particular if t0 ∈ T, then F defined by

F (t) :=

∫ t

t0

f(τ)∆τ

for all t ∈ T is an antiderivative of f.

So if we start with a function that is rd-continuous, we are able to freely integrate and

differentiate, and the timescale will not change (i.e. the region of differentiation will be the same

as the time scale).

8



2.4 Hilger’s Complex Plane

As we progress towards constructing a differential equation on a time scale, we must continue to

fill in the gaps between time scale calculus and traditional calculus. One of the differences

between the two branches is the need for the construction of subsets of the complex plane. In

time scale calculus, we call this Hilger Complex Plane.

Definition 10. [2] For h > 0 we define the following terms:

The Hilger Complex Numbers

Ch :=

{
z ∈ C : z 6= −1

h

}
The Hilger Real Axis

Rh :=

{
z ∈ Ch : z ∈ R and z > −1

h

}
,

The Hilger Alternating Axis

Ah :=

{
z ∈ Ch : z ∈ R and z < −1

h

}
,

and The Hilger Imaginary Circle

Ih :=

{
z ∈ Ch :

∣∣∣z +
1

h

∣∣∣ =
1

h

}
,

Note that when h = 0, C0 := C, R0 := R, I0 := iR, and A0 := ∅.

As in the traditional complex plane, numbers in the Hilger Complex Plane also have a real and

an imaginary part.

Definition 11. [2] Let h > 0 and z ∈ Ch. We define the Hilger real part of z by

Reh(z) :=
|zh+ 1| − 1

h

and the Hilger imaginary part of z by

Imh(z) :=
Arg(zh+ 1)

h
,

where Arg(z) denotes the principal argument of z (i.e., −π < Argz < π)

9



As we continue to define components within the Hilger Complex Plane, a goal is to define a

general form of the exponential function. To do this, we must also define the cylinder

transformation, and what it means for a function to be regressive.

Definition 12. [2] For h > 0, we define the cylinder transformation ξh : Ch → Zh by

ξh(z) =
1

h
Log(1 + zh), (2.8)

where Log is the principal logarithm function. For h = 0, we define ξ0(z) = z for all z ∈ C.

Also note that Zh is a strip of the complex plane. The strip is defined as follows:

Definition 13. [2] For h > 0, let Zh be the strip

Zh :=
{
z ∈ C : −π

h
< Im(z) ≤ π

h

}
,

note that when h = 0, we let Z0 := C

We must now define the regressive characteristic of a function.

Definition 14. [2] A function p : T→ R is regressive provided

1 + µ(t)p(t) 6= 0 for all t ∈ Tκ (2.9)

The set of all regressive and rd-continuous function f : T→ R is denoted as

R = R(T) = R(T,R).

This condition of regressivity stems from our definition of the cylinder transformation, and the

use of that transformation to define the exponential function.

Now that we have established all that we need within and about the Hilger Complex Plane, we

define the exponential function on a time scale.

Definition 15. [2] If p ∈ R, then we define the exponential function by

ep(t, s) = exp

(∫ t

s
ξµ(t)(p(t))∆τ

)
for all s, t ∈ T (2.10)

10



Looking at this definition, we can see the rationale for the definition of a regressive function. If

1 + µ(t)p(t) = 0 then the Log function will not be defined at that point.

It is valuable to discuss some of the properties of the exponential function on a time scale to

gain additional insight on its behavior. However before we do so, we will define the operators

circle plus, ⊕, and circle minus, 	.

Definition 16. [2] Suppose that p, q ∈ R, then circle plus ⊕ is defined as

(p⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t)

for all t ∈ Tκ.

Definition 17. [2] Suppose that p, q ∈ R, then circle minus 	 is defined as

(p	 q)(t) := (p⊕ (	q))(t)

for all t ∈ Tκ where 	q is defined as

(	q)(t) := − q(t)

1 + µ(t)q(t)

for all t ∈ Tκ.

Theorem 6. [2] If p, q ∈ R, then

1. e0(t, s) ≡ 1

2. ep(t, t) ≡ 1

3. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s)

4. ep(t, s)ep(s, r) = ep(t, r)

5. ep(t, s)eq(t, s) = ep⊕q(t, s)

These properties are important conceptually, allowing us to study the generalized exponential

function and see how it compares to the properties of the exponential function on the real line,

11



something with which we are very familiar. Also, many of the properties are used in the

derivation of solutions of dynamic equations.

2.5 Dynamic Equations on a Time Scale

Differential equations on a time scale are regularly referred to as dynamic equations. Dynamic

equations share the properties of both a differential equation, equations whose domain is some

subset of the real line, and a difference equation, equations whose domain is discrete points rather

than intervals. Dynamic equations utilize the delta derivative which allows for the combination of

the two theories. A dynamic equation, in its simplest form as defined as follows.

Definition 18. [2] Suppose f : T× R2 → R. Then the equation

y∆ = f(t, y, yσ) (2.11)

is called a first order dynamic equation. A function y : T→ R is called a solution of the dynamic

equation if

y∆(t) = f(t, y(t), y(σ(t)) (2.12)

is satisfied for all t ∈ Tκ.

The following theorem gives the solution to a first order dynamic initial value problem. This

result is important to note as it gives an additional property of the exponential function on a time

scale.

Theorem 7. [2] Suppose y∆ = p(t)y is regressive and t0 ∈ T. Then y = ep(·, t0) is a solution (on

T) of the initial value problem

y∆ = p(t)y, y(t0) = 1

While this theorem is important because it gives us a basic result for a general dynamic

equation, what it does, more importantly, is offer us the derivative of the exponential function on

a time scale. As shown, the derivative of the exponential function on a time scale is quite similar

to the derivative of an exponential function on the real line. That is, the derivative is equal to the

exponential function multiplied by the derivative of its exponent.
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CHAPTER 3

Second Order Dynamic Equations on a Time Scale

Second order dynamic equations are dynamic equations that contain, at least a second degree

delta derivative. In this investigation we will look at homogeneous equations of the form:

y∆∆ + p(t)y∆ + q(t)y = 0 (3.1)

where we assume that p, q ∈ Crd.

Definition 19. [2] The operator L2 : C2
rd → Crd defined as

L2y(t) = y∆∆ + p(t)y∆ + q(t)y, (3.2)

for all t ∈ Tκ is a linear operator, meaning

L2(αy1 + βy2) = αL2(y1) + βL2(y2), (3.3)

for all α, β ∈ R and y1, y2 ∈ C2
rd. If y1 and y2 solve the homogeneous equation L2y = 0 then so

does y = αy1 + βy2, where α and β are any real constants.

This is an important consequence when deriving the solutions to the dynamic equations. Many

of the methods will result in two linearly independent solutions, and this result allows us to make

a linear combination of those solutions to arrive at the general solution.

These dynamic equations can be solved using a variety of methods. However this study only

focuses on the method of solution through a characteristic equation. Before discussing the

derivation of solution using this method, we first will establish some properties of second order

dynamic equations.

The following theorem establishes that for any given dynamic equation, the solution that is

derived is unique. This allows us to say that there is only one solution for a given dynamic

equation and a certain set of initial conditions.
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First, however, let’s first define what it means for a second order dynamic equation to be

regressive.

Definition 20. [2] Equation (3.1) is called regressive provided p, q, f ∈ Crd such that the

regressivity condition

1− µ(t)p(t) + µ2(t)q(t) 6= 0

for all t ∈ Tκ.

Theorem 8. [2] Assume that the dynamic equation y∆∆ + p(t)y∆ + q(t)y = 0 is regressive. If

t0 ∈ Tκ then the initial value problem

L2y = f(t), y(t0) = y0, y
∆(t0) = y∆

0 (3.4)

where y0 and y∆
0 are given constants, has a unique solution, and the solution is defined for all

t ∈ T.

The crux of this proof states that the solution, y(t), can be written as a linear combination as

stated in Definition 17. The issue is determining the values for α and β once the linearly

independent solutions, y1 and y2, have been found. Once these constants have been found, they

should satisfy the following matrix equation:

 y1(t0) y2(t0)

y∆
1 (t0) y∆

2 (t0)


 α

β

 =

 y0

y∆
0


Due to this fact we can state the following definition concerning the 2× 2 matrix.

Definition 21. [2] For two differentiable functions y1 and y2 we define the Wronskian

W = W (y1, y2) by

W (t) = det

 y1(t) y2(t)

y∆
1 (t) y∆

2

 (3.5)

We say that two solutions y1 and y2 of L2y = 0 form a fundamental set of solutions for

L2y = 0 provided W (y1, y2)(t) 6= 0 for all t ∈ Tκ.
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So we can solve the matrix equation to find the values for α and β as long as the Wronskian of

our two solutions, y1 and y2, does not equal zero. It is evident that W (t0) = W (y1(t0), y2(t0))

may not equal zero for the matrix equation as it would produce a trivial solution. The following

theorem gives the general solution to an initial value dynamic equation given assuming that a

fundamental systems of solutions has been found.

Theorem 9. [2] If the pair of functions y1, y2 forms a fundamental system of solutions for

L2y = 0, then

y(t) = αy1(t) + βy2(t), where α, β ∈ R (3.6)

is a general solution of L2y = 0. By general solution we mean every function of this form is a

solution and every solution is in this form. In particular the solution of the initial value problem

L2y = 0, y(t0) = y0, y
∆(t0) = y∆

0 (3.7)

is given by

y(t) =
y∆

2 (t0)y0 − y2(t0)y∆
0

W (y1, y2)(t0)
y1(t) +

y1(t0)y∆
0 − y∆

1 (t0)y0

W (y1, y2)(t0)
y2(t) (3.8)

Theorem 9 gives a method for finding the constants α and β from (3.6). We can see from the

result that α =
y∆

2 (t0)y0 − y2(t0)y∆
0

W (y1, y2)(t0)
and β =

y1(t0)y∆
0 − y∆

1 (t0)y0

W (y1, y2)(t0)
. This shell of a general solution

will be utilized once we start looking at a particular type of dynamic equation, specifically those

that have constant coefficients. Notice that this theorem gives a second reason, beyond producing

a trivial solution, as to why (2.5) must be non-zero. If the Wronskian was equal to zero, and those

solutions were attempted to be used in this theorem, the constants would be undefined. Thus,

trivial solution aside, the Wronskian must never equal zero.

3.1 General Solution to a Second Order Homogeneous Dynamic Equation with Arbi-

trary Coefficients

For this study, the solution to a second order dynamic equation will be derived through the

method of characteristic equations. This method is similar to its counterpart on the real line,

with some adjustments made to the final solution to fulfill the requirements of a time scale. Let’s
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first consider a general second order homogeneous dynamic equation with constant coefficients,

y∆∆ + αy∆ + βy = 0 with α, β ∈ R. (3.9)

We will assume that y(t) = eλ(t, t0) is a solution to the dynamic equation for some λ. When

this solution is substituted into the equation, the result is:

(λ2 + αλ+ β)eλ(t, t0) = 0.

Because we know that an exponential function can never equal zero, we must find the roots of the

quadratic. These roots, denoted λ1 and λ2, equal:

λ1 =
−α−

√
α2 − 4β

2
and λ2 =

−α+
√
α2 − 4β

2
(3.10)

Now consider the following theorem for the solution to the general second order homogeneous

dynamic equation.

Theorem 10. [2] Suppose α2 − 4β 6= 0. If µβ − α ∈ R, then a fundamental system of the

dynamic equation y∆∆ + αy∆ + βy = 0 is given by

y1 = eλ1(·, t0) and y2 = eλ2(·, t0)

where t0 ∈ Tκ and λ1, λ2 are given as above. The solution of the initial value problem (3.7) is

given by

y(·, t0) = y0
eλ1(·, t0) + eλ2(·, t0)

2
+
αy0 + 2y∆

0√
α2 − 4β

eλ2(·, t0)− eλ1(·, t0)

2
(3.11)

Because this theorem is so instrumental in the overall study, the proof will be given in detail.

Proof. Let us first remind ourselves of the values of λ1(t, t0) and λ2(t, t0) which are given in

(2.10). Since they are both solutions to the characteristic equation, then we know that eλ1(t, t0)

and eλ2(t, t0) are solutions to the dynamic equation in question. Let us first confirm that the

Wronskian of these two solutions is in fact not equal to zero. Using the definition of W (y1, y2)(t),

we obtain the following:
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W (y1, y2)(t) = det

 eλ1(t, t0) eλ2(t, t0)

λ1eλ1(t, t0) λ2eλ2(t, t0)


= λ2eλ1(t, t0)eλ2(t, t0)− λ1eλ1(t, t0)eλ2(t, t0)

= (λ2 − λ1)eλ1(t, t0)eλ2(t, t0)

=
√
α2 − 4β eλ1⊕λ2(t, t0)

So notice that eλ1⊕λ2(t, t0) can never be zero, and stated in the theorem, α2 − 4β 6= 0. Thus the

Wronskian is not equal to zero, and the two solutions must form a fundamental set of solutions,

y1 = eλ1(t, t0) and y2 = eλ2(t, t0), for the dynamic equation in question. This means that the

general solution of the initial value problem is y(t) = c1eλ1(t, t0) + c2eλ2(t, t0), and by Theorem 9,

we know that the solution must be in the following form.

y(t) =
y∆

2 (t0)y0 − y2(t0)y∆
0

W (y1, y2)(t0)
y1(t) +

y1(t0)y∆
0 − y∆

1 (t0)y0

W (y1, y2)(t0)
y2(t)

This means that we can find c1 and c2 for this problem as follows:

c1 =
y∆

2 (t0)y0 − y2(t0)y∆
0

W (y1, y2)(t0)

=
λ2eλ2(t0, t0)y0 − eλ2(t0, t0)y∆

0

λ1 − λ2

=
λ2y0 − y∆

0√
α2 − 4β

=

(
−α+

√
α2 − 4β

)
y0 − 2y∆

0

2
√
α2 − 4β

=
y0

2
− αy0 − 2y∆

0

2
√
α2 − 4β
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c2 =
y1(t0)y∆

0 − y∆
1 (t0)y0

W (y1, y2)(t0)

=
eλ1(t0, t0)y∆

0 − λ1eλ1(t0, t0)y0

λ1 − λ2

=
y∆

0 − λ1y0√
α2 − 4β

=
2y∆

0 −
(
−α−

√
α2 − 4β

)
y0

2
√
α2 − 4β

=
y0

2
+

αy0 + 2y∆
0

2
√
α2 − 4β

Therefore we can write the solution as

y(t) =

(
y0

2
− αy0 − 2y∆

0

2
√
α2 − 4β

)
eλ1(·, t0) +

(
y0

2
+

αy0 + 2y∆
0

2
√
α2 − 4β

)
eλ2(·, t0)

=
y0

2
(eλ1(·, t0) + eλ2(·, t0)) +

αy0 + 2y∆
0

2
√
α2 − 4β

(eλ2(·, t0)− eλ1(·, t0))

= y0
eλ1(·, t0) + eλ2(·, t0)

2
+
αy0 + 2y∆

0√
α2 − 4β

eλ2(·, t0)− eλ1(·, t0)

2

So now we have confirmed the form of the solution to a particular class of second order

homogeneous dynamic equations with constant coefficients. Before going on to discuss a specific

dynamic equation, let’s first define a few trigonometric functions on a time scale. Trigonometric

functions arise very frequently in solutions of differential equations, and the case is no different

when working on a time scale. In particular, cosine and sine will be define on a time scale.

Definition 22. [2]Trigonometric Functions

If p ∈ Crd and µp2 ∈ R, then we define the trigonometric functions cosp and sinp by

cosp =
eip + e−ip

2
and sinp =

eip − e−ip
2i

(3.12)

Note that µp2 is regressive if and only if both ip and −ip are regressive, so cosp and sinp are well

defined.

Now let’s look at a specific case of this problem where, α2 − 4β < 0.
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Theorem 11. [2] Suppose α2 − 4β < 0. Then define

p = −α
2

and q =

√
4β − α2

2

If p and µβ − α are regressive, then a fundamental system of (3.7) is given by

cos q
1+µp

(·, t0)ep(·, t0) and sin q
1+µp

(·, t0)ep(·, t0)

where t0 ∈ T, and the Wronskian of these two solutions is

q · eµβ−α(·, t0).

The solution of the initial value problem (3.7) is given by

[
y0cos q

1+µp
(·, t0) +

y∆
0 − py0

q
sin q

1+µp
(·, t0)

]
ep(·, t0) (3.13)

3.2 Deriving the Solution to a Second Order Homogeneous Dynamic Equation with

Constant Coefficients

First consider the initial value dynamic equation.

y∆∆ − 1

6
y∆ +

1

8
y = 0, y(0) = 1, y∆(0) = 0 (3.14)

This system can be solved through the methods defined in Section 3.1. Notice that in this example

α = −1

6
, β =

1

8
, y0 = 1, y∆

0 = 0.
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First let’s evaluate α2 − 4β

α2 − 4β =

(
−1

6

)2

− 4

(
1

8

)
=

1

36
− 1

2

=
−17

36

< 0

Because α2 − 4β < 0 then we can use the general solution given in equation 3.12, where

p = −
−1

6

2
=

1

12
and q =

√
4(1

8)− (1
6)2

2
=

√
17

12

y(t) =

[
y0cos q

1+µp
(·, t0) +

y∆
0 − py0

q
sin q

1+µp
(·, t0)

]
ep(·, t0)

=

[
(1)cos √17

12+µ

(·, t0) +
0− 1

12√
17

12

sin √17
12+µ

(·, t0)

]
e 1

12
(·, t0)

=

[
cos √17

12+µ

(·, t0) +
1√
17
sin √17

12+µ

(·, t0)

]
e 1

12
(·, t0)

Now before proceeding, let’s compare the solution of the dynamic equation on a general time

scale to the solution of the differential equation on the real line. Consider the following initial

value differential equation:

y′′(t)− 1

6
y′(t) +

1

8
= 0, y(0) = 1, y′(0) = 0 (3.15)

The solution for (2.14) is

y(t) = e
1
12
t

[
cos

(√
17

12
t

)
+

1√
17
sin

(√
17

12
t

)]
(3.16)

Comparing this solution to the solution for a general time scale, we can see they differ only by the

definition of the exponential and trigonometric functions on the real line versus a general time

scale. Notice that on the real line, µ(t) = 0.
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3.3 Deriving the Solution to a Second Order Homogeneous Dynamic Equation on a

Time Scale

Using the general solution (3.12), we have presented the solution when T = R. In this section we

will see what the solution looks like when our time scale is composed of two compact intervals.

First let’s suppose that T = [0,
12√
17
π] ∪ [

24√
17
π, 6π]. The first interval will have the same result

as the solution when T = R, because it is simply a portion of the solution on the real line.

So let t ∈ [0,
12√
17
π], then

y(t) = e
1
12
t

[
cos

(√
17

12
t

)
+

1√
17
sin

(√
17

12
t

)]

Now we must make the jump from
12√
17
π to

24√
17
π. To do this, the simple useful formula (1.5)

will be utilized. In this case σ(
12√
17
π) =

24√
17
π.

Let t =
24√
17
π. Then the following results

y(t) = e 1
12

(t, t0)

(
cos √17

12+µ

(t, t0) +
1√
17
sin √17

12+µ

(t, t0)

)
Due to the complexity of this solution, we will evaluate each part of the solution individually,

then piece them back together once finished.

e 1
12

(
24√
17
π, 0

)
= e 1

12

(
12√
17
π, 0

)
e 1

12

(
24√
17
π,

12√
17
π

)
= exp

(∫ 12π√
17

0
ξ0

(
1

12

)
∆τ

)
exp

(∫ 24π√
17

12π√
17

ξ 12π√
17

(
1

12

)
∆τ

)

= exp

(
π√
17

)
exp

(
Log

(
1 +

π√
17

))
= e

π√
17

(
1 +

π√
17

)
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cos √17
12+µ

(
24√
17
π, 0

)
=

e i√17
12+µ

(t, 0) + e−i√17
12+µ

(t, 0)

2

=

e i√17
12

(
12√
17
π, 0

)
e i

√
17

12+ 12π√
17

(
24√
17
π,

12√
17
π

)
2

+

e−i√17
12

(
12√
17
π, 0

)
e −i√17

12+ 12π√
17

(
24√
17
π,

12√
17
π

)
2

=

exp

(∫ 12π√
17

0 ξ0

(
i
√

17
12

)
∆τ

)
exp

(∫ 24π√
17

12π√
17

ξ 12π√
17

(
i
√

17

12(1 + π√
17

)

)
∆τ

)
2

+

exp

(∫ 12π√
17

0 ξ0

(
−i
√

17
12

)
∆τ

)
exp

(∫ 24π√
17

12π√
17

ξ 12π√
17

(
−i
√

17

12(1 + π√
17

)

)
∆τ

)
2

=

eiπ

(
1 +

iπ

1 + π√
17

)
+ e−iπ

(
1− iπ

1 + π√
17

)
2

=

(
−1− iπ

1 + π√
17

)
+

(
−1 +

iπ

1 + π√
17

)
2

= −1
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sin √17
12+µ

(
24√
17
π, 0

)
=

e i√17
12+µ

(t, 0)− e−i√17
12+µ

(t, 0)

2i

=

e i√17
12

(
12√
17
π, 0

)
e i

√
17

12+ 12π√
17

(
24√
17
π,

12√
17
π

)
2i

−

e−i√17
12

(
12√
17
π, 0

)
e −i√17

12+ 12π√
17

(
24√
17
π,

12√
17
π

)
2i

=

exp

(∫ 12π√
17

0 ξ0

(
i
√

17
12

)
∆τ

)
exp

(∫ 24π√
17

12π√
17

ξ 12π√
17

(
i
√

17

12(1 + π√
17

)

)
∆τ

)
2i

−
exp

(∫ 12π√
17

0 ξ0

(
−i
√

17
12

)
∆τ

)
exp

(∫ 24π√
17

12π√
17

ξ 12π√
17

(
−i
√

17

12(1 + π√
17

)

)
∆τ

)
2i

=

eiπ

(
1 +

iπ

1 + π√
17

)
− e−iπ

(
1− iπ

1 + π√
17

)
2i

=

(
−1− iπ

1 + π√
17

)
−

(
−1 +

iπ

1 + π√
17

)
2i

=

−2iπ

1 + π√
17

2i

=
−π
√

17√
17 + π

Therefore the solution when t =
24√
17
π is

y(t) = e
π√
17

(
1 +

π√
17

)[
−1 +

1√
17

(
−π
√

17√
17 + π

)]

= e
π√
17

(
1 +

π√
17

)(
−1 +

−π√
17 + π

)
= −e

π√
17

(
1 +

2π√
17

)
(3.17)
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Additionally, we can see that using the Simple Useful Formula (1.5) produces the same result.

y(
24√
17
π) = y

(
σ(

12√
17
π)

)
= y

(
12√
17
π

)
+ µ

(
12√
17
π

)
y∆

(
12√
17
π

)
=
(
−e

π√
17

)
+

(
12π√

17

)(
−1

6
e

π√
17

)
= −e

π√
17

(
1 +

2π√
17

)
(3.18)

Now let t ∈
(

24√
17
π, 6π

]

y(t) = e 1
12

(t, t0)

(
cos √17

12+µ

(t, t0) +
1√
17
sin √17

12+µ

(t, t0)

)

Again due to the complexity of the solution, we will derive each of the parts individually, then put

them all together in the end.

e 1
12

(t, 0) = e 1
12

(
12√
17
π, 0

)
e 1

12

(
24√
17
π,

12√
17
π

)
e 1

12

(
t,

24√
17
π

)
= exp

(∫ 12π√
17

0
ξ0

(
1

12

)
∆τ

)
exp

(∫ 24π√
17

12π√
17

ξ 12π√
17

(
1

12

)
∆τ

)
exp

(∫ t

24π√
17

ξ0

(
1

12

)
∆τ

)

= exp

(
π√
17

)
exp

(
Log

(
1 +

π√
17

))
exp

((
t

12
− 2π√

17

))
=

(
1 +

π√
17

)
exp

(
t

12
− π√

17

)
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cos √17
12+µ

(t, 0) =

e i√17
12+µ

(t, 0) + e−i√17
12+µ

(t, 0)

2

=

e i√17
12

(
12√
17
π, 0

)
e i

√
17

12+ 12π√
17

(
24√
17
π,

12√
17
π

)
e i√17

12

(
t,

24√
17
π

)
2

+

e−i√17
12

(
12√
17
π, 0

)
e −i√17

12+ 12π√
17

(
24√
17
π,

12√
17
π

)
e−i√17

12

(
t,

24√
17
π

)
2

=

exp

(∫ 12π√
17

0 ξ0

(
i
√

17
12

)
∆τ

)
exp

(∫ 24π√
17

12π√
17

ξ 12π√
17

(
i
√

17

12(1 + π√
17

)

)
∆τ

)
exp

(∫ t
24π√
17

ξ0

(
i
√

17
12

)
∆τ

)
2

+

exp

(∫ 12π√
17

0 ξ0

(
−i
√

17
12

)
∆τ

)
exp

(∫ 24π√
17

12π√
17

ξ 12π√
17

(
−i
√

17

12(1 + π√
17

)

)
∆τ

)
exp

(∫ t
24π√
17

ξ0

(
−i
√

17
12

)
∆τ

)
2

=

exp(iπ) exp

(
Log

(
1 +

iπ

1 + π√
17

))
exp

(
it
√

17

12
− 2iπ

)
2

+

exp(−iπ) exp

(
Log

(
1− iπ

1 + π√
17

))
exp

(
−it
√

17

12
+ 2iπ

)
2

=

(
1 +

iπ

1 + π√
17

)
exp

(
it
√

17

12

)
e−iπ +

(
1− iπ

1 + π√
17

)
exp

(
−it
√

17

12

)
eiπ

2

=

(
−1− iπ
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CHAPTER 4

Overview of the Differential Analyzer

A differential analyzer (DA) is a machine designed to mechanically solve and plot the solutions of

a differential equation. Before the advent of high powered computers and numerical methods, the

differential analyzer was the only method for solving some differential equations; and even today

still shows it benefits versus some of the more modern methods. [3]

The differential analyzer at Marshall University, like most of its brethren, is almost entirely

composed of Meccano, or Meccano replica, parts. The only pieces on the Marshall DA that are

not Meccano are the torque amplifiers, because there isn’t a reliable method for torque

amplification solely using Meccano parts. Marshall’s four integrator differential analyzer was

constructed in 2004.

4.1 Mechanics of the Differential Analyzer

A differential analyzer utilizes mechanical movement to solve differential equations. The main

component of the differential analyzer is the integrator. There are several types of integrators that

can be used, but in the case of Marshall University’s DA, the wheel and disk combination is

implemented. For this method, the independent variable is driven by a motor, which turns a disk.

The speed with which the disk turns is determined by a dial connected to the motor. We can

consider the speed with which the disk turns to be constant. Sitting on the disk is a wheel

representing the dependent variable. Although the disk spins with constant velocity, because it is

spinning, the angular velocity increases as distance from the center of the disk increases. Because

of this, the wheel sitting on the disk will spin with a speed equal to the angular velocity of the

disk.

Following the motion of the rod coming from the wheel, the next component of the DA we

encounter is the torque amplifier. While the torque amplifier does not affect the mathematics

represented, it is important in ensuring that the motion of the wheel’s rod is strong enough to

push all of the other components in the DA. The torque amplifiers used in the DA at Marshall

University are operated using a computer program loaded into a microprocessor.
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Moving away from the integrators, the next component is what is lovingly referred to at the

“highway of interconnect”. There are two rods leading into, and one coming out of, each

integrator. The first rod is the independent variable, which as stated, drives the disk on the

integrator. The middle rod offers the motion describing the integration. For instance, if an

integrator in question is integrating y′′, then the second rod represents
∫
y′′ or y′. The last rod

pushes the carriage that houses the disk. This rod, representing the integrand, is what causes the

change in position of the wheel, which in turn affects the location of the wheel, varying the speed

the middle rod turns. While the second rod is pushing motion out of the integrator, the first and

third rods are pushing motion into the integrator.

Each of these rods runs into a gear box in the highway of interconnect. These gear boxes allow

for the motion of the rod to be moved, at equal speed, to a perpendicular rod. This allows us to

both solve higher ordered problems on the DA, as well as plot the solution. For instance, if we

want to solve a second order differential equation, then the first integrator is associated with y′′,

and as stated, the middle rod on the integrator represents y′. So if we allow the middle rod to

push motion through its gearbox and into the the second rod of another integrator, then the

middle rod of the second integrator represents the solution y.

Between the integrators on the highway of interconnect we can connect a system of gears of

varying sizes. These gears allow for the motion coming from one gearbox to be slowed, or geared

down. This allows the DA to solve more complex differential equations, i.e. those that have terms

with coefficients other than 1. Also in this system of gears are gear trains referred at adders.

These adders can take the motion of two rods and output the sum of the motion of those two rods

onto a third rod.

The final destination for motion on the DA is the output table. The output table, can plot the

relationship between any two motions on the DA chosen by the operator. It can take the motion

from two rods, and through gearboxes, turn a system of gears: one that moves a pen vertically

and another that pushes the table under the pen horizontally. These two rods can be of thought

as the knobs on an Etch-a-Sketch, as the output table operates in a similar fashion to the toy.

The final component of the DA, the initial condition counter, is something that needs to be set

before starting the machine. Each of the integrators must be set up with the initial conditions for
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the particular initial value problem. On each integrator a counter is associated with the position

of the wheel on the disk. For these counters on Marshall’s four integrator machine, it has been

determined that one unit on the real line is equivalent to 250 clicks on the counter. When the

wheel is at the center of the disk, the counter reads 000. A positive initial condition reads on the

counter as expected. However, a negative initial condition causes the counter to run backwards to

999 and down from there. For instance, an initial condition of -1 would result in a counter value

of 750. For the initial conditions on the integrators, we need not worry about any overlapping (i.e.

is 750 equivalent to -1 or 3?) because the limits of the disk prevent the counter from achieving an

absolute value larger than 2.

The system of gears and rods used to set up a dynamic equation on a differential analyzer can

often be quite complex. There is a circular chain of motion, originating from the independent

variable motor, that connect all of the integrators being used to each other through the gearboxes

on the highway of interconnect, and finally to the output table. The blueprint for a setup of the

differential analyzer is called a Bush Diagram (seen below):
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Figure 4.1: Bush Diagram of y∆∆ − 1
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8y = 0
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It is important to note that there is a closed system of motion on the highway of interconnect.

When setting up a differential equation on the DA, the differential equation is first solved in terms

of the highest ordered term. For the example in Figure 4.1, we rewrite the differential equation as

y∆∆ = 1
6y

∆ − 1
8y. This tells us that the rod producing the summated motion of 1

6y
∆ − 1

8y must

also be the rod associated with y∆∆, and we can see that this is the case in the figure. If the DA

did not have this closed system of motion, it would not produce the intended solution.

4.2 Graphing the Solution of y∆∆ − 1

6
y∆ +

1

8
y = 0 on a Differential Analyzer

When graphing the solution to the dynamic equation, we will assume that t0 = 0 throughout. If

the time scale is the real line, then there is no adjustments that need to be made to the plot.

Figure 4.2 is the plot of the continuous solution to the dynamic equation.

Figure 4.2: Differential Analyzer output of y∆∆ − 1
6y

∆ + 1
8y = 0 for T = R

However suppose we would like to plot the solution on T = [0, t1] ∪ [t2, t3], then the process

becomes more involved. When making a jump from the end of an interval t1 to the beginning of

another interval t2, the solution doesn’t start at t2 on the continuous solution, but rather,

according to the Simple Useful Formula, restarts at t2 and is located on the line tangent to y(t1)

from the first interval. Because of this, we must run the machine in a particular way to find the

appropriate values for y(t2), y∆(t2), and y∆∆(t2). The following provides a list of steps, along
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with the rationale for taking those steps:

1. With the pen down on the output table, run the differential analyzer from t0 to t1.

We do this to plot the solution of our first dense interval. The value for t1 can be chosen

arbitrarily, or it may be chosen because it results in a desired value for y, y∆, or y∆∆

2. Disconnect Integrator I and Integrator II by engaging their respective clutches, lift the pen

and run the differential analyzer to t2, and mark this point on the paper with the pen. We

disconnect the first and second integrator as this will keep the first and second derivatives

constant so that we can jump from t1 to t2 in a straight line. Notice that the value for

y

(
24√
17
π

)
is the same regardless of whether we evaluate the solution at a point (3.17), or

use the Simple Useful Formula (3.18). Therefore we can use the Simple Useful Formula to

find the value of t2.

y(t2) = y(σ(t1))

= y(t1) + (t2 − t1)y∆(t−1 )

Because we ran the DA to t1 in step 1, we have the value of y(t1). By running from t1 to t2

we are simulating the calculation, t2 − t1, on the DA, and since we have engaged the clutch

that is associated with y∆, we have kept it at its value y∆(t1). Because the solution picks up

at a point on the tangent line to y(t1), we are able to assume that y∆(t1) = y∆(t−1 ).

3. Engage the clutch for y and run the DA backwards from t2 back to t1.

This begins the process of finding the value of y∆(t2). At this point, the clutches for

y∆∆, y∆, and y are all engaged so all of these values remain constant.

4. Disengage the clutch on Integrator II and again run the DA from t1 to t2.

This step performs that same function as Step 2, but for y∆ rather than y. Disengaging the

clutch on Integrator II allows for y∆ to change. Again we are using the Simple Useful
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Formula in the following fashion.

y∆(t2) = y∆(σ(t1))

= y∆(t1) + (t2 − t1)y∆∆(t1)

We still have the clutch on integrator I engaged, so y∆∆ remains constant across the gap.

5. Calculate y∆∆(t2). Unfortunately, we cannot find the value of y∆∆(t2) using the simple

useful formula because we do not have a y∆∆∆ defined. However what we can do is use the

values found in Step 2, y(t2), and Step 4, y∆(t2), in the dynamic equation to find the value

for y∆∆(t2),

y∆∆(t2) =
1

6
y∆(t2)− 1

8
y(t2).

6. Reset the value on integrator I to the value found in step 5. Now disengage all clutches and

allow the DA to run until the end of the plot.

So Steps 2, 4, and 5 have provided the values for y, y∆, and y∆∆ respectively. These values

have as little manual manipulation on the DA as possible. So now that we have defined all

applicable pieces at t2 the solution can be plotted accurately moving forward.

When implementing this method, it is interesting to observe the differences in the solution as

the distance of the gap decreases. To see this result, we looked at the sequence of time scales,

Tn = [0, t1] ∪ [tn, t3], for n ≥ 2 where tn approaches t1. To do this we repeat the steps stated

above. It is important to note, that Step 1 only needs to be completed a single time. This is

because this portion of the solution is still equivalent to the solution on the real line, so as the

jump distance decreases, this portion of the solution will always remain the same. In previous

studies of the solutions of dynamic equations with decreasing gap length, the gaps were chosen to

achieve a specific value for the jump. However in this study, the first interval of solution was

chosen, not based on the distance of the gap, but because of what those t values represented in

the solution on [0,∞). The endpoint for the first interval of solution t1 was chosen because

y(t1) = 0. While the value of t2, the largest gap, was chosen since y∆(t2) = 0, then each

subsequent gap distance was chosen such that the difference in distance between two consecutive
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gaps was constant.

For the first three time scales after the gap, the DA was allowed to run until completion,

however the machine never reached the end of the paper because the value for y∆ became so large

that it exceeded the limits of the disk on the integrator, forcing the machine to shut off.

The Table 4.1 presents the counter values of t, µ(t), y∆(t), and y∆∆(t) for each of the gaps that

were run on the DA.

t µ(t) y(t) y∆(t) y∆∆(t)

0 83 0 -31.13

320 0 -126 -21.5

500 180 -73 -170.5 -1.04

590 270 -123 -193 13.96

680 360 -180.5 -215 31.85

770 450 -227 -248 43.79

860 540 -273.5 -263 58.73

Table 4.1: Counter Values for Each Gap Run on DA

While this data is valuable, it is not very useful for someone not fully familiar with the DA,

Table 4.2 provides the same data, but with the values converted into the real numbers, rather

than counter values.

t µ(t) y(t) y∆(t) y∆∆(t)

0 1 0 -0.12

3.84 0 -0.5 -0.09

6 2.16 -0.88 -0.68 0

7.08 3.24 -1.48 -0.77 0.06

8.16 4.32 -2.17 -0.86 0.13

9.24 5.4 -2.72 -0.99 0.18

10.32 6.48 -3.28 -1.05 0.23

Table 4.2: Real Values for Each Gap Run on DA

It is extremely important to note when analyzing the data in Table 4.2, a single unit on the real

line is equivalent to 250 clicks on the counter on the DA. However, the y and t values have been

scaled down by a factor of 3. This is because either time ran too fast, which didn’t provide an

output with enough distinguishable characteristics of the solution, or y ran too fast, which caused

the graph to exceed the capabilities of the output table. The output of the differential analyzer
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for the decreasing gap sizes as described above is shown below:

Figure 4.3: Differential Analyzer output of y∆∆ − 1
6y

∆ + 1
8y = 0 with decreasing gap distances

The plots of the second interval, going from top to bottom, are associated with gap distances as

shown in the first column of Table 4.2.

So based on the output from the DA, we can see that the solutions on the union of two

intervals appears to converge to the solution on the real line as the gap closes between the

intervals. This result qualitatively aligns with previous work on solutions to dynamic equations of

decreasing gap length. [1] [4]
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LETTER FROM INSTITUTIONAL RESEARCH BOARD
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