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ABSTRACT

Linear regression models involving interaction can use the di↵erence of slopes test to compare slopes

for various situations. We will be generalizing this process to develop a procedure to compare

rates in a Poisson regression model, allowing us to consider unbounded count data as opposed to

continuous data. We will apply this process to an educational data set from a sample of students

located in two di↵erent Los Angeles high schools. Our model will include a three-way interaction

and address the following questions:

• Does language ability impact the relationship between math ability and attendance in the

same way for males and females?

• Does gender impact the relationship between math ability and attendance in the same way

for students with high language ability versus students with low language ability?
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CHAPTER 1

MOTIVATION

Education is defined by the Oxford English Dictionary as “The systematic instruction, teaching,

or training in various academic and nonacademic subjects given to or received by a child,

typically at a school; the course of scholastic instruction a person receives in his or her lifetime.”

[8]. Education impacts our lives on a daily basis whether we are teaching ourselves or we are

teaching a class.

My current interest in this field is in the improvement of student learning. The spark behind

my educational research came from participating in a personality testing session. The activity

was used to improve the dynamics within my school athletic team. Everyone on the team was to

learn how to communicate better after learning about our personalities. After this activity, I

noticed that there was a group of team members that all fell into the same personality category

and they all felt the same way about math. Upon noticing this I decided to investigate this

phenomenon further.

I decided to run a pilot study testing students' personalities to see if these had an influence on

their math grades. Performing this research only increased my curiosity to see what other factors

might shape a student's math grade. Multiple factors a↵ect a student's education at the same

time. For example, the student's self-esteem might have an e↵ect on the relationship between

their personality type and their math grade. After reading an article on interaction, written by

Jeremy F. Dawson [2], I felt that I could expand his research on linear models to support interests

in educational research.

Dawson used a linear model with three-way interaction to explore the e↵ects of autonomy and

experience on the relationship between training and job performance of employees in a

manufacturing company. At first I thought I could apply this type of model to my pilot study.

Upon further research I discovered that I would like to investigate a response variable that has a

Poisson distribution as opposed to a normal distribution. Instead of using my own data, I will be

applying my results to data from a sample of Los Angeles high school students.
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CHAPTER 2

LINEAR REGRESSION

2.1 FUNCTIONAL AND STATISTICAL RELATIONS

A specific tool that Jeremy Dawson used to analyze possible factors that influence the

relationship between job performance and training is called regression analysis. He started by

using a linear regression model with two-way interaction and then moved to a linear regression

model with three-way interaction. In order to understand the Poisson regression model, we must

first take a look at linear regression.

We will begin by comparing a functional and statistical relation as described by Neter,

Wasserman, and Kutner [7]. A functional relation can be represented by a simple equation for

which X is the independent variable and Y is the dependent variable:

Y = f(X),

where for every input value of X there is a unique output value Y given by the function f. The

graphical representation of a functional relation will show that every output value will fall onto

the graph of functional relationship, creating a perfect relationship between the independent and

dependent variable. A good example illustrated by the Department of Statistics at The

Pennsylvania State University is the conversion relationship between temperature in degrees

Celsius (C) and temperature in degrees Fahrenheit (F) [14]. This relationship is shown in

Figure 2.1 and is represented by F = 9
5C + 32.

Notice how this functional relation produces a linear relationship such that all of the

observations of the relation fall onto the line of functional relationship F = 9
5C + 32. While many

relations can be modeled in this fashion there are other models that exist that do not follow this

behavior. In a statistical relation not all of the observations will fall onto the line of relationship,

but instead will be scattered around the line. Here the line of relationship has created what is

called a line of best fit. This will allow the researcher to see a trend and enable them to make

predictions on the basis of the data [1]. This can be illustrated by another example given by The

2



Pennsylvania State University and is shown in Figure 2.2 [14]:

Figure 2.1: Conversion Relationship Between Celsius and Fahrenheit

Figure 2.2: Relation Between Skin Cancer Mortality and State Latitude

The graph in Figure 2.2 represents the relationship between skin cancer mortality (in deaths

per 10 million) and latitude (in degrees) at the center of each of the 50 U.S. states.

Now that we have determined the di↵erence between functional and statistical relations we will

be able to have a better understanding of the use of linear regression.
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2.2 LINEAR REGRESSION TERMINOLOGY

Definition 1. The Dependent Variable Y is also known as the Response Variable, and the

Independent Variable X is also known as the Predictor Variable [7].

Definition 2. The diagram of a statistical relation is called a Scatter Diagram or Scatter Plot,

where each point in the scatter diagram or scatter plot represents a trial or case [7].

Definition 3. The systematic relation of the means of the probability distributions Y to the level

of X is called the Regression Function of Y on X.The Regression Curve is known as the graph of

the regression function and will also be referred to as the Curve of Statistical Relationship [7].

Definition 4. The coe�cients of the predictor variables will be known as the Parameters in the

regression model [7].

Definition 5. The Scope of a model is a chosen interval that contains the values from the

independent variables. The scope of a model is normally chosen by the design of the study or the

range of the data involved in the study [7].

2.3 SIMPLE LINEAR REGRESSION MODEL

Definition 6. A simple linear regression model is one in which there exists only one independent

variable, the parameters are not multiplied or divided by other parameters, and the independent

variable is only to the first power. This model is also known as a first-order model [7].The simple

linear regression model with one independent variable is as follows [7]:

Yi = �0 + �1Xi + ✏i (2.1)

where there exist two components, the systematic component �0 + �1Xi and the random

component ✏i.

The systematic component and the random component are defined as follows: Yi represents the

value of the response variable in the ith trial, �0 is a parameter that represents the Y-intercept of

the regression line, �1 is a parameter that represents the slope of the regression line, Xi represents

the value of the predictor variable in the ith trial, and ✏i represents a random error term. Also it

4



should be noted that the mean of ✏i is E[✏i] = 0 and the variance is �2. Here the regression

function for 2.1 is:

E[Y ] = �0 + �1X. (2.2)

The slope of the regression line �0 represents the rate of change in the mean of the probability

distribution of Y per unit increase of X [7]. When X = 0 is in the scope of the model, then the

Y-intercept �0 represents the mean of the probability distribution of Y at X = 0. If the scope

does not include X = 0, then �0 does not have any meaning in the model.

The basic idea behind a simple linear regression model is for it to be able to show that the

dependent variable Y will vary in a systematic fashion with respect to the independent variable

X, allowing the researcher to make predictions based on the given data. Graphically we can refer

back to Figure 2.2 to see a scattering of points around the curve of statistical relationship [7].

2.4 ESTIMATION WITH METHOD OF LEAST SQUARES

Dawson used a linear regression model to analyze the relationships among the variables. The

traditional approach to estimation in a linear regression model is the Method of Least Squares.

To estimate a simple linear regression function it is necessary to find estimators of the parameters

�0 and �1. Using the Method of Least Squares will require us to look at the deviation of Yi from

its expected value, for each sample observation (Xi,Yi) [7]. Given by:

Yi � (�0 + �1Xi)

Graphically, when we look at our regression line we want to be able to see a line of best fit where

the sum of the squares of the vertical distances from each point to the line is at a minimum as

shown in Figure 2.3 [1].

More specifically, we will be finding values b0 and b1 that minimize the sum of n squared

deviations, given by:

Q =
Pn

i=1(Yi � b0 � b1Xi)2

The values of b0 and b1 that minimize Q are the estimators for �0 and �1, respectively. These

5



Figure 2.3: Line of Best Fit for a Set of Data Points

values b0 and b1 can be found by solving the following equations for b0 and b1 :

⌃Yi = nb0 + b1⌃Xi (2.3)

⌃XiYi = b0⌃Xi + b1⌃X
2
i (2.4)

When 2.3 and 2.4 are solved for b0 and b1 we obtain:

b1 =
⌃XiYi � ⌃Xi⌃Yi

n

⌃X2
i � (⌃Xi)2

n

=
⌃(Xi � X̄)(Yi � Ȳ )

⌃(Xi � X̄)2

b0 =
1
n(⌃Yi � b1⌃Xi) = Ȳ � b1X̄

where X̄ and Ȳ represent the means of X and Y, respectively [7]. After finding b0 and b1 the

regression function can then be estimated by the following:

Ŷ = b0 + b1X

2.5 INTERACTION

We have just finished looking at a linear regression model with one predictor, X. While this model

can be very helpful in making predictions of the response variable it may not be a suitable model

for every situation. Another area of research includes looking at models with interaction, where

the impact of one variable depends on the level of the other variable [9]. By looking at an

example given by McGill University we can gain a better idea of the e↵ects of interaction [11].

6



Suppose we consider a cholesterol lowering drug that is tested through a clinical trial. We are

expecting a linear dose-response over a given scope of drug dose which will produce the simple

linear model shown below.

Figure 2.4: Dose-Response Over a Given Range of Drug Dose

Suppose that we expect men to respond at a higher level compared to women. There are a

number of situations that can occur. Below are some graphs of two particular situations.

Figure 2.5: The Response Between Men and Women without Interaction.

Because the first situation shows no di↵erence in the slopes of the lines for females and males,

7



there is no presence of interaction here.

Figure 2.6: The Response Between Men and Women with Interaction.

Graphically, we are able to indicate the presence of interaction, but we will also need to be able

to identify interaction in the actual models as well.

To be able to identify interaction in a model we will consider a first-order regression model that

has two predictors X1 and X2 with no interaction [7]:

Yi = �0 + �1Xi1 + �2Xi2 + ✏i (2.5)

where, Yi is the value of the response in the ith trial, Xi1 and Xi2 are the values of the predictors

in the ith trial, �0, �1, and �i2 represent the parameters, and ✏i is the error term, with

✏i = Yi - E[Yi] This model is similar to a simple linear regression model in the fact that the

relationship is linear. Also, 2.5 will have a regression function that represents a plane given by [7]:

E[Y ] = �0 + �1X1 + �2X2 (2.6)

In this case �0 represents the Y intercept of the regression plane. The other two parameters �1

and �2 will represent slopes. The parameter �1 will represent the slope of the line relating Y to

X1 when X2 is held constant. The parameter �2 will represent the slope of the line relating Y to

8



X2 whenX1 is held constant. Since the e↵ect of X1 does not depend on the value of X2 and the

e↵ect of X2 does not depend on the value of X1, there is said to be no interaction e↵ect present in

this model. Now let us consider a model that will have an interaction e↵ect present. For example:

Yi = �0 + �1Xi1 + �2Xi2 + �12Xi1Xi2 + ✏i (2.7)

This model contains two predictors X1 and X2. Notice that this model is similar to model 2.5.

While both models contain two predictors, model 2.7 includes a cross-product of �12Xi1Xi2 that

represents the interaction term. In this model the interpretation of the slopes and the parameters

�1 and �2 will not be as straightforward because of the presence of the interaction term. The

following represent the slopes of the model:

• The slope of Y when X2 is held constant is �1 + �12X2 and the intercept is �0 + �2X2.

• The slope of Y when X1 is held constant is �2 + �12X1 and the intercept is �0 + �1X1.

Oftentimes the meanings of the coe�cients are wrongly interpreted in the following ways. �0=0 is

taken as meaning that the intercept is zero, �1=0 is taken as meaning that there is no linear

relationship between X1 and Y , and �2=0 is taken as meaning that there is no relationship

between X2 and Y . In order for us to understand the concept of interaction we will need to

consider a specific situation. Suppose that X1 is the predictor we are interested in, and suppose

that X2 is the interacting variable. We would consider the follwoing two cases. If X2=0 then

E[Y ] = �0 + �1X1, and if X2=1, then E[Y ] = (�0 + �2) + (�1 + �12)X1. These models help us

indicate the correct interpretation of the coe�cients and their statistical significance. Here we see

that �0=0 means that the intercept is 0 when X2=0. We see that �1=0 means that there is no

linear relationship between X1 and Y when X2=0. We also see that �2=0 means that the value of

X2 has no e↵ect on the intercept. Finally, we see that �12=0 means that the value of X2 has no

e↵ect on the slope, and therefore there is no presence of interaction. This last interpretation is the

only one of the four that is generally used correctly.

If we would like to test the significance of the relationship between X and Y at specific

predictor values, then we will need to consider the idea of centering [2]. For example, we will use

9



model 2.7 and test the relationship of X1 and Y at a particular value of X2, denoted c. We will

need to centerX2 around the value of c by replacing X2 with X2 � c, which yields:

Y = �0 + �1X1 + �2(X2 � c) + �12X1(X2 � c) (2.8)

As a result of performing this centering the slope of Y is �1 when X2=c.

10



CHAPTER 3

GENERALIZED LINEAR MODELS

3.1 BASIC MODEL

Along with linear regression, Poisson regression refers to a specific type of generalized linear

model. Generalized linear models are a broad class of models that include linear regression,

ANOVA, Poisson regression, and log-linear models as well as many others [12]. Here we will

discuss the makeup of any generalized linear model as described in an online article from

Pennsylvania State University [12] and Generalized Liner Models by McCullagh and Nelder [6].

These models have three components that include a random component, a systematic component,

and a link function:

f(✓) = �0 + �1X1 (3.1)

where,

• Random Component: contains the probability distribution of the response variable (Y),

where the components are independently distributed.

• Systematic Component: specifies the predictor variables (X1, X2, ..., Xk) that create a

predictor vector. The predictors will have parameters �1, ...,�p that are unknown and will

need to be estimated.

• Link Function: explains how the expected value of the response relates to the linear

predictor. This is the link between the random and systematic components.

In the case of the Poisson regression, we will need to use maximum likelihood estimation to

estimate our parameters, instead of the method of least squares.

3.2 MAXIMUM LIKELIHOOD ESTIMATION

We have discussed the method of least squares used to estimate parameters in a linear model, but

now it is time to discuss the approach used to estimate the parameters in a Poisson regression.

Since the inferences associated with ordinary least squares reguire the the response variable to

11



have a normal distribution and this restriction is not present in our generalized linear model, the

use of ordnary least squares estimation would not be approprate. Instead, we use the method of

maximum likelihood estimation. This method will provide us with a good estimate of the

unknown paramter ⇥ that maximizes the probabilty, or the likelihood, of getting the data we

observed [13]. The likelihood of a sample with continuous random variables X1, X2 . . . , Xn is

defined to be the joint density function evaluated at x1, x2, , xn ,where their distribution depends

on the parameter ⇥. The likelihood function will be defined as follows:

L(⇥) = L(⇥|x1, x2, . . . , xn) = f(x1, x2, . . . , xn|⇥) = f(x1|⇥)⇥ f(x2|⇥) · · ·⇥ f(xn|⇥)

The method of maximum likelihood will find the value of ⇥ that maximizes L(⇥). To find the

value of ⇥ that maximizes L(⇥) we will do the following:

• find the log likelihood ln L(✓),

note: Calculating the derivative of products can be a daunting task. We can simplify this

process by taking the derivative of the natural logarithm of ⇥, which is called the log

likelihood function. Calculating the derivative of the log likelihood function will result

in the same maximum likelihood estimate, because the natural log is an increasing

function.

• calculate the derivative of L(⇥) with respect to ⇥,

• set that derivative equal to zero, and

• solve the equation for ⇥.

We will then call this value of ⇥ the maximum likelihood estimator, ⇥̂.

Understanding the process used by the Method of Maximum Likelihood Estimation is

important because it will be used to find the parameter estimates of our Poisson regression model

with three-way interaction.
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CHAPTER 4

SIMPLE POISSON REGRESSION MODEL

Now we will consider the nonlinear Poisson regression model. But, before we talk about the

model we will define the Poisson distribution.

4.1 POISSON DISTRIBUTION

The Poisson distribution is often used to provide a good model for the probability distribution of

the number Y of rare events that occur in time, space, or volume where � is the average value of

Y [15].

Definition 7. A random variable Y is said to have a Poisson probability distribution if and only if

f(y) =
�y

y!
e�� (4.1)

where y= 0,1, 2,..., and � > 0. It should also be noted that the mean and variance are E[y] = �

and �2[y] = �.

4.2 REGRESSION MODEL

As stated before, the Poisson regression model is a special case of a generalized linear model.

Therefore, it is comprised of three components, the random, systematic, and the link.

• Random Component: response variable Y is a count and has a Poisson distribution.

• Systematic Component: specifies the predictor variables (X1, X2, ..., Xk) that will have

parameters �1, ...,�k that are unknown and will need to be estimated.

• Link Function: natural log.

ln� = �0 + �1X1 + �2X2 + · · ·+ �kXk (4.2)

Oftentimes the Poisson regression model is used to interpret the predictor coe�cients in the

form of rates [4] . These rates are used to describe the e↵ect of a one unit increase in the
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predictor. To be able to interpret the coe�cients as rates we must take the di↵erence between the

log of expected counts [4].

Below is an illustration for the interpretation of rates in the simple Poisson regression model

ln�(x) = �0 + �1X :

(4.3)

Thus e�1 represents the percent increase in the expected count per unit of increase in the

predictor [4]. When x = 0, then �(0) = e�0 ; thus e�0 is the intercept of the model. This concept

will be illustrated further in our example with the three-way interaction Poisson model.
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CHAPTER 5

POISSON REGRESSION MODEL WITH THREE-WAY INTERACTION

We will now apply the previous disscussions we had about interaction and the process of

centering from the simple linear regression model along with the process of interpreting rates from

the simple Poisson model. Recall from our discussion about interaction that we referred to a

two-way interaction linear model 2.7 that contained two independent variables X1 and X2. In this

case we will be considering a nonlinear regression model with one more level of interaction

included, but the idea of interaction will be the same.

Definition 8. A Poisson regression model with three-way interaction is defined as:

ln� = �0 + �1X1 + �2X2 + �3X3 + �12X1X2 + �13X1X3 + �23X2X3 + �123X1X2X3 (5.1)

where X1, X2, and X3 are the predictors and �1,�2,�3,�12,�13,�23, and �123 are the parameters.

At this point we will manipulate the model slightly to make it easier to determine one of the

rates. This same strategy was used on model 2.7 to find the slopes with respect to X1 and X2.

First we will choose to hold X2 and X3 constant and call X1 our target predictor. By doing this

we can group together the terms including X1:

ln� = (�1X1 + �12X1X2 + �13X1X3 + �123X1X2X3) + (�0 + �2X2 + �3X3 + �23X2X3)

= X1(�1 + �12X2 + �13X3 + �123X2X3) + (�0 + �2X2 + �3X3 + �23X2X3)

Here the X1 coe�cient is (�1 + �12X2 + �13X3 + �123X2X3) and the value of

(�0 + �2X2 + �3X3 + �23X2X3) is considered the constant.

One of our goals will be to compare the rates when we fix the value of X2 and vary the value of

X3. The other goal is to compare rates when we fix the value of X3 and vary the value of X2. We

will proceed by showing the case of fixing X2.

Specifically, we will fix X2 at X2= a and vary the value of X3 from X3= b to X3= c. First we
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will replace X2 with X2 � a:

ln� = X1 {�1 + �12(X2 � a) + �13X3 + �123(X2 � a)X3}+ {�0 + �2(X2 � a) + �3X3 + �23(X2 � a)X3}

Then we will evaluate the model at X2=a and X3=b:

ln� = X1 {�1 + �12(a� a) + �13(b) + �123(a� a)(b)}+ {�0 + �2(a� a) + �3(b) + �23(a� a)(b)}

= X1 {�1 + �13(b)}+ {�0 + �3(b)}

Next we will evaluate the model at X2=a and X3=c:

ln� = X1 {�1 + �12(a� a) + �13(c) + �123(a� a)(c)}+ {�0 + �2(a� a) + �3(c) + �23(a� a)(c)}

= X1 {�1 + �13(c)}+ {�0 + �3(c)}

Since we want to test the equality of the rates our null hypothesis would be:

H0 : e
�1+�13(b) = e�1+�13(c),

which is equivalent to:

H0 : �1 + �13(b) = �1 + �13(c)

which is in turn equivalent to:

H0 : �13 = 0

Similarly, if we fix X3 and let X2 vary, we will test H0 : �12=0.
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CHAPTER 6

Example

The relationship that we will be investigating is the relationship between math ability and

attendance. Specifically, we will address the following two questions:

• Does language ability impact the relationship between math ability and attendance in the

same way for males and females?

• Does gender impact the relationship between math ability and attendance in the same way

for students with high and low language ability?

The data to be used here were selected from two senior high schools in the Los Angeles area. The

student records we will be using contain 100% of the students at each of the schools who met all

of the following criteria, as described by Phil Ender [3]:

• They were in the 9th grade in the 1995 Fall semester.

• They received a mark (grade) in first semester Algebra in the 1995 Fall semester and a mark

(grade) in a mathematics course in the preceding Spring semester.

• They received a mark (grade) in an English course in both the 1995 Fall semester and the

preceding Spring semester.

• They had a California Test of Basic Skills (CTBS) combined Mathematics and combined

Language score for the 1995 calendar year. Both scores are recorded in percentile ranks

(PR) and normal curve equivalence scores (NCE). The mathematics normal curve

equivalence scores will be denoted as mathnce, and the language normal curve equivalence

scores will be denoted as langnce.
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The output and data analysis for this paper were generated using SAS software, Version 9.4 of

the SAS System for Windows Copyright 2002-2012 SAS Institute Inc. SAS and all other SAS

Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute

Inc., Cary, NC, USA.

To help assess the fit of the model, we can use the chi-squared goodness-of-fit test. This

assumes the deviations follows a chi-square distribution with degrees of freedom equal to the

model residual [5]. From our Goodness of Fit output, we can see with 308 degrees of freedom and

a value of 2656.3710 that a p-value can be calculated as approximately zero as shown in 6.1.

Table 6.1: Criteria For Assessing Goodness of Fit

With this p-value we can conclude that the model does not fit well at all because the

goodness-of-fit chi-squared test is statistically significant. This is very likely due to the obvious

overdispersion, and a model with another distribution such as the negative binomial might solve

this problem. This provides an interesting possibility for future research.

In order to achieve a joint significance level of at most 5%, we apply the Bonferroni Adjustment

and use ↵ = 0.05
4 = 0.0125 for each individual comparison [10].

Recall that our Poisson regression model with three-way interaction is as follows:

ln� = �0 + �1X1 + �2X2 + �3X3 + �12X1X2 + �13X1X3 + �23X2X3 + �123X1X2X3 (6.1)
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Parameter Label
X1 mathnce
X2 langnce
X3 sex
X12 math·lang
X13 math·sex
X23 lang·sex
X123 math·lang·sex

Table 6.2: Parameter Labels

Our model will be used to process the data with a response variable of attendance and a target

predictor of mathnce. a reference for representation of each one of the parameters that will be

used.

To test the impact of language ability we will consider high and low language scores of

68.0030042 and 32.1245876, which are one standard deviation above and below the mean

language score.

Table 6.3: Analysis of Language Normal Curve Equivalence Scores
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After applying formula 4.3 to our model we found the following rates:

Table 6.4: Comparison of Rates

Below is a table with the appropiate p-values for each comparison.

Table 6.5: P-Value Results

Comparison 1: Low Language Scores comparing Males and Females

Since the p-value for �13 is <0.0001, which is smaller than ↵
4 = 0.0125, we can conclude that there

is a di↵erence in the rate at which math ability a↵ects attendance for males with low language

skills versus females with low language skills.

Comparison 2: High Language Scores comparing Males and Females

Since the p-value for �13 is 0.0006, which is smaller than ↵
4 = 0.0125, we can conclude that there

is a di↵erence in the rate at which math ability a↵ects attendance for males with high language

skills versus females with high language skills.

Comparison 3: Males comparing Low and High Language Skills

Since the p-value for �12 is 0.0714, which is larger than ↵
4 = 0.0125, we can conclude that there is
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no evidence of a di↵erence in the rate at which math ability a↵ects attendance for males with low

language skills versus males with high language skills.

Comparison 4: Females comparing Low and High Language Skills

Since the p-value for �12 is 0.4370, which is larger than ↵
4 = 0.0125, we can conclude that there is

no evidence of a di↵erence in the rate at which math ability a↵ects attendance for females with

low language skills versus females with high language skills.

In order to understand the e↵ect of gender on the relationhip between math ability and

attendance, we need to look at the confidence intervals for the relevant parameters. We will first

consider the e↵ect for the students with high language ability:

The relevant parameter represents interaction between math ability and gender when language

ability is centered at the higher value. The confidence interval for this parameter is 0.0069 to

0.0256. After applying the exponential function to these values, we will be able to see that the

e↵ect for females (sex=1) is between 1.007 and 1.026 times as great as for males (sex=0). This

means that the e↵ect is 0.7% to 2.6% greater for females than for males.

Next we will consider the e↵ect for the students with low language ability:

The relevant parameter represents interaction between math ability and gender when the

language ability is centered at the lower value. The confidence interval for this parameter is

0.0130 to 0.0280. After applying the exponential function to these values, we will be able to see

that the e↵ect for females is between 1.013 and 1.028 times as great as for males. This means that

the e↵ect is 1.3% to 2.8% greater for females than for males.

Overall language ability has no statistically significant e↵ect on the way in which gender

impacts the relationship between math ability and attendance. However, there is evidence of

gender di↵erence in the impace of language ability on the relationship between math ability and

attendance.
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APPENDIX A

LETTER FROM INSTITUTIONAL RESEARCH BOARD
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APPENDIX B

Analysis of Maximum Likelihood Parameter Estimates

X3 = Sex - 0

Table B.1: Parameter Estimates for Males (Sex = 0)

X3 = Sex - 1

Table B.2: Parameter Estimates for Females (Sex = 1)
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X2 = Lanuguage - 32.1245876

Table B.3: Parameter Estimates for Language Low

X2 = Lanuguage - 68.0030042

Table B.4: Parameter Estimates for Language High
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