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ABSTRACT 

 

The relationships of pterosaurs have been previously inferred from observed traits, depositional 

environments, and phylogenetic associations. A great deal of research has begun to analyze 

pterosaur ontogeny, mass estimates, wing dynamics, and sexual dimorphism in the last two 

decades. The latter has received the least attention because of the large data set required for 

statistical analyses. Analyzing pterosaurs using osteological measurements will reveal different 

aspects of size and shape variation in Pterosauria (in place of character states) and sexual 

dimorphism when present. Some of these variations, not easily recognized visually, will be 

observed using multivariate allometry methods including Principle Component Analysis (PCA) 

and bivariate regression analysis. Using PCA to variance analysis has better visualized ontogeny 

and sexual dimorphism among Pterodactylus antiquus, and Aurorazhdarcho micronyx. Each of 

the 24 (P. antiquus) and 15 (A. micronyx) specimens had 14 length measurements used to assess 

isometric and allometric growth. Results for P. antiquus analyses show modular isometric 

growth in the 4th metacarpal, phalanges I-II, and the femur. Bivariate plots of the ln-geometric 

mean vs ln-lengths correlate with the PCA showing graphically the relationship between P. 

antiquus and A. micronyx which are argued here to be sexually dimorphic and conspecific. Wing 

schematic reconstructions of all 39 specimens were done to calculate individual surface areas 

and scaled to show relative intraspecific wing shape and size. Finally, Pteranodon, previously 

identified having sexually dimorphic groups, was compared with ln-4th metacarpal vs ln-femur 

data, bivariately, revealing differences likely due to the constraints of size (P. antiquus and A. 

micronyx = group 1; Pteranodon = group 2).   
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CHAPTER ONE 

PTEROSAUR TAXONOMY AND PHYLOGENY  

Background 

Between the years of 1767 and 1784 an exquisitely preserved pterosaur specimen was 

found. This specimen would later become the holotype of Pterodactylus antiquus. From that 

fossil’s discovery to the present, about 5,500 specimens of pterosaur have been found ranging 

from ~220 Ma to 65.5 Ma, giving the clade a known time span of ~154.5 myr (Unwin 2005). 

They have no extant descendants, going completely extinct at the end of the Cretaceous along 

with the non-avian dinosaurs and large marine reptiles. Pterosaur anatomy is quite different than 

that of most other diapsid reptiles. Their basic anatomy was like that of a quadrapedal animal 

with re-curved claws at the ends of each digit, a long tail (lost in derived species), a long neck, 

and an elongate skull, with some Cretaceous species losing all their teeth. Characteristic of all 

Figure 1  Labeled Pterosaur. Dorsal view, brachiopatagium (Br), the unique pteroid bone (Pt) supporting the propatagium (Pr) and the 

cruropatagium (Cr) medial to the leg. Labels: Dc, distal carpal; F, femur; H, humerus; Mc, medial carpal; Pc, proximal carpal; R, 

radius; T, tibiotarsus; U, ulna; wing phalanges: I-IV; IVMc, 4th metacarpal. Scale bar = 200mm. Wilkinson, Unwin, and Ellington 

2006. 
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species, however, were the elongated arm elements, with a hyper-elongated 4th manus digit that 

had four phalanges, also hyper-elongated. Like many other reptiles they lost their 5th manus digit. 

This elongated 4th digit carrying the wing membrane (brachiopatagium) was attached, running 

the entire length of the arm/finger and the length of the body and down to the ankle (Figure 1). 

Along with these specializations, pterosaurs had two neomorphic bones that were autapomorphic 

to pterosaurs. The first was the pteroid bone, also seen in Figure 1, which attached to their frontal 

membrane (propatagium) functioning to manipulate this anterior membrane during flight. The 

second was the pre-pubis. The pre-pubis projected anteriorly from the ilia of the pelvic girdle, 

and likely served as attachment sites for abdominal muscles used for breathing (Unwin 2005; 

Claessens, O’Connor, and Unwin 2009).  

The rigid thoracic region of all pterosaurs required an alternative mode for breathing 

relative to more basal reptiles. Their pulmonary system was analogous to birds. The skull, 

cervical vertebrae, and shoulder girdle in early species and, additionally, the limbs in later 

species have pneumatic foramina found in characteristic locations, notably in ornithocheiroidea 

(e.g., Pteranodon), for pneumatic tissues that correlate with foramina found in birds (Wedel 

2003; O’Connor and Claessens 2005). Pterosaurs’ increasing hollow bone space throughout their 

evolution allowed for expanded air-sacs within their skeleton increasing their respiratory 

efficiency. This pneumaticity suggests that, like modern birds, they had a unidirectional 

pulmonary system that was far more efficient than our mammalian bidirectional system. A 

unidirectional system operates by sucking air in then pushing the deoxygenated air out through 

the air-sacs rather than exhaling it directly. A unidirectional system would have allowed for a 

very active lifestyle, giving pterosaurs the freedom to stay in flight for significant periods of 

time.  
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Research Approach 

 Over the past 230 years, beginning in 1784 with the first scientific publication of a 

pterosaur, the quantity of pterosaur specimens and species described has risen to about 5,500 

specimens and about 140 species (Collini 1784). A tremendous amount of research has been 

done on individual species' anatomies, functional morphology, and phylogeny. Most of this work 

has been descriptive and phylogenetic in nature.  

The concept of allometry was developed by Huxley to examine the relative growth of two 

or more areas of an organism or multiple organisms (1932). Since then it has become clear that 

growth is just one source of variation in size and shape. Huxley’s original concept is now called 

ontogenetic allometry, and is one of three. The second is static allometry, which is the study of 

the variation among individuals of the same population in the same age group. The final is 

evolutionary allometry concerning phylogenetic variation among taxa (Cock 1966; Gould 1966, 

1975; Klingenberg 1996). Evolutionary allometry has not been done comparing the broad range 

of families and species among pterosaurs which would analyze their shape variation as it 

changed during their 140 myr existence. Analyses of phylogenetic, ontogenetic, and evolutionary 

allometry on pterosaur longitudinal morphometrics collected from numerous publications will be 

the focus of this research.  

 A recent paper used Principle Coordinate Analysis (PCoA) to assess morphological 

difference in 53 pterosaur taxa. Prestice, Ruta, and Benton (2011) used 80 skeletal character 

states, pulled directly from the taxonomic data matrix published in Lü, Ji, Yuan, and Ji’s (2006) 

phylogeny paper, to delineate a morphospace for the taxa present. That research yielded 

significant results (p<0.05) that the two major taxa of pterosaurs, non-pterodactyloids and 

pterodactyloids, were different, suggesting that their modes of life were heavily selective towards 
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these differences (Prestice et al. 2011). That approach handles the statistical problem of species 

not being independent of each other due to their phylogenetic relations (Klingenberg 1996; 

Felsenstein 1985; Pagel and Harvey 1988). This phylogenetic method is one way to avoid 

phylogenetically dependent comparisons, but this requires a high level of understanding of the 

taxa's phylogeny (Prestice et al. 2011). The alternative method presented here is not as 

phylogenetically dependent because most of the variation is in one dimension of the PCA 

analysis (Klingenberg 1996). Doing such an analysis with linear measurements would capture a 

different aspect of shape variation than was found in the PCoA method, because they record 

different morphological information. Examining pterosaur morphometrics with multivariate 

allometry likely hasn't been done because there is not a large published collection of 

morphometric data compiled from a wide range of families of pterosaurs. The phylogeny have 

been tested many times by various researchers because a massive data matrix was compiled and 

has since been built upon and published originally by Lü and Unwin (Lü J., Unwin D. M., Xu L., 

and Zhang X. 2008; Lü, J., Unwin, D.M., Jin, X., Liu, Y. and Ji, Q. 2010), with alternative 

phylogeny results by Andres (2010).  

 A comparably large data set can be built with linear measurements of pterosaur bones. 

Width measurements likely cannot be used because they would be skewed by the compressional 

forces of diagenesis and fossilization over tens of millions of years. Over the centuries numerous, 

nearly complete, specimens have been found with representatives from all the major families of 

Pterosauria. Such an accumulation of data will allow an interspecific (evolutionary allometry) 

study that can reveal new pieces of information about the size and shape variation seen 

throughout pterosaurs and selective pressures they underwent as they adapted to new ecological 
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niches, and for some families, re-adaptation to terrestrial lifestyles while maintaining aerial 

ability.  

 For some species we are fortunate to have more than a few nearly complete specimens, 

for example Pterodactylus, Aurorazhdarcho, Ctenochasma, Pteranodon, Pterodaustro, 

Darwinopterus and Dorygnathus. The first two, Pterodactylus and Aurorazhdarcho, have 24 and 

15, respectively, nearly complete specimens from the Solnhofen Formation in Germany 

(Wellnhofer 1970). Unwin published a graph in his 2003 book where he discussed these 

specimens briefly and showed that Pterodactylus appeared to have an isometric growth. 

However, he did not go into any depth numerically, nor publish the data he used in the graph. 

Isometry in any pterosaur would be remarkable. With the data from the 24 specimens of 

Pterodactylus we can investigate whether this species does in fact show ontogenetic isometry 

and its significance down to each skeletal element.  

 One analysis method that will be used in this study is Principle Component Analysis 

(PCA). It will break down the data into its underlying structure, thus their size and shape 

variations into Principle Components (PC). Each PC describes orthogonal axes representing 

different variations. PC1 will represent the largest variance, being usually interpreted as size. 

PC2, PC3, etc. are typically interpreted as shape variation scores (Klingenberg 1996). 

Multivariate allometry will be used to examine Ctenochasmatoidea species growth curves to 

determine whether they show allometry like the rest of the pterosaurs or if they had a unique 

modular isometry in their ontogeny relative to other pterosaurs. Correlation of determination (R²) 

and their standard error (SE) will give us confidence intervals for each bone element. R² will 

give us a value, 0 to 1, that describes how well a cluster of data points fit onto the linear 

regression (best-fit) line. Zero would mean the line doesn’t describe the data at all. An R² of 1 
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means the regression line perfectly describes the data and extrapolating variables outside the 

cluster would be accurate. Typically, an R² above 0.60 of a regression line is worthwhile, 

meaning the independent variable describes about 60 percent of the dependent variable (Glantz 

and Slinker 1990). The R² is calculated by the software used to plot the data, along the standard 

error (SE). The standard error is calculated by dividing the sample standard deviation (s) by the 

square root of the sample size (n):  [SE = 
𝑠

√𝑛
 ]. The confidence intervals tell us whether the 

calculations are ≥ 95 percent confidence that the slope (x) describes the population [CI = x ± (SE 

x 1.96)]. A confidence interval < 0.05 gives a 95 percent probability that the sample data set 

describes the population (Glantz and Slinker 1990).  

Phylogenetic Origins 

 Like many things regarding pterosaur phylogeny, their ‘home’ on the sauropsida cladistic 

tree is contentious. The development of their appendicular skeleton and ankles, including the 

four fossilized soft-shelled eggs, tell us they were amniotes (Witton 2013). Skull characteristics 

define them further, telling us they were archosauromorph diapsid reptiles. The contention 

Figure 2 Sauropsida Phylogeny. Shows the four hypothesized locations for the pterosaur divergence within Sauropsida. 
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begins here. Somewhere in diapsid evolution they diverge. There are four main hypotheses for 

placement of pterosaurs in Sauropsida phylogenetics (Figure 2). The far left position, with 

pterosaurs being closely related to squamates, has little following due to the poor techniques 

used in the analyses by Peters (2008) with critiques by prominent pterosaur researchers Bennett 

(2005), and Hone and Benton (2007). That position has little support and is the most unlikely. 

The close relation of the second position with Sharovpteryx is also not well supported. At first 

glance at Sharovpteryx would suggest close relation due to similar large wing membranes, 

although they differ radically from pterosaurs in being hindlimb dominated. Other than that there 

are no other shared characteristics to support this topology (Sereno 1991; Bennett 1996a; Hone 

and Benton 2007; Nesbitt and Hone 2010). The third position on the tree, third from left on 

Figure 2, was published by Bennett (1996a) but was criticized for not using all the morphological 

data available. Bennett’s analysis placed pterosaurs at the base of Archosauriform evolution. 

Later re-evaluation of his methods using all available morphological data, this time including 

hindlimb characteristics, placed pterosaurs higher up and into Archosauria becoming a sister 

group to Dinosauria (Benton 1999; Hone and Benton 2007). This is the last position on the far 

right of Figure 2 and the current consensus. 

 During their ~150 myr existence pterosaurs went through a slew of modifications as they 

went from dominantly arboreal living animals capable of active flight with an insectivorous diet. 

Over time they became highly agile gliders capable of capturing flying insects in the air, a 

difficult task to achieve. Their morphology began evolving to enhance gliding abilities which 

reduced the need for energy during flight. They became large enough to diet on fish and perhaps 

even small mammals and reptiles. Some unique derived pterosaurs became filter feeders and 

clam-crushers while some of the largest pterosaurs became amazingly adapted for soaring flight, 
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needing almost no energy while in air using external sources of lift such as thermals and oceanic 

winds to maintain lift and thrust. But even the earliest pterosaurs were amazingly evolved, 

already having all the essentials for flight.  

Diversity 

 Discussed here are the first major taxa of pterosaurs that will be analyzed, the non-

pterodactyloids, wukongopteridae, and pterodactyloids. Non-pterodactyloids comprise the 

‘basal’ pterosaurs. The descriptive word ‘basal’ should be used with caution as it refers to 

pterosaurs more basal than the later, much more derived, pterosaurs. Basal pterosaurs are highly 

derived reptiles in their own right. The cladistic name ‘Rhamphorhynchoidea’ used to be a taxa 

that comprised all the basal pterosaurs. ‘Rhamphorhynchoidea’ has since been recognized that its 

phylogeny is much more complicated and is no longer considered an accepted systematic term. 

However, the clade that comprises all derived forms, the order Pterodactyloidea, has survived 

repeated phylogenetic analyses. The term, ‘Non-pterodactyloidea’ is used to refer to the 

‘Rhamphorhynchoidea’ group of pterosaurs. Figure 3 shows the relation of the nine families to 

be discussed.  

Figure 3 Pterosauria Phylogeny. The nine dominant families and their relative relations and clades. (Naish, Simpson, and Dyke 2013). 
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Non-pterodactyloids 

Dimorphodontidae. The earliest pterosaurs have a place within this family, except for 

Preondactylus (Wild 1984). It is considered the node of pterosaur divergence by Unwin in his 

numerous phylogenetic analyses (Unwin 2003; Lü et al. 2010). It is most closely related to 

dimorphodontidae. This family of pterosaurs is found in present day New Mexico, England and 

date back to about 193 Ma in the early Jurassic (Buckland 1829; Clark, Hopson, Hernández, 

Fastovsky, and Montellano 1998). Their depositional environment was indicative of a coastal 

area next to ancient seas.  

 Their anatomy is considered to be the most 

primitive of all pterosaurs but their flight anatomy was 

already fully developed, which made them fully capable of 

aerial mobility (Witton 2013). Figure 4 shows their 

relatively ‘lizard-like’ anatomy. Their limb proportions 

have the lowest ratio among all pterosaurs, giving them a 

somewhat ‘normal’ appearance for a quadruped animal. Despite their large bone volume relative 

to length and wingspan, they would have been light weight.  

Their fossilized skeletons suggest that they had a body weight nearly double that of other 

pterosaur families with similar wingspans, which was about 1.45 meters in adults (Brower and 

Veinus 1981; Witton 2008a). Another of their primitive characteristics was their short wings 

relative to their body proportions. This would made them inefficient soarers requiring constant 

flapping to maintain flight. All pterosaurs share some level of pneumatization within their bones. 

Pneumatization of bones is the development of open space within the bone that lengthens the 

bones by re-depositing the bone mass at the opposing ends, thus, lengthening or blowing the 

Figure 4 Dimorphodon micronyx. An example of 

a dimorphodontidae. Demitry Bogdanov 
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bone up by volume but retaining the same amount of mass. Dimorphodontidae’s pneumaticity is 

limited to their skulls and cervical neck bones (Butler, Barrett, and Gower 2009). Later pterosaur 

families would evolve a much more pneumatized skeleton allowing for a better distribution of 

mass relative to surface area via the wings.  

 Dimorphodontidae hand and claw traits are indicative of living in trees or some other 

vertical surface such as a cliff, which would serve as safety due to their small size and inability 

to stay in the air for an extended amount of time. Their jaw and dentition and overall flight 

abilities would suggest that they were not capable of midair maneuverability needed to catch 

flying insects (Witton 2013).  

Anurognathidae. This family of pterosaurs is of great interest 

because, like the family wukongopteridae, it shares features of both 

non-pterodactyloids and pterodactyloids. The species that comprise 

this family were found much sooner than that of wukongopteridae 

however, starting in 1923 by Ludwig Döderlein. The family’s 

phylogeny is contentious due to its shared features with pterodactyloids 

(e.g., loss of cervical ribs, short tail, reduced fibula length, conflated nasal and antorbital 

fenestra: Bennett 1997b; Andres 2010) but the most commonly accepted placement is seen in 

Figure 2. The specimens of this family are found only on one continent. The rich pterosaur fossil 

locales in present day Germany, Kazakhstan, and in China have only given us a very small 

number of preserved specimens for this family, (Döderlein 1923; Wang, Zhou, Zhang and Xu. 

2002).  

Anurognathidae are characterized by unique and derived traits that set them apart from all 

other families discussed here. First is their skull; it looks like a frog’s. It was broad, short, with 

Figure 5 Anurognathus 

ammoni. An example of an 

anurognathidae. Calyton 

Mckee 
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massive orbits relative to the rest of the skull. Like wukongopteridae and all other 

pterodactyloids, it is thought that their nasal opening and antorbital opening (fenestra in front of 

the orbital opening) were combined into one opening called a nasoantorbital fenestra (Andres 

2010). The facial bones making up the anterior of their skulls are very thin, like rods. All of the 

jaw mechanics allow for very rapid abduction and adduction of the jaw that gave them very fast 

‘snapping’ speed. This skull configuration is a remarkable convergent evolution with modern 

insect hawkers (Ősi 2010).  

 Anurognathidae forelimb bones, humeri and ulna/radius, were about 150% as long as 

their hindlimbs, femora and tibia (Bennett 2007a). This is a drastic difference from 

dimorphodontidae; this elongation of forelimb bones is only matched by later more derived 

families of pterosaurs in the Early Cretaceous. The metacarpals in pterosaurs were hyper-

elongated in derived families adding a noticeable amount of wing length, but in non-derived 

families the metacarpals are short, seen in Figure 5 depicting a representative of anurognathidae: 

Anurognathus ammoni. The fourth metacarpal is short in dimorphodontidae, as expected, but it is 

also very short in anurognathidae being shorter. This family is usually considered the most agile 

of all pterosaur families. They were compact fliers with wing and body proportions that gave 

them high aerial maneuverability, added with their skull morphology, making them very 

competent aerial predators of insects (Bennett 2007a). Some of the species within this family 

shared a typical pterodactyloid feature, the lack of a long tail, but a very unique feature among 

this family is their ability to flex their wing-finger bones, curling their wing. This is not seen in 

any other family nor is its function understood. Anurognathidae showed superiority in aerial 

agility and were likely the first predators of flying insects. Before this family appeared was 
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another, the "campylognathoididae," which showed the first elongation of skull length that is a 

prominent feature in later pterodactyloids.  

“Campylognathoididae.” The phylogeny of this family with all its species and its 

relationship with other families is one of the greatest puzzles among pterosaur relations. Most 

pterosaurologists follow the phylogeny determined by Lü et al. (2010) in regards to its placement 

with other pterosaur families. Their phylogeny is reflected in Figure 2. The term 

“campylognathoididae” is used because of the great contention with this family’s phylogeny 

(Witton 2013). There is no commonly accepted consensus on this family's interrelations, nor its 

relationship to the other major families of non-pterodactyloids.  

This family is our first known major radiation of pterosaurs, starting in the Late Triassic 

about 210 to 204 Ma in the Norian Age ending around 183 to 176 Ma (Dalla Vecchia 2003b; 

Barrett, Butler, Edwards, and Milner 2008). This family existed for about 40 Myr, undergoing an 

extensive evolution of genera and species within. Despite their extensive speciation they are all 

constrained to present day Europe. Most species are from the rocks in Germany and Italy with a 

species found in Greenland as well. The depositional environment they are found in is coastal or 

not very far from an ancient body of water.  

Figure 6 Eudimorphodon ranzii. A member of “campylognathoididae” showing the multicusped teeth in some genera. 

Eudimorphodon ranzii. (Zambelli 1973) 



13 
 

What has been preserved has given “campylognathoididae” a wingspan range of about 70 

centimeters to 1.8 meters (Witton 2013). This family of pterosaurs, apart from the previously 

discussed families, had some of the earliest low, narrow skulls that would become common but 

much elongated later in the Cretaceous. They also bore sagittal crests on the dorsal surface of the 

skull, with a triangular sail. A diagnostic trait of this family is that the most posterior and dorsal 

opening in the skull (superior temporal fenestra) was characteristically the largest of all the 

openings in the skull. The enlargement of this opening is likely related to the adaptation of the 

dentition of this family. This is the only group of pterosaurs that developed multicusped teeth, in 

particular Caviramus sp. and Eudimorphodon ranzii (Fröbisch and Fröbisch 2006; Stecher 2008; 

Zambelli 1973).  

Figure 6 shows the multicusped teeth that line the jaws of a Eudimorphodon ranzii.  How 

this type of tooth played a part in the change in size of the superior temporal fenestra had to do 

with oral processing of food. The upper and lower temporal fenestra, the most posterior openings 

in the skull were locations for muscle attachment for the jaw. In other pterosaurs these openings 

were smaller. They didn’t need large robust muscles since they grabbed their prey and 

swallowed it whole. So it would be logical and appears in “campylognathoididae” for these 

openings to enlarge when the animal uses them more for oral processing. This oral processing is 

indicated by the adaptation of the saw like teeth that were lined and wedged together, being 

multicusped, like a long continuous blade (Fröbisch and Fröbisch 2006; Stecher 2008). An 

additional piece of evidence that the teeth were used for processing food was the crown tips 

showing wear (Ősi 2010).  

This family of pterosaurs shared the wing proportions of other early pterosaurs discussed 

such as Preondactylus and dimorphodontidae. However their shoulder girdle and forelimbs 
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became much more robust. The four wing finger bones become very thin and develop a very 

narrow wing. The robust upper body and narrow wings suggest the ability to generate powerful 

bursts of speed in flight. These traits are analogous to modern falcons and mastiff birds 

(Hildebrand 1995). What this family’s anatomy tells us is that this family of pterosaurs adapted 

specifically for aerial predation of small to medium sized prey items in the air and on the ground. 

Their robust nature and strong biting force with rows of sharp multicusped teeth would have 

made them aerial hunters. This assortment of characters makes them unique because those 

adaptations: robust skeletons, strong aerial agility, and oral processing of food, are not seen in 

any other pterosaur. The fossil record has the last of this remarkable family dying out around 170 

Ma, which is the beginning of the temporal range that the last major family of non-

pterodactyloids appears in the fossil record.  

Rhamphorhynchidae. The first members of this family appeared in the Early Jurassic 

around 180 Ma existing for about 30 Myr until the very Late Jurassic. They are the earliest 

pterosaurs, according to the fossil record, to have obtained a global distribution. They are found 

in the Americas, Germany, England, and China. There are two subfamilies within this family, the 

Rhamphorhynchinae and the Scaphognathinae. These two groups are united by a few features. 

The first is their simply shaped conical teeth that are low in number (usually about eleven pairs 

of teeth, Witton 2013). Another is the curved phalanges (digit bones) in the fifth toe that are 

attached to the membrane between the legs (crurupatagium) and that fifth toe. The other four toes 

are not attached. The attachment of the crurupatagium to the fifth toe is of functional significance 

because it probably was used to manipulate the membrane to make adjustments in flight, similar 

to how an airplane uses a rudder to adjust the pitch or yaw of the craft (Witton 2013). This 

crurupatagium is only preserved in a handful of specimens, mostly from this family, but the 
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elongate fifth toe is present in almost all non-pterodactyloids which suggests they all had the 

crurupatagium. No specimen has ever had a claw on the fifth toe, so its functional purpose was 

not for grasping any surface.  

Rhamphorhynchinae. This subfamily is very well documented due to a tremendous 

number of specimens found in Germany. Their abundance has allowed a large amount of 

research to be done on this group which has made it one of the more famous groups, more 

specifically the species Rhamphorhynchus 

muensteri. This subfamily was the earlier of the two 

groups and was also where the largest of all the 

Jurassic pterosaurs belonged. There are many 

specimens from young to full sized adults, reaching 

up to two meter wingspans. Their skulls are very 

low and narrow with thin openings for the nasal 

vestibule. The antorbital fenestra (anterior opening 

of orbit) is also rather small relative to the other 

families of non-pterodactyloids. These openings generally serve as muscle attachment sites so 

their small size indicates small jaw muscles. They are also areas of small stress in the skull, so in 

this subfamily, at first glance it would imply a lot of stress was present in their skulls due to the 

small relative openings. The teeth in this subfamily, as seen in Figure 7, are simple, conically 

shaped, and re-curved, tooth projecting anteriorly. When the jaws are completely adducted they 

interlock. The function of this forward projection of teeth is universally accepted as being used to 

capture prey by spearing them initially and swallowing them whole (Cranfield 2000). A 

primitive condition that this subfamily kept while the other families of non-pterodactyloid lost 

Figure 7 Rhamphorhynchus skull. Member of the 

subfamily Rhamphohynchinae. Rhamphorhynchus 

muensteri. Hone, Habib, and Lamanna 2013 
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was their torso being longer than their skull length. This conserved ancestral trait would have 

been a disadvantage for flight but their long narrow wings versus their estimated mass, a highly 

contentious topic in pterosaur research, would have still given them excellent gliding ability. 

Narrowed wings was the change in flight style in non-pterodactyloids that would let later 

pterosaurs use less energy and eventually become more efficient fliers by gliding. Gliding was a 

major evolutionary step towards what pterosaurs would ultimately be capable of in the air in the 

Cretaceous. Their forelimbs are the longest of all non-pterodactyloids serving to lengths the 

wing. This subfamily had a plesiomorphic long tail but in this group they had the most vertebra 

producing the longest tail lengths relatively. Their sister subfamily had similar body 

characteristics but their skulls are what set them apart.  

Scaphognathinae. This subfamily had a large range in sizes from 0.7 to 2.5m. Figure 8 

shows their chunky skulls and 

perpendicular teeth in the jaws. 

The teeth are fewer in number, 

shorter, more robust, and are 

perpendicular to the surface of the 

jaws. This would indicate that a 

different method for capturing prey 

was used from their sister subfamily. The increase in robustness would suggest that they preyed 

upon perhaps larger or prey that put up more of a fight than the prey items that 

Rhamphorhynchinae dined on. Their neck and shoulder girdle show increased robustness but the 

proportions in various lengths are almost the same as Rhamphorhynchinae (Cranfield 2000).  

 

Figure 8 Scaphognathus skull. A member of Scaphognathinae. Scaphognathus 

crassirostris. Talkrational.org 
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Monofenestrians 

Wukongopteridae. The first specimen found of this family was named Darwinopterus 

modularis, reflecting the father of evolutionary theory and the modular evolution seen in the 

animal. Many more specimens of this species and new genera have been described, making it a 

very well understood animal osteologically (Lü et al. 2011). This family has been recovered from 

the Tiaojishan Formation in western China dating them to about 158 Ma, although the dating of 

this site is somewhat contentious. Another locality producing this family is in Britain with 

specimens dating from about 167 Ma and 154 Ma. This makes all of them late Jurassic animals 

and existing before any know pterodactyloid. In fact, the Tiaojishan Formation is host to other 

well-known non-pterodactyloids such as Pterohynchus, Qinglongopterus, and Fenghuangopterus 

(Witton 2013).  

A remarkable discovery found with a Darwinopterus specimen was an egg. The embryo 

was not preserved but it incontrovertibly showed the gender of the animal, and was actually the 

fourth pterosaur egg found. It is important to note that this family was not a short lived 

transitional pathway from non-pterodactyloid to pterodactyloid. If all the reports of 

wukongopteridae individuals are correct then this family existed for roughly ten myr and likely 

expanded across all of present day Asia (Lü 2010; Lü et al. 2011; Wang et al. 2010).  

 Despite their importance for showing the transition from non-pterodactyloids to 

pterodactyloids, known specimens were actually small when compared to pterodactyloids and 

even non-pterodactyloids. The juveniles found in China range from 0.65 to 0.8 meter wingspans, 

but one adult specimen, Cuspicephalus, has a predicted wingspan of over two meters (Wang, 

Kellner, Jiang, and Meng 2009; Lü et al. 2010, Martill and Etches 2013). A depiction of a 

Darwinopterus modularis in flight illustrated by Witton, Figure 9. Their skull and neck anatomy 
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is remarkably similar to pterodactyloids. Their skull was elongated with conical shaped teeth, in 

some cases triangular, few in number and restricted to about the front half of the jaws. Their 

quadrate bone angles posteriorly, as seen in pterodactyloids, with the foramen magnum 

repositioned to the back of the skull, also a very typical pterodactyloid feature.  

Minus the elongation of the skull, the most noticeable feature that would normally 

specify pterodactyloid is the conflation of the nasal 

opening and antorbital fenestra into one large hole, 

nasoantorbital fenestra. The dorsal surface of the 

skull above the nasoantorbital fenestra, orbital, and 

superior temporal fenestrae has a short fibrous bony 

crest that very likely had a large soft-tissue crest.  

A feature seen in many pterodactyloids is a 

fused mandibular symphysis (Witton 2013). The 

cervical vertebrae also show pterodactyloid 

characteristics such as low neural spins and the lack 

of cervical ribs. This last feature is not restricted to 

pterodactyloids and wukongopteridae, but also seen in the frog skull-like Anurognathus 

discussed earlier. There is no question that the skull and cervical vertebrae have a host of 

pterodactyloid traits and would no doubt be identified as a pterodactyloid with only the skull. 

However, their post-cervical anatomy is very characteristic of non-pterodactyloids, except for 

one feature, the elongated pteroid bone, which is relatively short (Lü et al. 2010).  

 Early pterosaurs had a short pteroid relative to its other wing components, while derived 

forms shared an elongated pteroid adapted for a longer length likely as part of their adaptation to 

Figure 9 Darwinopterus illustration. By Mark Witton. 
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gliding and soaring rather than being active fliers. The rest of their post cervical anatomy is very 

similar to that of rhamphorhynchidae, including the presence of a long tail. They do however 

have shorter wingfingers than found in rhamphorhynchidae (Witton 2013). In 2009, when the 

first specimens were described, an initial analysis of their modular evolution was formulated and 

discussed a two phase evolution from non-pterodactyloid to pterodactyloid bauplans, seen in 

Figure 2 (Lü, Unwin, Jin, Liu, and Ji 2009). Essentially hypothesizing the change in skull, neck, 

and pteroid underwent changes during a phase one of adaptation followed by changes in the post 

cervical anatomy, that then characterize most pterodactyloid taxa.  

 The flight and terrestrial locomotion of this family has not been formally investigated but 

their short wings, large pteroid (suggesting a large propatagium), and broad wings would initially 

infer a reasonably agile flier capable of high angle take-offs and tight turning ability (Lü et al. 

2010). This type of flight would be expected in densely vegetated settings, which is the type of 

flora, characterized by the lacustrine deposits, in the Tiaojishan. Movement on the ground has 

not been studied either but limb proportions are low compared to pterodactyloids. With their 

apparent high angle launching ability and their small size, they may have used small bursts of 

flight to get around like small modern birds. At some point in the middle or late Jurassic, 

wukongopteridae-like (or closely related) pterosaurs adapted these same traits and additional 

traits to their post cervical anatomy.  

This second major taxa of pterosaurs consists of about two-thirds of all known pterosaur 

species, most evidently due to their dominance of the skies and global distribution, allowing for a 

better fossil record than the more ancient and more restricted geographical distributions of non-

pterodactyloids. This group is highly diverse with environmental specialists for terrestrial 

settings and groups highly adapted for aerial lifestyles. The latter group of aerial adapted 
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pterosaurs are collectively placed in a taxa called ornithocheiroidea, and the terrestrially honed 

pterosaurs are placed in the taxa lophocratia.  

Ornithocheiroidea 

Ornithocheiridae. Without a doubt the most diverse and abundant of all families of 

pterodactyloids with a 55 Myr existence was this group of soaring pterosaurs. They are also the 

best studied morphologically and functionally. They have a global distribution with specimens 

on every continent except Antarctica. More specifically, specimens have been found in the 

Cambridge Greensand of England dating to ~110 Ma, the famous Santana Formation in Brazil 

between 125 and 100 Ma, the Tarrant Formation in Texas dating to ~97 Ma, a species in 

Morocco found in the Kem Kem Beds dated to ~105 Ma, and specimens found in Australia in 

the Toolebuc Formation dating to ~110 Ma. See Witton (2013) for a detailed listing of references 

of genus locales. However, only two localities have produced complete specimens, the Santana 

and Crato Formations in Brazil.  

 Specimens from these sites give us wingspans of four to seven meters, although some 

have estimated some up to nine meters (Dalla Vecchia and Ligabue 1993). Their skulls are very 

elongate with a long rostrum and a nasoantorbital fenestra taking up only about the second half 

of the skull. The anterior portions in some species have a rounded crest seen in Figure 5. The 

anterior crest in species start at the anterior tip of the skull while other species are ten plus 

millimeters back from the most anterior tip of the rostrum (Witton 2013). Some of these species 

in this family lack these crests completely. All bear rows of teeth running the anterior two-thirds 

of the upper jaw and half of the lower. Their teeth increase in size by two or three then begin 

reducing in size towards the back. This dental pattern is a characteristic fish grabbing dentition, 

with piscivory likely being their primary diet (Witton 2013). Some species possessed 
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supraoccipital crests at the posterior end of their skull lacking any observable fibrous bony 

texture that would indicate the extension of a soft tissue crest (Unwin 2005). Their lower jaws 

typically have a mandibular symphysis running the anterior 30 percent. A lot is known about 

ornithocheiridae skulls because some 3D preserved specimens have been found; Witmer CT 

scanned the braincase and published findings on their brain morphology giving us some detailed 

neuroanatomy on pterosaurs (Witmer, Chatterjee, Franzosa, and Rowe 2003).  

 Post-cranial material demonstrates elongated cervical vertebra with tall neural spins. An 

important trait hypothesized to have allowed pterosaurs to begin to reach larger sizes, is the level 

of pneumatization in their skeleton. They possessed extensively pneumatized skeletons along 

with pteranodontia and azhdarchoidea. Their whole vertebral column, trunk components, and 

forelimbs are filled with space and have pneumatic foramen in specific locations characterizing 

species (Claessens et al. 2009). Mature individuals have a fused notarium, consisting usually of 

six dorsal vertebra and seven non-fused dorsals posterior to the notarium. This can vary; some 

species have dorsal vertebra being ‘sacralized’ into the pelvic girdle region (Wellnhofer and 

Kellner 1991; Kellner and Tomida 2000; Veldmeijer 2003).  

 A notable feature of this family are their forelimbs, which are very long in length in 

proportion to their body. Their forelimbs were about five times longer than their legs. Their 

robust pectoral construction, very similar to istiodactylidae, had to be incredibly sturdy to handle 

the forces generated by the wings and be capable of anchoring the muscles necessary to use the 

wings in flight (Habib 2008). The deltopectoral crests on the proximal end of the humeri are 

characteristically warped distally in ornithocheiridae. The wingfinger is the largest seen in 

pterosaur groups, having reached 60 percent of the entire wing length (Witton 2008a). They have 

slender femora and tibia were nearly equal length. The femora had a femoral head almost in-line 
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with the femoral shaft. The small nature of their legs and proportions of their enormous wings, 

along with the high concentration of their fossils in marine deposits, strongly imply marine 

soarers (Padian 1983). Their wing shapes are similar to modern oceanic birds that use external 

sources of lift to remain airborne for extensive amounts of time (Witton 2008a). It is generally 

accepted that pterosaurs were quadrupedal animals on the ground, but the level of terrestrial 

ability is variable among families (Habib and Witton 2011; Witton 2013). Being so strongly 

adapted for flight left ornithocheiridae with disadvantages. Most noticeably is their thin and short 

legs compared to the length of their forelimbs. The short hindlimbs govern their terrestrial 

mobility, restricting their pace to the hindlimbs’ gait rather than the forelimbs’ (Wang, Kellner, 

Zhou, and Campos 2005). This limb configuration would make them slow and likely very 

awkward walkers, also implying a very aerial dominated lifestyle.  

Pteranodontia. Within this family is a very 

important clade of pterosaurs. Pteranodontia 

consists of two of the most highly adapted genera 

for flight in the fossil record. The first to be 

discussed, Pteranodon, is the best recorded and 

most abundant genus having over 1,100 specimens 

housed around the world. A skull reconstruction of 

Pteranodon longiceps from the Natural History 

Museum is shown in Figure 10. Its specimens are 

restricted to the Late Cretaceous ~86 Ma mostly 

found in the Americas. The second is Nyctosaurus 

(Figure 11), a very closely related genus that has a 

Figure 10 Pteranodon longiceps skull and cervical series. 

Natural History Museum. 

Figure 11 Nyctosaurus gracilis skull cast. Sternberg 

Museum. 
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similarly fine-tuned anatomy for flight as Pteranodon, but with some very discernible 

differences (Bennett 2003b). The first is the hyper elongated supraoccipital crest that projects 

posterodorsally that bifurcates forming a massive 'V'. Figure 6 has an illustration of its cranial 

morphology. A second difference, and characteristic of only two genera including Anurognathus, 

is the lack of a fourth phalanx in the wingfinger. The functional gain, if any, is unknown. The 

wingspan of species in this clade are two meters to nearly seven meters. All individuals lack any 

dentition and are some of the derived pterosaurs that became edentulate along with all 

azhdarchoidea. Despite that fact the two mentioned genera of this clade are the best suited for 

flight only Pteranodon's flight mechanics have been studied extensively (Hankin and Watson 

1914; Kripp 1943; Brumwell and Whitfield 1974; Stein 1975; Brower 1983; Hazlehurst and 

Rayner 1992; Chatterjee and Templin 2004; Elgin et al. 2008; Witton 2008a; Sato et al. 2009; 

Witton and Habib 2010).  

Istiodactylidae. This family of pterosaurs were a group of early-cretaceous animals with 

very long wings with relatively tiny bodies. Their specimens have been found off the coast of 

England in the Wealden deposits dating to 120 Ma. This family of pterosaurs see a range of 

wingspan from ~2.4 to 4.3 meters (Wang, Campos, Zhou, and Kellner 2008; Andres and Ji 

2008). Istiodactylidae anatomy, particularly the skull, is autapomorphic. The most obvious trait, 

seen in Figure 12, is the massive 

nasoantorbital fenestra. This fenestra is the 

largest seen in any pterosaur and Istiodactylus 

latidens is the species with the largest in this 

family. Typically bordering this fenestra, 

dorsally and ventrally, was thin bone. This 
Figure 12 Istiodactylus latidens illustration. It had a 4.2 meter wingspan. 

A drawing by Mark Witton. 
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would have made their skulls fairly fragile compared to some other families of pterosaur, 

suggesting a small prey diet (Witton 2012). Their dentition was restricted to the anterior third of 

the jaws, and comprised ~12-15 teeth on each side of a jaw. The teeth were short, triangular, and 

laterally compressed, all of which sat in front of where the nasoantorbital fenestra began nearly 

forming a continuous cutting surface. The rostrum is rounded in cross section and flattens out at 

the tip into a blunted end. Their elongate skull is inclined at the posterior end, synapomorphic to 

all pterodactyloids having the tilted quadrate bone. Their orbital sockets were also lengthened, 

stretching along the posterior wall of the nasoantorbital fenestra with the eye at the superior 

portion. Pterodactyloid skulls are characteristically very narrow compared to their length but 

istiodactylidae are an exception; the I. latidens skull is nearly 30 percent its skull length at the 

jaw joint. A reconstruction of I. latidens can be seen in Figure 12.  

Lophocratia 

Ctenochasmatoidea. This is the first of the pterodactyloids that were more terrestrially 

adapted rather than being more suited for the air. They generally had more robust limbs, longer 

hindlimbs, and a deltopectoral crest that was rather simple, inferring less usage (Unwin 2003). 

Their anatomy suggests that they 

waded in shallow water like 

shorebirds picking prey items, or in 

some specialized cases, filter 

feeding as seen in Pterodaustro.  

Their fossils are mostly found in 

Late Jurassic to Early Cretaceous 

deposits in Asia, Europe, South 

Figure 13 Pterodaustro guinazi illustration. Skeletal model and recreation by Mark 

Witton. Note the row of long and packed teeth that acted as filters. 
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America, Africa, and North America with special attention in Germany's deposits including the 

Solnhofen Limestone dating to ~150 Ma. Their entire depositional range is 150 to 105 Ma giving 

them a very large span.  

 Unusual to other pterodactyloids is the restriction of pneumatization to the skull and axial 

skeleton. This and the lack of the substantial body size that other families reach would initially 

indicate a correlation (Claessens et al. 2009). Without the expansive network of hollowed bone 

they could not reach large sizes, but since there are no adults for many of the species in this 

family may be the reason we don't see any pneumatization in the limbs as seen in other families. 

Adults may develop expanded pneumatization and larger sizes. The largest known specimen, 

inferred from skull material, is estimated at 4.2 meters wingspan seen in Morganopterus (Lü, Pu, 

Xu, Wu, and Wei 2012). All other species have wingspans around two meters.   

Figure 14 Pterodactylus antiquus dorsal/sacral skeletal schematic. Both dorsal and ventral view along with a lateral view. This is the 

main species that will be analyzed in Chapter 2 of this thesis. Created by Mike Hanson. 
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This family of pterosaurs is variable and diverse. They are a very well documented group 

(Wellnhofer 1970; Fabre 1976; Bennett 1996b; Bennett 2007a; Chiappe, Kellner, Rivarola, 

Davila, and Fox 2000). The skulls are some of the most variable parts of this family, with a wide 

variety of quantity and shape of dentition, space between the teeth, and their function. The dental 

count ranges from 40 in Pterodactylus to 260 in Ctenochasma, the hallmark species of this 

family. The former's dentition were typical of grabbing prey items from the water or ground 

surface and swallowing them whole, while the latter’s teeth were recurved and long and likely 

used to 'comb' out small food items from the water (Unwin 2005). Pterodaustro has nearly a 

thousand teeth with a diameter of 0.3 millimeters and 20mm long that was a filter feeder like 

modern day flamingos seen in Figure 13 (Chiappe and Chinsamy 1996). The feeding types 

discussed here led to the selection pressures of their post-cervical adaptations. Their diversity 

have some typical features that are shared among most species. The first is an expanded 

neurocranial region posteriorly reclining the back of the skull causing the occipital face to face 

ventrally (Witton 2013). Most species have cranial crests and although some lack bony 

projections some specimens show soft-tissue crests without any bony crest supporting it 

(Tischlinger and Frey 2010).  

 Ctenochasmatoidea trunk skeletons have some unusual traits that are unique to 

pterodactyloids (Figure 14). The first is lack of fusion in the dorsal vertebra; there is no notarium 

in this family. This lack of fusion would have limited their ability to handle the stresses of flight 

demands. The alternative way they developed to handle the stresses is the long scapula that 

instead of articulating perpendicularly with the notarium, as in other groups of pterosaurs, ran 

medially down the length of the vertebra attaching itself to the thoracic region (Bennett 2003a). 

Their humeri were half the length of their trunks which is a very low ratio among any group with 
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a simple deltopectoral crest (Bennett 2007a). Entire wings are only known for a few species, but 

it seems that those preserved had wingfingers comprising of nearly 60 percent of the entire wing. 

In ctenochasmatoidea we see much longer and robust feet that would have been much more 

advantageous for terrestrial locomotion, especially for shallow water wading (Witton and Naish 

2008). Their similar limb proportions also would have been advantageous giving them greater 

maneuverability and efficiency on the ground. 

Azhdarchoidea. Easily the most intriguing family of pterosaurs was this group of the 

most massive flying reptiles (Figure 15). Standing taller than modern giraffes, they may have 

eaten small mammals and dinosaurs. They had some of the longest skulls of nonmarine 

tetrapods, and flight analyses clock them at 

reaching speeds in the air at 50 to 60 mph with their 

nearly 40 foot wingspans (Witton and Habib 2010). 

Azhdarchoidea have been found in the 

Maastrichtian deposits of Jordan, the United States 

including Montana, New Mexico, Oregon, and 

Texas, Uzbekistan, Russia, China, and Morocco 

(Lawson 1975b; Buffetaut, Lauret, Le Loeuff, and 

Bilotte 1997; Padian and Smith 1992; Godfrey and 

Currie 2005; Nessov 1984; Averianov, Arkhangelsky, and Pervushov 2008; Padian and Smith 

1992; McGowen, Padian, De Sosa, and Harmon 2002). They range from ~112 to 65 Ma, being 

the very last group of pterosaurs.  

 Unfortunately, azhdarchoidea are also some of the least known due to their highly 

fragmented fossil record. Their range of wingspan length goes from the smallest at ~2.5 meters 

Figure 15 Quetzalcoatlus sp. illustration. Mark Witton.  
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to 13 meters (Frey and Martill 1996). Some species of azhdarchoidea have typically proportioned 

skulls for pterodactyloids, but some became up to ten times longer than wide as Zhejiangopterus 

and Quetzalcoatlus sp. Mostly anterior portions of skulls are known, but they reveal that the eye 

stays very close to the jaw joint, in a ventral position compared to almost every other pterosaur. 

The jaw joint itself is interesting because it appears to be very robust. A specimen of 

Zhejiangopterus has a preserved posterior cranial region and shows a rotated occipital face 

oriented ventrally (Unwin 2003). This rotated facet would indicate that the cervical vertebra 

would have articulated at a rather sharp angle with the skull (a feature also seen in derived 

ctenochasmatoidea, Unwin 2003). They had very long mandibular symphysis stretching 60 

percent of the lower jaw. Their cervical series still only had seven vertebra, but they were hyper-

elongated to such a degree that they nearly surpassed the length of their skulls, which in adults 

was approaching three meters (Buffetaut et al. 1997).  

 The azhdarchoidea trunk skeleton was tiny in comparison to their skull and neck at less 

than a meter long (Witton and Habib 2010). Their bodies were robustly built however. They had 

large surface areas with enough room to pack on more muscle than what was needed to fly itself 

and more importantly, take-off and land (Paul 2002). Their humeri and cervical vertebrae are the 

most common azhdarchoidea remains found. Humeri reached lengths of almost six meters long 

and 80 centimeters in diameter at the shaft; they were enormous. Witton noted that the diameter 

was comparable to that of a two tonne hippopotamus indicating the level of stress and 

compression that this animal put onto the forelimbs (Witton 2013). The wing metacarpals were 

2.5 times longer than the humeri, which is the largest ratio of any pterosaur (Witton 2013). Like 

most other pterosaurs, their wingfinger consisted of about half the entire wing with reducing 

phalanx lengths more distally. A few crushed specimens show that their pelvis was small and 
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compact. The hindlimbs were long with the femora 80 percent the length of the tibiotarsus 

(Unwin 2003). They were actually quite long and gave azhdarchoidea very tall statures 

comparable to other pterosaurs. Their large aspect ratio would have given them soaring abilities, 

and statistical analyses with aerodynamic mechanics has shown they were very much capable of 

launching and maintaining flapping flight for enough time to find external sources of lift (Witton 

and Habib 2010). It is important to note that this analysis, and all other flight analyses, are based 

on very contentious mass estimates. Terrestrial locomotion in this family hasn't been given much 

attention, but with such long extremities it is thought that they may have walked similarly to 

giraffes moving both left limbs forward at the same time followed by the same with right limbs 

(Witton and Naish 2008).  

Growth of Animals 

Surface Area – Volume Paradox. During an animal’s growth history (ontogeny) it 

experiences changes in size and shape developmentally. These changes can also be tracked 

during the evolution of taxa through time. As an individual grows its proportions typically 

change accounting for what is called the surface area – volume paradox. Simply, the ratios 

between the surface area (SA) and volume (V) of a growing animal do not increase linearly. 

Instead, the ratio of the SA and V gets smaller with the SA getting smaller while the V gets 

larger. For example, consider three cubes; cube A has a length (L) of 2, cube B has a length of 3, 

and cube C has a length of 7. Cube A will have a SA=24 and V=8; Cube B: SA=54 and V=27; 

Cube C: SA=294 and V=343. These examples demonstrate how the increase in L²=SA and L³=V 

cause rapid changes in V compared to the SA of a cube or an animal.  

Typically in animals, you will see ‘positive allometry’ when lengths and SA increases to 

compensate for the cubic increase in mass. If a mouse was scaled up ‘isometrically’ (no change 
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in proportions or shape) its legs would break just trying to support its weight while standing 

upright. This is why an elephant has proportionally thicker limb bones to account for the large 

mass it has at its size. Conversely, ‘negative allometry’ is also seen where the proportions of a 

particular area decreases relative to the rest of the body during ontogeny.  

Allometry and Isometry. The mathematical bases for calculating scaling relationships 

(allometry and isometry) is described with: [𝑦 = 𝑎𝑥𝑏] = [log (y) = log (a) + (b) · log (x)], with [a 

= y-intercept, b = slope], using the natural log of the data (Huxley 1932; Small 1996). When the 

slope is equal to 1, the variables are showing isometry with the same proportional changes. 

When the slope is less than 1 it is showing negative allometry with the ‘y’ variable having 

smaller change than the ‘x’ variable.  Positive allometry is seen when the slope is greater than 1 

when the ‘y’ variable has larger change than the ‘x’ variable. All allometric relationships are due 

to necessary changes in the body to maintain functional efficiency with increase in size, for 

example, the limbs of mice and elephants. Another example are the wing elements of a pterosaur 

compared to its axial skeleton during ontogeny.  

Changes would need to occur with the wing elements to increase its brachiopatagium 

(wing-membrane) SA accounting for their increase in volume (and mass) as they grew and as 

they evolved into adults and larger, more derived, forms. Since the surface area is squared, 

isometry for an increase in SA is 2. So as a flying animal grows, its surface area of the wing will 

need to be greater than 2 to have positive allometry increasing proportionally with the increase in 

body volume/mass which is increasing cubically. Positive allometry is therefore the expected 

allometric relationship for increase in body size with wing surface area in pterosaurs.  
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Conclusion 

 Pterosauria is a highly morphologically varied clade of flying reptiles that has not had 

their variation described on a broad scale quantitatively. Using methods such as PCA and 

multivariate allometry statistics will give us insight into what was happening to their osteology 

as selective pressures changed their anatomy for different lifestyles. PCA should be able to break 

down what the major veritable traits were in pterosaurs apart from size, which will typically 

always be the first principle component describing any animal’s data set. At first glance, Unwin 

showed that Pterodactylus has an isometric ontogeny while other groups are allometric, which is 

found in most animals (2003). In Chapter 2 the allometry and isometry of Pterodactylus antiquus 

and its close relative Aurorazhdarcho micronyx will be investigated and compared.  
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CHAPTER TWO 

 

ONTOGENETIC ALLOMETRY OF SKELETAL ELEMENTS AND SURFACE AREA 

OF PTERODACTYLUS ANTIQUUS AND AURORAZHDARCHO MICRONYX 

 

Introduction 

 

Since Peter Wellnhofer’s 1970 monograph on Solnhofen pterosaurs was 

published, the data collected has been used to test hypotheses for validity of taxonomy, 

conspecific or congeneric relationships, and studies of ontogeny (Mateer 1976, Bennet 

1996b, Jouve 2004, Bennett 2013). The continued contention of generic relationships and 

possible sexual dimorphism of the species Pterodactylus antiquus and Aurorazhdarcho 

micronyx are examined in this study. The longitudinal length data published by 

Wellnhofer and corrected by Bennett (2013) are used in a Principal Component Analysis, 

linear regression with calculated geometric mean, and for the schematic reconstructions 

of their wings to calculate surface areas for an additional linear regression analysis and 

layered schematic analysis.  

A typical problem with fossil collections is the quantity of individuals of a 

species. To compound the problem is the lack of completeness of the individuals within a 

species that have been found. This problem has mostly precluded intraspecific analyses 

of species variation in the fossil record, including pterosaurs. However, because of their 

abundance in the Solnhofen Limestone of Germany, Pterodactylus antiquus (first 

described by Collini in 1784) is one of the largest collection of individuals within the 

same species with specimens nearly complete (Wellnhofer 1970). Also included in this 

monograph was Aurorazhdarcho micronyx (formally Pterodactylus micronyx; Jouve 

2004; Bennet 2013) in similar abundance and completeness from the same horizon and 
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locality; being found in Lower Tithonian, Solnhofen LS, Malm Zeta 2, of Eichstätt, Bavaria, 

Germany.  

Studying these specimens quantitatively using multivariate methods is not new, but better 

software and understanding of the mathematics is allowing further and more detailed 

interpretations to be made on Wellnhofer’s data. Mateer used the same dataset for Pterodactylus 

antiquus (and formerly P. kochi) to assess possible intraspecific and interspecific relations 

among species that are now considered conspecific to P. antiquus (1976). Jouve used tooth count 

and skull length to propose that P. kochi was conspecific and a junior synonym of P. antiquus 

(2004). Bennet used the length data of Pterodactylus to bolster the synonymy of P. kochi with P. 

antiquus and re-diagnosed the Solnhofen Pterodactyloid fauna. In the studies by Mateer (1976) 

and Bennet (2013) Principle Component Analysis was used to make interpretations and develop 

hypotheses for the relationships of the Pterodactyloid fauna from the Solnhofen beds. While both 

of these studies used the same data and multivariate method (PCA) as the analysis presented 

here, the present study is more detailed and has a more complete experimental design. Further 

interpretations will be made that reveal new and interesting results regarding the ontogeny, 

shape, and relative size of Pterodactylus antiquus and Aurorazhdarcho micronyx wing surface 

area.   

Allometry and Isometry 

The size variation in morphometric variables is usually associated with variations in 

shape due to metric characters being heavily correlated to other characters. There are then three 

levels of allometry that can be distinguished: static allometry, ontogenic allometry, and 

evolutionary allometry.  
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Static allometry is the variation that can be found among the individuals of the 

same population and age class (Gould 1975). This allometry can be easy to study in a 

species with discrete growth stages and with determinate growth. The second, 

ontogenetic allometry, calculates the variation of characters of a species during growth. 

Isometry (simple allometry) occurs with the ratio of two variables staying constant 

(Huxley 1932, Shae 1985). Positive allometry occurs when the dependent variable 

increases in size faster than the independent variable while negative allometry has the 

dependent decreasing in size relative to the independent variable. There are three types of 

data typically used with ontogenetic allometry: longitudinal data, cross-sectional length 

data with known growth stages, and cross-sectional data with no known growth stages 

(Cock 1966). Evolutionary allometry analyzes the change in characters among species 

with a common ancestor or a known evolutionary lineage and is a tool to analyze changes 

at a phylogenetic level. With this level of allometry it is important to use specimens of 

the same ontogenetic stage to avoid confounding evolutionary change due to 

heterochrony.  

All levels of allometry are empirical based using measurement data in its 

analyses. When bivariate plots are produced it was realized early on (Huxley 1932) that 

the growth of an organism typically follows a curved line. When the data is 

logarithmically transformed the trend becomes more linear. The power function that 

describes allometry [𝑦 = 𝑎𝑥𝑏] when log-transformed [log(y) = log (a) + (b) log(x)] 

where x and y are the character measurements, a = y-intercept, and b = slope, will be the 

mathematical basis used in this study (Huxley 1932). The special case of isometry [b = 

1], describes proportional increase in both characters considered. Positive allometry [b > 
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1] describes (log y) scaling faster than (log x). Negative allometry describes (log x) scaling faster 

than (log y) (Klingenberg 1996).  

Growth: Surface Area – Volume Paradox 

As an individual grows it experiences changes in size and shape. This is partially due to 

the different scaling of the surface area with the volume during growth. The area (sa²) increases 

squared compared to the cubic (v³) increase in volume making them non-linear and is known as 

the surface area – volume paradox (Schmidt-Nelson 1984). A simple example would be a cube 

increasing in size. Starting at a length of [x = 2], the initial [surface area = 24] squared units 

while the [volume = 8] cubic units. If length increases to [x = 4], the new [surface area = 96] 

squared units and [volume = 64] cubic units. Just by doubling in length, the ratio of volume to 

surface area went from [1/3] to [2/3]. As an animal grows it will have a positive allometry in 

surface area, and volume will always have a positive allometry with surface area. The volume 

Figure 16 General depiction of a pterosaur with labeled features and bones. Elements used in the evolutionary allometry analysis are 

bolded (n = 14). Skull; Mandible; Cervical series; PCRW: dorsal/sacral series; H: humerus; U: ulna; R: radius; IVMc: 4th metacarpal; 

Wing phalanges I-IV F: femur; T: tibia; Pr: Propatagium; Pt: pteroid; Mc: metacarpal; Pc: proximal carpal; Dc: distal carpal; Br: 

brachiopatagium. Wilkinson et al. 2006.  
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increases much more rapidly than the surface area of the cube and the same effect is seen 

in organisms increasing in size. 

Experimental Design 

Positive allometry would be expected for any ontogenetic analysis of surface area 

(or regional surface area) or volume for any species. When this is applied to pterosaurs, 

specifically the surface area of their main wing membrane, the brachiopatagium (Figure 

16: Br), should have a clear positive allometry seen in the membrane relative to the 

growth of the animal as a whole. Pterosaurs will experience the same increase of squared 

surface area versus cubic volume increase as any growing animal. Its increase in volume 

is going to be correlated with its increase in mass. The null hypotheses for this study: 

the increase in mass during growth negatively effects the wing carrying capacity by 

adding load (per squared unit) and must be compensated by a proportional increase 

in the wing membrane’s surface area to account for redistribution of the added 

mass. Positive allometry will be seen in the forelimb and distal wing elements along 

with the hindlimb elements accounting for the breadth of the brachiopatagium 

length. Without a live pterosaur we cannot get accurate volume/mass measurements, so 

another proxy for size increase is necessary. In this study, the ln-geometric mean (ln-GM) 

of each individual will be calculated from 14 longitudinal measurements representative of 

the whole animal [GM = √𝑥1 · 𝑥2 · … · 𝑥ᶰ
N

], n = 14]. The ln-GM is an indicator of 

isometry. When other variables are compared to it, levels of positive and negative 

allometry can be assessed (O'Keefe, Meachen, Fet, Brannick 2013).  

This study concerns the allometric growth of Pterodactylus antiquus and 

Aurorazhdarcho micronyx using14 longitudinal measurements to analyze their 
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ontogenies and serves as a comparative study of the two species to investigate long standing 

contentions about their relationships. Each of the 14 variables for all 39 specimens will be 

assessed with a multivariate analysis and bivariate linear regression using ln-GM. These analyses 

will calculate the allometry for each of the 14 length measurements with the null hypothesis of 

positive allometry. Reconstructions of brachiopatagium flight membranes are used to 

preliminarily investigate the expectation of positive allometry in wing surface area against the 

overall growth of the two species intraspecifically. This bivariate linear regression will also use 

respective ln-GMs as a proxy for increased size for the calculated surface area.  

Materials and Methods 

All of the data collected for this study came from Wellnhofer’s 1970 monograph and 

Bennet’s 2013 article detailing corrections to measurements of the P. antiquus specimen: TM 

10341. The species Pterodactylus antiquus has 24 nearly complete specimens used here, and 

Aurorazhdarcho micronyx has 15 (raw data can be found in Appendix A). All the individuals 

from both species used are from Tithonian, Solnhofen LS, Malm Zeta 2 & 3, of Eichstätt, 

Bavaria, Germany. They are both within the Family ctenochasmatidae, within the Superfamily 

ctenochasmatoidea (Unwin 2003). Each of the 39 specimens have longitudinal measurements of 

14 elements of its axial and appendicular skeleton with 0.93 percent missing data (4/429). 

Missing data was estimated from the complete data of the specimens of the same species. The 14 

lengths used are: skull, mandible, cervical series, PCRW, humerus, radius, ulna, IVMc, 

phalanges I-IV, femur, and tibia; and are all labeled in Figure 16 (PCRW; praecaudale 

Rumpfwirbelsäule = combined dorsal and sacral vertebrae). A Mac OS X version 10.6.8 ran Jmp 

software version 6.0.3 for all analyses.  
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Principle Component Analysis (PCA) 

This multivariate analysis was first proposed by Jolicoeur (1963a) as means to 

make multivariate (4+ dimensional) plots more interpretable for three-dimensional minds. 

This analysis is the multivariate version of the allometry equation described previously. 

PCA is used to pull out the underlining structure within the multidimensional data cloud 

produced by four or more characters; in this study 14 variables are used. This process 

ultimately reduces the number of variables to be interpreted within its covariance matrix. 

It is done by geometrically finding the linear combination with the longest axis of 

variation in the data cloud, this new axis is called Principle Component 1 (PC1) and 

describes the largest amount of variation in the covariance matrix (Bookstein et al. 1985). 

PC1 can be described as the least-squares fit of the straight line to data points of log-

transformed, bivariate, and multivariate data (Jolicoeur 1963a; Jolicoeur 1963b).  

Multivariate analyses typically find that one dimension of the data contains about 

99 percent of the variation: PC1. The reason for this high percentage is nearly all the 

variation is due to variation in size (Klingenberg 1996). For this reason, only PC1 will be 

analyzed in this study. All 14 PCs generated in the PCA can be found in Appendix B. 

Each PC generates a coefficient for each variable and represents the cosine of the angle 

between the PC (1, 2, etc.) ‘axis’ and original axis of the respective variable. The 

coefficients of PC1 represent the increase in each variable relative to size which makes 

them the coefficients of the multivariate allometry equation (Jolicoeur 1963a; Jolicoeur 

1963b; Klingenberg and Zimmermann 1992; Pimentel 1979) and was termed the 

allometry vector by Shea (1985).  
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The following PCs are orthogonal to the former with decreasing size in variation and 

labeled PC2, PC3, etc., until 100 percent of the variation is described. The total number of 

dimensions (PCs) equals the number of variables used (Klingenberg 1996). PCA will take these 

(PCs) and rotate the coordinate system fitting the PCs as the new axes of interpretation.  

The ln-GM is not used in the PCA. However, a weighted GM of all variables could be 

calculated by multiplying the PC1 coefficients by the square root of n, (in this study [n = 14]). 

This calculated GM would compare the variables to a measure of overall size, similar to the 

bivariate linear regression described previously (Klingenberg 1996). This approach is not used, 

instead, the number of variables used here [n = 14] will be used to calculate isometry = [√1/14] 

so, [√1/14  = 0.26726] (O’Keefe et al. 2013). Each PC1 coefficient is standardized by dividing 

them all by isometric value for 14 variables, 0.26726. Standardization makes interpretations for 

allometry easier.  

Bivariate Linear Regression 

The second analysis tool used in this study uses the ln-GM, previously discussed, as an 

indicator for relative size growth, thus, an indicator of isometry (O’Keefe et al. 2013). Each of 

the 14 ln-length measurements were plotted against the ln-GM, serving as the independent 

variable in each case. The least-squares fit line (trend line) was calculated generating a linear 

equation for each of the 14 bivariate plots with both P. antiquus and A. micronyx side-by-side. 

The slope of these linear equations revealed the relative degree of allometry. The slopes were 

standardized to 1 by dividing them by 1 for relative comparison to the PCA coefficients of each 

variable. Coefficients of determination (R²) were calculated for each linear best-fit line along 

with standard error (SE) to the sample mean. Confidence intervals are calculated for P. antiquus 

and A. Micronyx with: [slope ± 2 x SE].  
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Wing Surface Area Reconstructions.  

Using a schematic from Wilkinson, Unwin, and Ellington (2006) angles between 

each element were measured and used as a standard to draw the elements of each of the 

39 specimens with their relative lengths (Appendix D). Then a straight line was drawn 

from the articulation points to the knee. The distal end of the fourth phalanx was 

connected to the distal end of the tibia with a straight line. The areas of the nine non-right 

triangles was calculated by hand measuring each of the three sides. All nine areas were 

added together for the total surface area. The ankle is the current accepted posterior end 

attachment of the brachiopatagium (Elgin, Hone, and Frey 2011). A straight line as the 

trailing edge was first proposed by Marsh (1882) and since then eight other trailing edge 

curves have been proposed (Elgin et al. 2011). No favored trailing edge configuration is 

currently accepted and cannot be integrated into this analysis.  

Acknowledging that pterosaur brachiopatagiums did likely have some level of 

concavity in the trailing edge because of the aerodynamic advantages, reconstructions 

generated for this analysis used straight trailing edges (Palmer and Dyke 2009). The 

calculations and interpretations will not give inaccurate conclusions if the degree of 

concavity stays consistent during the ontogeny within each species. This implies the over 

calculations for the surface area will also be consistent giving an accurate reflection of 

relative surface area estimates. Note: for a squared unit area, isometry = 2 due to the two 

dimensional area the variables are expanding in. All 39 specimen brachiopatagium 

reconstructions can be seen in Appendix E.  
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Results 

 

Principle Component 1  

The coefficients of PC1 are reported in Table 1. It is 

easier to make interpretations with the PC1 coefficients 

graphically and standardized to an isometry of 1 (Figure 17). In 

Table 1, the total amount of variation in PC1 for P. antiquus 

accounts for 98.376 percent of the variation of the data. The 

variation in PC1 for A. micronyx accounts for 92.397 percent. 

PC2, PC3, etc., account for < 3 and < 8 percent, respectively, of 

the data variation. They describe variability of shape change and 

will not be investigated here. All 14 PCs can be found in 

Appendix B.  

Skull, Mandible, and Cervical Series. It is well-known 

that derived pterosaurs had a heterochronous pattern where the 

skull, mandible, and length of the cervical series elongated. The 

expectation of high positive allometry of all three lengths, within both species, is evident in their 

high coefficients revealing positive allometry. P. antiquus had the coefficients: skull (1.095), 

mandible (1.189), and cervical series (1.240). A. micronyx had the coefficients: skull (1.221), 

mandible (1.393), and cervical series (1.137) (Figure 17). This would be contrasted with non-

pterodactyloids (more basal pterosaurs) who had relatively shorter skulls, mandibles, and 

cervical series lengths. They would likely display positive allometry but at a lower rate.  

Humerus, Ulna, Radius, and PCRW. With the expectations of the wing elements 

having positive allometry, it was surprising that all three forelimb bones were negatively  

Table 1 Principle Components Analysis 

Results. P. antiquus (P:) n=24 and A. 

micronyx (A:) n=15 showing only PC1. P: 

Allometry vectors showing variation in size 

and indicates isometry in dorsal/sacral series 

(PCRW), IVMc, phalanges I and II, and the 

femur. A: Allometry vectors is an indicator 

of size as well, showing that there was no 

isometry in this close relative of P. antiquus. 

Instead the skull, mandible, IVMc, and tibia 

show high positive allometry while the rest, 

particularly wing phalanx 4, have low 

loadings. Isometry=0.26726 for 14 

variables. 
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Figure 17 Principle Component One Coefficients. All PC1 coefficients are scaled to 1 by dividing each eigenvalue 

coefficient by isometry, 0.26726 P. antiquus and A. micronyx. The elements are side-by-side with a green bar representing 

isometry (= 1). The skulls, mandibles, and cervical series’ show positive allometry for both species. The forearms display 

negative allometry for both species. The hindlimbs for A. micronyx are positively allometric while Pterodactylus show 

isometry for the femur and sight positive allometry in the tibia. The wing finger phalanges are very variable between the 

two species, the isometry found in the phalanx I and II in Pterodactylus are noteworthy. The greatest variation in growth is 

the 4th metacarpal (IVMc). P. antiquus displays isometry while A. micronyx has very strong positive allometry. Linear 

regression isometry with CI<0.05 is indicated by * 
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allometric for both species. Recent allometry work of non-avian dinosaurs and american 

alligators has seen a similar pattern of negative allometry in the forelimbs (Reisz, Scott, Sues, 

Evans, and Raath 2005; Livingston, Bonnan, Elsey, Sandrik, and Wilhite 2009). Plesiosaurs, an 

extinct clade of marine reptiles, also show this negatively allometric trend in the forelimb 

elements (O’Keefe and Carrano 2005). Now, it is apparent in pterosaurs, and would suggest it as 

a plesiomorphic trait in Sauropsida. The reduction in size of the forelimb elements in P. antiquus 

and A. micronyx brings up the contentious debate of quadrupedal re-adaptation seen in derived 

pterosaurs. Recently investigated was the relationship of the evolution of bipedalism and 

negative allometry in the forelimbs (Livingston et al. 2009). It is likely that there is a strong 

correlation of pterosaur flight, their terrestrial locomotion, and the observed allometry found here 

that requires further analysis. For P. antiquus and A. micronyx, this means that as the individuals 

grew, their forelimbs counteracted the positive allometry expected in the wing length and wing 

surface area. P. antiquus had the coefficients: humerus (0.836), ulna (0.917), and radius (0.917). 

A. micronyx had the coefficients: humerus (0.739), ulna (0.819), and radius (0.819) (Figure 17). 

 The combined length of the dorsal and sacral vertebral series, PCRW, shows negative 

allometry in both species: P. antiquus (0.943), A. micronyx (0.832) (Figure 17). Relative to basal 

pterosaurs, derived pterosaurs’ trunk became more compact and fused. This rigid structure gave 

their wings a stronger frame that muscles could mount onto for use during flight. So the negative 

allometry found in these two derived pterosaurs is not unexpected. However, the negative 

allometry does play against the positive allometry expected in the breadth of the 

brachiopatagium. Numerous other flight aerodynamic variables are likely involved with the trunk 

length that are not considered here.  
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IVMc, Phalanges I-IV. Coefficients from PC1 for the IVMc are both very 

different between the two species and begin to reveal an interesting phenomenon in their 

distal wings. P. antiquus has a coefficient of 1.002 while A. micronyx has a coefficient of 

1.268, isometry and positive allometry, respectively with isometry = 1. This variable 

separates both species drastically. The growth of P. antiquus’ IVMc is static during 

growth while A. micronyx has high positive allometry in its IVMc. This element in A. 

micronyx follows the null hypothesis but the more distal elements beyond phalanx I do 

not.  

These elements also give marked delineations between both species. P. antiquus 

shows isometry in phalanges I-II (0.985, 0.985). This combined isometry forms an 

ontogenetic modular isometry within the distal wing of this species. Phalanges III-IV are 

negatively allometric (0.890, 0.880) at about the same degree as the forelimb elements. 

This overall isometry and negative allometry indicates that the entire wing length of P. 

antiquus had an overall negative allometry with modular isometry.  

 The ontogeny in A. micronyx’s distal wing is totally different than P. antiquus. Phalanx I 

in A. micronyx does have a positive allometry (1.089) but is noticeably smaller than its IVMc. 

The coefficient of phalanx II gets even smaller (0.851) moving into negative allometry and a 

pattern can begin to be seen with a similar decrease in coefficient size for phalanges III and IV 

(0.605, 0.448). This pattern found in A. micronyx and the overall negative allometry will be 

examined further in the bivariate linear regression analyses.  

Femur and Tibia. For both elements of the hindlimb in P. antiquus, an isometric 

coefficient is calculated in the femur (0.988) and positive allometry in the tibia (1.046) 

(Figure 17). This isometry gives a nearly static growth rate in the hindlimbs. Allometry in 
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the tibia would logically have most effect of brachiopatagiums breadth. Unlike the rest of the 

calculated elements, the tibia in P. antiquus seems to display a small degree of positive 

allometry. The hindlimbs in A. micronyx show different ontogenies in both elements. The 

femur’s coefficient displays small positive allometry (1.051) while the tibia has very high 

positive allometry (1.228) (Figure 17). These differences is another major character between 

both species. Most noticeably in the tibia, A. micronyx has enormous positive allometry in the 

lower leg which would likely have a big effect on the allometry in the breadth of the 

brachiopatagium.  

Bivariate Linear Regression 

Each of the 14 bivariate linear regression statistics are listed in Table 2. For P. antiquus, 

all the R²-values are >0.962 reflecting a great approximation of the linear slope to data points. 

Likely due to the smaller data set in A. micronyx, the wing phalanges III (0.741) and IV (0.681) 

had low R²-values while the rest of the elements were >0.884. The results of the PCA and 

bivariate linear regression can easily be compared having standardized each of the calculated 

values to 1. The overall pattern and sizes of the standardized values correlate well, affirming that 

the coefficients in PC1 are representative of variation in size. The confidence intervals for each 

slope are bracketed in Figure 18.  

Skull, Mandible, and Cervical Series. The findings of the bivariate linear regression are 

similar to the PCA. Again, positive allometry is calculated in the skull, mandible, and cervical 

length which are expected results for species of derived pterosaurs (Figure 18). However, the 

confidence intervals are the largest in this region for both species with large standard errors 

(Table 2). These large intervals allow for vague interpretations of the population mean for these 
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elements. Larger sample sizes of both species are necessary for a more accurate SE to be 

calculated.  

 Humerus, Ulna, Radius, and PCRW. The slopes of the forelimb elements and their 

confidence intervals are listed in Table 2. All the elements again reveal negative allometry with 

confidence intervals >0.05. So there are two analyses that show negative allometry in the 

forelimbs correlating with previous research of terrestrial and marine reptiles discussed in the 

PCA results (Figure 18). There is likely something more complex occurring with these two 

species and pterosaurs in general with these elements involving terrestrial and aerodynamic 

constraints that are keeping these bones from lengthening.  

 The combined dorsal and sacral series mirror the PCA analysis with negative allometry. 

This result was unexpected because of the increased compactness of derived pterosaur trunks but 

it is still a bizarre phenomenon in an animal that should be doing everything possible to increase 

surface area of the brachiopatagium. The negative allometry found in the forelimbs and PCRW 

both show that there are some other constraints within pterosaurs that had them work against 

their increasing mass during growth.  

IVMc, Phalanges I-IV. The linear regression for this element is remarkably 

isometric with a slope of 1.008 ± 0.042 (Table 2). In Figure 18, isometry is marked by a 

solid black line that the P. antiquus IVMc bar is resting on. This element has a >95 

percent confidence making it very interesting. In derived pterosaurs it is known that the 

IVMc hyper-elongates but in this species it had static growth selected for after previously 

undergoing levels of positive allometry in its evolutionary lineage. A. micronyx has a 

completely different ontogeny occurring in this element. Having a slope of 1.311 ± 0.160, 

it is well into positive allometry (Table 2). You can see the drastic difference in Figure 18  
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Table 2 Bivariate Linear Regression Calculations. Calculations of the In-transformed data in the linear regression analysis for principle 

component 1 for P. antiquus and A. micronyx. P and A are bold for elements that display isometry and CI<0.05. 
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Figure 18 Linear Regression Slopes. All slopes for P. antiquus and A. micronyx with error bars. The skulls, mandibles, 

and cervical series’ show positive allometry for both species. The forearms display negative allometry for both species. 

The hindlimbs for A. micronyx are positively allometric while P. antiquus show isometry for the femur and show 

positive allometry in the tibia. The wing finger phalanges are very variable between the two species; the isometry found 

in the phalanx I and II in P. antiquus are noteworthy. The greatest variation in growth is the 4th metacarpal (IVMc). P. 

antiquus displays isometry while A. micronyx has very strong positive allometry. Line P: P. antiquus; Line A: A. 

micronyx. Linear regression isometry with CI<0.05 is indicated by * 
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graphically between the IVMc ontogenies. The slope of A. micronyx’s IVMc was expected by  

the null hypothesis for this analysis but the degree of positive allometry is still quite extreme.  

 Phalanges I-II in P. antiquus have slopes and standard errors that give these elements 

statistically significant isometric values: 0.991 ± 0.042, 0.992 ± 0.032, respectively. What this 

does, as discussed briefly in the PCA results, is give P. antiquus ontogenetic modular isometry in 

its distal wing. All three elements (including the IVMc) in this modular segment have >95 

confidence for isometry, revealing a novel observation in pterosaurs. Phalanges III-IV in P. 

antiquus have a negatively allometric slope of 0.896 ± 0.048 and 0.886 ± 0.074, respectively. 

These elements are going against the null hypothesis and working to decrease the size of the 

brachiopatagium’s surface area.  

 Phalanx I of the A. micronyx has a slope of 1.130 ± 0.124 (Table 2). It is the last element 

in the distal wing to show positive allometry. As seen in the PCA results, the slopes decrease in 

size from the IVMc to phalanx IV. Phalanges II, III, and IV have respective slopes of: 0.888 ± 

0.136, 0.637 ± 0.208, and 0.471 ± 0.178 (Table 2). Although no isometry is found in A. 

micronyx, it has its own interesting ontogenetic pattern seen in Figure 18.  

 Femur and Tibia. The femur in P. antiquus is another element that reveals an isometric 

ontogeny with a slope of 0.994 ± 0.045. The tibia is positively allometric having a slope of 1.053 

± 0.026 (Table 2). Both of these slopes have >95 percent confidence. Although there is positive 

allometry in the tibia, it is small. So during its ontogeny there was not much relative length being 

added, so their effect on the breadth of the brachiopatagium was small. There is a different 

ontogeny occurring in the hindlimbs of A. micronyx. The femur has a slope of 1.092 ± 0.210. 

Although the confidence interval brackets it into isometry, a larger data set would likely tighten 

the SE revealing it to be positively allometric. The tibia, however, has a very large slope of 1.273 
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± 0.100 (Table 2). Unlike P. antiquus, the tibia of A. micronyx has a noticeable effect on the 

breadth of the brachiopatagium. In Figure 18, it is obvious to see the extreme positive allometry 

in the IVMc and tibia of A. micronyx, which is drastically different from P. antiquus.  

Surface Area of Brachiopatagiums 

 At the bottom of Table 2 are 

the calculated statistics of the two 

bivariate linear regressions of the 

surface areas for each species against 

their ln-geometric mean (n=24 for P. 

antiquus; n=15 for A. micronyx). The 

calculated surface areas for each of the 

39 specimens are listed in Table 3. The 

surface areas were ln-transformed and plotted against the ln-GM. The R²-values for both 

species were nearly 1 (>0.99) (Table 2). The R² describes the variance of the SA being 

nearly 100 percent predictable by the ln-GM for the brachiopatagium.  

Pterodactylus antiquus. As 

discussed in the Introduction, isometry 

with a squared unit area equals a slope 

of 2. The slope of P. antiquus reveals a 

negative allometry slope of 1.85 ± 

0.0670 (Table 2). This slope shows that 

as they grew, their brachiopatagiums 

were growing slower than the rest of 

Table 3 Surface Area Calculations. Calculations of the surface areas for 

each of 39 specimens. Scaled drawings are in Appendix C.  

Figure 19 Bivariate Plot of the ln-Geometric mean vs ln-Surface Area. P. 

antiquus’ slope is negatively allometric [In(SA) = 2.935 + 

1.851*In(Gmean)] with a SE = 0.0336. A. micronyx has an isometric 

slope [In(SA) = 2.501 + 2.010*In(Gmean)] with a SE = 0.0558.  

A. micronyx 

P. antiquus 
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their body proportionally. Figure 19 shows the slopes of both species. It appears that the slopes 

describe similar growth but they reveal different trajectories of ontogeny. P. antiquus’ membrane 

growth goes against the null hypothesis that the membrane surface area would have a distinct 

positive allometry with relative growth of the animal. This result may mean that the increased 

mass during growth was not having such a negative effect on its aerodynamics requiring positive 

allometry, or even isometry.  

The role of the hindlimbs is not apparent at first until it is understood that the 

brachiopatagium membrane runs the length of the trunk and down the legs to the ankle, that 

these elements did play a role in the breadth of the main wing membrane (Elgin et al. 2011). The 

exact amount of effect this linear direction had on the overall squared area is unknown.  

Aurorazhdarcho micronyx. An unexpected slope was calculated for A. micronyx 

brachiopatagium at 2.010 ± 0.110 (Table 2). These two slopes can be seen plotted against each 

other for both species in Figure 19. Despite the large standard error, it can be suggested that this 

species had a main membrane growth near isometry during its ontogeny. What is seen in A. 

micronyx is more complex. With the initially high positive allometry in IVMc at a slope of 1.31, 

the following wing phalanx slopes scale down in size: P-I (1.130), P-II (0.888), P-III (0.637), and 

P-IV (0.471) by about 0.21. So it is very interesting to find the membrane slope near isometry. 

These values would suggest that the allometry in the lengths of the distal wing was heavily 

constrained to maintain the membrane isometry, likely for aerodynamic requirements. With the 

growth of the wing in the lateral direction appearing to be more strongly influenced by negative 

allometry in A. micronyx, and for the surface area of the wing to be sustained at near isometry, 

the legs would need to have a positive allometry. In the tibia of A. micronyx, that is exactly what 

seems to be occurring. The same assumptions can be made for P. antiquus except the constraints 
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would have been for the negative allometry of the surface area with the femur and tibia 

staying near isometry.  

Major Delineating Characters between P. antiquus and A. micronyx 

Each of the 14 characters had bivariate plots generated that compared each 

element and their ln-GM. All 14 plots can be seen in Appendix C. Only four will be 

discussed here: skull, IVMc, phalanx I, and the tibia (Figure 20). These four plots 

highlight some of the major differences between the two species. The other ten plots have 

a large amount of overlap with the two species’ slopes and do not reveal differences.  

Skull. In Figure 20A, the slopes of the wings appear to run nearly parallel with no 

confidence interval overlap. What is interesting to consider here, when looking for 

differences between species, is if A. micronyx is scaled up in size to match P. antiquus, its 

skull length would still not match the size of P. antiquus based on these results. These 

two species have different constraints for the skull size relative to their overall size. Both 

show positive allometry in the PCA and linear regression but A. micronyx shows much 

more extreme positive allometry. Despite the allometry, its skull is still relatively smaller 

than P. antiquus.  

IVMc and Phalanx I. The IVMc is an element of great interest throughout this 

study. In both animals it is showing drastically different but independently interesting 

ontogenies. P. antiquus has >95 percent isometry, forming modular isometry with the 

following wing phalanges I and II. A. micronyx has a very high positive allometry, the 

highest of all wing elements among both species. The drastic differences in slopes can be 

seen in Figure 20B. A similar difference in ontogenies is occurring in phalanx I (Figure 



 
 

53 
 

20C). While P. antiquus has a slope near 1, A. micronyx is still positively allometric with zero 

overlap in the confidence intervals.  

Tibia. When comparing the slopes graphically in Figure 20D, the initial sizes of the tibia 

were the same sizes. During their ontogenies however, they grew at different trajectories with P. 

antiquus having small positive allometry while A. micronyx had very high positive allometry. 

This extreme positive allometry would not have only effected the brachiopatagium breadth, but 

also the uropatagium (Figure 16), the membrane between hindlimbs, possibly giving some level 

of positive allometry to that membrane as well.  

 

 

Figure 20 Bivariate Plots of the ln-Skull, ln-IVMc, ln-Phalanx I, & ln-Tibia. P. antiquus is plotted alongside A. micronyx in each graph A, 

B, C, and D. A: [In(Skull P)= 0.335385 + 1.1011493 In(GM)]; [In(Skull A)= = -0.401962 + 1.2603173 In(GM)]. B: [In(IVMc P)= -0.37792 

+ 1.0080419 In(GM)]; [IVMc A = -1.053996 + 1.3106513 In(GM)]; C: [In(Phalanx I P) = -0.012429 + 0.9912597 In(GM)]; [In(Phalanx I 

A) = -0.219043 + 1.1296361 In(GM)]. D: [In(Tibia P) = -0.22844 + 1.0528923 In(GM)]; [In(Tibia A) = = -0.854563 + 1.2728348 In(GM)]. 

See Table 2 for additional statistics for each graph.  

A. micronyx 

P. antiquus 
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Discussion 

It is clear that there are some distinct dissimilarities between P. antiquus and A. 

micronyx. Those differences are most noticeable with Figure 18 observing Line P and 

Line A showing the patterns that can be seen with the wing elements during ontogeny.  

These lines represent the different ontogenetic patterns among these two species. Along with the 

different patterns of growth in the distal wing, there are the previously discussed differences in 

the skull, tibia, and the brachiopatagium surface area ontogenies that separate these two species 

very well. The results show isolated trajectories for the individual elements, observed 

ontogenetic modular isometry in P. antiquus, and isolated ontogenies in the brachiopatagium 

surface area. With these results alone it can be argued further that these are in fact two different 

groups of pterosaurs. However, the large amount of morphological similarities cannot be 

ignored. A. micronyx’ recent placement into Aurorazhdarcho (Jouve 2004) was based hastily on 

a poor analysis. Jouve’s work was recently agreed with by Bennett (2013) but contention of its 

placement remains.  

There are two ideas that have been suggested ever since the data for both of these 

two species was published by Wellnhofer (1970). The first, which has not received much 

attention, is sexual dimorphism originally suggested by Wellnhofer (1970) and again by 

Mateer (1976). Recently, however, the second and favored explanation was examined by 

Bennett (2013) who has strongly suggested that they are not conspecific and A. micronyx 

are likely juveniles of Gnathosaurus subulatus (see also Bennett 1996a). This assessment 

is made despite lacking an associated skull and postcranial skeleton for the G. subulatus 

(only one known specimen) to compare it to A. micronyx. It was also in Bennett’s 2013 

article that he reaffirmed A. micronyx to the genus Aurorazhdarcho from the genus 
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Pterodactylus after Jouve (2004) reassigned them. Bennett gave new diagnoses believing 

characters 1,3-6, 10 would not be present in larger individuals (more mature) and did little to 

little to distinguish them from other Solnhofen pterodactyloids (See Bennett 2013 for details of 

new descriptions). Due to larger individuals of A. micronyx not available, it is difficult to justify 

whether they are two species. With lacking evidence conclusively justifying A. micronyx to 

another genus or otherwise, other ideas still have merit. With distinct differences between the 

two species statistically observable, summarized in Figure 21, their allometries could be used for 

this conclusion. However, determining whether differences among two closely morphological 

and temporal species are due to speciation or sexual dimorphism is difficult.  

Interspecific Comparative Wing Reconstructions  

There are, however, some interesting conclusions that can be assessed from some of the 

layered reconstructions of their wings. These differences can be, in part, interpreted as sexual 

dimorphic constraints. The largest of each species used in this comparative analysis (RM St. 

18184 = P. antiquus (dark blue) (PCRW length = 90mm); CM 11426 = A. micronyx (light 

blue)(PCRW length = 58mm) were layered and scaled to size with the distance from the shoulder 

to the knee (Figure 22). Despite P. antiquus being known to be a larger animal, A. micronyx has 

a relatively larger wing span and wing breadth. The wing reconstructions have a straight trailing  

edge from the ankle to the wing-distal tip for simplicity; the reason for this is explained in detail 

in the Methods. It is odd that there would be such a relationship between P. antiquus and A. 

micronyx. They could have evolved their unique wing ontogenies separately or, if conspecific, 

evolved intraspecifically meeting differential sexually dimorphic constraints in the distal wing 

elements. The proposed sexually dimorphic constraints, themselves, required negative allometry 

in the membrane of P. antiquus and isometry in A. micronyx. This suggestion is based on  
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Figure 22 Interspecific Wing Comparisons. Largest adult P. antiquus is dark blue; Largest A. micronyx is light blue. Scaled with the breadth of 

the wing from the shoulder joint to the knee joint length so the relative sizes of the wing length and wing-membrane surface area can be seen. 

Shown here are adults of both species depicting the variation in size of the wing-membrane surface area. Although P. antiquus is a larger animal 

on average, A. micronyx’s wing surface area is larger giving it better lift and thrust potential. Its large positive allometric tibia also plays a part 

in the larger wing surface area giving it more breadth overall.  
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research on sexual dimorphism in the wings of other flying animals with the female having a 

relatively larger wing surface area than the male (Camargo and Oliveira 2012; Camargo, 

Camargo, Corrêa, Camargo, and Diniz 2015). That research suggests that since the female 

needed more carrying capacity for flight due to increased load during reproduction, they had 

larger relative surface areas than the males, who could afford less surface area in the wings. 

These relative sizes would imply that P. antiquus would have been male and A. micronyx would 

be female.  

Intraspecific Comparative Wing Reconstructions 

Pterodactylus antiquus. The largest P. antiquus (RM St. 18184 (dark blue) 

(PCRW length = 90mm) is layered with the smallest (BSP 1967 I 276 (red)(PCRW = 

20mm) in Figure 23. The negative allometry in the wing surface area calculated in the 

linear regression 1.85 ± 0.066 (Table 2) can be schematically observed (Figure 23).When 

scaled for distance between the shoulder and knee, the smaller specimen (red) has a 

larger surface area relative to body size compared to the largest (dark blue). This visually 

suggests that as P. antiquus individuals grew, their wing surface area was growing slower 

than their overall size. The only positive allometry associated with the brachiopatagium is 

in the tibia. The small degree of positive allometry associated with tibia does not seem to 

have increased the breadth any noticeable amount (Figure 23).  
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Figure 23 Intraspecific Wing Comparisons: Pterodactylus antiquus. Largest adult P. antiquus is dark blue; smallest juvenile P. antiquus is red. 

Scaled with the breadth of the wing from the shoulder joint to the knee joint length so the relative sizes of the wing length and wing-membrane 

surface area can be seen. P. antiquus has a negatively allometric wing surface area (1.856, <0.05) that scaled adult and juvenile schematics also 

show. It is clear here that the wingspan and wing-membrane surface area gets smaller as the animal ages.  
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Figure 24 Intraspecific Wing Comparisons: Aurorazhdarcho micronyx. Largest A. micronyx is light blue; smallest A. micronyx is 

red. Scaled with the breadth of the wing from the shoulder joint to the knee joint length so the relative sizes of the wing length and 

wing-membrane SA can be seen. Aurorazhdarcho has an isometric wing surface area (2.010, >0.05). The scaled juveniles, the 

largest and smallest in this analysis, also show the apparent isometry in the schematics. This preliminary study shows that the 

wingspan and wing-membrane surface area stay nearly the same size as the species ages.  
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Aurorazhdarcho micronyx. The largest A. micronyx (CM 11426 (light blue)(PCRW 

length = 58mm) specimen layered over the smallest (BSP 1936 I 50 (red)(PCRW length = 

28mm) is seen in Figure 24. Just as with the negatively allometric slope of P. antiquus, the 

isometric slope of A. micronyx (2.010 ± 0.110) is observed schematically. The effects of the high 

positive allometry in the IVMc, and scaled decreasing slope size into negative allometry, are 

observed with the change in wing shape from the smallest to the largest specimens. The effects 

of the tibia on the breadth of the brachiopatagium are visible in Figure 24. The larger of the A. 

micronyx specimens in Figure 24 is more than twice the size of the smaller. Although all A. 

micronyx specimens known are considered immature, the animal more than doubles in size and 

maintains nearly isometric growth in its wing surface area with a large amount of differential 

growth in all of its wing elements including the tibia.  

Possible Effects of Pneumatization on Allometry 

A well-studied plesiomorphic character of pterosaurs is the pneumaticity in their 

skeleton. However, the degree of pneumaticity in both species studied here is unknown and 

unstudied. They would have certainly had at least some in the skull and cervical vertebrae that is 

found in early, more basal, pterosaurs (Bonde and Christiansen 2003; Butler, Barrett, and Gower 

2009). More derived and larger species of pterosaurs have been studied showing that the level of 

pneumatization increases into the dorsal/sacral vertebrae, limb bones, pectoral girdle, and 

elements of the hindlimbs (Claessens et al. 2009; Elgin and Hone 2013). P. antiquus and A. 

micronyx were both early derived pterosaurs of the late Jurassic and likely did not have as 

advanced levels of pneumatization as the later derived species in the Cretaceous. Their levels of 

pneumatization and small size, reaching just over a meter in wing span in both species, may have 

been what allowed them to get away with their respective ontogenies in their skeletal elements 
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without increasing in relative brachiopatagium surface area. The ballooning effect of 

pneumatization distributes bone mass to the proximal and distal tips, increasing in length 

limb bones and volume while increasing minimally in mass is an interesting characteristic 

in pterosaurs that may have led to very unique allometries in many other derived 

pterosaur species (Wedel 2005; Witton 2008a; Elgin and Hone 2013).  

Conclusion 

Ontogeny and Sexual Dimorphism 

 Pterodactylus antiquus. This species displays ontogenetic modular isometry in the 

consecutive distal wing elements: IVMc, Phalanx I, and Phalanx II. Additionally, the femur 

revealed strong isometry in the hindlimb (Figure 21). All four of these elements have >95 

percent confidence (Table 2). It is important to note that none of the wing elements in P. 

antiquus had any level of positive allometry in the PCA and bivariate linear regression analyses. 

The wing reconstructions of the brachiopatagium surface area calculate for a negative allometry 

in this species and may suggest a possible sexual dimorphic relationship with A. micronyx. The 

results found here are unexpected and on all accounts for this species, rejects the null hypothesis 

with the expectation of positive allometry in the wing elements.  

 Aurorazhdarcho micronyx. The characteristic reverse down-stepping allometry in its 

distal wing elements is the most extreme difference between these two species (Figure 18, Line 

A). With the IVMc, there is high positive allometry. The consecutive phalanges (I-IV) decrease 

in slope and coefficient size distally reaching high negative allometry. The tibia has a high 

positive allometry compared to P. antiquus, representing a major delineation among the species 

and has observable effects on the breadth of A. micronyx brachiopatagium. The wing 

reconstructions of the brachiopatagium surface area calculations revealed near isometric 
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ontogenetic growth. With the results of the allometries of the wing and leg elements, heavy 

evolutionary constraint on these skeletal components was occurring to maintain the 

brachiopatagium ontogenic surface area isometry. Apart from the IVMc, phalanx I, and tibia, all 

other elements and surface area analysis reject the null hypothesis of expected positive allometry 

throughout the pterosaur anatomy.  

This study reveals that pterosaurs had an even more complex evolution than previously 

known. Holding to the claim that they are different species, it is clear that P. antiquus and A. 

micronyx require further investigation in light of the dramatic difference in ontogeny within their 

distal wing elements and brachiopatagium ontogenies. The approach Bennett had for Pteranodon 

when analyzing sexual dimorphism was measuring the dimensions of the pelvic girdle (1992). 

Further analysis would involve adding pelvic data of both species to the analysis. Bennett found 

‘male’ specimens had narrower widths than the ‘females’ who had wider widths. This concept 

makes logical sense because pterosaurs are known to be oviparous (Ji, Ji, and Cheng 2004; Lü et 

al. 2011; Wang et al. 2014). Another issue to be investigated is how P. antiquus and A. micronyx 

brachiopatagiums surface areas were able to remain isometric during growth. Although no 

conclusions can be made whether these two species are conspecific displaying sexual 

dimorphism or speciation as a result of niching, novel observations of the complexity of 

pterosaur evolution and ontogeny are observed.  
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CHAPTER THREE 

 

PTERANODON AND SEXUAL DIMORPHISM IN WING SHAPE AND 

SURFACE AREAS OF PTEROSAURS, BATS, AND MOTHS 

 

Introduction 

One of the difficulties of the fossil record is the lack of soft tissue and the 

important distinctions between not only species but of males and females within a 

species. It is well understood that the vast variations found in individuals within a species 

have an important role in the process of natural selection acting within a species, on the 

individuals. It is also well understood that the large variations, not only in size, but other 

attributes among males and females within a species, are the result of intraspecific 

selection (Huxley 1860). These ideas are the focus of this chapter and the conclusion of 

this thesis for Pterodactylus antiquus and Aurorazhdarcho micronyx.  

 Despite any large abundance of soft tissue in pterosaur fossils, it’s still possible to 

observe sexual dimorphism in a species using the fossilized bones themselves. However, 

this requires a high number of not just fossil elements, but a high number of relatively 

complete individuals preserved of the same species. Fortunately, a high number of nearly 

complete specimens of P. antiquus and A. micronyx are known (Wellnhofer 1970).  

Review of Chapter Two Results 

Chapter two analyzed the ln-longitudinal data measurements of those species 

using Principle Component Analysis (PCA) and ran a bivariate linear regression with 

each of the 14 measurements against the ln-geometric mean (ln-GM) serving as the 

independent variable. The results of that analysis shows two distinct ontogenetic patterns 

between the two closely related species, particularly in the distal wing elements. Finally, 
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because of those differences, each of the 24 P. antiquus and 15 A. micronyx wings were 

reconstructed schematically and their surface areas calculated using hand measurements.  

An unexpected and interesting result of this was found when the larger of the two 

species was scaled (from shoulder to knee) and over-lapped (Figure 22: Chapter 2). 

Although P. antiquus is a larger on average species, A. micronyx had a relatively larger 

wing length and surface area. Similarly, the largest and smallest wing schematics of each 

species was over-lapped (Figure 23 & 24: Chapter 2) and revealed negative allometry in 

the growth of P. antiquus wing surface area and isometry in the surface area of A. 

micronyx. If these two species were one and the same species, conspecific, it’s logical 

that the male, who is not carrying an extra load such as eggs, would be able to grow into 

relatively smaller wings. This would imply P. antiquus as the proposed male. The female, 

A. micronyx, would require isometry or positive allometry to maintain flight while eggs 

were developing. The scaled schematics of the largest specimens of both species show a 

relatively larger wing in A. micronyx than P. antiquus. For an oviparous flying animal, 

this makes biologically adaptive sense. So the variation in ontogeny of the wing bone 

elements would then be expected between males and females.  

Experimental Design 

One method to test this idea is to look at the data of another species of pterosaur 

who has had sexual dimorphism already established in another way. Luckily, there is one: 

Pteranodon longiceps. Of the estimated 5,500 fossil fragments of pterosaurs, there are 

approximately 1,100 individuals of P. longiceps identified, by far the most of any species 

(Miller 1971; Bennett 1992). The issue of course is the lack of completeness of nearly 

every individual. Bennett has made a career out of analyzing the huge abundance of 
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Pteranodon specimens and fragments (Bennett 1990; 1992; 1993; 2001a; 2001b). His 

research has clearly established sexual dimorphism in P. longiceps using bimodal 

distributions of various measurements, the clear distinction in crest sizes in the two 

groups with smaller crests in females and larger in males, and the relative dimensions of 

the pelvises in the two groups with wider dimensions in females and narrower in males 

(Bennett 1992; 2001a; 2001b). Using the results and interpretations of Chapter 2, the 

abundant data of Pteranodon longitudinal data measurements can be used to look for 

allometry in particular elements of interest with expectations derived from Chapter 2 

results. This would indirectly show allometry outside of a PCA which requires abundant 

complete specimens.  

 In both P. antiquus and A. micronyx the femur had isometric growth during its 

ontogeny. Since a geometric mean (an isometric indicator) cannot be calculated for 

Pteranodon, the femur is the best independent variable that can be ideally used against 

the other variables of Pteranodon when interpreting allometry because in both P. 

antiquus and A. micronyx, the femur was or very near isometry (Chapter 2: Table 2). It is 

obvious the issue this may bring knowing the distance in relation of P. antiquus/A. 

micronyx and P. longiceps. They belong to different superfamilies, ctenochasmatoidea 

and ornithocheiroidea, respectively. The species are separated by ~65 million years, the 

same length of time from when the dinosaurs and pterosaurs went extinct to the present. 

This means using the femur in Pteranodon as a proxy for size will have its errors, but 

until there is an abundant amount of P. longiceps specimens with near completeness, 

those errors cannot be investigated and the assessment for the use of the femur as a size 

proxy will be assumed.  
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The wing element with the highest degree of variability among P. antiquus and A. 

micronyx is the 4th metacarpal (IVMc)(Figure 3 & 4: Chapter 2). For the hypothesis that 

P. antiquus and A. micronyx are male and female there should be a strong bimodal 

distribution among the males and females of Pteranodon longiceps. Additionally, the 

relationship between the femur and IVMc in Pteranodon should show either 

isometry in females and negative allometry in males. Alternatively, because of their 

enormous size compared to P. antiquus and A. micronyx, positive allometry may be 

more extreme in female Pteranodon. While P. antiquus’ and A. micronyx’ small size 

would allow them to grow relatively isometric wing surface areas, Pteranodon is well 

known for its large size with the largest wingspan reaching ~seven meters (P. antiquus 

and A. micronyx both had ~1 meter wingspans) and may need to have had positive 

allometry in the wing surface area in order to maintain proper lift and thrust ability. This 

increase is due to the cubic increase in volume (affecting mass as well) compared to 

squared increase in wing surface area.  

Wing Shape in Other Species  

There is another group of flying animals that have had a similar wing shape 

analysis, the moth species in the family sphingidae (Camargo et al 2015). Seven species’ 

wings, of which they have two sets, fore- and hindwings, were analyzed using geometric 

morphometrics. In the study all the species’ females had larger wing surface areas than 

the males (Figure 25)(Camargo et al 2015). This study also argues that this observation in 

females is due to the need to reduce the wing loading for reproductive mass increase. 

Although two sets of wings is quite different to pterosaurs, the same effect of selection 

appears to occur across several animal phylums.  
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 Specific adaptations of wing shape, total surface area, and even increase of 

surface areas of particular regions of wings are also seen in bats (Camargo and Oliveira 

2012). In Chapter 2 of this study it 

was found that Aurorazhdarcho 

micronyx had a relatively larger 

wing (length and width) and surface 

area compared to Pterodactylus 

antiquus. The proposal in Chapter 2 

and 3 is that these two species of 

pterosaurs are conspecific and 

represent male and female, P. 

antiquus and A. micronyx, 

respectively. A major factor in this 

argument is the analogous nature of 

similar relative wing size and shape 

of male and females of other and 

very distant related flying species. A 

study on the bat species Sturnira 

lilium used geometrics 

morphometrics to study the shape 

and surface area of 30 males and 42 

females (Camargo and Oliveira 

2012). Before this, no intraspecific study had been done with the wing shape of bats. The 

Forewing 

Hindwing 

Figure 25 Sexual Dimorphism in Moth Wings. Canonical Variates (CV) 

analysis of seven Sphingidae species of moths, forewings and hindwings. Black 

represents males, gray represents females. As in the bat wing analysis. Camargo 

et al 2015 



69 
 

results of this study found that females had larger surface areas than males (Figure 3). 

More so, the wing lengths and breadths were also longer. Aspect ratios of wings affect 

flight speed and in-flight maneuverability, with one counter-acting the other. A high 

aspect ratio involves a long wingspan with a shorter breadth giving it high speed but 

lower in-flight maneuverability. High aspect is relative to a low aspect ratio with shorter 

wingspans and longer breadth giving it less speed and better in-flight maneuverability 

(Clancy 1975). In the Camargo and Oliveira 2012 paper, they argue that the larger 

wingspan is selected due to the increased weight they carry during pregnancy. With the 

increased surface areas, the wing loading (weight distribution per squared area of the 

wing) would be lower (Clancy 1975). A larger surface area would let them carry the extra 

weight and still maintain proper lift and thrust for flight. This trait is analogous to the 

relationship observed in the wing layered schematics in Figures 17 and 18 in Chapter 2. 

They also suggest, as an alternative hypothesis, that the differences in the male and 

female wing shapes are related to their different diet and life styles. Male Sturnira lilium 

bats have a shorter wingspan and shorter wing breadth while females had longer 

wingspans and longer wing breadths. What is likely occurring here is both the female’s 

wing loading and the differential lifestyles/diets are affecting their wing shapes via the 

Figure 26 Sexual Dimorphism in Bat Wings. In 

the study by Camargo and Oliveira 2012, this is 

the results of the Canonical Variate (CV) analysis 

of wing shape variables of males and females of 

the bat species Sturnia lilium. These results are 

significant to the surface area analysis of 

Pterodactylus antiquus and Aurorazhdarcho 

micronyx because it shows a very similar pattern 

with male and female wing shape and relative 

size. Bats are the closest analogs to pterosaur in 

regards to their wings. The similar pattern 

suggests the same evolutionary constraints for 

females and males of bats and the small derived 

pterosaurs, P. antiquus and A. micronyx which are 

argued to be conspecific here, male and female, 

respectively.  
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limb and manus elements. These interpretations of extant flying animals with analogous 

wing structures and membranes shed light on and credit the proposal sexual dimorphism 

between these two species of pterosaurs suggested here to be sexual dimorphs.  

Materials and Methods 

 All of the data used in the Pteranodon analysis done here was taken directly from 

the data table published in Bennett’s 2001b article. Despite the large abundance of P. 

longiceps specimens only about 450 were used in his study of the species. Further, just a 

fragment of those specimens were able to be used in this study. Of the 450 specimens 

there were sixty-four 4th metacarpal (IVMc) length measurements (Table 4). The 

frequency distribution of those 64 IVMc lengths are shown in Figure 27. An even smaller 

amount of specimens (n = 17) (Table 5) were used to produce the bivariate plot with the 

femur data (independent variable) and the IVMc data (dependent variable) using the 

femur as a proxy for size, an isometric indicator to determine the level of allometry in the 

IVMc of Pteranodon longiceps (Figure 2). A Mac OS X version 10.6.8 ran Jmp software 

version 6.0.3 for all analyses.  

 A frequency distribution of the IVMc data was generated to show the bimodal 

distribution of the element in Pteranodon longiceps. It is known, as discussed in the 

Introduction, that there is sexual dimorphism within this species. So there should be two 

size classes within the data. The second was a bivariate linear regression of the ln-femur 

and the ln-IVMc associated data with the ln-femur serving as the independent variable 

and a size proxy. Finally, the Pteranodon longiceps, P. antiquus, and A. micronyx data 

was pooled and a phylogenetic trend-line was calculated to show the change in the 

relationship of the femur and IVMc among these three species.  
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Table 4 Pteranodon IVMc lengths. The 64 Pteranodon specimens 

used in this study from Bennett’s 2001b sexual dimorphic 

analysis.  

 

Table 5 Pteranodon Associated Femur and IVMc lengths. The 17 

length measurements of the Pteranodon specimens from Bennett’s 

2001b analysis that had both a femur and IVMc preserved. Those 

measurements were then logged and plotted (Figure 28).  
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Results 

 The frequency distribution seen in Figure 27 clearly shows a strong bimodal 

distribution in the IVMc P. longiceps data. This observation corresponds with Bennett’s 

findings in his sexual dimorphism research. It suggests a clear size range for males and 

females of Pteranodon within the data used here (Bennett 2001b). Associating this 

bimodal distribution with sexual dimorphism can only be applied to Pteranodon because 

of the other characters in that taxa that have been found to correspond with extant 

animals. Those same characters cannot be investigated with P. antiquus or A. micronyx 

because there are too few in specimen count. However, comparing statistical patterns 

with bivariate linear regressions may reveal similarities. 

Bivariate Linear Regression 

  Figure 28 shows the bivariate plot of the ln-femur and ln-IVMc data for 

Pteranodon. All of data has the linear equation [y = 0.9206x + 1.2117] with an R² = 

0.8459. Initial observations do not show any clear delineations of two groups in the data. 
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Figure 27 The frequency distribution of the 64 Pteranodon IVMc length measurements. A bimodal distribution is present 

as expected for a species with known sexual dimorphism (Bennett 1992; 2001a; 2001b).  
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This is either due to the small sample set (n = 17) or there is not clear distinction in the 

population of the species. The three individuals of interest in Figure 28 are red and appear 

to be outliers in the data. They also seem to form a straight trajectory; however, being 

only three data points, any real conclusion is only speculation. These three specimens and 

their apparent trajectory would form a higher slope, thus, larger positive allometry than 

the other 14 specimens that otherwise appear to follow the regression line in Figure 28. 

What can be observed is that there is no positive allometry or isometry of the IVMc in 

this sample of Pteranodon individuals. With Bennett’s 1992, 2001a, 2001b findings and 

conclusions of sexual dimorphism in mind, these 17 specimens have no associated skull 

or a preserved pelvis to make any clear distinction which specimens are male and female 

using his accepted features of sex.  

 The other noticeable two groups have a blue and green ellipsoid around them and 

appear to be separated by a large gap either in the data, or it represents the boundaries of 

two possible size classes of Pteranodon longiceps. With 17 specimens with associated 

femur and IVMc, no discernable patterns can be interpreted from this data set.  

Discussion 

 The small sample size available (with both a femur and IVMc) in the data 

presented in Bennett’s 2001b does not give us any clear distinctions between possible 

allometry trajectories for males and females in the bivariate plot (Figure 28). That portion 

of the hypothesis presented here remains inconclusive. Further digging into Pteranodon 

collections may reveal additional specimens that can be included in this analysis  

to better reveal what is occurring intraspecifically. What is conclusive is the negative 

allometry of the IVMc compared to the femur. We see that when P. antiquus  
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and A. micronyx are plotted together the slope drops to 0.945 (Figure 29). When plotted 

separate P. antiquus has a slope of 1.004 and A. micronyx has a slope of 1.119. The same 

net effect may be occurring with the combined male and female Pteranodon, but without 

y = 0.9206x + 1.2117

R² = 0.8459

5.6

5.7

5.8

5.9
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6.5

4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7
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V
M

c)

In(Femur)

Figure 28 Bivariate Linear Regression of Pteranodon ln-Geometric vs ln-IVMc. With a slope < 1, it reveals, in this sample of Pteranodon, that 

the IVMc is growing slower than the femur. In this study the femur is used as an isometric growth proxy and would then suggest that the IVMc 

has negative allometry relative to the femur. The three red diamonds appear to be outliers and are suggested to be females of this sample. These 

are likely females because the conclusions of Chapter 2 have females with larger positive allometry in the IVMc. The occasional increased mass 

in females during pregnancy requires larger carrying capacity during flight, thus, larger wings would be needed relative to size. Blue and green 

ellipsoids represent possible size classes. Data from Bennett 2001b. Red dashed line represents a slope of = 1.  
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being able to conclusively assign male and female to these 17 specimens we cannot test 

this.   

Bivariate Linear Regression of Pteranodon and Pooled P. antiquus/A. micronyx  

The three dark green diamonds in Figures 29 and 30 (red diamonds in Figure 28) 

are visual outliers relative to the other 14 specimens and fit the pattern seen between P. 

antiquus and A. micronyx as separate groups/trajectories. Pteranodon in particular would 

have had perhaps some of the most extreme selection for lengthening of the wingspan 

enhancing its soaring ability, which it is thought to have been the most well adapted for 

during flight (Witton and Habib 2010).  

The sexual dimorphism found between P. antiquus and A. micronyx compared 

with the Pteranodon data reveals the pattern of a larger IVMc in A. micronyx relative to 

P. antiquus. This figure treats P. antiquus and A. micronyx as one data set (Figure 29 & 

30). The slope of P. antiquus/A. micronyx (0.9445 ± 0.116) is nearly parallel with the 

slope of Pteranodon (0.9206 ± 0.202). These seemingly similar patterns are interesting 

and suggest that a similar ontogeny is occurring between the two species’ femur and 

IVMc despite the large gap in relative sizes of P. antiquus/A. micronyx and Pteranodon 

indicated by the larger y-intercept of Pteranodon, which is a result of their massive size 

difference. Another characteristic that appears is the linear regression dividing both 

‘species’ within their data-point cluster. The proposed females, A. micronyx, are above 

the plotted regression line due to their relatively larger IVMc with the proposed males, P. 

antiquus. The same characteristic of the linear regression appears to occur in Pteranodon. 

The individuals with relatively larger IVMc’s, three in particular (dark green diamonds)  
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(CU 45062, YPM 2451, & YPM 2493), plot well above the regression line (Figure 29 & 

30). Despite the lack of an associated skull and pelvic girdle for all 17 Pteranodon 

specimens, those three specimens may be females because of their femur and IVMc 

relationship.  

Nothing conclusive can be suggested with the Pteranodon data. There appears to 

be three strong outliers (red diamonds) and two size classes (blue & green ellipsoids) that 

cannot be interpreted properly because of the lack of data. The null hypothesis presented 

for the part of the study remains inconclusive due to no proper comparisons of the three 

species can be made regarding possible sexual dimorphism.  

Phylogenetic Allometry (Pooled Data of All Three Species) 

When a trend-line is calculated for the pooled data sets in Figure 29, the change in 

femur and IVMc ontogenic relationship between Pteranodon and P. antiquus/A. 

micronyx is observed and calculated (Figure 30). This (red) line represents the positive 

allometry associated with the increase in size of Pteranodon compared to P. antiquus/A. 

micronyx. The original null hypothesis of Chapter 2 was finding positive allometry in the 

wing components of P. antiquus/A. micronyx. That null hypothesis was rejected by these 

two species. Pteranodon obtained massive sizes and observed here is negative allometry 

in their IVMc relative to their IVMc. The phylogenetic allometry regression line, 

however, (1.301 ± 0.044) shows that during the course of pterosaur evolution in terms of 

size, there is positive allometry with the IVMc and femur in pterosaurs. The null  

hypothesis of Chapter 2 is accepted when making interspecific comparisons between 

these three distantly related and different sized pterosaurs.    
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Conclusion 

 The two pterosaur species P. antiquus and A. micronyx cannot be concluded to be 

sexual dimorphs of the same species. They coexisted, being found in the same fossil bed 

and locale, Lower Tithonian, Solnhofen LS, Malm Zeta 2, of Eichstätt, Bavaria, 

Germany. They have been suggested to be sexual dimorphs since Wellnhofer’s (1970) 

publication but this was not investigated further. P. antiquus has a generally larger body 

size than A. micronyx, even if larger specimens of A. micronyx are found; the relative 

proportions would still be smaller, such as the skull length, due to its small positive 

allometry found in the PCA of Chapter 2 (Figure 17: Chapter 2). The results of the 

surface area linear regression analysis and wing schematics of the largest specimens of 

the two species show that A. micronyx had a larger surface area and longer 

wingspan/breadth relative to P. antiquus (Figure 22: Chapter 2). The expected increase in 

weight during pregnancy would put selective pressure for a larger surface area to reduce 

wing loading during flight on A. micronyx. The isometry found in P. antiquus’ distal 

wing elements and brachiopatagium surface area had evolutionary constraints that 

selected for isometry and negative allometry throughout their wing elements, legs, and 

brachiopatagium. In Pteranodon, however, it’s much larger size likely makes positive 

allometry in the IVMc critical, and likely the rest of the elements of the wing finger 

would have seen the same effect.  

 Sexual dimorphism is not a novel observation in pterosaurs but this method using 

PCA, bivariate linear regression, basic wing reconstructions, and wing surface area 

calculations along with extant species sexual dimorph analogous (bats and moths) is a 

new approach to the expanding research in pterosaur paleobiology. Examination of the 
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pelvises of P. antiquus and A. micronyx is the next step to test sexual dimorphic 

characteristics in both species, if preserved orientations allow.  
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APPENDIX C 

Bivariate Plots of All 14 ln-lengths vs ln-Geometric Mean 
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APPENDIX D 
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