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ABSTRACT 
 

Chlorinated anilines have been used as important chemical intermediates in the production of a 

wide variety of pharmaceutical, industrial, and agricultural products. Exposure to chloroanilines 

can arise in both occupational and environmental settings and can lead to toxicity to multiple 

organs, including the kidney. Previous studies have established that of the mono- and 

dichlorinated anilines, 3,5-dichloroaniline (3,5-DCA) possesses the most nephrotoxic potential 

both in vitro and in vivo. However, little is known concerning the role of renal metabolism in 

nephrotoxicity. The studies presented in the following dissertation are the first to explore the 

toxicity, metabolism, and bioactivation of 3,5-DCA in isolated renal cortical cells (IRCC) 

obtained from male Fischer 344 rats, as well as to explore the nephrotoxic potential of putative 

3,5-DCA metabolites. Results show that in IRCC, 3,5-DCA induced cytotoxicity in a 

concentration- and time-dependent manner. Further studies suggested that 3,5-DCA induced 

nephrotoxicity is due, at least in part, to bioactivation of 3,5-DCA to toxic metabolites via 

multiple enzyme systems. Additional studies suggested that CYP2C, FMO, and peroxidase 

metabolism of 3,5-DCA contributes to the bioactivation of 3,5-DCA to cytotoxic metabolites. In 

order to determine the ultimate toxic species, five putative metabolites were tested for their 

nephrotoxic potential. Of the five metabolites tested, only one, 3,5-DCAA was non-toxic. 

Further explorations were conducted to identify and quantify metabolites in IRCC after exposure 

to 3,5-DCA via HPLC analysis. The results of the HPLC studies show very little metabolism of 

3,5-DCA in isolated renal cortical cells, which suggests that the ultimate toxicant is highly 

cytotoxic and most likely produced near its cellular target(s). However, the mechanism of 3,5-

DCA induced cell death and cellular target remains to be determined.  

 



	 1	

CHAPTER I: AN IN-DEPTH REVIEW OF ANILINE AND ITS CHLORINATED 

DERIVATIVES  

 

1.1 ANILINE AND CHLOROANILINE USE AND ROUTES OF EXPOSURE 

Aniline and its mono- and dichlorinated derivatives have been used as chemical 

intermediates in the production of multiple agricultural, industrial, and pharmaceutical products. 

Aniline itself was first discovered in the early 1800s from indigo distillation and was produced 

following the reduction of nitrobenzene, although aniline was called crystallin or cyanol at the 

time. It wasn’t until 1843 that Dr. August Hofmann showed that in fact crystallin and cyanol 

were actually the same compound, aniline (Hofmann, 1843). The earliest known use of aniline 

was in the production of synthetic dyes (Kahl et al., 2011). A student of Dr. Hofmann, William 

Perkins, accidentally produced the first aniline dye mauveine, also known as aniline purple 

(Perkin, 1879). The use of aniline dyes lead to one of the earliest studies demonstrating that 

aniline exposure can have toxic consequences (Muller, 1887). Currently, the major use of aniline 

is in the production of methylene dianiline, which is the precursor used in the production of 

urethane polymers (Kahl et al., 2011). The structure of methylene dianiline and aniline can be 

seen in figure 1.   

Chlorinated anilines have also been shown to be important chemical intermediates in the 

manufacture of industrial compounds. For example, chlorhexidine, an antibacterial agent, uses 4-

chloroaniline in its production (Rose and Swain, 1956). Chlorhexidine is widely used as topical 

disinfection to promote the healing of wounds in animals (Sanchez et al., 1988). Two products 

utilizing 4-chloroaniline as an intermediate are monolinuron and Pigment Red 184. Monolinuron 

is a broad leaf pesticide used to control weeds in potato, leek and French bean fields (Rossoff, 
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2002; Milne, 2005). Monolinuron’s structure can be found in figure 1. Propanil, a post-emergent 

herbicide used to control weeds in rice and wheat fields, is synthesized from 3,4-dichloroaniline 

(Warren and Wyatt 2008). Vinclozolin, iprodione, and dimetaclone are all agricultural 

fungicides, which contain a 3,5-dichloroaniline moiety. The structure of each can be found in 

figure 1. These products highlight just a few uses of aniline and its chlorinated derivatives.  

Generally, exposure to large amounts of pure chloroaniline only occurs in industrial 

settings, accidental poisonings, or suicide attempts. Exposure to high levels of pure chloroaniline 

leads to a variety of toxic conditions, which will be discussed in a later section. However, studies 

have suggested that chloroaniline exposure can also occur in smaller amounts via multiple 

environmental routes. Demers and Yates (1977) showed that chemical degradation of two 

common antimicrobial compounds, 3,4,4’-trichlorocarbanilide and 4,4’-dichloro-3-

(trifluoromethyl) carbanilide, found in deodorant bars yielded 4-chloroaniline and 3,4-

dichloroaniline. Chloroanilines have also been detected in soil following the microbial 

degradation of pesticides (Bartha and Pramer, 1967; Bartha, 1968; Kearney and Plimmer, 1972; 

You and Bartha, 1982).  Khan, Marriage, and Saidak (1976) demonstrated that low levels of 3,4-

dichloroaniline, a microbial breakdown product of Diuron, persisted in soil samples after 

treatment with Diuron. 3,5-Dichoroaniline is the major microbial breakdown product of two 

carboximide fungicides, iprodione and vinclozolin, in soil (Campos et al., 2015; Walker, 1987a, 

1987b). Chlorinated anilines have also been found in groundwater (Wegman and de Korte, 1981) 

and industrial runoff (Lyons, Katz, and Bartha, 1984, 1985). Exposure to chlorinated anilines has 

been explored in great detail and results in hematotoxicity, splenotoxicity, and of most interest to 

the current work in our lab, nephrotoxicity. 
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Figure 1. Chemical structure of aniline and related products
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1.2 HEMATOTOXICITY OF ANILINE AND CHLOROANILINES 

The major type of hematotoxicity seen following exposure to chlorinated anilines is 

methemoglobinemia. Methemoglobinemia occurs when the iron in the heme of hemoglobin is 

oxidized to the ferric (Fe3+) form. This oxidation of the heme iron results in the formation of 

methemoglobin, and greatly reduces the ability of the blood to transport oxygen. The inability of 

methemoglobin to carry oxygen throughout the body can lead to varying degrees of cyanosis. 

Under normal physiological conditions, methemoglobin is present in the blood at concentrations 

less than 2%; however, levels up to 20% can be tolerated fairly well. Once the concentration of 

methemoglobin reaches greater than 70%, death can occur. Methemoglobinemia can be 

hereditary or acquired. Hereditary methemoglobinemia is the result of a deficiency in NADH 

cytochrome b5 reductase, the enzyme responsible for converting non-functioning 

methemoglobin to functioning hemoglobin. In contrast, acquired methemoglobinemia occurs 

following exposure to exogenous compounds. The treatment for acquired methemoglobinemia is 

the infusion of methylene blue, whose mechanism requires NAD or NADPH dependent 

methemoglobin reductase to reduce methemoglobin to hemoglobin (Nascimento, Pereira, de 

Mello, and Costa, 2008; Udeh, Bittikofer, and Sum-Ping, 2001). Careful attention must be paid 

to the concentration of methylene blue infused as a treatment for methemoglobinemia because at 

higher concentrations methylene blue can promote methemoglobin formation; resulting in a 

more severe methemoglobinemia and hemolytic anemia (Liao, Hung, and Yang, 2002).  

Methemoglobinemia, as a consequence of aniline exposure, was first described in 1959 

(Ramsey and Harvey, 1959). In this study, 17 newborn babies presented with 

methemoglobinemia after dermal exposure to diapers marked with aniline dye. These newborns 

presented with cyanosis and accelerated respiration. In some of the newborns, distention, 
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jaundice, enlargement of the spleen, hematuria, loose stool, and vomiting were also present. 

While exposure to aniline is the classic example of chemically induced methemoglobinemia, 

studies with p-chloroaniline in animals suggest that the p-chloroaniline is even more potent as a 

hematotoxicant than aniline (Nomura, 1975). Induction of severe methemoglobinemia has been 

well documented in case studies where workers were exposed to p-chloroaniline (Scotti and 

Tomasini, 1966; Faivre, Armand, Evreux, Duvermeuil, and Colin, 1971). For example, Pizon et 

al. (2009), examined a case where a 20-year old worker, whose job was to remove unknown 

waste from barrels and place the waste in an incinerator, was found cyanotic, lethargic, and in 

respiratory distress. By the time the worker was examined at the hospital, he was in a coma and 

had a methemoglobin level of 69%. Following three hours of methylene blue administration and 

mechanical ventilation, the patient recovered. Since the agent responsible for his condition was 

unknown, a comprehensive urine drug analysis was performed using GC/MS. Results of the 

urine analysis showed detectable levels of p-chloroaniline and p-chloroacetanilide, a known 

metabolite of p-chloroaniline, suggesting that the methemoglobin was caused to exposure to p-

chloroaniline. 

Valentovic et al. (1997) showed that acute exposure to 3,5-dichloroaniline was able to 

induce methemoglobinemia in male Fischer 344 rats. In this study, a single intraperitoneal (i.p) 

injection of 0.8 mmol/kg 3,5-dichloroaniline induced methemoglobinemia levels, which peaked 

at two hours post injection and returned to control levels after eight hours. Valentovic et al. 

(1997) also explored the ability of two putative metabolites of 3,5-dichloroaniline, 4-amino-2,6-

dichlorophenol and 3,5-dichlorophenylhydroxylamine, to induce methemoglobinemia, since 

previous studies suggested that N-hydroxylated metabolites of aniline are responsible for the 

aniline-induced methemoglobinemia (Harrison and Jollow, 1987; Jenkins, Robinson, Gellatly, 
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and Slamond, 1972). In vitro studies using freshly isolated washed erythrocytes from male 

Fischer 344 rats showed that 3,5-dichloroaniline was able to induce methemoglobin formation 

after 60 minutes at concentrations greater than 4 mM. In contrast, 4-amino-2,6-dichlorophenol, a 

putative metabolite of 3,5-dichloroaniline, was able to generate methemoglobin in a 

concentration dependent manner after a 30 minute exposure at concentrations greater than 0.2 

mM. Finally, 3,5-dichlorophenylhydroxylamine, a putative N-hydroxylation metabolite of 3,5-

dichloroaniline, raised methemoglobin levels significantly after 30 minutes with concentrations 

greater than 2 µM (Valentovic et al., 1997). These studies were the first to introduce the idea that 

metabolites of aniline and its chlorinated derivatives can lead to increased toxicity and that the 

N-hydroxylation biotransformation pathway, which will be discussed later, may be critical in 

aniline and chloroaniline-induced methemoglobinemia.  

Finally, severe methemoglobinemia following exposure to aniline can also result in 

hemolytic anemia (Bus and Popp 1987; Khan, Boor, Alcock, and Ansari, 1997a). Hemolytic 

anemia is when abnormal hemolysis of the red blood cells occurs, and this hemolysis is believed 

to play a critical role in the splenotoxicity.  

 

1.3 ANILINE- AND CHLOROANILINE-INDUCED SPLENOTOXICITY  

Splenotoxicity of aniline and some of its chlorinated derivatives have been documented 

in several animal species. Chhabra, Thompson, Elwell, and Gerken (1990), explored the toxicity 

of p-chloroaniline in rats (male and female Fischer 344 rats; seven weeks old) and mice (male 

and female B6C3F mice; nine weeks old) following exposure to p-chloroaniline (5, 10, 20, 40, or 

80 mg/kg body weight for rats; 7.5, 15, 30, 60, or 120 mg/kg body weight for mice) in water, via 

oral gavage once daily, five days a week for 13 weeks. Results of this study showed a significant 
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increase in spleen weight, which was observed in a dose dependent manner in both rats and mice. 

Brain, lung, kidney, heart, thymus, and testis weights were unchanged in the p-chloroaniline 

treated groups. An increase in both incidence and severity of extramedullary hematopoiesis and 

pigmentation of the spleen was significantly higher than in the control group. This study 

supported previous studies in rats, which showed significant splenomegaly, as marked by 

congestion, pigmentation, and hematopoiesis, following treatment with aniline or p-chloroaniline 

(Gralla, Bus, Reno, Cushman, and Ulland, 1979; Bus, 1983). All of these studies suggested that 

the splenotoxicity observed following exposure to aniline or p-chloroaniline was a secondary 

consequence of hematotoxicity and increased deposition of damaged erythrocytes in the spleen. 

Since one of the major functions of the spleen is to remove aged and/or damaged erythrocytes, 

further studies by Khan, Kaphalia, Boor, and Ansari (1993) explored in more detail the 

relationship between hematoxicity and splenotoxicity. In this study, male Sprague-Dawley rats 

were given 600 ppm of aniline hydrochloride in drinking water for 30, 60, or 90 days. Similar to 

the previous studies, significant increases in spleen weight were observed after exposure to 

aniline. Red blood cell counts showed significant decreases at all three time points, and 

methemoglobin levels were significantly higher. Histological changes were only observed in the 

spleen and were marked by increased splenic sinusoids, fibroblasts, macrophages, and 

congestion of blood vessels in a time dependent manner. Spleen sections were stained for iron 

and showed significant accumulation of iron in a time dependent manner, with the greatest 

accumulation of iron seen after 90 days exposure. Additional studies also showed significant 

accumulation of iron in rats treated with aniline (Khan et al., 1993, 1997a; Khan, Kaphalia, 

Ansari, and Boor 1995a; Khan, Boor, Kaphalia, Alcock, and Ansari1995b; Khan, Wu, Kaphalia, 

Boor, and Ansari 1997b). Based on these studies, it was hypothesized that the accumulation of 
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damaged erythrocytes would lead to a deposition of iron in the spleen resulting in the generation 

of oxidative stress (Stadtman and Oliver, 1991 and Britton, 1996). The increase in oxidative 

stress would then contribute to aniline-induced splenotoxicity. Khan et al., (1997a, 1997b; Khan, 

Wu, Boor, and Ansari 1999) showed significant increases in oxidative stress markers, such as 

lipid peroxidation, following both acute (single i.p. injection) and subchronic exposure to aniline. 

These studies confirmed that lipid peroxidation and protein oxidation are critical to aniline-

induced splenotoxicity.  

A few studies have also shown that chronic exposure to aniline or p-chloroaniline 

resulted in a dose-dependent increase in splenic fibrosarcoma tumor formation in rats (Goodman, 

Ward, and Reichardt, 1984; Weinberger, Albert, and Montgomery, 1985). Khan et al. (1999) 

showed splenic development of fibrotic lesions and hyperplasia, a potential precursor to 

tumorgenesis, but no tumor formation was observed. Lipid peroxidation and oxidative damage 

has been shown to promote fibrogenesis by over expressing fibrogenic cytokines and increasing 

transcription and translation of collagen in animals and humans (Poli and Parola, 1996; Chojkier, 

Houglum, Solis-Herruzo, and Brenner, 1989; Geesin, Brown, Gordon, and Berg, 1993). 

However, the role of oxidative damage and lipid peroxidation in aniline- and chloroaniline-

induced splenic tumorgenesis has yet to be determined in detail. 

 

1.4 ANILINE- AND CHLOROANILINE-INDUCED HEPATOTOXICITY 

 There have been very few studies which have explored aniline- and chloroaniline-

induced hepatotoxicity. One of the earliest reported cases of hepatotoxicity following exposure 

to aniline occurred in Madrid, Spain in 1981. From early May 1981 through late June 1981 

several thousand patients presented to local hospitals with symptoms that presented as common 
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pneumonia. However, it was quickly determined that the symptoms were the result of 

contaminated rapeseed oil, which was denatured with aniline, and sold as olive oil. In a subset of 

patients, 170 children were admitted to the Hospital Clinico of the Complutense University 

Medical School after being exposed to the rapeseed oil. These patients were examined and it was 

determined that 55% of the children presented with hepatomegaly as a result of exposure to the 

aniline-contaminated oil (Casado de Frias, Andujar, Oliete, and Diaz, 1983). This was the first 

study that suggested aniline exposure could lead to hepatotoxicity.  

 Chhabra et al. (1990) showed increased Kupffer cell pigmentation and hematopoiesis in 

rat liver following exposure to p-chloroaniline. In the study, both male and female rats were 

exposed to various doses of p-chloroaniline (0, 5, 10, 20, 40, or 80 mg/kg) via oral gavage 

(once/day; five days/week; 13 weeks). The results showed increased Kupffer cell pigmentation at 

doses greater than or equal to 20 mg/kg in male rats and at doses greater than or equal to 10 

mg/kg in female rats. Further studies were conducted by Valentovic et al. (1992) comparing the 

hepatotoxicity of aniline, 2-fluoroaniline (2-FA), 2-chloroaniline (2-CA), 2-bromoaniline (2-

BrA) and 2-iodoaniline (2-IA). In these experiments, male Fischer 344 rats (four per group) were 

injected with a single i.p. injection of the hydrochloride salt of aniline, a 2-haloaniline (1.0 or 

1.25 mmol/kg) or vehicle (0.9% saline, 2.5 ml/kg). Rats receiving an i.p. injection of vehicle 

were pair-fed with the groups receiving the aniline or 2-haloaniline in order to eliminate 

variability based on food intake. Alanine aminotransferase (ALT/GPT) activity, liver weight, and 

histological examinations were conducted 24-hours post treatment. Liver weight was unchanged 

in the 2-FA, 2-ClA and 2-BrA groups, as well as in the 1.25 mmol/kg aniline group, and 1.0 

mmol/kg 2-IA groups, when compared to the corresponding pair fed control groups. Significant 

increases in liver weight were seen in the 1.0 mmol/kg aniline and 1.25 mmol/kg 2-IA treated 
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groups. ALT/GPT activity was significantly elevated in all 2-haloaniline treated groups, but not 

in the aniline treated groups. Similarly, histological examination demonstrated dose-dependent 

congestion, centrilobular degeneration, and reactive nuclei present after exposure to 2-

haloanilines. No histological changes were seen following exposure to aniline. This data suggests 

that halo-substitution leads to increased hepatotoxicity, although further studies are required to 

determine the mechanism of hepatotoxicity.   

1.5 ANILINE- AND CHLOROANILINE-INDUCED NEPHROTOXICITY 

Although symptoms of renal damage following exposure to aniline and aniline 

derivatives had been documented as early as 1945 (Graubarth, Bloom, Coleman, and Solomon, 

1945), it was not until the mid 1980s that studies were conducted to determine the nephrotoxic 

potential of aniline and chloroanilines. One of the earliest studies looked at the nephrotoxic 

potential of aniline, 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline in male Fischer 344 rats 

after a single intraperitoneal (i.p.) injection and in a renal cortical slice model (Rankin et al., 

1986a). Food intake, water intake, urine volume and content, blood urea nitrogen (BUN) 

concentration, histological examination of kidneys, and renal organic ion transporter function 

were assessed to determine nephrotoxic potential after 24 and/or 48 hours post injection. The 

results of the in vivo studies showed that of the compounds tested, 2-chloroaniline was 

nephrotoxic at 1.0 mmol/kg (single i.p. injection) as evident by increased BUN concentrations 48 

hours post injection, decreased urine volume after 24 hours, and decreased organic ion transport. 

3-Chloroaniline and 4-chloroaniline required 1.5 mmol/kg to elicit similar nephrotoxic effects. In 

contrast, aniline treatment induced very few renal effects, even at doses up to 1.5 mmol/kg. This 

study was the first to suggest that chlorine derivatives of aniline possessed enhanced nephrotoxic 

potential.  
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Around the same time, similar studies exploring the nephrotoxic potential of chlorine 

substitution on N-phenylsuccinimides were conducted. It was shown in those studies that 

increasing the number of chlorines on the aromatic ring led to an increased nephrotoxic potential. 

Of the chlorine substituted N-phenylsuccinimides tested, N-(3,5-dichlorophenyl) succinimide 

(NDPS) possessed the greatest nephrotoxic potential (Rankin et al., 1985; Yang, Lahoda, Brown, 

and Rankin, 1985a, 1985; Lo, Yang, Lahoda, and Rankin, 1985). Based on the toxicity and 

metabolism of NDPS (Ohkawa, Hisada, Fujiwara, and Miyamoto, 1974), it was hypothesized 

that 3,5-dichloroaniline, a known metabolite of NDPS, might be even more potent as a 

nephrotoxicant than the mono-chlorinated anilines previously tested. To test this hypothesis, 

Rankin, Yang, Teets, Lo, and Brown (1986) explored the nephrotoxic potential of 3,5-

dichloroaniline in male Sprague-Dawley rats. The results showed that a single i.p. injection of 

3,5-dichloroaniline (0.8 mmol/kg) was able to produce nephrotoxicity similar to that seen with 

the mono-chlorinated anilines previously explored. Specifically, decreased urine output was 

evident 24 hours post injection, while increased BUN concentrations and decreased basal and 

lactate-stimulated p-aminohippurate (PAH) accumulation by renal cortical slices was seen 48 

hours post injection. Histological examination of exposed kidneys 48 hours post injection 

showed increased swelling in the proximal tubular cells. These effects were seen at a 3,5-

dichloroaniline concentration of 0.8 mmol/kg, less than what was required for the mono-

chlorinated derivatives already discussed. Another important difference in this study was the 

model used. Sprague-Dawley rats are less sensitive to nephrotoxicants, as compared to the 

Fischer 344 rat (Mazze, Cousins, and Kosek, 1973; Kosek, Mazze, and Cousins, 1974; 

McMurtry, Snodgrass, and Mitchell, 1978). Since 3,5-dichloroaniline was more nephrotoxic than 

the most toxic mono-chlorinated anilines in a less sensitive model it was concluded that, as with 
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the N-phenylsuccinimides, increasing the number of chlorines on the aromatic ring leads to 

increased nephrotoxicity. 

Further studies were conducted to explore the nephrotoxic potential of the six 

dichlorinated aniline isomers, to determine the role of chlorine position in nephrotoxic potential. 

Also of interest in these studies was the ability of the dichlorinated anilines to induce 

nephrotoxicity directly to the kidney using a rat renal cortical slice model (Lo, Brown, and 

Rankin, 1990). To determine the in vivo nephrotoxic potential of each isomer, renal function of 

male Fischer 344 rats administered one of the dichloroaniline isomers (0.4, 0.8, or 1.0 mmol/kg; 

single i.p. injection) was monitored 24 and 48 hours post injection. In general, exposure to 

dichloroanilines resulted in increased proteinuria, hematuria, BUN concentration, and decreased 

PAH accumulation and urine volume, with the greatest changes seen after exposure to 3,5-

dichloroaniline. Histological examination of renal tissue showed moderate to severe damage to 

the proximal tubular cells following exposure to most of the dichlorinated isomers, with 3,5-

dichloroaniline (0.8 mmol/kg) producing the most severe effects, as determined by the number of 

cells involved and the extent of damage. Damage to the distal tubular cells and collecting ducts 

was negligible following exposure to most of the isomers and the glomeruli and loops of Henle 

were unaffected. This evidence further supported that the proximal tubular cells are the major 

target of chloroaniline-induced nephrotoxicity. The results of the in vivo study showed that 3,5-

dichloroaniline was the most nephrotoxic dichloroaniline, followed by 2,5-dichloroaniline. 2,4-, 

2,6-, and 3,4-Dichloroaniline were next and all possessed the same nephrotoxic potential, while 

2,3-dichloroaniline proved to be the least potent nephrotoxicant of the dichlorinated aniline 

isomers.  
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To assess the in vitro nephrotoxic potential of the dichloroanilines, renal cortical slices 

from male Fischer 344 rats were exposed to various concentrations of each dichlorinated aniline 

isomer (0-10-3 M) for 120 minutes. Basal and lactate-stimulated PAH and tetraethylammonium 

(TEA) accumulation were used as a marker of in vitro renal function. Under normal conditions, 

PAH and TEA are accumulated in renal slices to intracellular levels approximately five-fold 

higher than the media concentration (Groves, Sheevers, and McGuiness, 1994). Results of Lo et 

al. (1990) showed that PAH (basal and lactate-stimulated) and TEA accumulation were 

significantly decreased at 10-3 M DCA concentrations of all six isomers in renal cortical slices. 

3,5-Dichloroaniline resulted in the greatest decrease at this concentration and was also able to 

significantly decrease basal PAH accumulation at the 10-4 M concentration. As seen with the in 

vivo study, 3,5-dichloroaniline possessed the greatest nephrotoxic potential (Lo et al, 1990). 

These studies suggest that 3,5-dichloroaniline is the most nephrotoxic chlorinated aniline among 

the mono- and di-chlorinated anilines, and can be used as a prototypical compound to further 

understand chloroaniline-induced nephrotoxicity, since the nephrotoxic profile is similar among 

the chlorinated anilines.  

 

1.6 XENOBIOTIC BIOTRANSFORMATION 

One principle mechanism that organisms use to maintain homeostasis following exposure 

to exogenous molecules, also known as xenobiotics, is biotransformation. Biotransformation is 

facilitated by a number of xenobiotic metabolizing enzymes. These xenobiotic metabolizing 

enzymes have a wide range of both endogenous and exogenous substrates, and the reactions they 

catalyze can be separated into two main categories as first described by Richard Tecwyn 

Williams; phase I and phase II reactions (Williams 1959). The enzymes and the reactions they 
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catalyze were originally described as “detoxification” enzymes, because the reactions catalyzed 

resulted in increased compound hydrophilicity, which promotes the excretion and, ultimately, 

removal of the xenobiotic from the body. However, Williams suggested that in some instances 

“bioactivation” could occur following both phase I and phase II metabolism. Bioactivation 

occurs when xenobiotic metabolism results in a more physiologically active metabolite. The 

pharmaceutical industry has utilized bioactivation in drug development for a number of years, 

generally to increase bioavailability. Drugs, which require bioactivation, are known as prodrugs. 

One example of a prodrug is codeine, which is metabolized via both cytochrome P450 and UDP-

glucuronosyltranferases. Cytochrome P450 2D6 is the major enzyme responsible for converting 

codeine to morphine (Dayer, Desmeules, Leemann, and Striberni, 1988). Another example of a 

commonly used prodrug is cyclophosphamide, which is converted to the active metabolite 4-

hydroxycyclophophamide by liver CYPs. However, in some cases, bioactivation can result in 

increased toxicity as is seen with acetaminophen. Cytochrome P450 metabolism of 

acetaminophen to the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI) is 

responsible for acetaminophen-induced hepatotoxicity (Laine, Auriola, Pasanen, and Juvonen, 

2009). Metabolizing enzymes are widely distributed throughout the body and levels of phase I 

and phase II enzymes can differ not only between tissues, but also within cellular compartments. 

Table 1 shows a list of phase I and phase II reactions, enzymes and cellular locations. While the 

liver has the highest concentration of phase I and phase II enzymes, these enzymes have been 

found in most other tissues, including the kidney.  

Phase I reactions, also known as functionalization reactions, result in a slight increase in 

the hydrophilicity of a compound by exposing or introducing various functional groups (-OH, -

SH, -NH2, or -COOH). Sulfation, glucuronidation, acetylation, glutathione conjugation, amino 
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acid conjugation, and methylation are all examples of phase II reactions. Phase II reactions can 

result in substantial changes in compound hydrophilicity by conjugation of endogenous cofactors 

to functional groups either on the non-metabolized parent compound or groups introduced via 

phase I metabolism. In the following sections, we will explore in more detail a few important 

phase I and phase II enzyme-mediated reactions in aniline and chloroaniline metabolism.  
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Table 1. Summary of phase I and phase II reactions, enzymes, and cellular location. 

Information from Parkinson (2001). 

REACTION ENZYME LOCATION 

 Phase I  

Hydrolysis Esterase 
Peptidase 
Epoxide hydrolase 

Microsomes, cytosol, lysosomes, blood 
Blood, lysosomes 
Microsomes, cytosol 

Reduction Azo- and nitro-reduction 
Carbonyl reduction 
Disulfide reduction 
Sulfoxide reduction 
Reductive dehalogenation 

Microflora, microsomes, cytosol 
Cytosol, blood, microsomes 
Cytosol 
Cytosol 
Microsomes 

Oxidation Alcohol dehydrogenase 
Aldehyde dehydrogenase 
Aldehyde oxidase 
Xanthine oxidase 
Monoamine oxidase 
Diamine oxidase 
Prostagladin H synthase 
Flavin-monooxygenases 
Cytochrome P450 

Cytosol 
Mitochondria, cytosol 
Cytosol 
Cytosol 
Mitochondria 
Cytosol 
Microsomes 
Microsomes 
Microsomes 

 Phase II  
 Glucuronide conjugation 

Sulfate conjugation 
Glutathione conjugation 
Amino acid conjugation 
Acylation 
Methylation 

Microsomes 
Cytosol 
Cytosol, microsomes 
Mitochondria, microsomes 
Mitochondria, cytosol 
Cytosol, microsomes, blood 
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1.7 CYTOCHROME P450 (CYP)  

Cytochrome P450s (CYPs) are a super family of heme-containing proteins and represent 

the largest group of phase I reaction enzymes, both in number of substrates and number of 

isoforms (Guengerich, 1987; Waterman and Johnson 1991). Cytochrome P450s were first 

identified and characterized as a single enzyme found in the endoplasmic reticulum of rabbit 

liver able to oxidize xenobiotic compounds in 1955 by Axelrod (1955) and Brodie et al. (1955). 

Additional studies showed that this enzyme had a maximum absorbance at 450 nm due to its 

ability to bind CO (Garfinkel 1958; Klingenberg 1958). Further studies demonstrated that this 

enzyme was a hemoprotein and was named cytochrome P450 (CYP) after its absorbance (Omura 

and Sato 1964a, 1964b). Since those earlier studies, there are now more than 6000 known 

isoforms of CYP, in all species, (Macherey and Dansette, 2008), which are named and grouped 

based on amino acid sequencing similarities (Gonzalez, 1989; Nelson et al., 1993). Cytochrome 

P450 enzymes with amino acid sequence similarity of 40 percent or less are separated into 

multiple gene families, represented by the number immediately following CYP (i.e., CYP1, 

CYP2, etc). The CYPs are then further separated in subfamilies with conserved amino acid 

sequence between 40-55 percent and are designated by a letter (i.e, CYP1A, CYP1B, etc.). 

Finally, if 55 percent or more of the amino acid sequence is similar, then the CYP is classified as 

members of the same subfamily (i.e. CYP1A1, CYP1A2, etc.). Since the nomenclature is based 

on amino acid structure rather than function or evolutionary relationship, CYPs are named in a 

amino acid sequence sequential manner. For example, CYP2A6 is the only functional CYP2A in 

human liver and CYP2A1 is the member of the CYP2A subfamily found in mouse. CYP1A1, 

CYP1A2, CYP1B1, and CYP2E1 are the only exception to the nomenclature as the function and 

regulation is highly conserved across all mammalian species (Parkinson, 2001).  
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The expression and activity of CYPs are affected by both genetic and environmental 

factors. Genetic polymorphisms have been shown in a number of CYPs. These polymorphisms 

can lead to significant changes in the CYP metabolism of xenobiotics. CYP2D6 is one such 

CYP. The CYP2D6 family is important in the metabolism of a number of drugs, including 

codeine, tamoxifen, and antidepressants. Polymorphisms within the CYP2D6 allele lead to up to 

four groups of patients that can be grouped based on their ability to metabolize CYP2D6 

substrates. The three groups are poor metabolizers, normal metabolizers, and ultrarapid 

metabolizers. Of the Caucasian population, 6-10% fall within the poor metabolizer group, due to 

the presence of a CYP2D6 allele with decreased function, while ~2% of the Asian population are 

poor metabolizers (Bradford, 2002). In contrast, Middle Eastern and North African populations 

tend to have more ultrarapid metabolizers (McLellan, Oscarson, Seidefard, Evans, and Ingelman-

Sundberg, 1997) within the population.  

Environmental factors, which can affect CYP expression and activity, are social habits 

(smoking, alcohol consumption), foods (cruciferous vegetables), medications (isoniazid, 

barbiturates), and disease states (pregnancy, diabetes). The discovery that medicines and other 

environmental factors can alter CYP activity has allowed researchers to search for compounds 

that can inhibit CYP metabolism altogether. These CYP inhibitors have become useful in 

determining the metabolism of xenobiotics. CYP inhibitors can have isoform selective or non-

selective activity, and these differences can also be species specific. For example, ketoconazole 

has been shown to be a potent CYP3A4 inhibitor in humans, but has much less isozyme selective 

activity in rats (Eagling, Tijia, and Back, 1998). The species specific differences in CYP 

inhibition is most likely due to differences in the CYP catalytic and/ or binding sites between 

species. For this reason caution must be taken when extrapolating results between species 
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(Spatzenegger, Born, and Halpert, 2003). Table 2 shows the species which is most similar to 

humans in terms of CYP activity. 
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Table 2. Species with CYP activity most comparable to humans. 

Human P450 Species Most Similar 

CYP1A1 Rat, Rabbit 

CYP1A2 Rat, Mouse 

CYP2A6 Monkey, Mouse, Hamster, Rabbit 

CYP2B6 Mouse 

CYP2C19 Monkey 

CYP2D6 Dog 

CYP2E1 No large species differences 

CYP3A4 Mouse, Male Rat 

CYP4A11 No large species differences 

Data adapted from Spatzenegger et al (2003). 
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CYPs are found in the greatest concentration in the endoplasmic reticulum of liver 

tissues; however, they have also been found in other tissues such as lung, skin, blood, and 

kidneys. In humans, CYP1A1, CYP1A2, and CYP4A1 protein isoforms have been found in the 

kidney (Ioannides and Parke, 1990; Hardwick, Song, Hubeman, and Gonzalez, 1987). Gonzalez 

(1989) found CYP2 and CYP4 family genes are expressed in the human kidney. Finally, 

CYP3A4 is expressed in approximately 80 percent of human kidneys. In contrast, Cummings, 

Zangar, and Novak (1999) demonstrated that freshly isolated renal proximal and distal tubular 

cells from male Fischer 344 rats expressed CYP2E1, CYP2C11, CYP2B1/2, and CYP4A3/4. 

CYP4A2 is also present in rat kidneys (Kimura, Hanioka, Matsunga, and Gonzalez, 1989a; 

Kimura, Hardwick, Kozak, and Gonzalez, 1989b).  

CYPs are responsible for 75-80% of all phase I metabolism (Nelson, 2004; Guengerich, 

2008; Zanger, Turpeinen, Klein, and Schwab, 2008). CYP enzymes catalyze monooxygenase 

reactions, where one atom of molecular oxygen is added to the substrate, and a second atom of 

oxygen is reduced to water with reducing equivalents from NADPH. In the endoplasmic 

reticulum, the electron from NADPH is enzymatically transferred to the CYP enzyme via 

NADPH-cytochrome P450 reductase. The general reactions for CYP can be expressed as 

Substrate (RH) + O2 + NADPH + H+ è Product (ROH) + H2O + NADP+. Figure 2 shows the 

cyclic catalytic nature of CYP reactions (Dawson, 1988; Schlichting, 2000). While CYPs 

catalyze a number of oxidation reactions, two are important reactions in aniline and chloroaniline 

metabolism: aromatic ring hydroxylation and N-hydroxylation. The role of these reactions in 

aniline and its chlorinated derivative biotransformation will be explored in more detail in a later 

section.  
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Figure 2. Cytochrome P450 Catalytic Cycle. The substrate is RH and the oxidized substrate is 
ROH.  
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1.8 FAD-CONTAINING MONOOXYGENASES (FMOs) 

 Another key phase I xenobiotic metabolism enzyme system is the flavin adenine 

dinucleotide (FAD)-containing monooxygenase (FMO) enzymes. First discovered in the early 

1970s in pig liver by Dr. Daniel Ziegler, FMOs were described as a single flavoprotein enzyme 

that was able to oxidize a number of amines to nitro compounds (Ziegler, 1980). There are now 

five known mammalian FMO isozymes, designated as FMO1, FMO2, FMO3, FMO4, and 

FMO5 (Lawton et al., 1994; Cashman, 1995, 1999; Van Berkel, Namerbeek, and Fraaije, 2006). 

FMOs are located in the endoplasmic reticulum of almost all tissues including the liver, lungs, 

and kidney. Similar to the cytochrome P450s discussed earlier, species and tissue specific 

differences in expression have been explored in some detail. A summary of these studies can be 

found in table 3. For example, FMO1 has been shown to be expressed at high levels in the 

human kidney, but very low in human liver. In contrast, FMO1 expression is high in both rat 

kidney and liver tissue (Cashman, 1995; Dolphin et al., 1991; Parkinson, 2001). Along with 

FMO1, FMO2 and FMO4 are expressed at high levels in rat kidneys (Cashman, 1995). While 

differences occur in expression, the amino acid sequence for the five mammalian isozymes are 

50-58% identical, with each FMO having two highly conserved regions near the active site, one 

that binds the FAD moiety and the second that binds NADPH (Phillips et al., 1995; Kubo, Itoh, 

Itoh, and Kamataki, 1997; Lawton and Philpot, 1993).  

Ziegler discovered that the FAD moiety bound to the enzyme in the presence of oxygen 

forms a 4α-hydroxyperoxyflavin intermediate (Ziegler 1980). This 4α-hydroxyperoxyflavin is 

uncharacteristically stable for a peroxyflavin, which allows it to oxygenate substrates (Entsch 

and van Berkel, 1995). Figure 3 shows the catalytic cycle of FMOs, starting with the reduction of 

FAD to FADH2 by NADPH, which in the present of O2 generates the 4α-hydroxyperoxyflavin. 



	 24	

4α-Hydroxyperoxyflavin is then converted to 4α-hydroxyflavin as the flavin peroxide is 

transferred to the xenobiotic substrate. Finally, 4α-hydroxyflavin is dehydrated and NADP+ is 

released, resetting the FAD moiety of the enzyme, priming it to react again (van Berkel et al, 

2006). Most FMO substrates are soft nucleophile heteroatoms (nitrogen or sulfur containing 

compounds) and undergo N-oxidation or sulfoxidation; although hydroxylation, epoxidation, 

selenide oxidation, and phosphate ester oxidation can be catalyzed by FMOs (van Berkel et al., 

2006; Jokanovic, 2001; Rooseboom, Commandeur, Floor, Rettie, and Vermeulen, 2001; Lohr, 

Willsky, and Acara, 1998). A few substrates and reactions catalyzed by FMO can be seen in 

Figure 4. Benadryl, imipramine, nicotine, morphine, and chlorpromazine are all examples of 

drugs that have been shown to form N-oxide metabolites (Lohr et al., 1998). The N-oxide 

metabolite of meperidine was the major metabolite in perfused isolated rat kidney (Acara, 

Gessner, Greizerstein, and Trudnowski, 1981). While the majority of FMO substrates are tertiary 

amines, there has been evidence in support of FMO oxidation of primary amines (Tynes , 

Sabourin, Hodgson, and Philpot, 1986).  
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Table 3. Putative tissue levels of FMO forms present in animals and humans. NP, apparently not 
present. A question mark indicates that no data are available or the presence of FMO form is in 
doubt. Adapted from Cashman, 1995.  

  

 FMO1 FMO2 FMO3 FMO4 FMO5 
Liver 

     Mouse 
Rat 

     Rabbit 
      Human 

 
Low 
High 
High 
Very Low 

 
NP 
? 
NP 
Low 

 
High 
Low 
Low 
High 

 
? 
? 
? 
Very Low 

 
Low 
Low 
Low 
Low 

Kidney 
     Mouse 

Rat 
     Rabbit 

        Human 

 
High 
High 
Low 
High 

 
? 
? 
Low 
Low 

 
High 
High 
Very Low 
? 

 
? 
High 
High 
? 

 
Low 
Low 
Low 
? 

Lung 
     Mouse 

Rat 
     Rabbit 

        Human 

 
? 
? 
? 
? 

 
High 
? 
Very High 
Low 

 
Very Low 
? 
? 
? 

 
NP 
NP 
NP 
NP 

 
Low 
Low 
NP 
? 
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Figure 3. FMO Catalytic Cycle. X is the xenobiotic substrate; XO is the oxygenated product; 
FADHOOH is the 4α-hydroperoxyflavin; FADHOH is the 4α-hydroxyflavin 
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Figure 4. Examples of FMO substrates.  
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1.9 PEROXIDASE-DEPENDENT COOXIDATION  

 Peroxidase cooxidation has been shown to play a role in xenobiotic metabolism, 

especially in extrahepatic tissues that have low levels of CYPs. Unlike the other oxidative 

biotransformation pathways that require the reduction of cofactors such as NADPH and NADH, 

during peroxidase cooxidation the reduction of hydrogen peroxide and other lipid peroxides is 

coupled to the oxidation of xenobiotics and other substrates (Eling, Thompson, Foureman, 

Curtis, and Hughes, 1990).  There are a number of peroxidases, which can catalyze xenobiotic 

biotransformation. One of the most commonly studied peroxidases involved in xenobiotic 

biotransformation is prostaglandin H synthase (PHS). There are two main pathways for PHS-

dependent cooxidation. The first involves the direct transfer of peroxide oxygen to the substrate, 

while the second utilizes the xenobiotcs as electron donors, which can be oxidized by free 

radicals during the reduction of hydrogen peroxide. One example of xenobiotic metabolism by 

PHS is the two-electron oxidation of acetaminophen to N-acetyl-benzoquinoneimine. It has been 

suggested that a single electron intermediate, N-acetyl-benzosemiquinonemine is formed via 

PHS cooxidation. Further studies have suggested that N-acetyl-benzosemiquinonemine 

contributes to the nephrotoxicity of acetaminophen. PHS is expressed in kidney medulla, brain, 

lung, urinary bladder epithelium, and GI tract (Parkinson, 2001). While peroxidase-dependent 

cooxidation has not been shown as a major pathway in aniline and chloroaniline metabolism, it is 

a potential pathway whose role needs to be explored in more detail. 

 
1.10 GLUCURONIDE AND SULFATE CONJUGATION REACTIONS 

 
 Glucuronidation and sulfation are two major phase II reactions that primarily detoxify 

xenobiotics. These reactions require endogenous cofactors to react with functional groups of the 

xenobiotics to increase polarity of the parent compound or metabolite, which will increase the 
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rate of excretion. As mentioned before, phase II reactions can occur prior to or following phase I 

metabolism. It is also important to note the phase II reactions generally occur at a greater rate 

than phase I reactions (Parkinson, 2001).  

Glucuronidation is catalyzed by UDP-glucuronosyltranferases (UGTs). Initially, UGTs 

were separated into four groups; however, it is now apparent that there are only two gene 

families, UGT1 and UGT2 (Parkinson, 2001), found in rats. The members of UGT2 can be 

further separated into two sub-families, UGT2A and UGT2B. The members of the UGT2 arise 

from different genes. In contrast, all members of UGT1 arise from a single gene, with multiple 

UGTs encoded. UGTs have been found in the endoplasmic reticulum of the multiple tissues, 

including the liver and kidney. In glucuronidation, uridine diphosphate-glucuronic acid (UDP-

glucuronic acid) is added to electron rich heteroatoms, such as oxygen, nitrogen, or sulfur. Over 

350 UGT substrates have been discovered (Tukey and Strassburg, 2000). Figure 5 shows a 

sampling of substrates. For example, aniline and its chlorinated derivatives have been shown to 

undergo glucuronidation as will be discussed in more detail in the next section (Smith and 

Williams, 1949; Bohme and Grunow, 1969; Parke, 1960). Since glucuronidation requires UDP-

glucuronic acid, UDP-glucuronic acid availability can limit the rate of glucuronidation. 

Depletion of UDP-glucuronic acid can lead to increased toxicity, if glucuronidation is the major 

detoxifying pathway (Whitcomb and Block, 1994).  

Sulfation on the other hand is catalyzed by the cytosolic enzyme sulfotransferase. There 

are a number of sulfotranferase enzymes that have been characterized in mammals. While there 

is not a universally agreed upon nomenclature, the sulfotranferase enzymes can be separated into 

five distinct gene families, SULT1A-SULT1E (Nagata and Yamazoe, 2000). This nomenclature 

uses amino acid sequence similarities to group members into one of the five gene families.  
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Sulfotransferase has been found in a number of tissues, including the kidney (Mulder and 

Jakoby, 1990). The function of sulfotransferase is to transfer sulfonate from 3’-

phosphoadenosine-5’-phosphosulfate (PAPS) to the substrate (Figure 5). Some examples of 

xenobiotics that undergo sulfation are acetaminophen and phenol. While phenols and aliphatic 

alcohols represent the largest group of substrates that are sulfated, a number of aromatic amines 

have been shown to be sulfated. Aniline and its chlorinated derivatives have been shown to 

undergo both O- and N-sulfation during metabolism (Hong and Rankin, 1998; Parkinson, 2001; 

Ehlhardt and Howbert, 1991; Bohme and Grunow, 1969). The metabolism of aniline will be 

explored in more detail in the following section.  
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Figure 5. Examples of substrates, which undergo glucuronidation and/or sulfation. 

Arrow indicates site of glucuronidation or sulfation. 
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1.11 ANILINE AND CHLOROANILINE METABOLISM 

The biotransformation of aniline has been explored in great detail in both mammalian and 

non-mammalian species. One of the first known accounts of human exposure and resulting 

metabolism of aniline was a human poisoning case with 25 g of aniline. This study showed that 

the patient’s urine contained sulfate conjugated p-aminophenol, as well as unchanged aniline 

(Muller 1887). Additional studies where dogs (Schmiedeberg, 1878) and rats (Elson, Goulden, 

and Warren, 1946) were fed aniline found similar results to Muller’s results in that the urine 

contained p-aminophenol after acid hydrolysis. In 1949, Smith and Williams investigated the fate 

of aniline in rabbits. In this study, rabbits were given 200 mg/kg aniline via an oral dose. The 

results of the study demonstrated that while conjugated p-aminophenol metabolites represented 

40-45% of the aniline fed, the major metabolite was the N-glucuronide of aniline itself (Figure 

6). With the availability of [14C]-aniline in the early 60s, it became possible to account for 75-

100% of a single dose of aniline in rabbits and other animals. The results showed that in rabbits 

51% of the dose was eliminated as p-aminophenol, 9% was o-aminophenol, 0.1 % was m-

aminophenol, 3.5% was aniline-N-glucuronide, 5.4% was phenylsulphamic acid, 0.2% was 

acetanilide, and finally, 8.2% was eliminated as unchanged aniline (Parke, 1960).   

Kao, Faulkner, and Bridges, (1978) provided the next major breakthrough in the 

metabolism of aniline. Their study found that the major urinary metabolite of aniline in male 

Wistar albino rats was N-acetyl-p-aminophenol sulfate (~56%). Minor metabolites included O-

conjugates of o- and p-aminophenol (~20%), acetanilide (~3%) and N-acetyl-p-aminophenol 

(~10%), as determined by thin layer chromatography. In contrast to the previous studies already 

discussed, neither N-glucuronides and sulfates of aniline, nor free aniline were detected in the 

urine. This difference can be explained by the use of enzymatic hydrolysis of sulfate and 
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glucuronide conjugates, as opposed to chemical hydrolysis used in previous studies. It is possible 

that the strong acids used in the previous studies could lead to deacetylation, as well as 

hydrolysis of both the sulfate and glucuronide conjugates (Kao et al., 1978).  
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Figure 6. Metabolites of aniline. Information is from Smith and Williams (1949). Percentages 

displayed are the percent of dose recovered in urine after rabbits were given 200 mg/kg of aniline 

via an oral dose. 
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During this same time period, experiments exploring the metabolism of halogenated 

anilines were being conducted. The major halogenated aniline explored was the chlorinated 

derivative of aniline, p-chloroaniline, sometimes referred to as 4-chloroaniline. In Fischer 344 

rats, the major urinary metabolite found was 2-amino-5-chlorophenylsulfate (Ehlhardt and 

Howbert, 1991), following a single dose of 4-chloroaniline given intragastrically by syringe. N-

Acetyl-2-amino-5-chlorophenylsulfate was a minor metabolite and accounted for ~7% of the 

dose. Once again, no glucuronides were found in the urine. Since hydroxylation of the para-

position is effectively blocked with the addition of chlorine, the o-hydroxylation and 

subsequently conjugated product would be expected to be the major metabolite. Similarly to 

aniline metabolism, the ortho-hydroxylated metabolite is excreted as free aniline sulfate rather 

than its N-acetylated derivative. In similar studies with 3-chloroaniline, aromatic ring 

hydroxylation to 4-amino-2-chlorophenol and 2-amino-4-chlorophenol was the major 

biotransformation pathway (Bohme and Grunow 1969). Both of these metabolites were then N-

acetylated and/or conjugated to form a sulfate or glucuronide metabolites. These studies have 

demonstrated that phenyl ring hydroxylation, N-acetylation, glucuronidation, and sulfonation are 

all important metabolic pathways for aniline and chloroaniline metabolism, in vivo.  

Another proposed metabolic pathway that has been explored in aniline metabolism is N-

hydroxylation. The N-hydroxylation metabolite of aniline, phenylhydroxylamine, has only been 

shown in blood (Harrison and Jollow 1986, 1987). Harrison and Jollow (1986) measured the 

formation of 2-aminophenol, 4-aminonophenol, 4-hydroxyacetanilide, and phenylhydroxylamine 

in the blood of male Sprague-Dawley rats following a single i.p. injection of aniline (1.5 

mmol/kg). Phenylhydroxylamine was measured as phenylhydroxyalamine + nitrosobenzene as 

previously described (Harrison and Jollow, 1983). The results showed the major unconjugated 
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metabolite found in blood for the first five hours post injection was the phenylhydroxylamine + 

nitrosobenzene, as measured by HPLC. The peak levels of phenylhydroxylamine occurred just 

ten minutes post injection. In contrast, both the 4-aminophenol and 4-hydroxyacetanilide 

concentrations did not peak until 6-8 hours post injection. N-Hydroxylation of aniline and 

chloroaniline has been shown to play a role in aniline-induced methemoglobinemia, as 

previously discussed (Valentovic et al, 1997; Harrison and Jollow, 1987; Jenkins et al., 1972). 

While N-hydroxylation metabolites have not been found in urine following exposure to either 

aniline or chloroanilines, N-hydroxylation is still a potential biotransformation pathway for these 

compounds that needs to be explored in greater detail.  

 

1.12 CHLOROANILINE METABOLITE INDUCED NEPHROTOXICITY 

 The nephrotoxic potential of select chloroaniline metabolites have been previously 

described both in vivo and in vitro (Rankin et al., 1994, 1996; Rankin, Racine, Sweeney, 

Kraynie, Anestis, and Barnett 2008a; Valentovic, Ball, Sun, and Rankin, 2002; Hong et al., 

1997). Most of these studies explored the nephrotoxicity of putative metabolites, which arise 

from phenyl ring hydroxylation to aminophenolic compounds because 4-aminophenol, the para-

hydroxylation product of aniline, was shown to cause diuresis, elevated kidney weight, increased 

BUN levels, proteinuria, glucosuria, proximal tubular necrosis, and decreased organic ion 

accumulation in Fischer 344 and Sprague-Dawley rats (Newton, Kuo, Gemborys, Mudge, and 

Hook, 1982; Davis et al., 1983; Gartland, Bonner, Trimbell, and Nicholson, 1989). One of the 

few studies to explore the nephrotoxic potential of putative chlorinated anilines was conducted 

by Rankin et al. (1994). In that study, male Fischer 344 rats were given a single i.p. injection of 

4-amino-2,6-dichlorophenol (0.25, 0.38, or 0.50 mmol/kg). Results of the study show that a 
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single i.p. injection of 0.38 mmol/kg 4-amino-2,6-dichlorophenol was able to produce 

nephrotoxicity similar to that seen with 3,5-dichloroaniline. The nephrotoxicity was 

characterized by significant increases in hematuria, proteinuria, glucosuria, BUN concentration, 

and kidney weight, as well as significantly decreasing organic ion accumulation in vivo. In vitro 

studies showed significant increases in lactate dehydrogenase (LDH) release, a marker of 

cytotoxicity, from renal cortical slices following the exposure to concentrations greater than 1 x 

10-5 M for 90 minutes (Rankin et al., 1994). Comparisons with 3,5-dichloroaniline suggest that 

the putative metabolite, 4-amino-2,6-dichlorophenol, is a more potent nephrotoxicant than 3,5-

dichloroaniline (Rankin et al., 1994). However, further studies are required to determine the role 

of 4-amino-2,6-dichlorophenol and other putative 3,5-dichloroaniline metabolites in 3,5-

dichloroaniline-induced nephrotoxicity.  

  

1.13 SCOPE OF CURRENT WORK 

It was hypothesized that 3,5-DCA would be nephrotoxic in IRCC from male Fischer 344 

rats, and that renal metabolism of 3,5-DCA in IRCC contributed to nephrotoxicity, at least in 

part. The current studies were designed to explore the metabolism of 3,5-dichloroaniline (3,5-

DCA), the nephrotoxic potential of 3,5-DCA and its putative metabolites, the role of metabolism 

in 3,5-DCA induced nephrotoxicity, and the role of oxidative stress as a mechanism of cell death, 

using a Fischer 344 rat isolated renal cortical cell (IRCC) model. 3,5-DCA was chosen for 

further exploration because it proved to possess the greatest nephrotoxic potential among the 

mono- and dichlorinated anilines, both in vivo and in vitro using rat renal slices, as discussed 

above (Lo et al., 1990; Valentovic, Ball, Anestis, and Rankin 1995a; Valentovic et al.,1996). 

While most of the previous in vitro work was performed in a renal slice model, the current study 
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was performed in IRCC. The IRCC model was chosen because it is enriched for proximal tubular 

cells, the major target of 3,5-DCA induced nephrotoxicity. Fischer 344 rats were chosen as the 

animal species because they have been shown to respond to nephrotoxicants more like humans 

do than other rat strains (Mazze et al., 1973, Kosek et al., 1974; McMurtry et al., 1978).  
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CHAPTER II: THE ROLE OF BIOTRANSFORMATION AND OXIDATIVE STRESS IN 

3,5-DICHLOROANILINE (3,5-DCA) INDUCED NEPHROTOXICITY IN ISOLATED 
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ABSTRACT 
 
Among the mono- and dichloroanilines, 3,5-Dichloroaniline (3,5-DCA) is the most potent 

nephrotoxicant in vivo and in vitro. However, the role of renal biotransformation in 3,5-DCA 

induced nephrotoxicity is unknown. The current study was designed to determine the in vitro 

nephrotoxic potential of 3,5-DCA in isolated renal cortical cells (IRCC) obtained from male 

Fischer 344 rats, and the role of renal bioactivation and oxidative stress in 3,5-DCA 

nephrotoxicity. IRCC (~4 million cells/ml) from male rats were exposed to 3,5-DCA (0-1.0 mM) 

for up to 120 min. In IRCC, 3,5-DCA was cytotoxic at 1.0 mM by 60 min as evidenced by the 

increased release of lactate dehydrogenase (LDH), but 120 min was required for 3,5-DCA 0.5 

mM to increase LDH release. In subsequent studies, IRCC were exposed to a pretreatment 

(antioxidant or enzyme inhibitor) prior to exposure to 3,5-DCA (1.0 mM) for 90 min. 

Cytotoxicity induced by 3,5-DCA was attenuated by pretreatment with inhibitors of flavin-

containing monooxygenase (FMO; methimazole, N-octylamine), cytochrome P450 (CYP; 

piperonyl butoxide, metyrapone), or peroxidase (indomethacin, mercaptosuccinate) enzymes. 

Use of more selective CYP inhibitors suggested that the CYP 2C family contributed to 3,5-DCA 

bioactivation. Antioxidants (glutathione, N-acetyl-L-cysteine, α-tocopherol, ascorbate, pyruvate) 

also attenuated 3,5-DCA nephrotoxicity, but oxidized glutathione levels and the 

oxidized/reduced glutathione ratios were not increased. These results indicate that 3,5-DCA may 

be activated via several renal enzyme systems to toxic metabolites, and that free radicals, but not 

oxidative stress, contribute to 3,5-DCA induced nephrotoxicity in vitro. 
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Abbreviations 
 
3,5-DCA, 3,5-dichloroaniline; IRCC, isolated renal cortical cells; LDH, lactate dehydrogenase; 

ALT, alanine aminotransferase; GPT, glutamic-pyruvic transaminase; GSH, glutathione; GSSG, 

oxidized glutathione; DMSO, dimethyl sulfoxide; DNP, 2,4-dinitrophenylhydrazone; FMO, 

flavin-containing monooxygenase; CYP, cytochrome P450; PiBx, piperonyl butoxide; 

DEDTCA, diethyldithiocarbamate; ASC, ascorbate; NAC, N-acetyl-L-cysteine; 3,5-DCAA, 3,5-

dichloroacetanilide; 3,5-DCPHA, 3,5-dichlorophenylhydroxylamine; 3,5-DCNB, 3,5-

dichloronitrobenzene  
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2.1 INTRODUCTION 

Toxicity arising from exposure to anilines, important chemical intermediates used in the 

production of agricultural, industrial and pharmaceutical products (Lindh, Littorin, Amilon, and 

Jönsson, 2007; Unger, 1996), has been well established. Exposure to aniline and its chlorinated 

derivatives has been associated with hematotoxicity (methemoglobinemia, hemolytic anemia; 

Chhabra et al., 1990; Guilhermino, Sores, Carvalho, and Lopes, 1998; Pauluhn, 2004; Valentovic 

et al., 1997), splenotoxicity (splenomegaly, elevated erythropoietic activity, hyperpigmentation, 

fibrosis; Chhabra et al., 1990; Khan, Wu, Boor, and Ansari, 1999; Ma, Wang, Abdel-Rahman, 

Boor, and Kahn, 2008, 2013), hepatotoxicity (hepatomegaly, elevated serum ALT/GPT levels, 

centralobular necrosis; Valentovic et al., 1992, 1995a; Valentovic, Lo, Brown, and Rankin, 

1995b), and nephrotoxicity (Hong, Anestis, Henderson, and Rankin,  2000; Lo et al., 1990; 

Racine et al., 2014; Valentovic et al., 1995a). Chloroaniline induced nephrotoxicity in vivo is 

characterized by oliguria, decreased kidney weight, proteinuria, hematuria, elevated blood urea 

nitrogen (BUN) concentration, and decreased organic ion transport in the proximal tubule cells 

(Rankin et al., 1986; Lo et al., 1990; Valentovic et al., 1995a). Morphological changes occur in 

both the proximal and distal tubules and collecting ducts, with the greatest abnormalities seen in 

the proximal tubular cells. These morphological changes include blebbing and vacuolization of 

proximal tubular cells, occluded lumina with sloughed microvilli and enlarged lumina in the 

distal tubule (Lo et al., 1990). In vitro exposure of rat renal cortical slices to chloroanilines leads 

to a significant increase in cytotoxicity as seen by a decrease in organic ion accumulation and an 

increase in lactate dehydrogenase (LDH) release (Valentovic et al., 1992, 1995a, 1995b). Among 

the mono- and dichloroanilines, 3,5-dichloroaniline (3,5-DCA) was the most potent 

nephrotoxicant both in vivo and in vitro (Lo et al., 1990; Valentovic et al., 1995a, 1996).    
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Biotransformation via N-oxidation, N-acetylation, and phenyl ring oxidation are all known 

pathways of chloroaniline metabolism (Ehlhardt and Howbert, 1991; Hong and Rankin, 1998; 

Racine et al., 2014). Based on these studies a proposed biotransformation pathway of 3,5-DCA 

can be seen in figure 7. Two of these pathways (N-oxidation and phenyl ring oxidation) have the 

potential to lead to the formation of toxic metabolites from aniline compounds. For example, N-

oxidation of aniline leads to toxic metabolites responsible for hematoxicity (Harrison and Jollow, 

1987, 1986) and splenotoxicity (Khan, Wu, and Ansari, 2000; Ma et al., 2013, 2008), while 

formation of the 4-aminophenol metabolite can contribute to nephrotoxicity (Harmon, Terneus, 

Kiningham, and Valentovic, 2005; Rankin et al., 1996; Tarloff, Goldstein, Morgan, and Hook, 

1989). A small number of studies have shown that bioactivation can also contribute to the 

nephrotoxicity associated with some chloroanilines (Racine et al., 2014; Valentovic et al., 

1995b). Putative metabolites of chloroanilines arising from N-oxidation or phenyl ring oxidation 

are also toxic to the kidney (Hong et al., 1997, 1996; Rankin et al., 2008a). Nonetheless, the 

enzyme systems responsible for the bioactivation of chloroanilines studied to date and the 

ultimate nephrotoxic metabolites formed from these compounds are not clearly defined.  

Oxidative stress may contribute to the mechanism of cell death with aniline compounds. 

Harmon et al. (2005) found that oxidative stress played a role in 4-aminophenol-induced 

nephrotoxicity in vitro, while Hong et al. (1997) showed that in vivo 4-amino-2,6-dichlorophenol 

(ADCP), a putative metabolite of 3,5-DCA, increased the oxidized to reduced glutathione ratio in 

kidney, suggesting that ADCP induced renal oxidative stress. In addition, ADCP nephrotoxicity 

was prevented by pretreatment with antioxidants. However, it is unclear if oxidative stress plays 

a role in 3,5-DCA nephrotoxicity.
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Figure 7. Proposed Renal Biotransformation Pathway of 3,5-DCA. Abbreviations: 

CYP=Cytochrome P450, FMO=Flavin-containing Monooxygenase, NAT= N-acetyltransferase.   
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The purpose of this study was to explore, in more detail, the in vitro nephrotoxicity induced 

by 3,5-DCA. The in vitro cytotoxicity of 3,5-DCA was determined in isolated rat renal cortical 

cells (IRCC) from male Fischer 344 rats, and the role of renal metabolizing enzyme systems, 

including CYP isozymes, in the bioactivation of 3,5-DCA to nephrotoxic metabolites was also 

examined. Lastly, the role of free radicals and oxidative stress in 3,5-DCA-induced 

nephrotoxicity was explored. The IRCC model was selected for use because this model contains 

the target cells for 3,5-DCA and maintains metabolic and transport capabilities seen in vivo for 

several hours, including CYP activity (Cummings et al., 1999; Lash, 1998).  
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2.2 MATERIALS AND METHODS 

2.2.1 Experimental Animals 

Male Fischer 344 rats (200-250 g) from Hilltop Lab Animals, Inc. (Scottdale, PA) were 

used for these experiments. All animals were kept in a controlled environment with a regulated 

light cycle (12 h on/12 h off), temperature (21-23oC), and humidity (40-55%) with food (Purina 

Rat Chow) and water available ad libitum. Rats were allowed at least one week to acclimate to 

the animal facilities prior to use in any experiments. Animal use for these experiments was 

approved by the Marshall University Institutional Animal Care and Use Committee, and animal 

use was conducted in accordance with the Guide for the Care and Use of Laboratory Animals as 

adopted by the National Institutes of Health. 

 

2.2.2 Chemicals 

All chemicals used were the highest purity available and were purchased from Sigma 

Aldrich (St. Louis, MO) or Fisher Scientific (Pittsburgh, PA). 

 

2.2.3 Isolated Renal Cortical Cells (IRCC) preparation and treatment 

Untreated male rats were anesthetized with pentobarbital (75 mg/kg, ip) and isolated 

renal cortical cells (IRCC) were obtained using the collagenase perfusion method of Jones, 

Sundby, Ormstad, and Orrenius (1979). Cell viability was initially determined by trypan blue 

(2% w/v) exclusion and lactate dehydrogenase (LDH) release. IRCC were counted and 

resuspended in Krebs-Henseleit buffer, pH 7.37, containing 25 mM Hepes and 2% (w/v) bovine 

serum albumin at a concentration of ~4.2 million cells/ml. IRCC (3 ml) were added to 25 ml 

polycarbonate Erlenmeyer flasks for a five min pre-incubation period in a Dubnoff shaking water 
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bath incubator (37˚C, 60 cycles/min) under an atmosphere of 95% oxygen and 5% carbon 

dioxide. Cells were exposed to various concentrations of 3,5-dichloroaniline (3,5-DCA; 0.5 or 

1.0 mM) or vehicle (DMSO) for 60, 90 or 120 min. After the incubation period, flasks were 

removed, placed on ice, and samples (0.5 ml) taken for lactate dehydrogenase (LDH) release 

assays. Briefly, samples were centrifuged (3000xg, 3 min), the supernatant was decanted and 

saved, and the pellet was disrupted with 1 ml of 10% Triton X-100 solution to release cellular 

LDH. LDH activity was then determined in each fraction as previously described using a kinetic 

assay based on the amount of NADH produced from NAD (Rankin et al., 2008b). LDH released 

into the media was expressed as the percent of total (media + pellet).  

In separate experiments, IRCC were pretreated with either an antioxidant or an enzyme 

system inhibitor (Table 4) before exposure to 1.0 mM 3,5-DCA for 90 min, to determine the role 

of biotransformation of 3,5-DCA on cytotoxicity. Males were chosen for these experiments 

because our previous studies were performed in male rats (Lo, Valentovic, Brown, and Rankin 

1994; Valentovic et al., 1995b). All pretreatment times and concentrations were based on 

previously published studies (Baliga, Zhang, Baliga, Ueda, and Shah, 1998; Harleton et al., 

2004.; Harmon et al., 2005; Harmon, Kiningham, and Valentovic, 2006; Katsuda et al., 2010; 

Lau and Monks, 1987; Lock, Cross, and Schnellmann, 1993; O’Brien and Siraki, 2005; 

Rodriguez and Acosta, 1997; Suzuki and Sudo, 1990; Valentovic et al., 1999).
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Table 4. List of antioxidants and enzyme inhibitors with primary targeted enzyme systems.

Pretreatment (PreTx) 
Compound 

PreTx 
Conc. 

PreTx 
Time 
(min) 

Mechanism or 
Enzyme 
Inhibited 

 
Reference 

 
N-Acetyl-L-cysteine 2.0mM 30 Antioxidant Katsuda et al. 

2010 
α-Tocopherol 1.0mM 5 Antioxidant Suzuki et al. 

1990 
Glutathione 1.0mM 30 Antioxidant Lau et al. 1987 
Ascorbate 2.0mM 5 Antioxidant Lock et al.1993 
Pyruvate 1.0mM 15 Antioxidant Harmon et al. 

2006, 2005 
Methimazole 1.0mM 30 FMO Rodriquez et al. 

1997 
N-Octylamine 2.0mM 5 FMO Rodriquez et 

al.1997 
Indomethacin 1.0mM 15 Cyclooxygenase Lau et al. 1987 

Mercaptosuccinate 0.1mM 15 Peroxidase Racine et al. 
2014 

PiBx 1.0mM 15 NS CYP Baliga et al.1998 
Metyrapone 1.0mM 5 NS CYP Lock et al. 1993 

Oleandomycin triacetate 0.5mM 30 CYP3A1/2 Racine et al. 
2014 

Thio-tepa 0.1 mM 5 CYP2B1/2 Harleton et al. 
2004 

Isoniazid 1.0mM 5 CYP2E1 Racine et al. 
2014 

DEDTCA 0.1mM 30 CYP2C > 
CYP2E1 

Eagling et 
al.1998 

Omeprazole 0.01mM 30 CYP2C Racine et al. 
2014 

Sulfaphenazole 0.1mM 30 CYP2C Eagling et al. 
1998, 

Kobayashi, 
Urashima, 

Shimada, and 
Chiba 2003 
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2.2.4 Glutathione determination  

 Following treatment with 3,5-DCA (0.5 or 1.0 mM) or vehicle (DMSO) for 60 or 90 min, 

IRCC (2.0 ml; 4.2 million cells/ml) were homogenized in 0.5% sulfosalicylic acid (250 µl). 

Using a glutathione and NADPH coupled reaction; total glutathione (GSH) was determined as 

previously described (Anderson, 1985; Griffith, 1980; Valentovic, Terneus, Harmon, and 

Carpenter, 2004). To measure glutathione disulfide (oxidized glutathione; GSSG) 2-

vinylpyridine derivation was used as described by Griffith (1980). The ratio of oxidized/reduced 

GSH was then determined and all results were expressed as percent of control for each set of 

experiments.  

 

2.2.5 Protein carbonyl measurement 

Protein carbonyl levels were measured after exposure to vehicle (DMSO) or 3,5-DCA 

(0.5, 1.0 mM) for 60 or 90 min as previously described by Terneus, Kiningham, Carpenter, 

Sullivan, and Valentovic, (2007). Briefly, a sample from treated IRCC (0.5 ml) was 

homogenized in 5x volume Krebs buffer, and total protein was determined using a Coomassie 

blue spectrophotometric method (Bradford, 1976). Protein OxyBlot kits (Millipore) were utilized 

to determine protein carbonyl levels following the manufacturer’s recommended protocol. The 

assay utilizes a 2,4-dinitrophenylhydrazine (DNP) specific antibody to detect DNP moiety on 

proteins. DNP moieties arise from the reaction of carbonyl side chains formed under oxidative 

stress conditions with 2,4-dinitrophenylhydrazine (Terneus et al., 2007).  
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2.2.6 Statistics 

Data for LDH release is presented as mean ± S.E.M. with an N ≥ 4 separate isolation 

experiments. Data for oxidized/reduced GSH and Oxyblot experiments are presented as mean 

percent of control ± S.E.M. with an N ≥ 4 experiments. Data was analyzed by a one-way analysis 

of variance followed by a Student-Newman-Keuls Test using GraphPad Prism 6.0.  Statistical 

significance was determined at P < 0.05.  
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2.3 Results 

2.3.1 Time and concentration cytotoxicity studies 

 To determine the nephrotoxic potential of 3,5-DCA in IRCC, concentration response 

curves were performed at 60, 90 or 120 min. Cytotoxicity, as determined by increased LDH 

release, was seen at 90 and 120 min at a 3,5-DCA concentration of 1.0 mM. Cytotoxicity was 

also seen with 0.5 mM 3,5-DCA, but only at the 120 min exposure time (Fig. 8). Based on these 

observations, the 3,5-DCA concentration selected for further study was 1.0 mM with an exposure 

time of 90 min.  

 

2.3.2 Effects of flavin-containing monooxygenase (FMO), cyclooxygenase, or peroxidase 

inhibition 

 To determine the role of FMOs in 3,5-DCA bioactivation, IRCC were pretreated with the 

FMO inhibitors methimazole or N-octylamine. The cyclooxygenase activity of prostaglandin H 

synthase was inhibited with indomethacin, while general peroxidase activity was inhibited with 

mercaptosuccinate. All pretreatments significantly attenuated 3,5-DCA induced cytotoxicity 

(Fig. 9). 

 

2.3.3 Effects of nonselective cytochrome P450 (CYP) inhibition 

 The role of CYPs in 3,5-DCA induced cytotoxicity was first examined by using the 

nonselective CYP inhibitors piperonyl butoxide [PiBx], and metyrapone. Results showed PiBx 

and metyrapone both significantly attenuated 3,5-DCA 1.0 mM induced cytotoxicity (Fig. 10).  
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Figure 8. 3,5-DCA induced cytotoxicity in isolated renal cortical cells obtained from male 

Fischer 344 rats following exposure for 60, 90 and 120 min. Each bar represents the mean ± 

S.E.M. for N=4-5 separate isolation experiments. *Significantly different from DMSO control, 

P<0.05. 
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Figure 9. Effects of FMO, cyclooxygenase, or peroxidase inhibitor pretreatment (PreTX) on 3,5-

DCA cytotoxicity in isolated renal cortical cells obtained from male Fischer 344 rats after 90 

min. Each bar represents the mean ± S.E.M. for N=4-5 separate isolation experiments. 

*Significantly different from DMSO control, P<0.05. ∇Significantly different from the 1.0 mM 

3,5-DCA value, P<0.05. 
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 Figure 10. Effects of nonselective cytochrome P450 inhibitor pretreatment (PreTX) on 3,5-

DCA cytotoxicity in isolated renal cortical cells obtained from male Fischer 344 rats after 90 

min. Each bar represents the mean ± S.E.M. for N=4-5 separate isolation experiments. 

*Significantly different from DMSO control, P<0.05. ∇Significantly different from the 1.0 mM 

3,5-DCA value, P<0.05. PiBx, piperonyl butoxide.
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2.3.4 Effects of isozyme selective CYP inhibition 

 Based on the results from studies using nonselective CYP inhibitors, further studies were 

designed to explore the role of select renal CYP isozymes on 3,5-DCA induced cytotoxicity. To 

determine the role of CYP3A, CYP2E1, and CYP2B1/2 isozymes in 3,5-DCA bioactivation, 

oleandomycin triacetate, isoniazid, and thio-tepa were used to inhibit CYP3A, CYP2E1, and 

CYP2B1/2 isozymes, respectively. Cytotoxicity induced by 3,5-DCA was not significantly 

attenuated by any of these pretreatments (data not shown). To determine the role of the CYP2C 

family in 3,5-DCA bioactivation, the effects of three CYP2C family inhibitors (omeprazole, 

diethyldithiocarbamate (DEDTCA), and sulfaphenazole) on 3,5-DCA cytotoxicity were 

examined. Results show that inhibition of the CYP2C family significantly reduced cytotoxicity 

(Fig. 11). 

 

2.3.5 Effects of antioxidants on 3,5-DCA cytotoxicity 

 The effect of pretreating IRCC with antioxidants on 3,5-DCA cytotoxicity was also 

examined to explore whether oxidative stress or free radicals played a significant role in 3,5-

DCA (1.0 mM) induced cytotoxicity. Results showed all five antioxidants (N-acetyl-L-cysteine, 

α-tocopherol, glutathione, ascorbate and pyruvate) significantly attenuated 3,5-DCA cytotoxicity 

(Fig. 12).   
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Figure 11. Effects of CYP2C isozyme selective inhibitor pretreatment (PreTX) on 3,5-DCA 

cytotoxicity in isolated renal cortical cells obtained from male Fischer 344 rats after 90 min. 

Each bar represents the mean ± S.E.M. for N=4-5 separate isolation experiments. *Significantly 

different from DMSO control, P<0.05. ∇Significantly different from the 1.0 mM 3,5-DCA value, 

P<0.05. 
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Figure 12. Effects of antioxidant pretreatment (PreTX) on 3,5-DCA cytotoxicity in isolated renal 

cortical cells obtained from male Fischer 344 rats after 90 min. Each bar represents the mean ± 

S.E.M. for N=4-5 separate isolation experiments. *Significantly different from DMSO control, 

P<0.05. ∇Significantly different from the 1.0 mM 3,5-DCA value, P<0.05. 
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2.3.6 Determination of oxidative stress following exposure to 3,5-DCA  

Since antioxidant pretreatment significantly attenuated cytotoxicity, studies were 

designed to determine whether oxidative stress following exposure to 3,5-DCA played a role in 

cytotoxicity. The presence of oxidative stress was determined by examining the ratio of 

oxidized/reduced glutathione (GSH) after exposure to 3,5-DCA (0.5 and 1.0 mM) at 60 and 90 

min. These results were then correlated with the appearance of cytotoxicity. Results showed no 

significant changes in the ratio of oxidized/reduced GSH at any 3,5-DCA concentration or time 

point (Fig. 13), even though some cell death was occurring with the 1.0 mM concentration at the 

90 min time point (Fig. 8). However, total GSH and reduced GSH were significantly reduced 

following exposure to 3,5-DCA at both concentrations (0.5 mM and 1.0 mM) and times (60 min, 

90 min). Oxidized GSH was unchanged at 60 min and was significantly reduced at 90 min with 

both concentrations of 3,5-DCA (0.5 mM and 1.0 mM). (Fig. 13) 

Protein carbonyl levels were examined as a second marker of oxidative damage to 

determine if oxidative stress was a causative factor in cell death. Protein carbonyl levels were 

only significantly increased following exposure to 1.0 mM 3,5-DCA after 90 min (Fig. 14), a 

time when cell death was evident (Fig. 8). Thus, oxidative damage appears to be secondary to the 

causative mechanism of cell death. 
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Figure 13. The oxidized/reduced glutathione (GSSG/GSH) ratio following exposure to 3,5-DCA 

for 60 (A) or 90 (B) min. Total, oxidized, and reduced GSH following exposure to 3,5-DCA for 

60 (C) and 90 (D) min. Each bar represents the percent control  ± S.E.M. for N=4-6 separate 

isolation experiments. *Significantly different from DMSO control, P<0.05. 
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Figure 14. Oxyblot data following exposure to 3,5-DCA for 60 (A) and 90 (B) min. Each bar 

represents the percent control ± S.E.M. for N=4-6 separate isolation experiments. *Significantly 

different from DMSO control, P<0.05
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2.4 DISCUSSION 

Human exposure to 3,5-DCA can occur in a variety of settings, including during the 

manufacture of 3,5-DCA-based pesticides (e.g. iprodione, vinclozolin), dyes, etc. and through 

environmental exposure (e.g. application of pesticides, accumulation in waste water). Human 

exposure data to 3,5-DCA is extremely limited and blood levels of 3,5-DCA following pesticide 

or 3,5-DCA exposure are not reported for humans. Exposure to vinclozolin during manufacture 

has been monitored by measuring 3,5-DCA levels in the urine, which can be as high as ~1.4 

mg/g creatinine (Zober et al., 1995). However, these levels have not resulted in harmful renal 

effects. Thus, nephrotoxicity in humans would most likely occur only through accidental 

poisoning, as is seen for aniline (Gosselin, Smith, and Hodge, 1984). A single nephrotoxic dose 

of 3,5-DCA in Fischer 344 rats (0.8 mmol/kg, ip) would result in an estimated blood level of 

1.25 mM (Lo et al., 1990), a concentration 2.5 times higher than the minimal nephrotoxic 

concentration used in this study. However, whether the human kidney would be exposed to these 

minimal in vitro nephrotoxic concentrations of 3,5-DCA is unclear at this time. 

This study was the first to show the importance of renal biotransformation in 3,5-DCA 

induced cytotoxicity. Inhibition of FMO, CYP and peroxidase activity all attenuated cytotoxicity 

suggesting that a toxic metabolite is formed following exposure to 3,5-DCA and that multiple 

enzyme systems are capable of bioactivating 3,5-DCA and/or its metabolites (Fig. 7). 

Antioxidants also offered protection from 3,5-DCA induced cytotoxicity, suggesting that free 

radicals are involved in the mechanisms of 3,5-DCA bioactivation and/or cytotoxicity. If the 

parent compound alone was responsible for cytotoxicity, inhibition of biotransformation systems 

would lead to either no changes in cytotoxicity or an increase in toxicity if one of the pathways 
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inhibited was a major detoxifying mechanism. Thus, renal bioactivation of 3,5-DCA contributes 

to 3,5-DCA induced cytotoxicity in an IRCC model.  

N-Oxidation, N-acetylation, and phenyl ring oxidation are three primary routes of 

chloroaniline biotransformation (Ehlhardt and Howbert, 1991; Hong and Rankin, 1998). Based 

on these observations and the biotransformation of other chloroanilines in rats, a proposed 

biotransformation pathway for 3,5-DCA is shown in Fig. 7. Of these potential biotransformation 

pathways, it is known that chloroacetanilides, which arise from N-acetylation catalyzed via N-

acetyltransferase enzymes, possess much reduced nephrotoxic potential compared to the parent 

chloroanilines (Rankin et al., 1993, 1995). Therefore, it is unlikely that N-acetylation of 3,5-

DCA to 3,5-dichloroacetanilide (3,5-DCAA) would contribute to the renal cytotoxicity of 3,5-

DCA. N-Acetyltransferase inhibitors were not evaluated for their ability to reduce 3,5-DCA 

nephrotoxicity for this reason. However, studies with 3,5-DCAA are required to confirm its renal 

effects and role in 3,5-DCA nephrotoxicity.   

Another purposed metabolic pathway that could contribute to 3,5-DCA induced 

nephrotoxicity is N-oxidation. N-Oxidation of aromatic amines is known to be catalyzed by 

multiple enzymes including CYPs, FMOs, prostaglandin H synthase, and peroxidases 

(Bakkenist, Plat, and Wever, 1981; Corbett, Chipko, and Batchelor, 1980; Golly and Hlavica, 

1985; McMillan, Leakey, Arlotto, McMillan, and Hinson, 1990; Ochiai, Sakurai, Nomura, Itoh, 

and Tanaka, 2006; Sun et al., 2007; Yanni et al., 2010). N-Oxidation of 3,5-DCA would lead to 

3,5-dichlorophenylhydroxylamine (3,5-DCPHA) (Fig. 8), whose nephrotoxic potential is yet to 

be determined. However, it would not be surprising if 3,5-DCPHA contributed to 3,5-DCA 

induced nephrotoxicity because 3,4-dichlorophenylhydroxylamine is a known nephrotoxicant in 

vitro using a rat renal cortical slice model (Valentovic, Ball, Stoll, and Rankin, 2001). The results 
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of the current study indicate that multiple enzymatic systems that catalyze N-oxidation can 

contribute to 3,5-DCA bioactivation, and that N-oxidation is a potential pathway leading to one 

or more ultimate, cytotoxic 3,5-DCA metabolites. 

Further oxidation of 3,5-DCPHA would result in 3,5-dichloronitrosobenzene, which can 

be oxidized to 3,5-dichloronitrobenzene (3,5-DCNB). 3,5-DCNB has been shown to reduce renal 

gluconeogenesis at 1.0 mM and increase LDH release at 2.0 mM or higher concentrations after a 

90 min exposure in renal cortical slices from Fischer 344 rats (Hong, Anestis, Ball, Valentovic, 

and Rankin, 2002). It is unlikely that 3,5-DCNB is the ultimate toxic species following 3,5-DCA 

1.0 mM, since a sufficient concentration of 3,5-DCNB to cause LDH release could not be 

reached with the 3,5-DCA concentration used in the current study. However, N-hydroxyl and 

nitroso compounds have been shown to alter cellular function by covalently binding to cellular 

nucleophiles (e.g. GSH, thiols of proteins, etc.) or redox cycling to produce reactive oxygen 

species, leading to increased cell death (Eyer and Ascherl, 1987; Kiese and Taeger, 1976; 

Stiborová, Frei, Schmeiser, Wiessler, and Anzenbacher, 1992; Umbreit, 2007; Valentovic et al., 

1997). Therefore, any 3,5-dichloronitrosobenzene formed from 3,5-DCPHA could be 

contributing to 3,5-DCA cytotoxicity. 

Aromatic ring oxidation is another potential biotransformation pathway that could 

contribute to 3,5-DCA bioactivation. CYPs can catalyze aromatic ring oxidation, and since CYP 

inhibition reduces 3,5-DCA cytotoxicity (Fig. 10), production of phenolic metabolites of 3,5-

DCA could be an important contributing factor in 3,5-DCA nephrotoxicity. Oxidation of the 

aromatic ring can lead to two possible metabolites, 2-amino-4,6-dichlorophenol and 4-amino-

2,6-dichlorophenol (Fig. 7). While not much is known about 2-amino-4,6-dichlorophenol 

nephrotoxicity, 4-amino-2,6-dichlorophenol has been shown to be a potent nephrotoxicant both 
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in vivo and in vitro (Hong et al., 1997; Rankin et al., 1994, 2008a; Valentovic et al., 1997). 

Interestingly, addition of a chloro group to the 4-position of 3,5-DCA to form 3,4,5-

trichloroaniline produces a 3,5-DCA derivative without the ability to form significant amounts of 

4-amino-2,6-dichlorophenol. However, 3,5-DCA and 3,4,5-trichloroaniline have equal 

nephrotoxic potential at 90 min, and 3,4,5-trichloroaniline is more potent as a nephrotoxicant 

than 3,5-DCA at 120min in IRCC (Racine et al., 2014). Thus, although 4-amino-2,6-

dichlorophenol is a nephrotoxicant, it does not appear to be the ultimate nephrotoxic metabolite 

arising from 3,5-DCA in vitro. Studies with 2-amino-4,6-dichlorophenol are ongoing to 

determine its nephrotoxic potential. Thus, the role of aminophenol metabolites in 3,5-DCA 

cytotoxicity remains to be fully determined, but oxidation at the 4-position of 3,5-DCA does not 

appear to be a critical bioactivation pathway. 

Since the general CYP inhibitors (piperonyl butoxide and metyrapone) were able to 

significantly attenuate cytotoxicity, further studies were conducted looking at the role of 

selective CYP isozymes which are found in the kidney. Cummings et al. (1999) found CYP2E1, 

CYP2C11, CYP2B1/2, and CYP4A2/3 in freshly isolated rat proximal and distal tubular cells. 

CYP2E1 expression was higher in distal tubular cells than proximal tubular cells, while 

CYP2C11 was higher in proximal tubular cells than distal tubular cells. CYP3A1/2 was not 

detected in the proximal tubular cells but was found in total kidney homogenate, which may 

indicate why oleandomycin, a CYP3A inhibitor, was not effective in attenuating 3,5-DCA 

cytotoxicity. The inability of thio-tepa (CYP2B inhibitor) and isoniazid (CYP2E inhibitor) to 

attenuate 3,5-DCA cytotoxicity, suggests that these CYPs are not critical for 3,5-DCA 

bioactivation. Of the selective CYP inhibitors we used, only sulfaphenazole, omeprazole, and 

diethyldithiocarbamate (DEDTCA) were able to attenuate 3,5-DCA cytotoxicity. These three 
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inhibitors all show a preference to inhibit the 2C family of rat isozymes (Eagling et al., 1998; 

Kobayashi, Urashima, Shimada, and Chiba, 2003), suggesting that the 2C family may play a role 

in the bioactivation of 3,5-DCA. The CYP2C family in rats facilitates N-hydroxylation, as well 

as aromatic ring oxidation (Cribb, Spielberg, and Griffin, 1995), which supports one or both of 

these pathways as contributing to 3,5-DCA bioactivation.  

Both N-hydroxylation and aromatic ring oxidation can lead to an increase in free radicals: 

either as metabolites undergoing redox cycling or directly from oxidation during metabolism 

(Harmon et al., 2006; Michail, Baghdasarian, Narwaley, Aljuhani, and Siraki 2013), and N-

hydroxyl, N-nitroso and aminophenol metabolites can induce cell death via oxidative stress 

mechanisms (Harmon et al., 2005; Lock et al., 1993; Umbreit, 2007; Valentovic et al., 1997). 

Antioxidant pretreatment proved to be highly effective in attenuating 3,5-DCA cytotoxicity, with 

all antioxidants offering protection, suggesting that free radicals may play a role in cytotoxicity. 

Oxidative stress was measured by looking at the ratio of GSSG/GSH and increases in protein 

carbonyl levels. If oxidative stress played a significant role in the mechanism of cellular death, 

an increase in the GSSG/GSH ratio should occur prior to cytotoxicity, as seen with compounds 

such as para-aminophenol (Harmon et al., 2005). However, in the case of 3,5-DCA, there was no 

significant increase in the GSSG/GSH ratio, and the significant increase in protein carbonyl 

levels only occurred after there was an increase in cytotoxicity. These data suggest that oxidative 

stress is not responsible for cell death in 3,5-DCA induced nephrotoxicity in vitro, and that the 

antioxidants may be offering protection, at least in part, by scavenging one or more radical 

metabolites produced during the metabolism of the amino group or an aminophenol metabolite 

(e.g. 2-amino-4,6-dichlorophenol) (Fowler, Moore, Foster, and Lock, 1991; Fowler, Foster, and 

Lock, 1993). 
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Total glutathione levels decreased following 3,5-DCA exposure, even though the 

GSSG/GSH ratio didn’t significantly change (Fig. 13). In the absence of oxidative stress, it is 

likely that the reduction in total glutathione levels was due to the formation of a reactive 3,5-

DCA metabolite(s) that was(were) detoxified by reaction with reduced glutathione.  Both 

addition of GSH and N-acetyl-L-cysteine, which protect cells by being converted to GSH 

(Lauterburg, Corcoran, and Mitchell, 1983), to IRCC attenuated 3,5-DCA cytotoxicity. Thus, at 

least part of the mechanism of protection from GSH could come from reacting with a reactive 

3,5-DCA metabolite. It is also possible that the reduction of the GSSG levels seen at 90 min was 

an effort to restore GSH concentrations to a level offering cellular protection. However, further 

studies are needed to more clearly determine the role(s) of glutathione in attenuating 3,5-DCA 

cytotoxicity. 
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2.5 Conclusions 

The results of this study determined that, as in rat renal cortical slices, 3,5-DCA is toxic 

to IRCC in a time- and concentration-dependent manner. Results also suggest that 3,5-DCA is 

potentially bioactivated in the kidney via several biotransformation pathways and that the 

CYP2C family is the major contributing renal CYP family for bioactivation. In addition, 

oxidative stress does not appear to play a significant role in the causative mechanism of 3,5-DCA 

cytotoxicity. While these studies provide insight into the role of biotransformation enzymes in 

bioactivating 3,5-DCA to nephrotoxic metabolites, studies are underway to determine the 

ultimate toxicant(s) in 3,5-DCA induced nephrotoxicity.   
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ABSTRACT 

Chloroanilines are widely used in the manufacture of drugs, pesticides and industrial 

intermediates. Among the trichloroanilines, 3,4,5-trichloroaniline (TCA) is the most potent 

nephrotoxicant in vivo. The purpose of this study was to examine the nephrotoxic potential of 

TCA in vitro and to determine if renal biotransformation and/or free radicals contributed to TCA 

cytotoxicity using isolated renal cortical cells (IRCC) from male Fischer 344 rats as the animal 

model. IRCC (~4 million cells/mL; 3 mL) were incubated with TCA (0, 0.1, 0.25, 0.5 or 1.0 

mM) for 60-120 min. In some experiments, IRCC were pretreated with an antioxidant or a 

cytochrome P450 (CYP), flavin monooxygenase (FMO), cyclooxygenase or peroxidase inhibitor 

prior to incubation with dimethyl sulfoxide (control) or TCA (0.5 mM) for 120 min. At 60 min, 

TCA did not induce cytotoxicity, but induced cytotoxicity as early as 90 min with 0.5 mM or 

higher TCA and at 120 min with 0.1 mM or higher TCA, as evidenced by increased lactate 

dehydrogenase (LDH) release. Pretreatment with the CYP inhibitor piperonyl butoxide, the 

cyclooxygenase inhibitor indomethacin or the peroxidase inhibitor mercaptosuccinate attenuated 

TCA cytotoxicity, while pretreatment with FMO inhibitors or the CYP inhibitor metyrapone had 

no effect on TCA nephrotoxicity. Pretreatment with an antioxidant (α-tocopherol, glutathione, 

ascorbate or N-acetyl-L-cysteine) also reduced or completely blocked TCA cytotoxicity. These 

results indicate that TCA is directly nephrotoxic to IRCC in a time and concentration dependent 

manner. Bioactivation of TCA to toxic metabolites by CYP, cyclooxygenase and/or peroxidase 

contributes to the mechanism of TCA nephrotoxicity. Lastly, free radicals play a role in TCA 

cytotoxicity, although the exact nature of the origin of these radicals remains to be determined. 
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3.1 INTRODUCTION 

Chloroanilines are commonly used as chemical intermediates to manufacture dyes, 

agricultural chemicals, drugs and industrial compounds. Exposure to chloroanilines can occur in 

occupational settings, through the release or formation during the metabolism of compounds in 

mammals (Aizawa, 1989; Ehlhardt, 1991; Rickert and Held, 1990) or by the degradation of 

pesticides in the environment (Aizawa, 1989; Lee et al., 2008; Santos et al., 1998; Mercadier, 

Vega, and Bastide, 1998). In addition, the detection of chloroanilines in human urine or blood 

can be used as a biomarker for exposure to chloroaniline-based pesticides (Lindh et al, 2007; 

Kutting et al., 2009; Turci, Barisano, Baldducci, Colosio, and Minoia, 2006; Vitelli et al., 2007). 

The toxicity associated with exposure to mono- and dichloroanilines includes hematotoxicity 

(e.g. methemoglobinemia or anemia) (Chhabra et al., 1990; Guilhermino et al., 1998; Valentovic 

et al. 1997, splenotoxicity (Chhabra et al, 1990; Ward, Reznik, and Garner, 1980), hepatotoxicity 

(Valentovic et al., 1992, 1995a, 1995b) and nephrotoxicity (Valentovic et al., 1995b; Hong et al., 

2000, Lo et al., 1990). Because of their adverse health effects and release into the environment in 

agricultural areas following the breakdown of pesticides, chloroanilines are considered priority 

pollutants in environmental risk assessments (Boehncke, Kielhorn, Konnecker, Pohlenz-Michel, 

and Mangelsdorfer, 2003; Vangnai et al., 2012).  

Trichloroanilines have similar uses as the mono- and dichloroanilines, including use in 

drug development (Craciunescu, Furlani, Scarcia, Ghirvu, and Doadrio, 1985; Imai, Takahashi, 

Watanabe, Nakazawa, and Yamanaka, 1991; Limban, Marutescu, and Chifiriuc, 2011), dye 

manufacturing (Peters and Yang, 1996) and production of agricultural agents (Aggarwal, Kumar, 

Dureja, and Rawat, 2009). While the potential adverse health effects of mono- and 

dichloroanilines have been studied in some detail, little information is available about the 
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toxicity induced by trichloroanilines, including the nephrotoxic potential of trichloroanilines or 

their mechanisms of inducing nephrotoxicity. Lo, Brown, and Rankin (1991) examined the in 

vivo and in vitro effects of four trichloroanilines (2,3,4-, 2,4,5-, 2,4,6- and 3,4,5-trichloroaniline) 

on the renal function of male Fischer 344 rats. They noted that of the four trichloroanilines 

tested, 3,4,5-trichloroaniline (TCA) had the greatest nephrotoxic potential in vivo as evidenced 

by oliguria, increased kidney weight, elevated blood urea nitrogen concentration and altered 

renal organic ion accumulation. In vitro, TCA was also the most potent nephrotoxicant of the 

four trichloroanilines tested, decreasing tetraethylammonium accumulation by renal cortical 

slices at 1.0 µM concentration (Lo et al., 1991). 

Although it is known that metabolites of mono- and dichloroanilines are toxic to the 

kidney in vivo and in vitro (Hong et al., 1996; Hong et al., 1997; Rankin, Hong, Anestis, Ball, 

and Valentovic, 2008a; Valentovic et al., 2001), no studies have examined the role of 

biotransformation in trichloroaniline nephrotoxicity. It is also unknown if the kidney bioactivates 

parent chloroanilines to nephrotoxic metabolites, or if the parent chloroaniline is toxic to the 

kidney without bioactivation. The purpose of this study was to begin to examine the role of 

biotransformation of a trichloroaniline in the nephrotoxicity it produces in vitro as well as 

determine if free radicals contributed to the cytotoxicity. TCA was selected for study because it 

is the most potent trichloroaniline nephrotoxicant in vivo and in vitro. The Fischer 344 rat was 

selected as the animal model because our previous studies with chloroaniline-induced 

nephrotoxicity have been conducted in this animal model. The inhibitor pretreatments, 

concentrations and times selected for study were based on previous reports (Lock et al., 1993; 

Baliga et al., 1998; Rodriguez and Acosta, 1997; Valentovic et al., 1999; O’Brien and Siraki, 

2005; Lau and Monks, 1987; Katsuda et al., 2010 Suzuki and Sudo, 1990). 
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3.2 RESULTS 

3.2.1 Time and concentration cytotoxicity studies 

To obtain information concerning the nephrotoxic potential of TCA in isolated renal 

cortical cells (IRCC), a concentration response study was performed at 60, 90 and 120 min. 

IRCC exposed to TCA at concentrations up to 1.0 mM for 60 min did not exhibit any 

cytotoxicity (data not shown). A 90 min exposure to TCA at a concentration of 0.5 mM or higher 

induced cytotoxicity (increased LDH release), while at 120 min of exposure, cytotoxicity was 

evident at a concentration of 0.1 mM TCA or higher (Figure 15). Based on these findings, a 

concentration of 0.5 mM and an exposure time of 120 min were selected for use in the 

antioxidant and inhibitor pretreatment studies. 

 

3.2.2 Effects of antioxidants on TCA cytotoxicity 

The effects of pretreating IRCC with an antioxidant on TCA cytotoxicity was examined 

next (Figure 16). All four antioxidants (α-tocopherol, ascorbate, glutathione and N-acetyl-L-

cysteine) provided at least some degree of attenuation of TCA cytotoxicity. Glutathione and 

ascorbate were most effective and α-tocopherol was the least effective at attenuating TCA 

cytotoxicity.
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Figure 15. Cytotoxic effects of TCA at 90 min (Panel A) and 120 min (Panel B) in IRCC. An 

asterisk indicates significantly different from the DMSO control group value, P<0.05.
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 Figure 16. Effect of antioxidant pretreatment on TCA cytotoxicity at 120 min. An asterisk 

indicates significantly different from the DMSO control group value, P<0.05. A diamond 

indicates significantly different from the 0.5 mM TCA alone value, P<0.05



	 75	

3.2.3 Effects of cytochrome P450 (CYP) and flavin monooxygenase (FMO) inhibition 

The effects of inhibiting CYP and FMO activity on TCA cytotoxicity were examined 

using nonselective CYP (piperonyl butoxide [PiBX] and metyrapone) and FMO (methimazole 

and N-octylamine) inhibitors. Inhibition of CYPs with PiBX, but not metyrapone, attenuated 

TCA cytotoxicity (Figure 17). Inhibition of FMOs with either methimazole or N-octylamine had 

no effect on TCA induced cell death (Figure 17). 

 

3.2.4 Effects of cyclooxygenase and peroxidase inhibition 

The effect of inhibiting the cyclooxygenase activity of prostaglandin H synthase on TCA 

cytotoxicity was determined using indomethacin pretreatment, while mercaptosuccinate was 

used as a general peroxidase inhibitor. Both indomethacin pretreatment and mercaptosuccinate 

pretreatment reduced TCA cytotoxicity (Figure 18). 
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Figure 17. Effect of FMO or CYP inhibition on TCA cytotoxicity at 120 min. An asterisk 

indicates significantly different from the DMSO control group value, P<0.05. A diamond 

indicates significantly different from the 0.5 mM TCA alone value, P<0.05.
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Figure 18. Effect of cyclooxygenase or peroxidase inhibition on TCA cytotoxicity at 120 min. 

An asterisk indicates significantly different from the DMSO control group value, P<0.05. A 

diamond indicates significantly different from the 0.5 mM TCA alone value, P<0.05. 
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3.3 DISCUSSION 

This study is the first report to demonstrate the direct cytotoxic effects of TCA on the kidney. 

In a previous study, the in vitro effects of TCA on organic ion transport by renal cortical slices 

from male Fischer 344 rats suggested that TCA could affect renal function, decreasing organic 

cation accumulation at concentrations as low as 1.0 µM, and affecting both organic anion and 

cation accumulation at 1.0 mM (Lo et al., 1991). However, TCA is a weakly basic compound. 

Thus, the possibility existed that the effects seen at µM concentrations of TCA in the work by Lo 

et al. (1991) were more related to interactions at the organic cation transporter level than 

cytotoxicity, and that cytotoxicity was not observed until TCA concentrations reached mM 

levels. Results from the present study clearly demonstrate that TCA can induce cytotoxicity at 

µM concentrations, as evidenced by increased LDH release at concentrations of TCA as low as 

100 µM at 120 min, and that TCA induces cytotoxicity in a time and concentration dependent 

manner. 

The ability of the various inhibitors used in this study to attenuate TCA cytotoxicity suggests 

that metabolites of TCA contribute to TCA nephrotoxicity in vitro. The biotransformation of 

TCA has only been reported in fish (De Wolf, Seinen, and Hermens, 1993). However, based on 

studies of the metabolism of other chloroanilines in rats (Hong et al., 1998; Ehlhardt and 

Howbert, 1991; McMillan, Leakey, Arolotto, McMIllan, and Hinson, 1990; McMillan, Jensen, 

and Jollow, 1998), a potential biotransformation pathway for TCA can be proposed which 

includes acetylation, N-oxidation and aromatic ring oxidation (Figure 19).  

N-Acetylation is catalyzed by cytosolic N-acetyltransferase enzymes, and it is unlikely that 

any of the pretreatments used in this study would alter this biotransformation reaction. In 

addition, acetylation of chloroanilines produces chloroacetanilides, which have greatly reduced 
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nephrotoxic potential in vivo (Rankin et al., 1993). Thus, it is unlikely that acetylation would be 

a mechanism for bioactivation of 3,4,5-trichloroaniline. 
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Figure 19. Potential metabolic pathways for TCA. NAT = N-acetyltransferase, CYP = 

cytochrome P450, FMO = flavin-containing monooxygenase
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Oxidation of the aromatic ring to produce 2-amino-4,5,6-trichlorophenol would be a potential 

bioactivation mechanism for TCA, as many aminophenols are known nephrotoxicants (Hong et 

al., 1996, 1997; Lock et al., 1993; Rankin et al., 1994, 2008a). Production of an aminophenol 

metabolite of TCA would be catalyzed by CYPs, as McMillan et al. (1990, 1998) found that 

aromatic ring oxidation of 3,4-dichloroaniline was catalyzed by CYPs. Whether 2-amino-4,5,6-

trichlorophenol is produced in the kidney from TCA and contributes to TCA nephrotoxicity 

remains to be determined. However, a structurally-related metabolite, 2-amino-4,5-

dichlorophenol, is directly toxic to renal cortical slices from male Fischer 344 rats (Valentovic et 

al., 2002). Attenuation of TCA cytotoxicity by the CYP inhibitor PiBX suggests that aromatic 

ring oxidation may be a potential route of TCA bioactivation. Nonetheless, the inability of 

another general CYP inhibitor, metyrapone, to reduce TCA cytotoxicity indicates that further 

study is needed to clarify which CYPs may contribute to TCA bioactivation to toxic metabolites 

and the role of  2-amino-4,5,6-trichlorophenol in TCA nephrotoxicity. The use of additional, 

more specific CYP inhibitors will help define the role and nature of the CYPs contributing to the 

production of toxic metabolites in TCA metabolism. 

N-Oxidation can be catalyzed by several enzyme systems, including CYPs, FMOs, 

prostaglandin H synthase and peroxidases (McMillan et al., 1998; Ochiai et al., 2006; Yanni et 

al., 2010; Golly and Hlavica, 1985; Corbett et al., 1980, Bakkenist et al., 1981). The N-oxidation 

pathway has the potential to lead to metabolites that could damage cells via multiple pathways 

(Figure 19). Metabolites, such as the N-hydroxyl and nitroso metabolites can redox cycle to 

produce reactive oxygen species and other free radicals which can damage membranes and lead 

to oxidative stress (Valentovic et al., 1997; Umbreit, 2007). In addition, N-hydroxyl and nitroso 

metabolites have the ability to be further activated to form covalent bonds with cellular 
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nucleophiles to alter cellular function and led to cell death (Kiese and Taegar, 1976; Eyer and 

Ascherl et al., 1987; Stiborová, Frei, Schmeiser, Wiessler, and Anzenbacher, 1992). The ability 

of PiBX, indomethacin and mercaptosuccinate, but not methimazole or N-octylamine, to 

attenuate TCA cytotoxicity suggests that multiple enzyme systems may be involved in 

bioactivating TCA to toxic metabolites via the N-oxidation pathway, but renal FMOs do not 

appear to contribute to this bioactivation mechanism. That N-oxidation would contribute to TCA 

cytotoxicity is not completely surprising, as 3,4-dichlorophenylhydroxylamine, the N-oxidation 

metabolite of 3,4-dichloroaniline, is a known nephrotoxicant in vitro to rat renal cortical slices 

(Valentovic et al., 2001). 

The ability of the four antioxidants to attenuate TCA cytotoxicity suggests that free radicals 

contribute to the mechanism of renal injury induced by TCA. These free radicals may be 

produced during the oxidation of an aromatic amine or its metabolites (Loew and Goldblum, 

1985), or as a consequence of redox cycling of aminophenol or 

phenylhydroxylamine/nitrosobenzene metabolites to produce reactive oxygen species and 

oxidative stress (Umbreit, 2007; Harmon et al., 2006). Further work is required to determine if 

either or both of these potential pathways explains the mechanism of protection by antioxidants 

on TCA cytotoxicity. Preliminary work with another chloroaniline, 3,5-dichloroaniline, suggests 

that oxidative stress may not contribute to the in vitro nephrotoxicity induced by 3,5-

dichloroaniline (Racine et al., 2016), but studies with TCA have not been conducted to determine 

how free radicals contribute to TCA nephrotoxicity in vitro and are necessary to define the exact 

role of free radicals in TCA nephrotoxicity. 

It is interesting to note that α-tocopherol, a lipophilic compound, was the weakest of the four 

antioxidants in attenuating TCA nephrotoxicity. It would be expected that α-tocopherol would 
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enter IRCC via a passive diffusion mechanism, while renal transporters can promote the 

accumulation of ascorbate, glutathione and N-acetyl-L-cysteine (Lee et al., 2006; Lash et al., 

2011; Koh, Simmons-Willis, Pritchard, Grassel, and Ballatori, 2002). Glutathione can also be 

accumulated in proximal tubular cells via processing at the luminal membrane and re-synthesis 

from the accumulated amino acids. Thus, higher intracellular concentrations of ascorbate, 

glutathione and N-acetyl-L-cysteine may be achieved in IRCC as compared to α-tocopherol. In 

addition, while all of the antioxidants have the ability to scavenge and detoxify a variety of free 

radicals and reactive oxygen and nitrogen species to varying degrees (Machlin and Bendich, 

1987), α-tocopherol associates with membranes and appears to have a primary role in preventing 

lipid peroxidation which can lead to cell death. Thus, if TCA does not induce oxidative stress 

and lipid peroxidation as its primary mechanism for inducing nephrotoxicity, α-tocopherol would 

be expected to be less effective than the other antioxidants used in this study. However, 

additional studies are needed to clarify the role of oxidative stress and lipid peroxidation in TCA 

nephrotoxicity. 
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3.4 EXPERIMENTAL SECTION 

3.4.1 Experimental animals 

 Male Fischer 344 rats (220-280g) from Hilltop Lab Animals (Scottdale PA) were used 

for all experiments. All animals were kept under controlled environments consisting of regulated 

light cycle (on 12 hours, off 12 hours), temperature (21-23oC), and humidity (40-55%) and were 

housed in standard plastic cages (two rats per cage). Animals were allowed to acclimate for at 

least one week before being used in experiments. Purina Rat Chow and water were available ad 

libitum. The Marshall University Institutional Care and Use Committee approved all animal use. 

Studies were performed at an AAALAC (Association for the Assessment and Accreditation of 

Laboratory Animal Care International) accredited facility and all animal care was in accordance 

with the American Association of Laboratory Animal Sciences (AALAS) Policy on the Humane 

Care and Use of Laboratory Animals (http://www.aalas.org). 

 

3.4.2 Chemicals 

 All chemicals used were of the highest purity available and were purchased from Sigma 

Aldrich (St. Louis, MO). 

 

3.4.3 Isolated Renal Cortical Cell (IRCC) preparation and treatment 

Naïve rats were anesthetized with pentobarbital (75 mg/kg, i.p.) and isolated renal 

cortical cells (IRCC) were obtained using the collagenase perfusion method of Jones et al. 

(1979). Cell viability was initially determined by trypan blue (2% w/v) exclusion and lactate 

dehydrogenase (LDH) release. IRCC were counted and re-suspended in Krebs-Henseleit buffer, 

pH 7.4, containing 25 mM Hepes and 2% (w/v) bovine serum albumin at a concentration of ~4.0 
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million cells/mL. IRCC (3 mL) were added to a 25 mL polycarbonate Erlenmeyer flask for a five 

min pre-incubation period in a shaking water bath incubator (37˚C, 60 cycles/min) under a 95% 

oxygen/5% carbon dioxide atmosphere. IRCC were then exposed to various concentrations of 

TCA (0, 0.1, 0.25, 0.5, or 1.0 mM) for 60, 90 or 120 minutes. After the incubation period, flasks 

were removed and placed on ice. Samples (0.5 mL) were taken for lactate dehydrogenase (LDH) 

release assays. Briefly, samples were centrifuged (3000xg, 3 min), the supernatant was decanted 

and saved, and the pellet was disrupted with 1 mL of 10% Triton X-100 solution to release 

cellular LDH activity. LDH activity was then determined in each fraction (supernatant and 

pellet) as previously described using a kinetic assay based on the amount of NADH produced 

from NAD (Rankin et al., 2008b). LDH released was expressed as % of total (supernatant plus 

pellet). 

In separate experiments, IRCC were pretreated with either an antioxidant or an enzyme 

system inhibitor before exposure to 0.5 mM TCA for an additional 120 minutes as described 

above. The concentrations and pretreatment times for all of the pretreatments are shown in Table 

5.
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Table 5. List of pretreatments and mechanisms/targeted enzyme systems.  

Pretreatment Concentration (mM) Pretreatment Time 
(Min) 

Mechanism of 
Action 

N-Acetyl-L-cysteine 2.0 30 Antioxidant 
α-Tocopherol 1.0 5 Antioxidant 
Glutathione 1.0 30 Antioxidant 
Ascorbate 2.0 5 Antioxidant 
Methimazole 1.0 30 FMO Inhibitor 
N-Octylamine 2.0 5 FMO Inhibitor 
Indomethacin 1.0 15 Cyclooxygenase 

Inhibitor 
Piperonyl Butoxide 1.0 15 Non-specific CYP 

Inhibitor 
Metyrapone 1.0 5 Non-specific CYP 

Inhibitor 
Mercaptosuccinate 0.1 15 Peroxidase Inhibitor 
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3.4.4 Statistics 

Data are presented as mean ± S.E.M. with an N ≥ 4. Data were analyzed by one-way 

analysis of variance followed by a Student-Newman-Keuls Test. Statistical significance was 

determined at P < 0.05, α=0.5. 
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3.5 CONCLUSIONS 

The results of this study demonstrate that TCA is toxic to the kidney in a time and 

concentration dependent manner. Toxicity was evident as early as 90 min with 0.5 mM TCA and 

with 0.1 mM TCA at 120 min. Since several of the enzyme inhibitor pretreatments attenuated 

3,4,5-cytotoxicity, metabolites appear to contribute to the renal toxicity induced by TCA. 

Bioactivation of TCA to nephrotoxic metabolites via renal CYPs, cyclooxygenase and/or 

peroxidases, but not FMOs, are potential mechanisms of TCA nephrotoxicity. Free radicals also 

play a role in TCA nephrotoxicity, as evidenced by the inhibition of TCA cytotoxicity by 

antioxidants. However, whether the free radicals are intermediates in TCA biotransformation or 

reactive oxygen species produced during TCA metabolism remains to be determined. 
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ABSTRACT 
 
Previous studies have suggested that 3,5-dichloroaniline (3,5-DCA; 1.0 mM; 90 min exposure), 

an intermediate used in the production of agricultural and industrial products, may undergo renal 

bioactivation resulting in toxic metabolite(s) in isolated renal cortical cells (IRCC) obtained from 

male Fischer 344 rats. Studies using renal cortical slices have also shown that 4-amino-2,6-

dichlorophenol (4A26DCP), a putative metabolite of 3,5-DCA, is a potent nephrotoxicant, 

however, the metabolism of 3,5-DCA and the nephrotoxic potential of putative metabolites has 

not yet been explored in IRCC. The current study was designed to explore the nephrotoxic 

potential of five putative 3,5-DCA metabolites (3,5-dichloroacetanilide, 3,5-DCAA; 3,5-

dichlorophenylhydroxylamine, 3,5-DCPHA; 4-amino-2,6-dichlorophenol, 4A26DCP; 2-amino-

4,6-dichlorophenol, 2A46DCP; 3,5-dichloronitrobenzene, 3,5-DCNB) and to determine the 

metabolism of 3,5-DCA by IRCC. IRCC were exposed to various concentrations of 3,5-DCAA 

(0.5,1.0, or 1.5 mM), 3,5-DCNB (0.5, 1.0, or 1.5 mM), 3,5-DCPHA (0.25, 0.5, or 1.0 mM), 

2A46DCP (0.5, 1.0, or 1.5 mM), or 4A26DCP (0.1, 0.25, or 0.5 mM). Of these metabolites, only 

3,5-DCAA proved noncytotoxic at the concentrations tested. In contrast, the other four 

metabolites proved to be nephrotoxic at concentrations and/or exposure times equal to or lower 

than 3,5-DCA (1.0 mM; 90 min). To determine the metabolic profile of 3,5-DCA in IRCC, IRCC 

were exposed to 0.5 mM or 1.0 mM 3,5-DCA for 45 or 90 minutes. HPLC analysis demonstrated 

minimal metabolism occurs in IRCC following exposure to 3,5-DCA. In fact, only two minor 

metabolites (3,5-DCNB and 3,5-DCAA) and 3,5-DCA were detected. Since 3,5-DCNB arises 

from N-oxidation of 3,5-DCA, and previous studies showed that DEDTCA, a CYP2C selective 

inhibitor, can significantly attenuate 3,5-DCA induced toxicity, additional studies were 

conducted to determine the metabolic profile of 3,5-DCA in IRCC following pretreatment with 
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DEDTCA. Results showed a decrease in the production of 3,5-DCNB following DEDTCA 

pretreatment. This result suggests that N-oxidation may play a role in 3,5-DCA induced 

nephrotoxicity, while further studies are required to determine the ultimate toxicant(s) species, as 

well as the mechanism of cell death.   
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ABBREVIATIONS: 
 
3,5-DCA, 3,5-dichloroaniline; 3,5-DCAA, 3,5-dichloroacetanilide;l 2A46DCP, 2-amino-4,6-

dichlorophenol; 3,5-DCPHA, 3,5-dichlorophenylhydroxylamine; IRCC, isolated renal cortical 

cells; LDH, lactate dehydrogenase; DMSO, dimethyl sulfoxide; FMO, flavin-containing 

monooxygenase; CYP, cytochrome P450; DEDTCA, diethyldithiocarbamate; 3,5-DCNB, 3,5-

dichloronitrobenzene, 4-amino-2,6-dichlorophenol; 4A26DCP 
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5.1 INTRODUCTION 

Chlorinated aniline-induced hematotoxicity (Chhabra et al., 1990; Guilhermino et al., 

1998; Pauluhn, 2004; Valentovic et al., 1997), splenotoxicity (Chhabra et al., 1990; Khan et al., 

1999; Ma et al., 2008, 2013), hepatotoxicity (Valentovic et al., 1995a, 1995b, 1992), and 

nephrotoxicity (Hong et al., 2000; Lo et al., 1990; Racine et al., 2014; Valentovic et al., 1995a) 

has been well established. These studies have shown that of the chlorinated anilines, 3,5-

dichloroaniline (3,5-DCA) is the most potent as a nephrotoxicant. In vivo exposure to 3,5-

dichloroaniline, in rats, results in oliguria, elevated blood urea nitrogen (BUN) concentration, 

decreased organic ion transport in proximal tubule cells, decreased kidney weight, increased 

proteinuria, and hematuria (Rankin et al., 1986; Lo et al., 1990; Valentovic et al., 1995a). The 

greatest morphological changes occur in the proximal tubular cells, but the distal tubular and 

collecting ducts were also affected to a lesser degree (Lo et al., 1990). Further studies using 

isolated renal cortical cells (IRCC) from male Fischer 344 rats demonstrated that 1.0 mM 3,5-

DCA exposure for 90 min leads to increased cytotoxicity as evidenced by increased lactate 

dehydrogenase (LDH) release, a marker of cytotoxicity. These studies also demonstrated that 

3,5-DCA nephrotoxicity can be attenuated by inhibiting multiple enzyme systems, suggesting 

that biotransformation, especially N-oxidation, plays a role in 3,5-DCA-induced nephrotoxicity 

in vitro (Racine et al., 2016). However, the ultimate toxic metabolite(s) is not currently known.  

Based on studies with aniline and its mono-chlorinated derivatives, N-oxidation, N-

acetylation, and phenyl ring oxidation are all potential biotransformation pathways of 3,5-DCA 

(Figure 20; Ehlhardt and Howbert, 1991; Hong and Rankin, 1998; Racine et al., 2014; 2016). In 

the case of 3,5-DCA, it has been demonstrated that one putative metabolite, resulting from 

phenyl ring oxidation of 3,5-DCA at the para-position, 4-amino-2,6-dichlorophenol (4A26DCP) 



	 94	

is a potent nephrotoxicant in Fischer 344 rats both in vivo and in vitro using a renal slice model 

(Hong et al., 1996; Rankin et al., 2008a). However, there are few studies that have explored the 

metabolism of 3,5-DCA in mammals, and none of these were conducted in the isolated renal 

cortical cell (IRCC) model. Marbouh et al. (2002) explored the urinary metabolites of 3,4- and 

3,5-DCA following both percutaneous and oral administration. In this study, male Sprague-

Dawley rats were exposed to 12 mg of 3,5-DCA in methanol applied topically or via oral gavage. 

Urine was collected for 24 hours post exposure. HPLC analysis of the urine found 0.04% of the 

dose was 3,5-dichloroacetanilide (3,5-DCAA), less than 0.01% was 2-amino-4,6-dichlorophenol 

(2A46DCP), and 0.57% of the dose was recovered as 3,5-DCA. Following acid hydrolysis to 

determine conjugated metabolites, 4.79% of the dose was 3,5-DCA and 0.02% of the dose was 

2A46DCP, suggesting that conjugated metabolites of 3,5-DCA and 2A46DCP were formed after 

exposure to 3,5-DCA. 3,5-DCAA was not detected following acid hydrolysis. Deacetylation 

following acid hydrolysis has been shown in previous studies (Kao et al., 1978).  

 The current study was designed to determine the metabolism of 3,5-DCA in IRCC from 

male Fischer 344 rats as well as to explore the nephrotoxic potential of five putative 3,5-DCA 

metabolites. Based on previous studies with aniline and mono-chlorinated derivatives, it was 

hypothesized that only those putative metabolites arising from N-oxidation (3,5-

dichlorophenylhydroxylamine, 3,5-DCPHA; 3,5-dichloronitrosobenzene, 3,5-DCNSB; 3,5-

dichloronitrobezene, 3,5-DCNB) and/or phenyl ring oxidation (4-amino-2,6-dichlorophenol, 

4A26DCP; 2-amino-4,6-dichlorophenol, 2A46DCP) would be cytotoxic while the acetylated 

product, 3,5-DCAA, would show a reduced nephrotoxic potential when compared to 3,5-DCA. 
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Figure 20. Proposed renal biotransformation pathway of 3,5-DCA. 3,5-DCA ,3,5-

dichloroaniline, 3,5-DCAA, 3,5-dichloracetanilide; 3,5-DCPHA, 3,5-

dichlorophenylhydroxylamine; 3,5-DCNSB, 3,5-dichloronitrosobenzene; 3,5-DCNB, 3,5-

dichloronitrobenzene; 4A26DCP, 4-amino-2,6-dichlorophenol; 2A46DCP, 2-amino-4,6-

dichlorophenol.
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5.2 MATERIALS AND METHODS 

 

5.2.1 Animals 

Male Fischer 344 rats (200-250g) were obtained from Hilltop Lab Animals, Inc. 

(Scottsdale, PA). Animals were housed 2 rats/cage with food and water available ad libitum, 

while temperature (21-23 C), humidity (40-55%), and light (12 h on/12 h off) are controlled. 

Prior to use, all animals were allowed one week to acclimate. All animals use was approved by 

the Marshall University Institutional Animal Care and Use Committee, and animal use 

experiments were conducted in accordance with the Guide for the Care and Use of Laboratory 

Animals, adopted by the National Institute of Health.  

 

5.2.2 Chemicals 

All chemicals were purchased at the highest purity available from either Fischer 

Scientific (Pittsburgh, PA) or Sigma Aldrich (St. Louis, MO), except for 3,5-DCPHA, 

2A46DCP, 3,5-DCAA, which were synthesized in our laboratory. 3,5-DCPHA was synthesized 

using previously described methods (Rondestvedt and Johnson, 1977). Briefly, 3,5-DCNB was 

reduced with hydrazine-palladium on carbon, prior to recrystallization using benzene-petroleum 

ether. 2A46DCP was synthesized and purified using a modified method previously described by 

Christiansen (1923) and Newell, Argus, and Ray. (1960). 3,5-DCAA was synthesized and 

purified using a modified method described by Searle and Cupery (1954). Purity was determined 

using melting point, thin-layer chromatography, infrared spectrophotometry, and nuclear 

magnetic resonance spectroscopy techniques.  
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5.2.3 Preparation and treatment of Isolated Renal Cortical Cells (IRCC)  

Renal cortical cells were obtained from untreated male Fischer 344 rats anesthetized with 

pentobarbital (75 mg/kg, ip) via the Jones et al. (1979) collagenase perfusion method. Initial cell 

viability was determined by lactate dehydrogenase (LDH) release and trypan blue (2% w/v) 

exclusion. Prior to incubation, IRCC were counted and resuspended in Krebs-Henseleit (pH 

7.37; 25 mM Hepes; 2% w/v bovine serum albumin) buffer at a concentration of ~4.2 million 

cells/ml. IRCC (3 ml) were pre-incubated in 25 ml polycarbonate Erlenymyer flasks for five min 

at 37°C under 95:5 oxygen/carbon dioxide. Following pre-incubation, cells were exposed to 

various concentrations of 3,5-dichloronitrobenzene (3,5-DCNB; 0.5, 1.0, or 1.5 mM), 3,5-

dichloroacetanilide (3,5-DCAA; 0.5, 1.0, or 1.5 mM), 3,5-dichlorophenylhydroxylamine (3,5-

DCPHA; 0.25, 0.5, or 1.0 mM), 2-amino-4,6-dichlorophenol (2A46DCP; 0.5, 1.0, or 1.5 mM), 4-

amino-2,6-dichlorophenol (4A26DCP; 0.1, 0.25, or 0.5 mM) or vehicle (30 µL DMSO) for 60 or 

90 min. At the conclusion of the allotted incubation period, samples (0.5 ml) were taken for LDH 

release assay, as previously described (Rankin et al., 2008a, Racine et al., 2014). 

 

5.2.4 HPLC determination of 3,5-DCA metabolism 

To determine the metabolism of 3,5-DCA, IRCC were exposed to 3,5-DCA (0.5 mM or 

1.0 mM) for 90 min. Following incubation, a 1.0 mL aliquot was taken for HPLC analysis. 

HPLC samples were centrifuged, 0.9 mL of supernatant was collected and labeled as media. The 

cell pellet was then rinsed with 1.0 mL Krebs Heinselt (KH) buffer without BSA and 0.9 mL of 

the rinse was collected, and the pellet was saved for analysis. Methanol (MeOH; 0.9 mL) was 

added to the rinse and media fractions, while 1.0 mL of MeOH was added to the cell lysate. 

Following the addition of MeOH to precipitate protein, all samples were sonicated for 30 sec 
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prior to being centrifuged @3000xg for 10 min @4°C, supernatant was filtered through 0.45 

micron syringe filters, and stored at -20°C until analysis.  

Separate experiments were conducted to determine whether conjugated metabolites of 

3,5-DCA are formed in IRCC. In these experiments, IRCC were incubated with either DMSO 

(30 µL) or 3,5-DCA (1.0 mM) for 45 or 90 minutes. Following the incubation, three aliquots (0.9 

mL each) were taken for each treated group. The first was prepared as discussed above. The 

other two underwent the same processing, until the addition of MeOH. Instead of adding MeOH 

each fraction (media, cells, and rinse) was treated with either β-glucuronidase (6500 units/mL; 

final concentration) or arylsulfatase (200 units/mL: final concentration) containing 

saccharolactone (20mM: final concentration) in 0.1 M acetate buffer (pH 5.0) for 18 h at 37°C. 

Saccharolactone inhibited any β-glucuronidase activity which may be present in the arylsulfatase 

preparation (Kao et al., 1978). The β-glucuronidase and arylsulfatase incubations were 

terminated by the addition of cold MeOH (2.4 mL). Once the MeOH was added, all samples 

were sonicated for 30 seconds prior to being centrifuged @3000xg for 10 min @4°C, 

supernatant was filtered through 0.45 micron syringe filters, and stored in -20°C, until analyzed 

using HPLC. 3,5-DCA stability was determined by incubating 3,5-DCA in KH buffer (as 

previously described) without BSA only for 18 h at 37°C before a sample was taken as described 

above and compared to a non-incubated 3,5-DCA sample.  

Finally, since previous studies suggested that the diethyldithiocarbamic acid (DEDTCA), 

a CYP2C selective inhibitor, was able to attenuate 3,5-DCA induced cytotoxicity to control 

levels (Racine et al., 2016), experiments were conducted to determine the effect of DEDTCA on 

3,5-DCA metabolism. In this experiment cells were pretreated with DEDTCA (0.1 mM; 30 min) 

before being exposed to 3,5-DCA (1.0 mM; 90 min), as previously described (Racine et al., 
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2016). Following incubation, samples were collected and prepared for HPLC analysis as 

described above.  

 

5.2.5 HPLC Parameters 

All HPLC samples (75 µL) were analyzed on a Waters Alliance e2695 HPLC system, 

utilizing a Waters 2489 variable UV/Vis detector at 254 nM. Chromatograms were collected and 

integrated using Empower 3 software from Waters. A Waters X Select HSS T3 C18 column 

(3.5µm; 4.6 x 150 mm) fitted with a Waters XSelect HSS T3 VanGuard Cartridge (3.5 µm; 3.9 x 

5 mm) was used for separation of compounds. The mobile phase consisted of 50:50 MeOH:H2O 

with a flow rate of 0.75 mL/min. Standard curves, limits of detection, and extraction coefficients 

were determined for 3,5-DCA and putative metabolites. Extraction coefficients were determined 

by comparing the integration of a 1.0 mM 3,5-DCA or metabolite sample that had undergone 

sample processing (i.e., the addition of MeOH and centrifugation) to that of a 1.0 mM 3,5-DCA 

or metabolite sample unprocessed.  

 

5.2.6 Statistics 

Data is presented as mean ± S.E.M. with an N ≥ 4 separate isolation experiments and was 

analyzed by one-way analysis of variance followed by Student Newman-Keuls Test using 

GraphPad Prism 7.0. Significance was determined at p< 0.05.  
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5.3 RESULTS 

 

5.3.1 Nephrotoxic potential of putative 3,5-DCA metabolites 

To determine the nephrotoxic potential of the putative metabolites, concentration and 

time course studies were conducted for each of the metabolites listed above. Exposure to 3,5-

dichloroacetanilide (3,5-DCAA) did not significantly increase LDH release (Figure 21A), a 

marker of cytotoxicity, at any time or concentration tested. In contrast, exposure to 2-amino-4,6-

dichlorophenol (2A46DCP) resulted in significant increases in LDH release at all concentrations 

after 90 min, but no significant increases at 60 min. (Figure 21B). 3,5-Dichloronitrobenzene (3,5-

DCNB; Figure 22) and 3,5-dichlorophenylhydroxylamine (3,5-DCPHA; Figure 23), 4-amino-

2,6-dichlorophenol (4A26DCP; Figure 24) exposure resulted in a time and concentration 

dependent increase in LDH release. Significant LDH release was seen at all concentrations (0.5, 

1.0, and 1.5 mM) after 90 minutes for 3,5-DCNB and at 1.0 mM or greater after 60 min. 3,5-

DCPHA induced a significant increase in LDH release at 0.5 mM or greater after 60 min and at 

all concentrations (0.25, 0.5, and 1.0 mM) examined at 90 min. 4A26DCP significantly increased 

LDH release at a concentration of 0.5 mM after 60 min and at concentrations greater than or 

equal to 0.25 mM after 90 min.  
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Figure 21. 3,5-Dichloroacetanilide and 2-amino-4,6-dichlorophenol induced cytoxicity in IRCC 

from male Fischer 344 rats. A) 3,5-DCAA induced LDH release in isolated renal cortical cells 

obtained from male Fischer 344 rats following exposure for 60 or 90 min. B) 2A46DCP induced 

cytotoxicity in isolated renal cortical cells obtained from male Fischer 344 rats following 

exposure for 90 min. Each bar represents the mean ± S.E.M. for N=4-5 separate isolation 

experiments. *Significantly different from DMSO control, P<0.05. 
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Figure 22. 3,5-Dichloronitrobenzene induced cytotoxicity in IRCC from male Fischer 344 rats. 

Cells were exposed for 30, 60, or 90 min. Each bar represents the mean ± S.E.M. for N=4-5 

separate isolation experiments. *Significantly different from DMSO control, P<0.05.  
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Figure 23. 3,5-Dichlorophenylhydroxylamine induced cytotoxicity in IRCC from male Fischer 

344 rats. Cells were exposed for 60 or 90 min. Each bar represents the mean ± S.E.M. for N=4-5 

separate isolation experiments. *Significantly different from DMSO control, P<0.05. 
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Figure 24. 4-Amino-2,6-dichlorophenol induced cytotoxicity in IRCC from male Fischer 344 

rats. Cells were exposed for 60 or 90 min. Each bar represents the mean ± S.E.M. for N=4-5 

separate isolation experiments. *Significantly different from DMSO control, P<0.05. 
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5.3.2 Identification of 3,5-DCA metabolites in IRCC  

 Retention times, limits of detection, and extraction coefficients were determined for all 

putative metabolites and 3,5-DCA (Figure 25; Table 6), except for 3,5-DCPHA. 3,5-DCPHA is 

very unstable and was undetectable after following the processing utilized for all HPLC 

experiments.  

 

5.3.3 Metabolism of 3,5-DCA in IRCC 

 Three separate sets of experiments were conducted in order to determine the metabolism 

of 3,5-DCA. This first set of experiments determined the metabolic profile of two different 

concentrations of 3,5-DCA (0.5 mM or 1.0 mM) after a 90 minute exposure. Results of these 

experiments show that 93.973 ± 5.516% (0.5 mM) and 88.830 ± 5.136% (1.0 mM) of the 3,5-

DCA dose was found in the media, while 7.300 ± 3.319% (0.5 mM) and 13.530 ± 5.136% (1.0 

mM) was found in the cells. As shown in table 7, there were only two minor metabolites detected 

in both the media and cell fractions. 3,5-Dichloroacetanilide (3,5-DCAA; 1.863 ± 0.417%) was 

detected in the media of all three samples, but was only detected in one of the tissue samples. 

3,5-Dichloronitrobenzene (3,5-DCNB; 2.803 ± 2.803%) was detected in the media and cells, but 

only in one of three samples. The remaining 3,5-DCA was found as un-metabolized 3,5-DCA. 

After exposure to 1.0 mM 3,5-DCA for 90 minutes, 3,5-DCNB was detected in both the media 

(1.193 ± 0.566%) and cells (0.340 ± 0.192%) in three samples. 3,5-DCAA was detected in the 

media of all four samples, but was undetected in the cells. Once again the remaining 3,5-DCA 

was found as the unchanged parent compound. A representative chromatography of 3,5-DCA 

metabolism can be seen in figure 26.  
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Figure 25. Chromatogram of 3,5-DCA and putative metabolites. Displayed is a representative 

chromatogram of a mixture of authentic 3,5-DCA and putative metabolite standards.
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Table 6. Retention times, limits of detection, and extraction efficiency for authenticated 
standards of 3,5-dichloroaniline and its putative metabolites. 
 

Compound Retention 
Time 
(min) 

Limit of 
Detection 
(ug) 

Extraction 
Efficiency 
(%) 

4-amino-2,6-dichlorophenol 3.8 
6.1 

0.0178 
0.0178 

75.8 
100 

2-amino-4,6-dichlorophenol 13.8 0.0178 97.8 
3,5-dichlorophenylhydroxylamine 24.6 17.8   0.0 
3,5-dichloroaniline 29.4 0.00198 89.5 
3,5-dichloroacetanilide 42.6 0.0024 96.1 
3,5-dichloronitrobenzene 57.7 0.00192 79.7 
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Table 7. Metabolism of 3,5-dichloroaniline (3,5-DCA; 0.5 mM or 1.0 mM; 90 min) in IRCC. 

 Percentage of dose in media (%) 

Compound 0.5 mM 3,5-DCA 
(N=3) 

1.0 mM 3,5-DCA 
(N=4)  

4-amino-2,6-dichlorophenol ND ND 
2-amino-4,6-dichlorophenol ND ND 
3,5-dichlorophenylhydroxylamine ND ND 
3,5-dichloroaniline 89.307 ± 6.322 87.133 ± 4.562 
3,5-dichloroacetanilide 1.863 ± 0.417 0.505 ± 0.072 
3,5-dichloronitrobenzene 2.803^ 1.193 ± 0.566* 
Total in media 93.973 ± 5.516 88.830 ± 5.136 
 Percentage of dose in cells (%) 
Compound 0.5 mM 3,5-DCA 1.0 mM 3,5-DCA 
4-amino-2,6-dichlorophenol ND ND 
2-amino-4,6-dichlorophenol ND ND 
3,5-dichlorophenylhydroxylamine ND ND 
3,5-dichloroaniline 6.823 ± 3.332 13.190 ± 2.122 
3,5-dichloroacetanilide 0.067^ ND 
3,5-dichloronitrobenzene 0.410^ 0.340 ± 0.192* 
Total in tissue 7.300 ± 3.319 13.530 ± 5.136 
Combined total 101.273 ± 8.834 102.360 ± 6.473 

Data is presented as mean ± S.E.M., N as listed in table; ^found in one sample,*found in three 
samples. ND means not detected. 
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Figure 26. HPLC chromatograms of 3,5-DCA metabolism in IRCC. IRCC were exposed 
to either DMSO or 3,5-DCA for 90 minutes. Treatment is listed in each panel. 
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 Further experiments were conducted to determine the presence of glucuronide and/or 

sulfated conjugates following exposure to 1.0 mM 3,5-DCA at two time points [Table 8 (45 min 

exposure) or Table 9 (90 min exposure)]. No significant changes in the metabolic profile were 

seen after treatment with either β-glucuronidase or arylsulfatase. A change was seen in the total 

recovery following the 18 hr incubation required for the glucuronidase and arylsulfatase 

experiments. Because of this change further studies into the stability of 3,5-DCA after incubation 

for 18 h at 37°C, showed that ~20% of 3,5-DCA is lost during the 18 hr incubation. The stability 

of putative metabolites was not determined.  

 Since previous studies demonstrated that pretreatment with DEDTCA was able to 

significantly attenuate 3,5-DCA-induced cytotoxicity in vitro, a final set of experiments was 

conducted to explore the effect of DEDTCA pretreatment on 3,5-DCA metabolism. Results of 

this study can be found in table 10. As seen with the other experiments conducted in the current 

study, the majority of 3,5-DCA was found to be unchanged in both the DEDTCA + 3,5-DCA 

treated and 3,5-DCA only treated groups. 3,5-DCNB was detected in two of the four samples and 

accounted for 0.305 ± 0.185% of the 3,5-DCA dose in media in the 3,5-DCA only group. In 

contrast, 3,5-DCNB was only detected in one of the four samples, and it was only 0.088% of the 

3,5-DCA dose (in media), suggesting that the N-oxidation pathway was being inhibited by 

DEDTCA pretreatment.
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Table 8. Metabolism of 3,5-DCA (1.0 mM; 45 min) in IRCC.  
 

 Percentage of dose in media (%) 
Compound Untreated 

 
Arylsulfatase 
treated  

 β-glucuronidase 
treated  

4-amino-2,6-dichlorophenol ND ND ND 
2-amino-4,6-dichlorophenol ND ND ND 
3,5-dichlorophenylhydroxylamine ND ND ND 
3,5-dichloroaniline 74.515 ± 3.015 51.050 ± 2.330* 58.925 ± 2.715* 
3,5-dichloroacetanilide 0.770 ± 0.130 1.290 ± 0.050 ND 
3,5-dichloronitrobenzene ND ND ND 
Total in media 75.285 ± 3.145 52.340 ± 2.280 58.925 ± 2.715 
 Percentage of dose in cells (%) 
Compound Untreated Arylsulfatase 

treated 
 β-glucuronidase 

treated 
4-amino-2,6-dichlorophenol ND ND ND 
2-amino-4,6-dichlorophenol ND ND ND 
3,5-dichlorophenylhydroxylamine ND ND ND 
3,5-dichloroaniline 12.875 ± 2.805 5.315 ± 2.545* 9.400 ± 2.580* 
3,5-dichloroacetanilide ND ND ND 
3,5-dichloronitrobenzene ND ND ND 
Total in tissue 12.875 ± 2.805 5.315 ± 2.545 9.400 ± 2.580 
Combined total 88.170 ± 5.940 68.325 + 5.295 57.095 ± 4.385 
Data is presented as mean ± S.E.M. N=2. *Uncorrected for ~20% 3,5-DCA loss during 18 hr 
incubation. ND means not detected
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Table 9. Metabolism of 3,5-DCA (1.0 mM; 90 min) in IRCC.  
 
 Percentage of dose in media (%) 
Compound Untreated 

 
Arylsulfatase 
treated  

 β-glucuronidase 
treated  

4-amino-2,6-dichlorophenol ND ND ND 
2-amino-4,6-dichlorophenol ND ND ND 
3,5-dichlorophenylhydroxylamine ND ND ND 
3,5-dichloroaniline 75.425 ± 0.895  55.205 ± 3.405* 58.525 ± 4.174* 
3,5-dichloroacetanilide 0.7095 ± 0.155 0.895 ± 0.005 ND 
3,5-dichloronitrobenzene ND ND ND 
Total in media 76.220 ± 1.050 56.100 ± 3.410 58.525 ± 4.174 
 Percentage of dose in cells (%) 
Compound Untreated Arylsulfatase 

treated 
 β-glucuronidase 

treated 
4-amino-2,6-dichlorophenol ND ND ND 
2-amino-4,6-dichlorophenol ND ND ND 
3,5-dichlorophenylhydroxylamine ND ND ND 
3,5-dichloroaniline 11.610 ± 2.820  6.055 ± 2.315* 9.380 ± 1.700* 
3,5-dichloroacetanilide ND ND ND 
3,5-dichloronitrobenzene ND ND ND 
Total in tissue 11.610 ± 2.820 6.055 ± 2.315 9.380 ± 1.700 
Combined total 87.835 ± 3.665 62.155 ± 1.085 67.910 ± 2.470 
Data is presented as mean ± S.E.M. N=2. *Uncorrected for ~20% 3,5-DCA loss during 18 hr 
incubation. ND means not detected
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Table 10. Effect of DEDTCA (0.1 mM; 30 min) pretreatment on 3,5-DCA (1.0 mM; 90 min) 
metabolism in IRCC.  
 
 Percentage of dose in media (%) 
Compound Untreated DEDTCA pre-treated 
4-amino-2,6-dichlorophenol ND ND 
2-amino-4,6-dichlorophenol ND ND 
3,5-dichlorophenylhydroxylamine ND ND 
3,5-dichloroaniline 89.428 ± 5.656 91.143 ± 3.041 
3,5-dichloroacetanilide 0.498 ± 0.032 0.300 ± 0.052 
3,5-dichloronitrobenzene 0.305 ± 0.185+ 0.088^ 
Total in media 90.230 ± 5.652 91.530 ± 3.056 
 Percentage of dose in cells (%) 
Compound Untreated DEDTCA pre-treated 
4-amino-2,6-dichlorophenol ND ND 
2-amino-4,6-dichlorophenol ND ND 
3,5-dichlorophenylhydroxylamine ND ND 
3,5-dichloroaniline 16.010 ± 2.019 14.670 ± 1.782 
3,5-dichloroacetanilide 0.018^ ND 
3,5-dichloronitrobenzene 0.125^ 0.060^ 
Total in tissue 16.135 ± 2.013 14.730 ± 1.819 
Combined total 106.365 ± 6.762 106.260 ± 3.956 
Data is presented as mean ± S.E.M. N=4, except ^found in one sample, +found in two samples. 
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5.4 DISCUSSION 

3,5-Dichloroaniline (3,5-DCA) has been shown to be the most potent nephrotoxicant 

among the dichlorinated anilines both in vivo and in vitro (Lo et al., 1990; Valentovic et al., 

1995a). Further studies in vitro have suggested that 3,5-DCA induced cytotoxicity is at least in 

part, due to bioactivation of 3,5-DCA to a toxic metabolite(s) (Racine et al., 2016). Previous 

work with aniline and other chloroanilines have shown there to be three major routes of 

biotransformation, N-oxidation, phenyl ring oxidation, and N-acetylation (Ehlhardt and Howbert, 

1991; Hong and Rankin, 1998). Glucuronide and sulfate conjugates have also been shown to be 

major metabolites in aniline and chloroaniline metabolism, in vivo (Hong and Rankin, 1998; 

Smith and Williams, 1949; Kao et al., 1978). Based on these studies, the proposed metabolism of 

3,5-DCA can be seen in Figure 20.  

Results of the current study show that the metabolite arising from N-acetylation, 3,5-

dichloroacetaniline (3,5-DCAA), was not toxic at the concentrations and time points examined. 

This result is in agreement with earlier studies with 3,4-dichloroaniline (3,4-DCA) that show N-

acetylation of 3,4-DCA results in a metabolite with reduced nephrotoxic potential as compared to 

the parent compound (Rankin et al., 1993, 1995). The results of the HPLC analysis suggests that 

3,5-DCAA is a minor metabolite detectable following exposure to 3,5-DCA in IRCC and would 

not be expected to contribute significantly to 3,5-DCA cytotoxicity in this model.  

In contrast, putative metabolites resulting from phenyl ring oxidation are both 

nephrotoxicants. 2-Amino-4,6-dichlorophenol (2A46DCP), which is formed via ortho-

hydroxylation of 3,5-DCA, proved to be nephrotoxic in our IRCC model. However, 2A46DCP 

was not formed at detectable levels in the current study. The putative metabolite of 3,5-DCA 

which arises from oxidation of 3,5-DCA at the para-position, 4-amino-2,6-dichloropenol 
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(4A26DCP), had been shown to be a potent nephrotoxicant in previous studies using a renal 

cortical cell model (Rankin et al., 2008a). The current study showed that 4A26DCP is a potent 

nephrotoxicant in IRCC, as well. However, further studies with 3,4,5-trichloroaniline have 

shown that the addition of chlorine at the para-position, which would inhibit para-oxidation, 

leads to increased nephrotoxicity (Racine et al., 2014), suggesting that 4A26DCP, while a toxic 

compound, most likely does not play a significant role in 3,5-DCA induced nephrotoxicity. As 

seen with 2A46DCP, 4A26DCP was not detected by HPLC analysis. These results suggest that 

while phenyl-ring oxidation would ppotentially lead to potent nephrotoxicants, it is not a major 

metabolic pathway of 3,5-DCA in IRCC. 

N-Oxidation has also been shown to be an important pathway of chloroaniline 

metabolism (Hong and Rankin, 1998; Ehlhardt and Howbert, 1991). A previous study has 

suggested that N-oxidation may play a significant role in 3,5-DCA induced nephrotoxicity in 

IRCC (Racine et al., 2016). There are three major metabolites that can arise via N-oxidation of 

3,5-DCA, as shown in figure 20; 3,5-dichlorophenylhydroxylamine (3,5-DCPHA), 3,5-

dichloronitrosobenzene (3,5-DCNSB), and 3,5-dichloronitrobenzene (3,5-DCNB). The 

nephrotoxic potential of two of these metabolites, 3,5-DCNB and 3,5-DCPHA, was determined 

in the current study. The third, 3,5-dichloronitrosobenzene, is highly unstable and for that reason 

no experiments were conducted using it. Both 3,5-DCNB (Figure 22) and 3,5-DCPHA (Figure 

23) proved to be more potent nephrotoxicants than 3,5-DCA (Racine et al., 2016), suggesting 

that both may contribute to 3,5-DCA induced nephrotoxicity in IRCC if formed. HPLC analysis 

was unable to detect 3,5-DCPHA. However, 3,5-DCNB is a minor metabolite of 3,5-DCA in 

IRCC. The presence of 3,5-DCNB suggests that 3,5-DCA undergoes N-oxidation in IRCC. 

Additional studies showed that pretreatment of IRCC with DEDTCA, a selective CYP2C 
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inhibitor, led to a decrease in the production of 3,5-DCNB, indicating that the N-oxidation 

pathway for the 3,5-DCA was inhibited by DEDTCA. Earlier studies with DEDTCA 

pretreatment led to a significant attenuation of 3,5-DCA-induced nephrotoxicity in IRCC (Racine 

et al., 2016). Combining these observations supports a role for N-oxidation in 3,5-DCA-induced 

toxicity, in vitro. 

5.5 CONCLUSION 

This study was designed to explore the nephrotoxic potential of putative metabolites of 

3,5-dichloroaniline (3,5-DCA), since previous studies with 3,5-DCA suggested that metabolites 

contributed to 3,5-DCA induced cytotoxicity, at least in part. Since toxicity with 3,5-DCA 

required a concentration of 1.0 mM for 90 minutes, the results of the current study suggest that 

3,5-DCNB, 3,5-DCPHA, 2A46DCP, and 4A26DCP are nephrotoxicants in vitro and may 

contribute to 3,5-DCA induced nephrotoxicity. However previous work has suggested that 

4A26DCP most likely does not contribute (Racine et al., 2014). Furthermore, HPLC analysis 

showed that there is minimal detectable metabolism of 3,5-DCA in IRCC. In fact, only two 

minor metabolites were detected, 3,5-DCAA and 3,5-DCNB. 4A26DCP, 2A46DCP, and 3,5-

DCPHA were not formed in detectable levels in this study. Also absent in this study was the 

detection of glucuronidated or sulfonated conjugates. These data, along with previous studies 

that showed metabolites contribute to 3,5-DCA-induced nephrotoxicity, suggest that the ultimate 

toxic metabolite(s) is/are extremely potent and is/are most likely formed close to its molecular 

target. Future studies are required to determine the molecular target(s) and mechanism of cellular 

death for 3,5-DCA.  
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CHAPTER V: CONCLUSIONS AND FUTURE DIRECTIONS 

  Chloroanilines are important intermediates in the production of a variety of agricultural 

and industrial compounds (Kahl et al., 2011). Exposure to chloroanilines has been associated 

with hematotoxicity (Nomura, 1975; Pizon et al., 2009; Valentovic et al., 1997), splenotoxicity 

(Gralla et al., 1979; Bus, 1983; Kahn et al., 1993), and nephrotoxicity (Rankin et al., 1986; Lo et 

al., 1990). 3,5-DCA was shown to be the most potent nephrotoxicant of the mono- and 

dichlorinated anilines both in vivo and in vitro, using renal cortical cells (Rankin et al., 1986; Lo 

et al., 1990; Valentovic et al., 1995a). In vivo, 3,5-DCA induced nephrotoxicity is characterized 

by proximal tubular cell necrosis, increased BUN concentration, kidney weight, proteinuria, and 

hematuria (Rankin et al., 1986; Lo et al., 1990). In vitro studies have shown that LDH release is 

significantly increased and organic ion accumulation is significantly decreased following 

exposure to 3,5-DCA in renal cortical slices from rats (Valentovic et al., 1995a; Lo et al., 1990). 

Studies have also shown one putative metabolite of 3,5-DCA, 4A26DCP, possesses increased 

nephrotoxic potential both in vivo and in vitro, when compared to the parent compound 3,5-DCA 

(Rankin et al., 1994). 4A26DCP is formed via phenyl ring hydroxylation, which has been shown 

to be a major metabolic pathway in aniline metabolism (Kao et al., 1978; Parke, 1960). However, 

the role of metabolism in 3,5-DCA-induced nephrotoxicity had yet to be explored in any great 

detail. The work presented in this thesis was designed to fill this void in knowledge.  

 Initial studies were designed to explore the nephrotoxic potential of 3,5-DCA in isolated 

renal cortical cells (IRCC). IRCC was chosen as the model for multiple reasons. Firstly, IRCC 

are enriched for proximal tubular cells, the target cell type in 3,5-DCA-induced nephrotoxicity in 

vivo (Lash, 1998). Secondly, IRCC have been shown to maintain their metabolic enzyme activity 

(Cummings et al., 1999). As summarized in Chapter 2, 3,5-DCA was capable of significantly 
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increasing lactate dehydrogenase (LDH) release, a marker of cytotoxicity, in a concentration and 

time dependent manner. Cytotoxicity was evident at concentrations as low as 0.5 mM after 120 

minutes exposure, and as early as 90 minute at 1.0 mM. Since previous studies had suggested 

that putative metabolites of 3,5-DCA possessed increased nephrotoxicity, further studies were 

conducted to determine the role of renal metabolism in 3,5-DCA induced cytotoxicity. For these 

studies, IRCC were pretreated with inhibitors of biotransforming enzymes prior to exposure to 

1.0 mM 3,5-DCA for 90 minutes. Inhibition of the CYP2C, FMO, and peroxidase activity was 

able to significantly attenuate toxicity, suggesting that renal metabolism contributes to 

cytotoxicity, especially metabolic pathways which facilitate N-oxidation.  

 Since renal metabolism of 3,5-DCA was indicated to play a role in cytoxicity in IRCC, 

further studies were conducted to determine the ultimate toxicant(s) following exposure to 3,5-

DCA. The first set of experiments can be found in chapter 4. In these experiments the role of 

para-hydroxylation of 3,5-DCA was determined. The nephrotoxic potential of TCA was 

determined in IRCC from male Fischer 344 rats. TCA was used because the addition of a 

chlorine on the para-position effectively inhibits para-hydroxylation. In these studies TCA was 

shown to significantly increase LDH release at concentrations as low as 0.1 mM after 120 

minutes and 0.5 mM after 90 minutes. When compared with 3,5-DCA cytotoxicity, TCA was 

shown to be a more potent nephrotoxicant. These data indicate that blocking the para-position to 

hydroxylation produces a compound with greater nephrotoxic potential than 3,5-DCA. Thus, 

production of 4A26DCP would not be the major bioactivation pathway for 3,5-DCA in IRCC, 

and that while 4A26DCP is a potent nephrotoxicant in renal cortical slices, it is unlikely that it 

plays a significant role in 3,5-DCA-induced in vitro nephrotoxicity. However, more studies were 
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required to determine the nephrotoxic potential of additional putative metabolites of 3,5-DCA 

and to determine 3,5-DCA metabolism in IRCC. 

 The nephrotoxic potential of five putative metabolites of 3,5-DCA in IRCC can be found 

in chapter 4. The metabolites tested were 3,5-DCAA, 3,5-DCPHA, 3,5-DCNB, 4A26DCP, and 

2A46DCP. These metabolites arise from N-acetylation, N-oxidation, and phenyl ring oxidation, 

all known pathways of aniline and chloroaniline metabolism (Kao et al., 1978; Parke, 1960; 

Ehlhardt and Howbert, 1991; Harrison and Jollow, 1986; 1987). Results of this study 

demonstrated that 3,5-DCPHA, 3,5-DCNB, 4A26DCP, and 2A46DCP were all nephrotoxicants 

at either concentrations or exposure times less than that of the parent compound 3,5-DCA, as 

measured by LDH release. These data suggest that any or all four of these metabolites could 

contribute to 3,5-DCA cytotoxicity; however, as previously discussed it is highly unlikely that 

4A26DCP would contribute. In contrast, 3,5-DCAA was not cytotoxic at any of the 

concentrations or time points tested. This result matches previous studies with 3,4-

dichloroacetanilide that showed the acetylated metabolite possessed a much lower nephrotoxic 

potential than the parent compound 3,4-dichloroaniline (Rankin et al., 1993; 1995).  

 While it is widely accepted that biotransformation enzymes are found at higher 

concentrations in the liver, the kidney has been shown to possess many of the same enzymes 

(Cashman, 1995; Cummings et al., 1999; Kimura et al., 1989a, 1989b; Dolphin et al., 1991). One 

study suggested that the renal biotransformation enzyme activity is between 15-40% of hepatic 

biotransformation enzyme activity (Litterst, Mimnaugh, Reagan, and Gram, 1975). For the 

current study, it was hypothesized that renal metabolism of 3,5-DCA played a role in 3,5-DCA 

induced nephrotoxicity, despite the lower levels of biotransformation enzymes found in renal 

tissue, as compared to the liver, since any resulting toxic metabolite(s) is produced in the target 
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tissue. The results of the current study showed minimal renal metabolism of 3,5-DCA in IRCC. 

In fact, only two metabolites were found, 3,5-DCAA and 3,5-DCNB. Furthermore, the formation 

of 3,5-DCNB and the ability of DEDTCA to not only limit 3,5-DCNB’s formation but also to 

attenuate 3,5-DCA cytotoxicity strongly support N-oxidation as a contributing pathway in 3,5-

DCA induced nephrotoxicity in IRCC.  

Preliminary studies into the mechanism of cell death in 3,5-DCA induced cytotoxicity 

have also been conducted. It was initially hypothesized that free radical induced oxidative stress 

may be the mechanism of cell death in 3,5-DCA induced nephrotoxicity, since earlier studies 

demonstrated multiple antioxidants (glutathione, ascorbate, N-acetyl-L-cysteine, pyruvate, and 

α-tocopherol) were able to significantly attenuate cytotoxicity in IRCC (Racine et al., 2016). 

However, additional experiments showed that oxidative stress was only present following the 

exposure to toxic levels of 3,5-DCA, as previously discussed in Chapter 2, suggesting that 

oxidative stress was a consequence of toxicity rather than the mechanism of cell death. Since 

minimal metabolism and oxidative stress were detected in IRCC following exposure to 3,5-DCA, 

yet inhibitors of biotransforming enzymes and antioxidants significantly attenuate cytotoxicity, it 

is further hypothesized that the ultimate toxicant(s) species of 3,5-DCA is most likely a highly 

reactive radical and/or alkylating intermediate arising via N-oxidation, formed close to its 

molecular target(s).   

One potential molecular target for 3,5-DCA is the mitochondria. Previous studies with 4-

chloroaniline (4-CA) and 2-chloroaniline (2-CA) found the presence of both 4-CA and 2-CA in 

mitochondrial fractions of renal cortical slices from male Fischer 344 rats given a single i.p. 

injection of [14C]-4CA or [14C]-2CA (0.5 or 1.0 mM) three hours post injection (Dial, Anestis, 

Kennedy, and Rankin, 1998). Studies with submitochondrial particles (SMP) from beef heart 
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mitochondria showed increased toxicity with increased chlorine substitution of aniline (Argese et 

al., 2001). SMP are stable preparations of inverted inner mitochondrial membrane, which 

maintain mitochondrial respiration functions. The	SMP	assay	is	based	on	the	process	of	

reverse	electron	transfer	that	can	be	negatively	affected	by	inhibitors	and/or	uncouplers	of	

electron	transport.	One	downfall of this assay is that any compound that affects membrane 

integrity can also negatively affect the assay (Argese et al., 2001). While there have been some 

studies exploring mitochondrial dysfunction with a few select chloroanilines, the role of 

mitochondrial dysfunction in 3,5-DCA and 3,5-DCA metabolite-induced nephrotoxicity has yet 

to be determined. To that end, the molecular target of 3,5-DCA could be explored by exposing 

IRCC to 14C isotopically labeled 3,5-DCA. Following exposure, the subcellular location of 3,5-

DCA can be determined using methods described in Dial et. al (1998). It is hypothesized that a 

fraction of radioactivity will be found in the mitochondria following exposure to 3,5-DCA.  

To further explore mitochondrial involvement in 3,5-DCA-induced cytotoxicity, 

mitochondrial dysfunction can be determined following exposure to 3,5-DCA. One way to 

determine mitochondrial dysfunction would be by measuring mitochondrial respiration of IRCC, 

using a Seahorse XF cell mito stress test, with some modifications. In these experiments, IRCC 

would be exposed to various concentrations of 3,5-DCA (0.0, 0.5, 1.0 mM) for either 60 or 90 

minutes. Following exposure IRCC can be seeded and loaded on to the Seahorse XF cell mito 

stress test 96 well plate at a density of 3.0 x 105 cells/well in triplicate and then analyzed 

following the manufacturer’s protocol. One downfall of the Seahorse XF cell mito stress test, 

which could limit its ability to determine the effect of 3,5-DCA on mitochondria function, is the 

viability of the IRCC. In the case that IRCC viability limits the use of Seahorse XF cell mito 

stress test, further studies could be performed using HK-2 cells, which have been shown to be 
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another model for renal toxicity. While cellular respiration is the best measure of mitochondrial 

dysfunction, another way to measure mitochondrial dysfunction is to determine the expression, 

concentration, and activity of electron transport complexes, using western blot analysis (Brand 

and Nicholls, 2011). In these experiments, IRCC would be exposed to 3,5-DCA (0.0, 0.5, 1.0 

mM; 60 or 90 min). Following exposure, an aliquot of cells can be taken, prepared, and analyzed 

using commercially available western blot kits. The two main electron transport complexes, 

which are measured to explore mitochondrial dysfunction, are complex I and complex IV (Brand 

and Nicholls, 2011). If mitochondria are the molecular target of 3,5-DCA in IRCC, as 

hypothesized, not only would significant increases in LDH release be observed but significant 

decreases in the mitochondrial respiration, as well as the expression, concentration, and activity 

of complex IV and I should also be observed. Mitochondrial function of IRCC following 

exposure to 3,5-DCA metabolites should also be determined using the same methods as 

described for 3,5-DCA.  

The purpose of the current studies was to explore the nephrotoxic potential of 3,5-DCA 

in IRCC, determine the role of metabolism in 3,5-DCA-induced nephrotoxicity, and explore 

oxidative stress as a potential mechanism of cell death. In the current studies, 3,5-DCA proved to 

be nephrotoxic in IRCC from male Fischer 344 rats. Further studies suggested that metabolism 

of 3,5-DCA contributes to nephrotoxicity, at least in part. These studies suggested that N-

oxidation of 3,5-DCA is most likely the major contributing metabolic pathway, as determined by 

the ability of inhibitors of N-oxidation to significantly reduce both the formation of 3,5-DCNB 

and the release of LDH following exposure to 3,5-DCA. These data suggest that the ultimate 

toxicant is most likely a highly toxic and highly reactive radical intermediate formed via N-

oxidation. However, further studies are required to determine the ultimate toxicant. The results of 
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the current study also suggested that oxidative stress is not the mechanism of cell death in 3,5-

DCA-induced toxicity but rather a result of toxicity. Therefore, further studies are required to 

determine the mechanism of cell death, as well as any molecular targets of 3,5-DCA-induced 

cytotoxicity.   
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APPENDIX B: LIST OF ABBREVIATIONS 

2A46DCP…2-amino-4,6-dichlorophenol 

2-BrA…2-bromoaniline 

2-CA…2-chloroaniline 

2-FA…2-fluoroaniline 

2-IA…2-iodoaniline 

3,5-DCA…3,5-dichloroaniline 

3,5-DCAA…3,5-dichloroaceataniline 

3,5-DCNB…3,5-dichloronitrobenzene 

3,5-DCNSB…3,5-dichloronitrosobenzene 

3,5-DCPHA…3,5-dichlorophenylhydroxylamine 

4A26DCP…4-amino-2,6-dichlorophenol 

4-CA…4-chloroaniline 

α-Toc… α-tocopherol 

AAALAC…Association for the Assessment and Accreditation of Laboratory Animal Care 

International 

AALAS…American Association of Laboratory Animal Sciences 

ADCP…4-amino-2,6-dichlorophenol 

ALT/GPT…alanine aminotransferase 

ASC…ascorbate 

BUN…blood urea nitrogen 

CYP…cytochrome P450 

DCA…dichloroaniline 
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DEDTCA…diethyldithiocarbamate 

DMSO…dimethyl sulfoxide 

DNP…2,4-dinitrophenylhydrazone 

GPT…glutamic-pyruvic transaminase 

GSH…gluthathione 

GSSG…oxidized glutathione 

FAD/FADH2…flavin adenine dinucleotide 

FMO…FAD-containing monooxygenase, Flavin-containing monooxygenase 

HPLC…high pressure liquid chromatography 

i.p….intraperitoneal  

IRCC…isolated renal cortical cells 

KH…Krebs Heinselt 

LDH…lactate dehydrogenase 

MeOH…methanol 

NAC…N-acetyl-L-cysteine 

NAD/NADH…nicotinamide adenine dinucleotide 

NAPQI…N-acetyl-p-benzoquinone 

NAT…N-acetyltranferase 

NDPS…N-(3,5-dichlorophenyl)-succinimide 

PAH…p-aminohippurate 

PAPS…3’-phosphoadenosine-5’-phosphosulfate 

PHS…prostaglandin H synthase 

PiBX…piperonyl butoxide 
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SMP…submitochondrial particles 

TCA…3,4,5-trichloroaniline 

TEA…tetraethylammonium 

UDP…uridine disphosphate 

UGT…UDP-glucuronosyl tranferase 
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