Document Type


Publication Date



We studied the effects of excessive nitrogen (N) fertilization on foliar nutrient dynamics and stem growth in three important tree species in a mixed-deciduous forest. Stem diameter growth, foliar N concentrations, nitrogen–phosphorus (N/P) ratios, and nutrient resorption were determined for Acer rubrum L. (ACRU), Liriodendron tulipifera L. (LITU), and Prunus serotina Ehrh. (PRSE) on two 30-year-old watersheds at the Fernow Experimental Forest, West Virginia, USA: WS3, fertilized annually with 35 kg ammonium sulfate ha–1 since 1989, and WS7, an untreated control watershed. In an earlier (1992) study, foliar N concentrations of all three species averaged 11% higher in WS3 than in WS7. By 2000, that was no longer the case for any species; indeed N in ACRU leaves was 13% lower in WS3 that year. N/P ratios were elevated in WS3 only in PRSE in 1992 and in both ACRU and PRSE in 1997, but by 2001, mean N/P for all three species was lower in WS3. N resorption efficiencies were 30% lower in WS3 in ACRU and PRSE, but not in LITU. Stem diameter growth in WS3 was 55% lower in ACRU and 30% lower in LITU and PRSE compared with that in WS7. Results may indicate declining growth vigor in ACRU and, to a lesser extent, PRSE andLITU in the fertilized watershed. Observed interspecific differences in growth and plant nutrition responses suggesteventual changes in species composition under increasing N saturation.


This article first appeared in 2005, May JD, E Burdette, FS Gilliam, and MB Adams. 2005. Interspecific divergence in foliar nutrient dynamics and stem growth in a temperate forest in response to chronic nitrogen inputs. Canadian Journal of Forest Research and is reprinted with permission. The final publication is available at