
Marshall University
Marshall Digital Scholar

Geology Faculty Research Geology

6-4-2018

Large Rotations of Crustal Blocks in the Tjörnes
Fracture Zone of Northern Iceland
Andrew J. Horst
Marshall University, horsta@marshall.edu

J. A. Carson

R. J. Varga

Follow this and additional works at: https://mds.marshall.edu/geology_faculty

Part of the Geology Commons, and the Tectonics and Structure Commons

This Article is brought to you for free and open access by the Geology at Marshall Digital Scholar. It has been accepted for inclusion in Geology Faculty
Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact zhangj@marshall.edu,
beachgr@marshall.edu.

Recommended Citation
Horst, A. J., J. A. Karson, R. J. Varga (2018), Large rotations of crustal blocks in the Tjörnes Fracture Zone of Northern Iceland,
Tectonics, doi: 10.1002/2016TC004371.

https://mds.marshall.edu?utm_source=mds.marshall.edu%2Fgeology_faculty%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/geology_faculty?utm_source=mds.marshall.edu%2Fgeology_faculty%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/geology?utm_source=mds.marshall.edu%2Fgeology_faculty%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/geology_faculty?utm_source=mds.marshall.edu%2Fgeology_faculty%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=mds.marshall.edu%2Fgeology_faculty%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/164?utm_source=mds.marshall.edu%2Fgeology_faculty%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zhangj@marshall.edu,%20beachgr@marshall.edu
mailto:zhangj@marshall.edu,%20beachgr@marshall.edu


Large Rotations of Crustal Blocks in the Tjörnes
Fracture Zone of Northern Iceland
A. J. Horst1 , J. A. Karson2 , and R. J. Varga3

1Department of Geology, Oberlin College, Oberlin, OH, USA, 2Department of Earth Sciences, Syracuse University, Syracuse,
NY, USA, 3Geology Department, Pomona College, Claremont, CA, USA

Abstract The interpretation of uppermost crustal deformation near oceanic transform faults is based on
bathymetric lineaments and earthquake focal mechanisms, and relatively little is known about the detailed
kinematics within the transform tectonized zone. The Tjörnes Fracture Zone is a broad zone of deformation
produced by right-lateral transform shearing in north Iceland and is partly exposed on land providing the
opportunity to study shallow-level crustal structure of mid-Miocene, thick, oceanic-like crust formed by
subaerial spreading. A pronounced structural curvature of lava and dike orientations near the Húsavík-Flatey
Fault within the transform zone is well documented, yet of controversial origin. In order to develop an
assessment of deformation near the transform zone, samples of lavas and dikes were collected from 182
paleomagnetic sites within eight structural localities across the deformation zone on the Flateyjarskagi
Peninsula. A progressive clockwise increase in locality mean remanence declinations over more than 10 km
south of the fault broadly mimics the structural curvature of lava and dike orientations. Rotation estimates
based on inclined rotation axes indicate significant clockwise rotation (74° ± 7° to 96° ± 9°) of multiple crustal
blocks. When combined, all data from 108 sites within the deformed zone <12 km to the Húsavík-Flatey
Fault yield a best fit inclined axis rotation of 55° ± 7°. The paleomagnetic data and field relationships are
consistent with a modified bookshelf faulting model, with relatively small (~1 km across) independently
rotated crustal blocks with variable, and in some cases large-magnitude rotations found within 10 km to the
transform fault zone. Similar crustal deformation and comparable amounts of rotation may be present
near other oceanic transforms, where accessibility and surficial deposits may limit documentation of more
complex fault structures.

1. Introduction

Although oceanic transform faults represent geometrically simple plate boundary linkages between offset
mid-ocean ridge spreading centers, few details are known of the style of deformation of the adjacent oceanic
crust. Oceanic transforms exhibit a wide range of morphotectonic features, with strike-slip deformation gen-
erally accommodated within zones typically 5–10 km wide (Fox & Gallo, 1984; Kastens et al., 1986; Searle,
1986). The transform boundary zone is commonly confined to a valley with various lineaments and other fea-
tures interpreted in terms of braided fault systems. However, details of how the oceanic crust accommodates
transform shearing are not well resolved due to inaccessibility and abundant cover of talus, and pelagic sedi-
ment. Where exposed, transform valley walls show numerous small normal faults and only rare evidence for
strike-slip motion (Francheteau et al., 1976; OTTER Team, 1985). Consequently, the general kinematics of
oceanic transform faults has been inferred from abyssal hill lineament analysis and earthquake
focal mechanisms.

The trends of abyssal hill lineaments on the seafloor adjacent to transforms hint at the crustal structure. For
example, abyssal hill lineaments that normally form parallel to spreading centers have curved trajectories
over distances of up to 20 km away as they approach transform valleys (Croon et al., 2010; Grindlay & Fox,
1993; Grindlay et al., 1991; Sonder & Pockalny, 1999). These lineaments are defined by topographic highs
and intervening valleys that are the result of faulting and volcanic construction (Macdonald et al., 1996,
and references therein). These structures are thought to form nearly perpendicular to theminimum compres-
sive stress and therefore might have trends that are similar to dikes intruded below the surface.
Consequently, these lineaments and dikes may be used as indicators of changes in the stress field where they
initially form near transforms, or as strain markers resulting from subsequent shearing. Abyssal hill lineaments
commonly deviate from ridge-parallel trends near ridge-transform intersections (Figure 1a), where they curve
into the transform fault (Crane, 1976; Croon et al., 2010; Fornari et al., 1989; Fox & Gallo, 1984; Lonsdale, 1977).
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This so-called “J-shaped” curvature is generally explained as a result of the transition from an extensional
environment along the ridge axis to the shearing regime along the transform (Fox & Gallo, 1984). These
curved features persist along active portions of some transforms and are also preserved in crust beyond
the active plate boundary parts of transforms along their nontransform fracture zone extensions. However,
along some parts of active transform zones, lineaments curve in the opposite direction, in an “anti-J-
shaped” sense (Croon et al., 2010; Sonder & Pockalny, 1999). Anti-J-shaped lineaments are interpreted as
the result of tectonic rotation of lineaments by distributed deformation near the transform (Sonder &
Pockalny, 1999; Tucholke & Schouten, 1988). When combined with a detailed plate motion model, these
lineament patterns observed along three Pacific-Antarctic transform intersections appear to correlate with
changes in the direction of plate motion (Croon et al., 2010). In all these cases, the underlying crustal
structure and deformation kinematics are inferred only from the surface lineaments.

Several deformation mechanisms have been proposed to explain lineament patterns near oceanic transform
fault zones as well as continental shear zones (Figure 2). Oceanic crust with mechanical anisotropy caused by
ridge-parallel faults and dike margins at a high angle to the transform may represent a special case in which
distributed deformation is accommodated by a series of antithetic (“bookshelf”) faults (Einarsson, 1991;
Tapponnier et al., 1990). In this model, crustal blocks bounded by ridge-parallel faults are rotated as deforma-
tion proceeds, and it is generally consistent with observed lineament orientations, earthquake distributions,
and focal mechanisms (Cowan et al., 1986; Kleinrock & Hey, 1989; Phipps Morgan & Kleinrock, 1991; Wetzel
et al., 1993). Bookshelf-type mechanisms have also been invoked to explain both structural curvature and
paleomagnetic data supporting large rotations of crustal blocks near continental transform faults (Freund,
1974; Luyendyk et al., 1980; Mandl, 1987; McKenzie & Jackson, 1983; Nur et al., 1986).

The bookshelf model has also been associated with propagating rifts and microplates that result in lateral
migration of the transform zones as one rift propagates at the expense of another (Hey et al., 1980; Karson,
1986; Kleinrock & Hey, 1989; McKenzie, 1986; Phipps Morgan & Kleinrock, 1991; Wetzel et al., 1993). In these
cases, rift propagation requires the formation of a new transform fault in relatively older lithosphere that may
be far from a preexisting transform fault. Thus, crustal deformation associated with propagating rifts and
migrating transforms may occur in lithosphere with initially ridge-parallel, rather than curved, lineaments
(Figures 1c and 1d). Although these propagating systems are different from typical ridge-ridge transforms,

Figure 1. Schematic map-view diagrams of ridge-ridge transform faults that show different abyssal hill curvatures (after Sonder & Pockalny, 1999; Croon et al., 2010).
(a) Some lineation patterns (dashed lines) are thought to be primary, stress-related features (J-shaped, or their mirror image) that form due to the stress field tran-
sition from the ridge to the transform. (b) Other curvatures are thought to be secondary, tectonically rotated features (anti-J-shaped) formed due to increased
coupling across the transform. Strain ellipses show senses of shear. (c) During ridge propagation, transforms may migrate or jump with the propagating ridge tip.
Inactive transform segments are truncated by new crust formed at the propagating ridge. (d) As seafloor spreading continues and slip accrues on the new transform,
the crust immediately adjacent to the new transform may initially contain ridge-parallel lineaments that begin to rotate as deformation proceeds.
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the distributed deformation associated with curved (anti-J-shaped) lineaments observed near some oceanic
transforms may also be accommodated by a bookshelf faulting mechanism. However, the kinematic details
of upper crustal deformation in these zones are difficult to assess from lineament analysis and earthquake
focal mechanisms alone.

In northern Iceland, the Tjörnes Fracture Zone links subaerial spreading in the Northern Volcanic Zone to the
offshore Kolbeinsey Ridge through a wide zone of distributed deformation related to the right-lateral trans-
form system. A main transform fault strand is located offshore near the northern coastline of the
Flateyjarskagi Peninsula, providing an opportunity to study the structure and kinematics of uppermost
oceanic-crust immediately adjacent to a major transform fault. In this paper, we present paleomagnetic data
from basaltic lavas and dikes from numerous sites across the Flateyjarskagi Peninsula to investigate the origin
of structural curvature and assess proposed deformation mechanisms. Paleomagnetic sites are located in
four main study localities (coherent blocks) with increasing distance away from the major offshore
Húsavík-Flatey Fault (HFF) Zone, and four subsidiary study localities adjacent to the fault zone to assess direc-
tional consistency and distinguish between different deformational models. These data may be relevant to
the interpretation of deformation adjacent to major oceanic transforms and have implications on the
tectonic evolution of northern Iceland, (Bergerat, Angelier, & Homberg, 2000; Bergerat, Angelier, & Villemin,
1990; Garcia et al., 2002; Homberg et al., 2010; Sæmundsson, 1974; Young et al., 1985). Collectively, the results
and available structural data show that deformation in northern Iceland is considerably more complex than
can be accounted for by typical deformation models from strike-slip fault zones. These data also offer a
unique analog for details of deformation accommodated within migrating transform fault zones associated
with propagating rifts and microplates.

2. Tectonic Setting
2.1. Subaerial Spreading Systems in Iceland

The tectonic evolution of the plate boundary zone across Iceland has largely been controlled by the interac-
tion between rifting of the subaerial Mid-Atlantic Ridge system and the pronounced effect of the Iceland hot
spot or mantle plume (Einarsson, 2008; Sæmundsson, 1979). This interaction has resulted in an unstable plate

Figure 2. Models of deformation mechanisms that accommodate distributed deformation near strike-slip fault zones (after Nelson & Jones, 1987). (a) Undeformed
domain with observed paleomagnetic declination (red arrow) and reference declination (black dashed line); (b) shearing on multiple faults parallel to the main shear
zone with no rotation; (c) heterogeneous simple shear with a smoothly increasing strain gradient; (d) bookshelf faulting model consisting of rotated blocks bounded
by faults with antithetic shear; (e) small block model with variable rotation.
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boundary system that has caused the Icelandic rift zone to relocate at least two or three times throughout the
last 15 Ma (Hardarson et al., 1997). Through time, the rift zone tends to migrate northwestward with respect
to the underlying hot spot, resulting in progressive southeastward relocation of the spreading axes in order
for the active rift zone to remain above the hot spot magmatic source (Hardarson et al., 1997; Pálmason &
Sæmundsson, 1974; Sæmundsson, 1974, 1979). Although the mechanism of rift relocation is debated, it is
generally considered to take place by discrete rift jumps on land (Hardarson et al., 1997), whereas
evidence for propagation exists both onshore in south Iceland (LaFemina et al., 2005) and offshore south
of Iceland along the Reykjanes Ridge (Benediktsdóttir et al., 2012; Hey et al., 2010).

The most recent eastward shift of the active rift zone in Iceland has offset the plate boundary and resulted in
the formation of two transform boundary zones, the South Iceland Seismic Zone and the Tjörnes Fracture
Zone, respectively. The South Iceland Seismic Zone accommodates left-lateral shearing between the
Western and Eastern Volcanic Zones in a narrow (20 km N-S) by ~60-km-wide E-W-trending zone and is
marked by distinct N-S trending arrays of en echelon surface fractures, the surface expressions of underlying
seismogenic strike-slip faults. The N-S-striking faults accommodate overall left-lateral shearing by right-lateral
slip on faults that rotate counterclockwise as deformation proceeds, thus defining a bookshelf faulting model
for south Iceland (Einarsson, 1991; Einarsson & Eirícksson, 1982; Sigmundsson et al., 1995).

2.2. Tjörnes Fracture Zone

The Tjörnes Fracture Zone (TFZ) is a broad region of deformation in northern Iceland thought to have formed
~7 Ma to accommodate right-lateral transform shearing between the Northern Volcanic Zone and the
Kolbeinsey Ridge offshore (Sæmundsson, 1974; Ward, 1971). Most of the transform boundary zone occurs off-
shore over a large area, approximately 150 km (E-W) by 75 km (N-S), and consists of major NW-SE striking fault
zones and left-stepping, en echelon, N-S trending bathymetric troughs (or grabens) and volcanic fissure
swarms (Magnúsdóttir et al., 2015; McMaster et al., 1977). Based on the distribution of seismic activity
(Figure 3a), most of the deformation is accommodated along two main NW-trending zones, the HFF Zone

Figure 3. Structures and seismic activity in Tjörnes Fracture Zone and Flateyjarskagi Penninsula in North Iceland. (a) Seismicity occurs primarily within two NW-SE
trending zones north of Iceland within the broad region of deformation called the Tjörnes Fracture Zone (TFZ). The red dashed lines show trends of three main
structural features: Grímsey Oblique Rift (GOR), Húsavík-Flatey Fault (HFF), and Dalvík Lineament (DL). The black dashed line is Eyjafjarðaráll Graben (EB), the southern
extension of the Kolbeinsey Ridge (KR). The yellow swaths show locations of active volcanic systems within the Northern Volcanic Zone (NVZ). Peninsula labels
are Flateyjarskagi (FL), Tjörnes (TJ), and Tröllaskagi (TR). The small inset map shows location of TFZ in North Iceland and locations of other active plate boundary
zones: Reykjanes Peninsula (RP), Western Volcanic Zone (WVZ), South Iceland Seismic Zone (SISZ), Eastern Volcanic Zone (EVZ), and Northern Volcanic Zone (NVZ).
Maps (b) and (c) show the clockwise curvature with proximity to the HFF of strikes of lava flows (thin purple lines) and steeply dipping dikes (orange lines),
respectively (after Young et al., 1985).
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and the Grímsey Oblique Rift zone (Einarsson, 1991, 2008). The Grímsey Oblique Rift appears to consist of four
left-stepping, en echelon, N-S trending volcanic systems, similar to those in the Northern Volcanic Zone
(Brandsdóttir et al., 2003). The HFF Zone was thought to be the main structure of the Tjörnes Fracture
Zone (Rögnvaldsson et al., 1998), and it can be traced continuously over 75 km WNW from the Northern
Volcanic Zone to the Eyjafjarðaráll Graben, the southern amagmatic extension of Kolbeinsey Ridge.
Einarsson (1976) showed that other zones might be just as important in accommodating the transform
motion, and Metzger and Jónsson (2014) confirmed by GPS measurements that about two thirds of the plate
motion is taken up by the Grímsey Oblique Rift. A third and southernmost NW trending seismic zone, the
Dalvík Lineament (Einarsson, 1991), has been suggested to represent a weak southern margin of the
Tjörnes Fracture Zone where the southern tips of N-S striking faults terminate (Stefansson et al., 2008).
Focal mechanisms of most large earthquakes in the Tjörnes Facture Zone indicate a NW-SE striking and a
NE-SW striking fault planes (Einarsson, 1987), consistent with dextral slip on major NW striking faults or sinis-
tral slip on NNE striking faults expected for a bookshelf faulting mechanism. Neither the HFF Zone nor the
Grímsey Oblique Rift are orthogonal to Kolbeinsey Ridge or the Northern Volcanic Zone, and based on the
current plate motion direction (~106°; DeMets et al., 2010), the Tjörnes Fracture Zone is
slightly transtensional.

The HFF Zone is partly exposed on land on the peninsulas of Flateyjarskagi and Tjörnes, and numerous stu-
dies document the structure of the uppermost crust (e.g., Fjäder et al., 1994; Jancin et al., 1985; Långbacka &
Gudmundsson, 1995; Sæmundsson, 1974; Young et al., 1985). Available K/Ar whole-rock data indicate
Miocene-age basalts ranging from 11.9 ± 1.2 to 8.9 ± 0.8 Ma across northern Flateyjarskagi. These older lavas
are unconformably overlain by lavas younger than 6.3 ± 0.2 Ma in the eastern portion of the peninsula (Jancin
et al., 1985). The older sequence of basalt lavas have gentle (≤12°) S/SW dips in southern Flateyjarskagi
becoming progressively steeper to the north with dips greater than 40° to NW near the north coast
(Young et al., 1985). Near the middle of the peninsula, nearly horizontal lavas can be traced to the east where
they then increase in dip to more than 30° SE within the Dalsmynni flexure zone below the unconformity
(Young et al., 1985). The overall structural geometry of the Miocene-age lavas on Flateyjarskagi approximates
a S/SW trending and shallowly plunging antiform. Younger, mostly Pliocene-age lavas above the unconfor-
mity have gentle dips typically less than 10° ESE (Young et al., 1985).

One of the major structural patterns revealed from detailed field mapping and measurements is a pro-
nounced curvature of both lava flow and dike strikes across Flateyjarskagi (Figures 3b and 3c). From south
to north, a progressive clockwise-curvature of lava flow strikes with increasing dip magnitudes is observed
over a wide area approaching the HFF Zone (Young et al., 1985). A similar progressive clockwise-curvature
of dike strikes occurs across the peninsula from approximately NNE (010°) to nearly parallel to the HFF
(~110°; Young et al., 1985).

The origin and interpretation of this structural curvature is the subject of debate (Gudmundsson & Fjäder,
1995; Jancin et al., 1995). In one view, the progressive clockwise change in dike and lava orientations (strike)
was interpreted to signify heterogeneous shear strain to accommodate transform deformation and structural
rotations of up to 90 to 110° within a zone extending ~11 km south of the HFF (Young et al., 1985).
Alternatively, the structural curvature has also been interpreted as the result of the orientation of the stress
field during their intrusion, and thus a primary feature where no tectonic rotations have occurred except in
the narrow zone (~2 km) adjacent to the HFF (Fjäder et al., 1994). These competing interpretations yield
the opposite sense of shearing across the transform.

Brittle deformation features are common throughout Flateyjarskagi (Figure 4), with an increase in density of
faults and fractures with proximity to the northernmost outcrops where the HFF is partly exposed with locally
intense faulting, fracturing, and veins (Bergerat et al., 2000; Fjäder et al., 1994; Young et al., 1985). The major
3- to 5-km-wide damage zone consists of large-scale faults exhibiting breccia, cataclasite, and gouge zones
parallel to the trend of the HFF (~295°). In addition to these subvertical WNW striking dextral strike-slip faults,
another common set of faults appear to be steeply dipping NNE striking sinistral-normal oblique-slip faults.
These arrays of faults bound small coherent blocks of fractured lavas and dikes a few tens to hundreds of
meters across and are also cut by numerous small-scale faults and veins in various orientations.

Farther south away from the HFF zone, the deformation is much less intense and more focused into discrete
fault zones that generally change strikes from NE-SW in the north to NNE-SSW to N-S in the southern part of
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the peninsula. Farther south from the north coast, some sections of lava are very coherent over distances of
several hundred meters to a few kilometers as they exhibit similar orientations and no evidence of significant
internal deformation. The southern boundary of the main HFF zone is not clear, although it has been
proposed to coincide with the Gil-Látur Line, ~11 km south of the HFF (Young et al., 1985).

Although many faults occur throughout the peninsula, the lack of offset markers makes the displacement
magnitudes difficult or impossible to determine. Damage zones and fault cores are typically less than 1 m
wide, suggesting that displacements are relatively small (few to tens of meters). However, maximum throws
on faults near the northern coastline may be as much as 1,000 m (Young et al., 1985). Overall, estimates of
total displacement on HFF range from 20 (Young et al., 1985) to 60 km (Sæmundsson, 1974).

3. Field and Laboratory Methods

Paleomagnetic remanence data were collected for 1,292 oriented core samples from 182 sites distributed
across the Flateyjarskagi Peninsula in northern Iceland. Most (142) sites are located within one of four main
study localities, Grenivík (gr), Gil (hg), Pverá (hp), and Mosahnjúkur (fm) each at decreasing distance to the
HFF Zone, while the remaining 40 sites are located within four subsidiary localities more proximal and parallel
to the fault zone (Figure 4 and Table S1). At each field site, typically eight standard 2.5-cm diameter core sam-
ples were drilled from either a basalt lava or dike using a gasoline-powered drill. All samples were oriented
with magnetic compass, and also oriented with a Sun compass when conditions were favorable.
Comparison of the two orientation methods indicates no significant bias in azimuths determined with mag-
netic compass, and corrections to specimen azimuths based on Sun compass readings are consistent with a
magnetic declination nearly identical to the International Geomagnetic Reference Field declination at the site
(approximately �16°). Lava orientations were determined from multiple measurements on the contacts
between flows at each sampling site and supplemented with data from published maps (e.g., Young
et al., 1985).

Paleomagnetic remanence measurements and demagnetization were conducted on a 2G Enterprises cryo-
genic magnetometer in a shielded room at Scripps Institution of Oceanography. Specimens from each site
were progressively demagnetized using thermal or alternating field (AF) techniques through a complete
spectrum of demagnetization levels. For AF demagnetization experiments, specimen remanent magnetiza-
tion was measured following applied field magnitudes of 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100,

Figure 4. Geologic context of paleomagnetic sites within focused study localities (green boxes) on Flateyjarskagi. Most sites are located within main study localities
(fm, hp, hg, and gr) with fewer sites in subsidiary localities (fe, fw, fn, and hn) nearest to the HFF. Faults after Young et al. (1985).
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120, 150, and 180 mT. Thermal demagnetization was performed in 14 (or 19) steps: 100, 150, 200, 250, 300,
350, 400, 450, 475, 500, 520, 540, 560, and 580°C (600, 620, 640, 660, and 680°C). Magnetization components
were determined by principal component analysis (Kirschvink, 1980) using at least four or more steps with
maximum angular deviation<5°. Mean directions for each site were calculated from characteristic remanent
magnetization (ChRM) directions of specimens based on Fisher statistics (Fisher, 1953). Bootstrapped site
mean vectors were used to calculate mean directions and uncertainties at the study locality level (Tauxe
et al., 1991), and structural tilt corrections about present strike directions were applied based on average lava
orientations measured in each study area. In one study area (fw) where only dikes were sampled, average lava
orientations were determined from field measurements on adjacent lavas combined with data from pub-
lished maps (e.g., Young et al., 1985). Additional bootstrap tests for common mean directions (Tauxe,
2010) was implemented for reversals tests, and for determining statistical distinction of mean lava to dike
directions, different locality mean directions, and locality mean directions to expected reference directions.
Measured directions were compared to an expected time-averaged direction produced by a geocentric axial
dipole (GAD) field in north Iceland (dec = 000°/inc = 77.5°). Paleomagnetic analyses of lavas (<15 Ma) in
Iceland broadly support the GAD hypothesis that maintaining the present dipole direction is a valid reference
direction (e.g., Kristjánsson, 2009; McDougall et al., 1984). European and North American reference Apparent
Polar Wander Paths indicate essentially indistinguishable expected directions for north Iceland during the
last 15 Ma, with uncertainty on poles less than 5° (Besse & Courtillot, 2002).

4. Results
4.1. Paleomagnetic Remanence

The arithmetic mean natural remanent magnetization intensities of lavas and dikes measured in this study is
5.1 Am�1 (geometric mean = 2.7 Am�1), with dike natural remanent magnetization values (6.2 Am�1) slightly
higher than lavas (4.1 Am�1). Most of remanence data from lava and dike specimens reveal high-stability,
dominantly single-component remanences (ChRM) with average maximum angular deviation <2.2°, after
removal of minor overprints typically by 15 mT or 200°C (Figure 5). Unblocking occurs over a wide range
of temperatures with maximum unblocking temperatures invariably between 500 to 580°C, suggesting
remanence carried by low-Ti titanomagnetite. Few specimens exhibit a higher unblocking temperature
(580C to 680°C) hematite component typically nearly parallel to the highest unblocking temperature
magnetite component. The median destructive field, or the AF that reduces the vector difference sum of
remanence to half its initial value, was calculated as a metric for specimen stability. In an analogous manner,
the median destructive temperature was calculated for thermally demagnetized specimens. Lavas and dikes
typically have moderate stability with a mean median destructive field of 29 mT and mean median destruc-
tive temperature of 357°C.

Although most specimens are well behaved and reveal simple, linear components, a few dike and lava speci-
mens show more complex multiple component remanences. These few specimens are excluded from the
Fisher mean calculation at the site due to partial to nearly complete overlap between unblocking tempera-
ture spectra that precludes isolation of a stable component using a linear-fit. In some sites from dikes, multi-
ple specimens show antipodal components over a range of different partially overlapping laboratory
unblocking temperature spectra (Figure 5g). In these cases, the highest laboratory unblocking temperature
component is regarded as the stable ChRM. Only a few specimens are excluded from the Fisher mean calcu-
lated for each site due to one of the following behaviors: directions from AF demagnetization that signifi-
cantly differ from those isolated by thermal demagnetization and overlapping coercivity or laboratory
unblocking spectra that precluded isolation of a linear ChRM.

Estimated site mean directions with ≥4 specimen ChRM directions and 95% confidence limits (α95) ≤ 15° are
considered reliable, though most of site means are based on at least 5 specimens and are well determined
with α95 < 10° (>50% sites have α95 < 5°; Figures 6 and 7 and Table S1). However, data from 19 sites are
rejected from further analysis due to either the inability to determine a reliable or significant site mean direc-
tion, or a highly discordant site mean direction compared to other sites within the same area. Of the total
rejected, nine site mean directions are rejected due to either multiple unstably magnetized specimens within
the site, or all specimens were stable but considerably dispersed in direction with very large 95% confidence
limits. The additional 10 site mean directions that are removed from the analysis exhibit highly discordant

10.1002/2016TC004371Tectonics

HORST ET AL. 1613



directions (>45°) away from either positive or negative inclination groups of the area (average angular
difference ~87°).

Site mean directions with positive or negative inclinations pass a bootstrap reversal test in only the
southernmost main study locality (gr) indicating that the antipodal directions are consistent with normal
and reverse polarities, respectively. In all seven other localities closer to the fault zone, directions tend
to exhibit streaked distributions, and thus, directional groups with positive and negative inclinations do
not pass the reversal test at the 95% confidence level. However, the directions in these areas are nearly
antipodal, and thus, directions with negative inclinations interpreted as reverse polarity are flipped to their
antipodes, and a bootstrap of site mean directions yields locality mean directions in each study locality
(Table 1). Within each of the focused study localities, bootstrapped site mean directions are well
determined with relatively low major (η95) and minor (ζ,95) semiangles of 95% confidence (Figures 6
and 7 and Table 1).

Within some study localities, site mean directions show variably streaked distributions. When site mean
directions from dikes and lavas within a locality are plotted separately, it appears that a few localities show
statistically distinct in situ lava and dike directions with consistently more clockwise and shallow lava
directions than dikes (Figure 8). Although the subsidiary localities do not show distinct directions based
on formation type or dike orientation, they do show a similar tendency for more clockwise and shallow
directions from lavas flows. Upon closer inspection of the streaked directions from lavas in the hg area,
it appears that there are two distinct paleomagnetic directions from lavas closer and farther from the fault
zone (i.e., northern and southern parts of area hg). Furthermore, the mean direction from the northern
group lavas is distinct from the mean dike direction, whereas the southern lavas and dikes have indistin-
guishable directions. The abrupt change in remanence directions from north to south parts in locality hg
occurs at a distance of ~12 km south from the HFF and also coincides with distinct changes in lava and

Figure 5. Typical alternating field and thermal demagnetization behavior, indicating the dominance of single components of magnetization following the removal
of minor overprints. The solid (open) circles are the horizontal (vertical) projections. Diagrams a, b, c, and e are from lava specimens, while d, f, and g are from
dikes. (g) Example of one of the few multicomponent magnetizations from a dike revealed during stepwise thermal demagnetization.
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Figure 6. Equal-area, lower-hemisphere projection stereonets of paleomagnetic remanence directions for all reliable sites in each of the four main study localities
across Flateyjarskagi (see Figure 4 for locations). Site mean directions and corresponding α95 confidence ellipses are shown (left). The few directions with
dashed ellipses represent sites with discordant directions not included in locality mean calculation. Locality mean directions (center) determined from bootstrap of
site mean directions after flipping reverse directions to antipodes, and tilt-corrected mean directions for each of the four main study localities are also
shown (right). The filled (open) circles plotted in lower (upper) hemisphere. The filled (open) star represents geocentric axial dipole expected direction at ~66°N for
normal (reverse) polarity. The great circles indicate average lava flow (purple) and dike (orange) orientations before (center) and after tilt correction (right).
Bootstrapped locality mean directions from the three northernmost areas are distinct from the expected direction at the 95% level of confidence, suggesting that
some relative rotations have occurred.
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dike orientations (Figure 8). The abrupt changes in orientations occur subtly over a few hundred meters
distance and in the general location of the Gil-Látur Line proposed by Young et al. (1985) as a
structural boundary across which the deformation increases more dramatically toward the north. As a
result, the hg locality is treated as two separate localities (hg-n and hg-s).

Figure 7. Equal-area, lower-hemisphere projection stereonets of paleomagnetic remanence directions for sites in each of the subsidiary study localities along the
northern part of Flateyjarskagi (see Figure 4 for locations). Same symbols and layout as shown in Figure 7. The dashed ellipse around locality fn mean shows
increased uncertainty due to low number of sites (see discussion).
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Table 1
Locality Mean Paleomagnetic Results

In situ Average lava Tilt corrected Best fit

Directions Orientation Directions Inclined axis

Loca Distb Decc Inc N/Nt
d η95

e ζ95 α95
f CSD Strikeg Dip DD Dech Inc R ΔRi Axisj Angle

fw 3.0 149.8 65.0 8/9 14.0 5.6 12.6 18.0 238 32 NW 321.8 82.9 38 ± 29 172/83 �145 ± 29
hn 4.3 115.3 46.9 13/16 6.8 4.6 6.4 12.4 216 32 NW 91.3 77.1 �91 ± 9 170/68 �96 ± 9
fe 4.3 91.3 60.1 8/10 12.2 3.8 10.7 15.4 185 26 NW 52.0 79.2 �52 ± 21 178/66 �56 ± 21
fn 4.4 140.7 43.8 5/5 - - (13.4)l 7.9 232 34 NW 137.7 77.8 �138 ± 16 170/69 �93 ± 16
fm 6.4 108.1 49.5 37/39 4.6 2.9 4.0 13.5 212 33 NW 66.5 78.4 �67 ± 7 181/62 �74 ± 7
hp 8.2 91.8 52.3 15/18 5.8 11.3 9.8 20.1 203 29 NW 50.1 75.6 �50 ± 16 175/58 �57 ± 16
hg-n 11.4 86.2 55.8 22/23 6.2 4.5 5.7 14.8 190 26 NW 60.1 80.5 �60 ± 10 159/68 �66 ± 10
hg-s 12.5 55.5 68.3 21/22 5.8 13.7 5.0 12.7 173 20 SW 349.6 80.1 10 ± 13 173/00 �23 ± 13
hg 12.1 74.2 62.8 43/45 5.3 3.2 4.5 16.5 182 23 NW 23.4 81.4 �23 ± 11 180/45 �31 ± 11
gr 22.5 27.4 71.3 34/40 4.5 6.3 5.7 18.2 119 12 SW 24.3 83.3 �24 ± 6 119/00 �12 ± 6
All Nk sites < 12 105.4 53.7 108/120 2.6 3.6 3.2 18.5 225 32 NW 65.2 80.3 �65 ± 7 194/52 �55 ± 7

aLocality: abbreviated study locality names. bDist: Average site distance (km) south from Húsavík-Flatey Fault. cDec and Inc: Declination (°) and inclination (°) of
bootstrapped site mean directions in geographic coordinates. dN/Nt: Number of sites included in mean/total number of sites in study locality. eη95, ζ95:
Semiangle of major, minor axis of ellipse of 95% confidence. fα95, CSD: Fisher circle of 95% confidence (°), and circular standard deviation. gStrike, dip, and
dip direction (DD): Average orientation of lavas based on field measurements and published maps (e.g., Young et al., 1985) hDec and Inc: Declination (°) and
inclination (°) of bootstrapped site mean directions in tilt-corrected coordinates. iR ΔR: Residual vertical-axis rotation after tilt-correction, with ΔR uncertainty
(after Demarest, 1983); positive rotation value is clockwise restoration and negative rotation is counterclockwise restoration. jAxis, Angle: Best fit axis and angle
(°) of net tectonic rotation with ΔR uncertainty (after Demarest, 1983). kAll northern sites; tilt-corrected direction based on combined mean after individual tilt
correction for each locality, see main text for discussion, and Figure S2. lOnly adjusted α95 value for locality fn is shown, instead of calculated value of 7.5°, see
main text for discussion, and Figure S1.

Figure 8. Equal-area, lower-hemisphere projection stereonets show details of paleomagnetic and structural data. (a) Mean dike and lava remanence directions
within localities hp, hn, and fm, and mean directions from different dike orientations in locality fe. All reverse polarity directions shown in normal polarity for
comparison. Note consistently clockwise and shallower lava directions than dikes in each locality. (b) Locality hg also shows statistically distinct mean lava and dike
remanence directions, and orientations of mean dike poles and lava poles from northern and southern portions of the locality.
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4.2. Comparing Locality Mean Directions

All locality mean directions are statistically distinguishable from the GAD expected direction, and many are
also clearly distinct from one another (Figure 9a). However, distinguishing directions among a few adjacent
study localities is more challenging due to overlapping 95% confidence limits that do not include the mean,
and relatively few sites in subsidiary localities most proximal to the HFF. When only confidence limits of (boot-
strapped) mean directions overlap but do not include the mean direction, additional statistical tests are
required to determine whether two estimated remanence directions are distinct. A bootstrap test for
common mean directions (Tauxe, 2010) between the study localities with partially overlapping uncertainties
(fm, hp, and hg-n, and fe) reveals that directions from area fm are distinguishable from hg-n and fe; however,
directions from hp are indistinguishable from hg-n and fe localities.

5. Discussion

The observed patterns in integrated paleomagnetic remanence directions and structural data within the
study localities and among different localities have significant implications for the interpretation of deforma-
tion adjacent to the HFF and other oceanic transform systems. However, accurate interpretations of the
magnitude of crustal block rotations and other deformation features rely heavily on the combination of these
paleomagnetic data with structural field relationships, as well as any assumptions. The reliability of paleo-
magnetic and structural data to determine tectonic rotations depends on at least three key assumptions:
(1) the locality mean remanence was acquired over a sufficient amount of time to average secular variation
of the geomagnetic field, and the initial (predeformation) mean directions coincide with the time-averaged
GAD field; (2) the observed stable remanence directions predate both vertical axis structural rotations and
horizontal axis tilting; and (3) little internal deformation of each lava flow and dike results in a constant angle
between the remanence vector and the normal to the igneous unit during deformation. Assumptions (2) and

Figure 9. (a) Equal-area, lower-hemisphere projection stereonet of the locality mean paleomagnetic remanence directions for all reliable sites in each study locality
shown with corresponding bootstrapped confidence ellipses in geographic coordinates. The filled circles plotted in lower hemisphere, and the filled star
represents geocentric axial dipole (GAD) expected direction. The dashed α95 ellipse around fn direction represents increased uncertainty due to small number of
sites. Scatter plots illustrate azimuthal variation in locality mean remanence declinations, mean lava strike, mean dike strike, and other (less common) dike
strikes for each locality with proximity to HFF in (b) geographic coordinates and (c) after tilt-correction. (d) Also shown is the variation in amounts of rotation about
the best fit inclined axis for each study locality as a function of distance from the HFF.
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(3) appear valid and justified due to the presence of nearly antipodal directions in many study areas, and lack
of pervasive brittle structures within sampled units in all but the locality closest to the HFF zone (fw).
However, due to the low number of sites in a few localities, it is necessary to first investigate whether rema-
nence vectors within these few areas exhibit appropriate scatter anticipated due to secular variation. After
examination of the validity of assumption (1), we then highlight key trends in the paleomagnetic and struc-
tural data, explore different approaches to estimating rotation, assess the most plausible deformation
mechanisms to accommodate the rotations, and finally discuss potential implications for other
oceanic transforms.

5.1. Investigation of Sufficient Averaging of Secular Variation

Due to the large scatter in directions expected at high latitudes, caution must be exerted when interpreting
directions from localities with only 5 to 10 sites. To assess whether the estimates of uncertainty from the few
sites within localities proximal to the fault have underestimated uncertainty produced by secular variation,
we develop a bootstrap analysis of a previous data set of lavas from the Northwest Fjörds in Iceland
(Kristjánsson, 2009). The data were filtered to remove site mean vectors with α95 > 10°, or virtual geomag-
netic poles <45° (Figure S1a), with the later being a procedure commonly implemented in paleomagnetic
studies that are not concerned with transitional fields. We resample the remaining 333 directions 1,000 times
at random, each psuedosample with N = 5, and then calculate Fisher parameters of each of these sets of pseu-
dodata to investigate the dependence of α95 and CSD on number of sites (N) per area. Repeating this exercise
for variable numbers of N (e.g., multiples of 5) demonstrates that the uncertainty calculated for area fn (N = 5)
is likely underestimated (Figure S1b). Based on this analysis, we choose to increase the α95 uncertainty to the
average α95 of 13.4° (for N = 5) to mimic that demonstrated from this exercise, rather than group area fn sites
with an adjacent area to increase N. We note that the other two areas (fw and fe) that have N = 8 show uncer-
tainties that are consistent with the range determined in this exercise, and uncertainties from all other areas
are also within the range for comparable N (Figure S1b).

5.2. Interpretation of Trends in Paleomagnetic and Structural Data

Patterns in paleomagnetic remanence directions and structural data within the study localities and differ-
ences among the localities have significant implications for the interpretation of deformation adjacent to
the HFF. A few specific trends include the streaked distribution of remanence directions, statistically distinct
lava and dike remanence directions in a few study localities, and distinguishable directions from localities
both perpendicular and parallel to the HFF.

Within a few study localities, site mean remanence directions show streaked distributions that may be
produced by synkinematic emplacement of lavas or dikes during tectonic rotation and may also explain
why data from most localities do not pass a reversals test. The abrupt change in remanence directions across
locality hg, and the accompanying subtle change in orientations of lavas and dikes, is consistent with the
location of the Gil-Látur Line and confirms that this is a unique structural boundary across which some rota-
tion of different crustal blocks has occurred. However, the distinctly more clockwise and shallow lava direc-
tions than those from dikes in hg-n and fm localities, in conjunction with similar trends in hn, fe, and hg-s
areas, all suggest that some dikes were emplaced after some amount of vertical-axis rotation of the lavas.
Although synkinematic dike intrusionmay be expected near ridge-ridge transforms, especially settings under
transtension, the nearly orthogonal orientations of dikes to lava flows suggest that they were perhaps
intruded prior to any tilting or rotation of lavas. If dikes were emplaced after some rotation of lavas, then cau-
tion must be used when using curved patterns of dike strikes alone as passive markers to infer simple shear,
as dikes may have been intruded in nonuniform initial orientations and may be less rotated than predicted.

Statistically distinct locality mean remanence directions from most study localities across Flateyjarskagi are
interpreted to indicate differential structural rotations of crustal blocks south of the HFF. The progressive
clockwise deflection of remanence declinations with proximity to the fault zone mimics the clockwise curva-
ture of mean lava flow and dike strikes (Figure 9b) and broadly supports a structural model with increasing
rotation toward the fault zone. However, the clockwise deflection in remanence directions is not smoothly
varying, but rather appears to change abruptly over relatively short distances. The best example is from
subareas hg-s to hg-n that exhibit a distinct change in directions across the subtle Gil-Látur Line.
Directions from hg-n subarea and the next area ~3 km to the north (hp) are indistinguishable, implying
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that they lie within the same crustal block or in blocks that rotated similarly. However, the next localities
farther north, fm and hn, yield locality mean directions that are indistinguishable from each other, yet both
appear to be distinct from hg-n and hp. Distinct directions from subsidiary localities near the fault zone also
suggest differential rotation between individual crustal blocks parallel to the HFF.

5.3. Rotation Estimates

The magnitude of crustal block rotation inferred from distinct locality mean directions is dependent on the
method employed, and several different methods of tectonic analysis are investigated. The most structurally
plausible rotational history should restore observed remanence directions and structures back to their
expected initial orientations; however, unique reconstructions are challenging due to the complex history
and various possible rotation sequences associated with major transforms, and lack of well-constrained
geochronology. Due to the evidence that some dikes were emplaced in different orientations during defor-
mation, we choose to not assume initial dike orientations but rather restore the lavas to horizontal orienta-
tions and the locality mean directions to a GAD expected direction.

One common approach is to first carry out a tilt-correction to restore lavas to their assumed initial horizontal
orientation. This simple “backtilt” appears to restore locality mean directions from the two southernmost
study localities (gr and hg-s) farthest from the HFF, and one closer (fe). However, locality mean directions from
the other localities are all distinct from the GAD expected direction at the 95% confidence level, indicating
that some additional rotation or component of vertical-axis rotation is required (Figures 6 and 7). The differ-
ences in tilt-corrected declinations suggest differing amounts of some component of clockwise vertical-axis
rotation, or other rotations have affected the region up to about 12 km south of the fault zone (Figure 9c and
Table 1). However, tilt corrections may produce considerable declination anomalies that may be incorrectly
interpreted as vertical-axis rotations (MacDonald, 1980). Therefore, the tilt correction is not applicable for
areas that have experienced multiple deformational events or different styles of deformation throughout
their history (MacDonald, 1980). Multiple deformational events are expected in Flateyjarskagi where exten-
sive geologic evidence supports the complex evolution of the crust from emplacement, rift-related subsi-
dence and tilting, and subsequent development and evolution of the HFF. Because a tilt correction does
not fully restore mean directions from all areas, or account for the clockwise change in dike strike, a further
tectonic analysis approach is necessary.

Although an array of possible sequences of horizontal-axis and vertical-axis rotations could produce the
observed locality mean directions and structural orientations, the exact sequence of deformation events is
unknown. Rather than arbitrarily assign a sequence of events, we prefer to solve for a single rotation about
an inclined axis that restores the data to expected directions. The sinistral oblique slip on NNE striking faults
broadly supports the interpretation of a best fit inclined rotation axis. The best fit inclined rotation axis can be
calculated with a rotation magnitude that restores both area mean vectors and normals to lavas to expected
orientations. Uncertainties on the amounts of rotation (ΔR of Demarest, 1983) were calculated using locality
mean directions and the larger uncertainty (either η95 or ζ,95), and α95 of 5.0° for GAD expected direction. In
general, best fit inclined axes and magnitudes of rotation vary systematically with proximity to the HFF
(Figure 9d and Table 1). Best fit rotation axes have predominantly SSE trends with shallower plunges for distal
areas and steeper plunges for areas more proximal to the fault zone, and amounts of rotation generally
increase toward the HFF. Rotations range from 23° ± 13° to 74° ± 7° across the main study areas, and
56° ± 21° to 145° ± 29° for the subsidiary areas closer to the HFF (Figure 9d and Table 1). Although based
on directions from few sites, rotation amounts appear to vary across three subsidiary study areas that are
located along a transect ~4.3 km south from and parallel to the fault zone. From east to west across
~10 km, rotation amounts range from 56 ± 21° (fe) to 93° ± 16° (fn) to 96° ± 9° (hn).

One final estimate on the amount of rotation is provided by a combination of all northern Flateyjarskagi data
from 108 sites <12 km to the HFF zone (Figure S2 and Table 1). A bootstrapped grand mean direction of
declination/inclination = 105.4°/53.7°, n = 108, η95 = 2.6, ζ,95 = 3.6, (α95 = 3.2°), and average lava flow orienta-
tion within each locality can be used to calculate a tilt-corrected direction and an alternative possible rotation
about a best fit inclined axis. The tilt-corrected direction of dec/inc = 065.2°/80.3° implies a possible residual
amount of vertical axis rotation of approximately 65° ± 7°. Implicit in this scenario is that all the vertical-axis
rotation occurred before any tilting of the lavas. An alternative best fit inclined axis rotation of 55° ± 7° would
restore all the northern data and average lava flow orientations to expected directions (Table 1). Since the
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inclined-axis rotation makes no assumption about the sequence of events, this solution is preferred in this
case where the sequence of deformation events is unknown. However, we note that bothmethods yield simi-
lar amounts of rotation for all the northern sites combined, demonstrating overall support for large rotations
of crustal blocks in northern Flateyjarskagi.

5.4. Structural Rotation Model for Distributed Deformation Near the TFZ

Large-magnitude vertical-axis rotations of crustal blocks near continental transform fault zones have long
been determined by paleomagnetic analysis (e.g., Luyendyk et al., 1980), yet only one other location, in
the Troodos Ophiolite, has revealed exposures of an oceanic transform to study in detail. Field geologic rela-
tionships combined with paleomagnetic analyses of dikes in the Troodos Ophiolite documented increasing
deformation and progressive rotation approaching the Arakapas Transform Fault Zone (Allerton & Vine, 1987;
Bonhommet et al., 1988; MacLeod & Murton, 1993; Morris et al., 1990). Although no detailed kinematic model
was proposed to explain the rotations near the Arakapas Transform until recently (Scott et al., 2013), many
studies of other oceanic transform zones and the South Iceland Seismic Zone have led others toward a book-
shelf faulting model (Cowan et al., 1986; Einarsson & Eirícksson, 1982; Kleinrock & Hey, 1989; Phipps Morgan &
Kleinrock, 1991; Wetzel et al., 1993). A bookshelf mechanism was also recently proposed to explain strike-slip
focal mechanisms for earthquakes located between overlapping volcanic systems in the Northern Volcanic
Zone in Iceland, with crustal blocks about 15 km long and 2 km wide (Green et al., 2014). However, these
examples may not be directly applicable to the scale and style of deformation within the TFZ in
northern Iceland.

Despite the relatively simple and continuous overall structural curvature observed in the spatial patterns of
the strike of lava flows, dikes, and faults across Flateyjarskagi, the paleomagnetic data show abrupt changes
and a range of block rotations that help to refine the mechanisms responsible for the distributed deforma-
tion. The consistent clockwise deflection of both paleomagnetic declinations and field structures near the
HFF implies a deformation mechanism that includes increasing block rotation toward the HFF Zone, effec-
tively ruling out the transform-parallel slip model (Figure 2b). The large, variable rotations, and extensive
faults, fractures, and veins in a range of orientations observed at these shallow crustal depths (1 to 1.5 km),
indicate that the pervasive and continuous simple shear mechanism (Figure 2c) does not represent the best
approximation for describing distributed brittle deformation near the HFF. Both the bookshelf model
(Figure 2d) and small blocks with variable internal rotationmodel (Figure 2e) include extensive faulting across
the entire shear zone, rotation of crustal blocks, and are considered more likely representations. However, a
simple bookshelf model alone cannot explain the large and variable rotations of crustal blocks near the HFF.
Mean remanence directions are not consistent between areas perpendicular or parallel to the HFF, indicating
that a simple bookshelf model is not applicable at the scale of the entire deforming region on land
(>100 km2). The increase in fault density near the HFF generally supports a decrease in crustal block area with
proximity to the major transform zone, and thus, blocks are much smaller (≤ few kilometers across) than the
width of the deformation zone (≥10 km). Furthermore, small triangular-shaped basins or other extensional
features are not observed at the edges (shelf of the books), although paleomagnetic and subtle structural evi-
dence support the previous interpretation that the Gil-Látur Line is a structural boundary or discrete fault
zone subparallel to the HFF and may be relatively continuous. Although the paleomagnetic data are not suf-
ficient to directly disprove the bookshelf model may be operating at greater distances from the HFF zone, or
at a smaller scale within individual crustal blocks, the data more strongly support the small block model with
variable rotations in the immediate vicinity of the HFF.

A plausible scenario for the tectonic history of northern Flateyjarskagi includes the following generalized
sequence that began with the formation of the HFF ~7 Ma. Strong coupling along the developing fault zone
resulted in distributed deformation that may have accommodated initial shearing on reactivated rift-parallel
normal faults in a bookshelf-like model. As shearing continued, and rotation of crustal blocks and their
bounding faults approached the theoretical rotation limit (~20° to 45°) permitted by one set of faults (Nur
et al., 1986), a new set of faults formed to accommodate additional shearing. The formation of a new array
of faults would effectively subdivide crustal blocks further, in essence modifying the bookshelf mechanism
with additional generations of faults. This process would result in relatively small blocks that could rotate
independently, and perhaps more than surrounding blocks (Figure 10). Because minimum and best fit rota-
tions determined from paleomagnetic analyses in northern Flateyjarskagi may exceed the theoretical ~40° to
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45° limit, more than one (or two) generation(s) of faults must accommodate the large rotations adjacent to
the HFF Zone. We cannot exclude an alternative possibility that during initial formation of the HFF zone,
sets of faults (e.g., Riedel shears) or other associated shear fractures could have developed that would
have also subdivided the crustal blocks into smaller irregular shapes without a prior bookshelf-type
sequence. Although no systematic cross-cutting relationships were observed, numerous faults with a
range of orientations are present across northern Flateyjarskagi, and extrapolation of previously mapped
faults across the study area yields irregularly shaped crustal blocks (Figure 10). Although more detailed
mapping of the spatial distributions of faults with specific kinematic data might document the dimensions
and exact nature of crustal block boundaries, discontinuous and covered exposures may preclude
distinguishing any unique block geometries or structural evolution.

5.5. Implications for Oceanic Transform Deformation

The transform deformation in oceanic-like crust of north Iceland supports a modified bookshelf mechanism
with small crustal blocks that experience variable amounts of rotation adjacent to a major transform bound-
ary. In comparison to other oceanic transforms, the Tjörnes Fracture Zone may be somewhat different due to
its proximity to the Iceland hot spot, affecting the thermal structure and producing thicker than average
crust, as well as transform migration associated with the northward propagating Northern Volcanic Zone.
Nonetheless, the deformation in the upper crust of northern Iceland near the main HFF is considered to be
similar to other oceanic crust as the behavior is likely controlled by mechanical anisotropy (faults, fractures,
and dikes) formed at ridges and rifts. As shearing progresses, reactivated slip along preexisting zones of
weakness may be more favorable than creation of a new fault (Nur et al., 1986; Phipps Morgan & Kleinrock,
1991), or a new array of subparallel faults may form (Einarsson, 1991). Although a bookshelf faulting mechan-
ism is commonly thought to operate within propagating rift systems in oceanic crust, it may also be asso-
ciated with anti-J-shaped abyssal hill curvatures observed near other transform faults, and perhaps within
the tectonized zone of some other oceanic transforms.

Although the bookshelf model may account for the formation of curved, anti-J-shaped lineaments documen-
ted near oceanic transforms, deformation closer to the transform is notably more challenging to quantify.
Lineament-bounded blocks with consistent orientations with respect to the Sovanco Fracture Zone along
the Juan de Fuca Ridge are hypothesized to have rotated about 30° (Cowan et al., 1986). Anti-J-shaped

Figure 10. Schematic map of northern Flateyarskagi highlights the spatial variation in the amounts of rotation (red arrows) about best fit inclined axes with asso-
ciated uncertainties. Differential amounts of rotation in study areas both perpendicular and parallel to the HFF are consistent with small block model with vari-
able rotation. Possible crustal block geometries (shaded areas) are inferred from spatial distribution of faults (dashed red lines) after Young et al. (1985).
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lineations near the Clipperton transform along the East Pacific Rise deviate from ridge parallel by as much as
15° to 20°, although the abyssal hills are difficult to locate within 8 to 10 km of the transform due to later
deformation (Sonder & Pockalny, 1999). Maximum anti-J-shaped deflections relative to regional abyssal hill
trends at Pacific-Antarctic ridge-transform intersections vary between 22° and 63° (Croon et al., 2010).
Increased distributed deformation associated with the formation of anti-J-shaped bathymetric lineations
can be correlated with times of increased coupling across the transform related to changes in relative plate
motion (Croon et al., 2010). However, other factors could also increase coupling along a transform, such as
increased friction, strain localization, or transform migration. As some seafloor lineaments approach the the-
oretical rotation limit permitted by one set of bookshelf faults, it seems likely that larger magnitude rotations
are only possible immediately adjacent to the transform by breaking the bookshelf model. We speculate that
as deformation continues, new faults will form to accommodate larger block rotations and oceanic transform
systemsmay evolve in a similar way to that exemplified by the HFF zone in north Iceland. Because lineaments
and detailed structure are poorly known within 10 km of transforms and in the tectonized zone immediately
adjacent to the transform, the setting in northern Iceland offers a rare glimpse into the deformation imme-
diately adjacent to a main oceanic transform fault. The complex deformation and large crustal block rotations
proximal to the HFF provide insight into the processes underlying complicated lineament patterns that are
ordinarily covered by debris and lava flows, masking more complex submarine geology near modern
oceanic transforms.

6. Conclusions

Structural and paleomagnetic observations from Mid-Late Miocene basalt lavas and dikes exposed near the
HFF in north Iceland indicate significant postemplacement tectonic rotations of individual crustal blocks.
Paleomagnetic data support a structural model with a progressive clockwise increase in amount of rotation
toward the HFF and variable amounts of rotation of crustal blocks parallel to the fault zone. Best fit models
using inclined rotation axes to restore area mean remanence directions suggest large clockwise rotations
(66° ± 13° to 74° ± 11°) of crustal blocks between 6 to 12 km south of the HFF, and larger clockwise rotations
(96° ± 13° to 145° ± 27°) within 6 km. When considered together, all data from 108 sites within 12 km to the
HFF yield a best fit inclined axis rotation of 55° ± 7°. The large amounts of rotation near the transform are con-
sistent with a small block model in which kilometer-scale crustal blocks are variably rotated with moderate
amounts of internal deformation to accommodate increased shearing proximal to the transform zone.
These results imply that the numerous studies interpreting paleostress directions from structures near in
the Tjörnes Fracture Zone must be reevaluated to consider crustal block rotations. More broadly, results of
this study may apply to transform zones in modern oceanic crust and ophiolites.
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