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Although several studies have demonstrated that facial-affect recognition impairment is common following
moderate-severe traumatic brain injury (TBI), and that there are diffuse alterations in large-scale functional
brain networks in TBI populations, little is known about the relationship between the two. Here, in a sample of
26 participants with TBI and 20healthy comparison participants (HC)wemeasured facial-affect recognition abil-
ities and resting-state functional connectivity (rs-FC) using fMRI. We then used network-based statistics to ex-
amine (A) the presence of rs-FC differences between individuals with TBI and HC within the facial-affect
processing network, and (B) the association between inter-individual differences in emotion recognition skills
and rs-FC within the facial-affect processing network. We found that participants with TBI showed significantly
lower rs-FC in a component comprisinghomotopic andwithin-hemisphere, anterior-posterior connectionswith-
in the facial-affect processing network. In addition, within the TBI group, participants with higher emotion-label-
ing skills showed stronger rs-FC within a network comprised of intra- and inter-hemispheric bilateral
connections. Findings indicate that the ability to successfully recognize facial-affect after TBI is related to rs-FC
within components of facial-affective networks, and provide new evidence that further our understanding of
the mechanisms underlying emotion recognition impairment in TBI.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Among the many sequelae of traumatic brain injury (TBI), difficul-
ties in social functioning aremajor predictors of overall outcome, posing
a challenge for patients and clinicians (Morton and Wehman, 1995;
Spikman et al., 2013). Several studies have linked overall social and
communication impairment to the ability to successfully identify others'
emotions from their facial expressions (Knox and Douglas, 2009;
McDonald and Flanagan, 2004; Pettersen, 1991; Watts and Douglas,
2006), suggesting that poor interpersonal skill might be attributed—at
least partially—to deficits in emotion perception and interpretation.
Emotion recognition abilities show marked individual differences both
within healthy (Germine and Hooker, 2011; Palermo et al., 2013;
Tamamiya and Hiraki, 2013) and brain injury populations (Babbage et

al., 2011; Rigon et al., 2016b; Rosenberg et al., 2014). Indeed, among
groups of individuals with TBI that would otherwise be defined as ho-
mogeneous (i.e., as “moderate”, “severe”, or “moderate-severe” (Malec
et al., 2007)), great variability in facial-affect recognition skills has
been reported (Rigon et al., 2016b; Rosenberg et al., 2014), leading to
a considerable challenge for clinicians attempting to predict deficit pro-
files and long-term interpersonal outcomes.

Successful treatment of social impairment represents an additional
challenge: as traditional rehabilitation strategies have shown little suc-
cess in improving social competence following TBI (McDonald et al.,
2008; Ylvisaker et al., 2005), current research has attempted to develop
complementary treatments that, instead of simply targeting and train-
ing a specific impaired behavior, focus on the additional improvement
of the functionality of large-scale brain networks mapping onto cogni-
tive, affective ormotor functions through brain stimulation and lifestyle
interventions (Barbey et al., 2015).

Several studies have attempted to link facial-affect recognition skills
with site of focal brain lesions (e.g., frontal or medial temporal lobe
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lesions), with mixed results (Green et al., 2004; Martins et al., 2012;
Spikman et al., 2012). However, recent work suggests that a better un-
derstanding of individual differences in TBI populations might be
achieved by adopting a view of brain function as the product of func-
tional communication between nodes of integrated networks, and not
only of the structure of a specific brain region (Barbey et al., 2015). In-
deed, TBI is a condition characterized by widespread axonal damage
leading to disconnection within and between regions included in
brain networks supporting different cognitive processes (Adams et al.,
1982; Graham et al., 1988; Sharp et al., 2014). Structural connectivity
following TBI has traditionally been examined using diffusion tensor
imaging (DTI), which provides away to assess integrity and directional-
ity of white matter tracts traveling between nodes of a given brain net-
work (Hulkower et al., 2013; Kennedy et al., 2009; Sharp and Ham,
2011). However, in the past decade several studies have employed rest-
ing state functional connectivity (rs-FC)measuredwith functionalmag-
netic resonance imaging (fMRI) to investigate integrity of brain
networks in TBI populations (Arenivas et al., 2014; Bonnelle et al.,
2011; Marquez de la Plata et al., 2011; Palacios et al., 2013; Rigon et
al., 2016a; Sharp et al., 2011). Rs-FC measures the correlation between
fluctuations in the hemodynamic fMRI signal between regions through-
out the brain that form large-scale brain networks (Biswal et al., 1995;
Fox et al., 2005). A growing body of work supports a relationship be-
tween the functionality of these intrinsic networks assessed at rest
and cognitive (e.g., executive functioning, processing speed, personality
variable) and behavioral (e.g., tasks-modulation) processes in both
healthy and clinical populations (Cox et al., 2012; Ham and Sharp,
2012; Hampson et al., 2006; Seeley et al., 2007).

To date, a wealth of studies have found abnormalities in both white
matter integrity (Hulkower et al., 2013; Sidaros et al., 2008) and pat-
terns of rs-FC in several large-scale brain networks in TBI populations
(Rigon et al., 2016a; Stevens et al., 2012), as well as correlations be-
tween these measures and behavioral performance (Bonnelle et al.,
2011; Ham et al., 2014; Sours et al., 2014; Rigon et al., 2016c). However,
only one study has explored the relationship between white matter in-
tegrity and facial-affect recognition ability in individuals with moder-
ate-severe TBI: Genova and colleagues (Genova et al., 2015) found
that performance on emotion recognition tasks was positively correlat-
ed with fractional anisotropy of the inferior fronto-occipital and inferior
longitudinal fasciculus, which connect visual regionswith temporal and
prefrontal areas involved in affective processing and decision making.
Although no work has examined the relationship between rs-FC and
facial-affect recognition abilities, a recent study by Neumann and

colleagues compared blood oxygen level-dependent (BOLD) response
during an emotion-labeling task between individuals with TBI and a
matched comparison group (Neumann et al., 2015). The authors report-
ed that individuals with TBI who had facial-affect recognition impair-
ment showed less activation in the fusiform gyrus during an emotion-
labeling task than those in the comparison group. This finding suggests
that deficits in facial-affect recognition secondary to TBI might be relat-
ed to functional abnormalities in specific brain areas associated with
processing faces. However, participantswith TBIwhodid not have facial
affect recognition impairments also had lower scores than the compar-
ison group, albeit not significantly, suggesting that changes in the fusi-
form gyrus alone might not explain all of the variance in affect
recognition among adults with TBI. Given that structural disconnection
is the hallmark of TBI, it is likely that functional disconnection between
regions involved in the perception and interpretation of facial affects
also plays a role in impaired facial-affect processing.

The current study aims to expand thework carried out to date on the
structural and functional neural correlates on emotion recognition im-
pairment following TBI by adopting a large-scale network perspective
and by focusing on the neural mechanisms related to inter-individual
differences within TBI individuals. Our analysis combines behavioral
data (Rigon et al., 2016b) and rs-FC, measured using fMRI, in a sample
of adults with moderate-severe TBI. Out of the scanner participants
completed a dynamic emotion-labeling task. Our analysis focused on
rs-FC within a set of brain regions that have been consistently found
to be involved in processing facial affect as reported by a recent meta-
analysis (Sabatinelli et al., 2011) (See Table 1). We hypothesized that
there would be (A) differences between individuals with TBI and
healthy comparison participants in rs-FCwithin regions involved in pro-
cessing facial affect, and (B) an association between inter-individual dif-
ferences in emotion recognition skills and rs-FCwithin regions involved
in processing facial affect.

2. Methods

2.1. Participants

Twenty-eight participantswith TBI and twenty normal healthy com-
parison participants (HC) were recruited for this experiment. Individ-
uals with TBI were recruited among the community of the University
of Iowa. All individualswith TBIwere in the chronic phase of their injury
(N6 months), and they had sustained a moderate-severe brain injury.
TBI severity was determined through a combination of medical records

Table 1
ROI coordinates for the facial affect processing network.

ROIs Original coordinates Modified coordinates Role in facial affect processing

Axis x y z x y z

Medial prefrontal cortex 4 47 7 Emotional/reward processing
Right inferior frontal gyrus 42 25 3 Processing of emotional stimuli
Left inferior frontal gyrus −42 25 3
Right middle frontal gyrus 48 17 29 Emotion regulation
Left middle frontal gyrus −42 13 27
Superior frontal gyrus −2 8 59
Right amygdala 20 −4 −15 22 −8 −14 Multimodal emotion processing, perception of arousing stimuli, facial identification
Left amygdala −20 −6 −15 −26 −10 −14
Right middle temporal gyrus 53 −50 4 Discrimination of expressive faces
Left parahippocampal gyrus −20 −33 −4 Basic perception of human faces (increased activation for emotional than for neutral faces)
Right parahippocampal gyrus 14 −33 −7 18 −38 −8
Right fusiform gyrus 38 −55 −20 38 −56 −16
Left fusiform gyrus −40 −55 −22 −40 −56 −18
Right posterior fusiform gyrus 38 −76 −16
Left posterior fusiform gyrus −40 −78 −21 −42 −74 −18

Original coordinateswere reported by Sabatinelli et al. (2011), and reflect the activation peak for the contrast emotional facesN neutral faces obtained by a 100 studies activation likelihood
estimation analysis. Coordinates are reported inmm and in standardMNI space. Coordinatesweremodifiedwhenmaintain the original peakwould result in a 7mm-radius seed partially
overlappingwith cerebrospinal fluid, taking care that the newly centered seedwould still include the original peak. ROI=Region of Interest.When no values are reported in the ‘Modified
coordinates’ column the original coordinates were used. The “Role in Facial Affect Processing” column was compiled according to the interpretations of the meta-analysis findings of
Sabatinelli et al.
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and participant self-report, and assessed using the Mayo Classification
Scale (Malec et al., 2007). Participants were defined asmoderate-severe
if one of the following criteria was met: (a) Glasgow Coma Scale b than
12, (b) presence of positive acute computer tomography findings or
chronic intracranial abnormality defined as focal lesions visible on
MRI, (c) loss of consciousness N30 min, and d) post traumatic amnesia
N24 h (See Table 2). HCswere excluded if they had any previous history
of head or brain injury, loss of consciousness or psychiatric and/or neu-
rological problems per self-report. The groups did not differ for age, ed-
ucation or sex composition (all ps N 0.11, see Table 3). Within the TBI
group, five participants reported a history of mood and/or anxiety
disorders.

Both participants with TBI and HCs were part of a larger-sample be-
havioral study examining the relationship between sex, neuropsycho-
logical impairment and emotion recognition skills following TBI
(Rigon et al., 2016b).

2.2. Facial affect labeling task

The ability to label facial affect was tested using the short version of
the Emotion Recognition Task (ERT). The ERT (Kessels et al., 2014;
Montagne et al., 2007) is a computer-based facial-affect recognition
task, in which participants are asked to label the affect of videos of
faces first appearing neutral then gradually morphing to express one
of six basic emotions (afraid, angry, disgusted, happy, neutral, sad,

surprised). In this version of the test, ninety-six items (four for each
emotion) morph from neutral to four levels of emotion intensities (0
to 40%, 60%, 80%, and 100%), with a fixed presentation order incremen-
tally increases from lowest to highest intensities. For each morph, par-
ticipants select the correct response between choices listed to the
right of the stimulus (afraid, angry, disgusted, happy, sad, surprised).
For the analysis here reported, the dependent variable was obtained
by summing the number of accurate responses for each intensity and
emotion. Group differences were calculated using a one-way analysis
of covariance (ANCOVA), which allowed us to covary for presence of
mood/anxiety disorders (because having had a psychiatric diagnosis
constituted an exclusionary criterion for theHCgroup but not for partic-
ipants with TBI, and mood and anxiety disorders have been previously
associated with emotion recognition deficits (Bourke et al., 2010;
Demenescu et al., 2010)).

2.3. Neuroimaging data acquisition

All neuroimaging data were collected at the University of IowaMag-
netic Resonance Facilities, on a 3Twhole-bodyMRI scanner (Magnetom
TIMTrio, SiemensHealthcare, Erlangen,Germany)with a 12-channel RF
head receive coil.

High resolution T1-weighted brain imageswere acquired using a 3D
Magnetization Prepared Rapid Gradient Echo Imaging (MPRAGE) pro-
tocol with 208 contiguous coronal slices, echo time (TE) = 3.04 ms,

Table 2
Severity characteristics of participants with TBI.

ID Etiology GCS PTA LOC Acute CT findings

1 Fall 7 24 h Duration unclear Right temporal EDH, left temporal and frontal contusions, right tentorial SDH
2 Fall N/A N/A N/A Temporal and parietal fractures and contusions, right SDH and SAH
3 MVA 3 N/A 10 days Right frontal EDH, SAH, multiple fractures
4 Fall N/A 30 min Minutes Left SAH
5 Fall 3 20 days 2 weeks SAH (required craniotomy)
6 Fall 8 2 days N/A Bifrontal contusions (required craniotomy)
7 Fall N/A 1 day 2 days Basilar skull fracture
8 Fall N/A A few minutes N/A SAH
9 Fall 15 A few minutes N/A SDH
10a Fall/MVA N/A/15 N/A/N/A 1 day/none N/A/N/A
11 MVA

6 Duration unclear Duration unclear SAH
12 Fall N/A No A few minutes SAH
13 Fall 15 A few minutes A few minutes Hemorrhagic contusions
14 Fall N/A A few hours N/A SAH
15 Fall 15 N/A Duration unclear? EDH, right temporal bone fracture (required craniotomy)
16 Assault N/A 2 months 5 min SAH, occipital skull fracture
17 Fall N/A 12 h 4–5 h SAH
18 MVA N/A N/A Several hours Intracranial hemorrhage (require craniotomy)
19 NVA N/A 2 weeks A few minutes N/A
20 NVA N/A 2 weeks 20 min Negative
21 MVA 13 N/A 3–5 min SAH
22 MVA 15 2 weeks Duration unclear SAH
23 Fall 3 2 days Duration unclear SDH
24 Fall 15 3 h Duration unclear ICH
25 Fall N/A N/A Duration unclear SDH
26 MVA 5 N/A 10 days (medically induced coma) SAH
27 Fall N/A 2 days 1 h SAH
28 MVA N/A Several minutes None SDH

MVA=motored vehicle accident; NVA= non-motored vehicle accident; PTA = post Traumatic Amnesia; LOC= loss of consciousness; SAH = subarachnoid hemorrhage; EDH= epi-
dural hemorrhage; SDH = subdural hemorrhage.

a Sustained two TBIs in two different occasions.

Table 3
Demographic characteristics of participants.

N Age (mean ± SD) Sex (males) Education (mean ± SD) Chronicity (months, mean ± SD)

TBI 26 50.92 ± 15.09 16 14.32 ± 2.25 73.54 ± 101.55
HC 20 52.65 ± 16.07 9 15.3 ± 1.66 N/A
Group difference (P-value) 0.71 0.56 0.11 N/A

TBI = traumatic brain injury; HC = normal healthy comparison participants; SD = standard deviation; N/A = not available.
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repetition time (TR) = 2530ms, field of view (FOV) = 256mm2, voxel
size = 1 mm3 and flip angle = 10°.

T2*-weighted resting state data were collected with a fast echo pla-
nar imaging (EPI sequence) with BOLD contrast (6 min, TR= 2000 ms,
TE = 30 ms, 31 slices acquired in ascending order, voxel size =
3.4 × 3.4 × 3.5 mm, 64 × 64 matrix, flip angle = 75°). Participants
were instructed to keep their eyes closed and let their mind wander
without falling asleep. Two participants with TBI were excluded from
further analysis because of pronounced artifacts in the T1 image or
very large regions of signal dropout in the EPI image, bringing the final
TBI sample to N = 26.

2.4. Rs-FC data analysis

fMRI data preprocessingwas carried out using FSL 5.0.4 (Smith et al.,
2004), and included motion correction, brain extraction, spatial
smoothing (FWHM = 6.0 mm) and denoising of EPI data (single-sub-
ject ICA with two raters, resulting in Cohen's kappa = 0.79, ‘Excellent’
(Fleiss and Chilton, 1983)), temporal filtering (0.008 b f b 0.08 Hz), nui-
sance regression (motion parameters, WM, CSF, and global signal) and
motion scrubbing (Power et al., 2012)). EPI data were transformed
into standard MNI 2-mm space by concatenating the nonlinear trans-
form of the T1 image to MNI space (using the FSL Non-Linear Registra-
tion Tool) with the transform of EPI to the T1 image (using the
boundary-based registration algorithm (Greve and Fischl, 2009)).

As the aim of this study was to examine the neural correlates of fa-
cial-affect recognition abilities following TBI, regions of interest (ROIs;
also referred to here as seeds) were selected based on their relevance
for facial-affect processing. Seeds were created by generating spherical
ROIs (14 mm diameter) centered on the peak coordinates for the con-
trast emotional faces N neutral faces identified in a 100-study Activation
Likelihood Estimation meta-analysis (Sabatinelli et al., 2011). For brev-
ity, here we refer to the resulting group of fifteen seeds as the “facial-af-
fect processing network”; the network includes prefrontal, medial
temporal lobe, and occipital regions (for further detail on the specific
role of each region in facial-affect processing, see Sabatinelli et al.,
2011, and Adolphs, 2002). For six ROIs, preserving the reported peak
MNI coordinates would have resulted in the 7 mm radius ROIs partially
overlapping with tentorial space and/or being located partially outside
of the brain. For this reason, coordinates were slightly shifted, always
ensuring that the spherical seed would eventually include the original
coordinates reported in the meta-analysis (see Table 1).

To calculate pairwise ROI-ROI correlations, for each subject MATLAB
was used to compute the Pearson correlation coefficient between the
timeseries of all possible ROI pairs, and to apply a Fisher's r-to-z trans-
formation to convert each coefficient into Fisher's Z estimates (Zar,
1996). We then used the network based statistics (NBS) algorithm
(Zalesky et al., 2012; Zalesky et al., 2010a) to identify components, or
sub-systems, of connected ROI pairs with reliably different rs-FC be-
tween the TBI and HC groups, and for which individual differences in
rs-FC were related to emotion recognition abilities within each group.
Briefly, the NBS is a well-validated nonparametric statistical method
used to control the family-wise error rate (FWER) when conducting a
large amount of univariate statistics. In the present case, given the
large number of possible connections (or edges) between 15 ROIs,
NBS was chosen over more traditional multiple comparison correction
methods (e.g., Bonferroni correction). The NBS method consists of
three steps: (1) mass univariate testing (at every possible connection)
occurs; (2) a primary threshold is chosen, and only connections exceed-
ing said threshold are carried on for further testing; (3) topological clus-
ters (not based on physical proximity but on their topological
configuration) are identified among supra-threshold connections ap-
plying a FWER threshold. The creators of NBS emphasize how different
primary thresholds can reveal different information about the nature of
an effect (e.g., lower thresholds, such as Z = 1.65, will reveal wide-
spread but weaker effects, while higher thresholds, such as Z = 3.11,

reveal strong and very focal effects), and encourage researchers to ex-
periment with different values. For this reason, here we report results
obtained with three different primary test statistics (Z N 1.65, Z N 2.33
and Z N 3.1), and a subsequent FWER correction of p b 0.05; all results
were obtained generating randomized data with 10,000 permutations.

The purpose of the NBS is to reveal specific networks (i.e., groups of
links) associated with an experimental effect; however, the NBS does
not test the relationship between single connections and said effects.
For this reason, we accompanied each NBS analysis with a false discov-
ery rate (FDR) procedure (Genovese et al., 2002), which examines the
relationship between an experimental effect and each pairwise connec-
tion (setting significance at p b 0.05), in order to investigate the pres-
ence of local effects involving small numbers of ROI pairs.

As the TBI group included participants with a history of mood and
anxiety disorders (which have been found to be associated with emo-
tion recognition deficits) group differences in FC within the facial-affect
processing network were calculated controlling for psychiatric diagno-
sis. Correlational analysis between FC and ERTwere calculated both sep-
arately for TBI andHC, in order to examinewhether neural correlated of
facial-affect recognition differed between the two groups, and across-
groups. Correlations between FC and ERT performance were corrected
for psychiatric diagnosis as well as sex and age, which have been
found to affect emotion recognition both in healthy (Kessels et al.,
2014; Montagne et al., 2005) and TBI populations (Rigon et al., 2016b).

Here, the NBS Connectome toolbox (version 1.2) was used to per-
form all NBS and FDR analysis (https://www.nitrc.org/projects/nbs/).
NBS results and functional connectivity maps are visualized with
BrainNet Viewer (Xia et al., 2013).

3. Results

3.1. Facial-affect recognition

A one-way ANCOVA revealed that the TBI group (mean = 51.89,
SD = 8.55) performed significantly worse than HCs (mean = 57.65,
SD = 8.20) on the ERT (F1,47 = 5.77, p = 0.02, η2p = 0.11). There was
not a significant effect of psychiatric diagnosis (F1,47 = 5.77, p = 0.54,
η2p = 0.008). This result is consistent with our previous report on the
larger sample in which the current participants were included (Rigon
et al., 2016b) (see Fig. 1).

3.2. Functional connectivity analysis – group comparison

The NBS revealed one network component within the facial-affect
processing network showing significantly lower FC in the TBI group
when compared to the HC group. When the primary threshold was set
to Z N 1.65, the disconnected sub-network included fourteen nodes

Fig. 1. ERT performance of HC and TBI participants shows the distribution of ERT scores
within the TBI and HC groups: a one-way ANCOVA, correcting for presence of mood
disorders, revealed that participants with TBI showed significantly lower scores than HCs.

373A. Rigon et al. / NeuroImage: Clinical 13 (2017) 370–377

https://www.nitrc.org/projects/nbs/


and eighteen edges (p b 0.004). A visual inspection of the edges revealed
that the component included homotopic connections (i.e., edges
connecting the left and right fusiform gyri, amygdalae, andmiddle fron-
tal gyri), as well as connections between posterior and anterior regions
of the left hemisphere (e.g., connecting the left fusiform gyrus with the
left amygdala and prefrontal cortex). Raising the primary threshold to
Z N 2.33 revealed a more focal component (seven nodes, nine edges)
comprising frontal and occipital homotopic connections as well as left
fronto-occipital edges (p b 0.001). Lastly, the highest threshold
(Z N 3.11) yielded a very restricted component, encompassing 4 nodes
and 3 edges, all inter-hemispheric connections between anterior and
posterior fusiform regions (p = 0.001) (see Fig. 2 for the specific links
surviving each threshold).

Whenwe examined group differences on a link-by-link bases (using
FDR correction), we found that three edges were significantly weaker
within the TBI group than the HC group: right to left posterior fusiform
gyrus, right posterior fusiform gyrus to left fusiform gyrus, and left pos-
terior fusiform gyrus to right fusiform gyrus.

NBS and FDR analyses revealed no components or links showing sig-
nificantly higher rs-FC in the TBI group.

3.3. Functional connectivity analysis – within group correlations

Within the TBI group,when the primary thresholdwas set to Z N 1.65
the NBS revealed a component showing higher FC in participants with

higher emotion recognition abilities (p = 0.01). The component in-
cluded eleven nodes and fifteen edges: visual inspection revealed a
large number of intra- and inter-hemispheric connections between
anterior and posterior nodes of the facial-affect processing network.
When the primary threshold was raised to 2.33 no components asso-
ciated with ERT performance survived, indicating a widespread but
weak effect. Similarly, pairwise link analysis using FDR correction
revealed no pairs of nodes whose strength of FC significantly corre-
lated with emotion recognition abilities. Lastly, both the NBS
algorithm and the application of FDR correction revealed no compo-
nents or single connections for which greater FC corresponded to
lower ERT performance (see Fig. 3 for the specific links surviving
each threshold). Within the HC group, there were no components
or pairwise links showing a positive or negative correlation with
ERT performance.

The same analyses were carried out across the TBI and NC groups,
using ERT as a continuous regressor and adding group as a covariate of
no interest. When TBI and NC groups were considered together, there
were no components or links showing a correlation between strength
of FC and emotion recognition abilities.

As relative head motion has been related to spurious rs-FC correla-
tions (Power et al., 2012),we repeated all above analyses adding subject
mean relative motion as a covariate of no interest. We found that for all
analyses NBS results were unchanged. For the NC N TBI contrast,
correcting for head motion revealed an additional surviving FDR

Fig. 2. NBS derived rs-FC component within the facial affect processing network. A shows the component obtained by using the NBS algorithm with the contrast HC N TBI (10,000
permutations, p b 0.05). The thickness of the edges represents the primary threshold: thinner edges are part of the widespread component that resulted by setting Z N 1.65 as
threshold, while thicker lines represent the connections surviving a threshold of Z N 3.11. 2B displays the adjacency matrix for each threshold.
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corrected link: the edge between the right anterior and posterior fusi-
form gyri.

4. Discussion

Although impairment in the ability to recognize emotions has been
frequently reported in TBI populations, very little is known about its re-
lationship with network functionality. The aim of the current studywas
to examine how differences in large-scale network rs-FC correspond to
facial-affect recognition abilities in individuals with and without TBI.
We asked how individuals with TBI and demographically matched
healthy comparison participants differed in rs-FC within what we
refer to as the facial-affect processing network, a set of regions found
to be involved in emotion recognition both by studies focusing on
BOLD activation peaks (Fusar-Poli et al., 2009; Sabatinelli et al., 2011),
and on functional connectivity during task performance (Hariri et al.,
2000). We used the NBS algorithm, as it allowed us to examine the as-
sociation between an effect of interest and connectivity between
nodes by taking into account the large-scale networks in which said
nodes participate (Zalesky et al., 2010b). We found that within the fa-
cial-affect processing network participants with TBI showed significant-
ly lower rs-FC in a component comprising homotopic and within-
hemisphere, anterior-posterior bidirectional connections. We then sep-
arately examined the relationship between facial-affect recognition per-
formance and rs-FC within the TBI and the HC groups. Although we

found no correlations between rs-FC and ERT performance within the
HC group, within the TBI group participants with higher emotion label-
ing skills also showed stronger FCwithin a network formed of intra- and
inter-hemispheric bilateral connections. Below we discuss each finding
in depth.

To date, several studies have reported lower rs-FC within and be-
tween resting-state networks in chronic moderate-severe TBI popula-
tions (Han et al., 2016; Rigon et al., 2016a; Sharp et al., 2014). Most of
this work has focused on examining the state of traditionally defined in-
trinsic networks, such as the default mode, salience, and executive net-
works (Smith et al., 2009). Here, we focused on rs-FC between regions
that have been found to be specifically involved in facial-affect process-
ing by task-related fMRI studies. In particular, occipito-temporal areas,
such as the fusiform gyrus and the middle temporal gyrus, play a role
in face perception (Haxby et al., 2000, 2002), and presentation of emo-
tion stimuli (as opposed to neutral faces) increases activation in these
regions (Sabatinelli et al., 2011). The key role of the medial temporal
lobe, and of the amygdalae in particular, in the interpretation of emo-
tional faces has been well documented (Adolphs, 2002; Fusar-Poli et
al., 2009; Hariri et al., 2000; Hariri et al., 2002). Last, prefrontal regions
have been found to be especially involved in appraisal, reward, and con-
scious semantic aspects of facial-affect discrimination (Hariri et al.,
2000; Sabatinelli et al., 2007).

Disruption of the structural connections among secondary visual
areas and the amygdala and prefrontal cortex, in the form of the inferior

Fig. 3. Correlation between emotion recognition abilities and rs-FC in the facial-affect processing networkwithin the TBI group. A shows the component correlatingwith ERT performance
obtained by using the NBS algorithmwithin the TBI group (10,000 permutations, p b 0.05), setting Z N 1.65 as preliminary threshold. No component survived with higher thresholds. 2B
displays the adjacency matrix for the component depicted.
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longitudinal and fronto-occipital fasciculi, has been associated with
emotion recognition skills both in individuals with TBI (Genova et al.,
2015) and in other neurological populations (Philippi et al., 2009).
Here, we found that rs-FC in a network comprising ipsilateral and con-
tralateral connections between bilateral fusiform gyri seeds and bilater-
al and medial prefrontal cortex seeds was positively associated with
emotion labeling performancewithin the TBI group. These findingsmir-
ror the structural results in DTI and lesion studies (Genova et al., 2015;
Philippi et al., 2009). This association between poor performance on
emotion recognition tasks and connectivity between visual and prefron-
tal regions suggests that abnormal rs-FCmight serve as oneof themech-
anisms underlying the disruption of facial-affect recognition skills.

Interestingly, edges showing significantly lower rs-FC within the TBI
group did not fully correspond to the edges correlatingwith ERT perfor-
mance. In agreement with previous findings (Han et al., 2016; Marquez
de la Plata et al., 2011; Sours et al., 2014), the TBI group displayed signif-
icantly lower inter-hemispheric FC between homotopic regions (the
amygdalae, the fusiform gyri and the bilateral middle prefrontal gyri);
and higher primary thresholds, as well as FDR correction, indicated
that inter-hemispheric connectivity between the fusiform gyri repre-
sented the highest focus of lower rs-FC when comparing the TBI group
with healthy comparison participants. The importance of the structural
and functional integrity of secondary visual regions for facial-affect dis-
crimination following TBI has previously been noted. In a structural
study, Genova and colleagues used Voxel Based Morphometry to dem-
onstrate that reduced gray matter volume in the parahippocampal
and lingual gyrus was significantly related to emotion recognition skills
in TBI (Genova et al., 2015); on a functional level, Neumann and col-
leagues found that in participants with TBIwith facial-affect recognition
impairment the only region showing significantly lower activation dur-
ing an emotion labeling task was the fusiform gyrus (Neumann et al.,
2015). In our study, the discrepancy of the results obtained by the con-
trast and the correlational analysis might indicate that a decrease in rs-
FC within homotopic nodes of the affective network following TBI could
lead to a reorganization of the connections supporting emotion recogni-
tion skills. It should also be noted that the disconnected subnetwork
with lower FC within TBI also included intra-hemispheric connections
among the fusiform gyrus, the amygdala, and the lateral prefrontal cor-
tex: the interplay among these regions has been found to be specifically
important for facial-affect labeling (as opposed, for example, to facial-
affect matching) (Hariri et al., 2000). Our findings indicate that the
breakdown of a specific sub-network is associated with emotion recog-
nition deficits following TBI, and suggests that this network might be a
target of future treatments such as non-invasive brain stimulation or
lifestyle interventions.

Interestingly, we found no correlations between ERT performance
and FC within the HC group. One possible explanation is that the neural
correlates of emotion recognition abilities differ after TBI, because of
functional reorganization in response to injury. Within the TBI group
wewere able to isolate one component for which rs-FC positively corre-
lated with ERT scores. This component was not present when a higher
significance threshold (p b 0.01) was applied, revealing a widespread
but weak correlation with the experimental effect. Although the focus
of the current study was to examine rs-FC within the facial-affect pro-
cessing network, it is possible that some of the variance in ERT perfor-
mance can be explained by rs-FC between regions of this network and
nodes included in other systems. For example, the salience network, an-
chored in the anterior insula, has been found to be important in moni-
toring external stimuli (Menon and Uddin, 2010; Seeley et al., 2007),
and the dorsal and ventral attention networks are respectively respon-
sible for orienting one's focus and responding to relevant environmental
events (Corbetta and Shulman, 2002). These systemsmightwork in col-
laboration with areas involved in facial affect processing to successfully
recognize emotions. Similarly,within healthypopulations,whoon aver-
age show better emotion labeling skills than individuals with TBI, inter-
individual variance in these abilities might not be associated with

within facial-affect processing network rs-FC, but with re-FC between
this network and other large-scale systems. Future task-related studies
should explore the role of inter-network functional connectivity using
techniques such as psychophysiological interaction.

4.1. Conclusions

The current study examined how individual differences in rs-FC are
associated with facial-affect labeling skills in adults with TBI. Compared
to demographically matched comparison participants, individuals with
TBI showed lower rs-FC within specific nodes of the facial-affect pro-
cessing network, and in particular in homotopic and anterior-posterior
pathways among secondary visual areas, the amygdalae, and lateral
prefrontal cortices. In addition,we found that within the TBI group indi-
viduals with better emotion recognition skills showed higher rs-FC be-
tween ipsi- and contralateral occipital and prefrontal regions. These
findings advance our understanding of the basic neuralmechanisms un-
derlying facial-affect recognition impairment in adults with TBI.
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