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Joanne K. Tobacman1, Pradeep K. Dudeja1,2

1 Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America, 2 Jesse Brown VA

Medical Center, Chicago, Illinois, United States of America

Abstract

Probiotics have been used as alternative prevention and therapy modalities in intestinal inflammatory disorders including
inflammatory bowel diseases (IBD) and necrotizing enterocolitis (NEC). Pathophysiology of IBD and NEC includes the
production of diverse lipid mediators, including platelet-activating factor (PAF) that mediate inflammatory responses in the
disease. PAF is known to activate NF-kB, however, the mechanisms of PAF-induced inflammation are not fully defined. We
have recently described a novel PAF-triggered pathway of NF-kB activation and IL-8 production in intestinal epithelial cells
(IECs), requiring the pivotal role of the adaptor protein Bcl10 and its interactions with CARMA3 and MALT1. The current
studies examined the potential role of the probiotic Lactobacillus acidophilus in reversing the PAF-induced, Bcl10-dependent
NF-kB activation and IL-8 production in IECs. PAF treatment (5 mM624 h) of NCM460 and Caco-2 cells significantly increased
nuclear p65 NF-kB levels and IL-8 secretion (2-3-fold, P,0.05), compared to control, which were blocked by pretreatment of
the cells for 6 h with L. acidophilus (LA) or its culture supernatant (CS), followed by continued treatments with PAF for 24 h.
LA-CS also attenuated PAF-induced increase in Bcl10 mRNA and protein levels and Bcl10 promoter activity. LA-CS did not
alter PAF-induced interaction of Bcl10 with CARMA3, but attenuated Bcl10 interaction with MALT1 and also PAF-induced
ubiquitination of IKKc. Efficacy of bacteria-free CS of LA in counteracting PAF-induced inflammatory cascade suggests that
soluble factor(s) in the CS of LA mediate these effects. These results define a novel mechanism by which probiotics
counteract PAF-induced inflammation in IECs.
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Introduction

Recent clinical and experimental outcomes have shown that

intestinal luminal microbiota play pivotal role in the pathogenesis

of inflammatory bowel diseases (IBD) and necrotizing enterocolitis

(NEC) [1–4]. Therefore, modifying gut flora composition using

probiotics has been emerging as a promising strategy to alleviate

mucosal inflammation in these diseases [3,5,6]. Probiotic bacteria

including Lactobacilli have been shown to interact with cells of the

mucosal surface and locally modulate the production and/or

activity of inflammatory mediators [7]. In this regard, platelet

activating factor (PAF), a potent bioactive phospholipid known to

cause intestinal injury [8], has been implicated in the pathogenesis

of IBD [9,10] and NEC [11,12]. Elevated PAF levels have been

reported in tissues and/or serum in response to pathogen

infection, and in patients with Crohn’s disease, ulcerative colitis,

and NEC, that correlated with disease severity [9,10,12,13]. PAF

acts by binding to and activating G-protein coupled PAF receptors

(PAF-R). Highest concentrations of PAF-R expression have been

reported in intestinal epithelium [14]. PAF is known to activate

NF-kB, a key transcriptional regulator of the expression of

proinflammatory cytokines and many immunoregulatory mole-

cules in response to inflammatory stimuli [15–17] and microbial

infection [18]. However, the early receptor-mediated signaling

events that initiate these responses are not completely defined.

NF-kB activity is tightly regulated by interaction with inhibitory

proteins, IkBs, which sequester NF-kB in cytoplasm. Upon

stimulation, IkB is phosphorylated by the NF-kB-activating IkB

kinase (IKK) complex, ubiquitinated, and degraded by the 26S

proteasome complex, thereby releasing NF-kB to translocate into

the nucleus and initiate specific target gene transcription [19].

Studies during the past two decades have revealed tissue-specific

and stimulus-specific roles of many scaffold proteins in linking

different receptors to the IKK complex [20,21]. Among those, a

family of caspase recruitment domain (CARD)-containing scaffold

proteins, known as CARD- and membrane-associated guanylate

kinase-like domain-containing protein (CARMA) plays critical

roles in recruitment and activation of IKK. Bcl10 and MALT1

physically interact to activate NF-kB whereas CARMA proteins

function as upstream regulators of Bcl10 and MALT1 in response

to various stimuli in different tissues. Together, these three
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proteins constitute the CARMA/Bcl10/MALT1 (CBM) signalo-

some, which plays a critical role in regulating NF-kB activation

both in normal physiology as well as in various pathophysiological

conditions [22]. Originally described in immune cells [23], this

pathway has been shown to mediate inflammatory responses in

myeloid and epithelial cell types [22], including intestinal epithelial

cells [24–26]. Importantly, we have recently reported a novel

inflammatory pathway induced by PAF to activate NF-kB and

produce IL-8 in human intestinal epithelial cells. This NF-kB-

activating cascade involved upregulation of Bcl10 expression and

its increased interactions with CARMA3 and MALT1 [24].

Multiple studies have shown the role of probiotic bacteria in

ameliorating intestinal inflammation via inhibition of NF-kB

activity [27,28]. However, despite known involvement of PAF as

an inflammatory mediator in IBD and NEC, there are no studies

testing the efficacy of probiotics or probiotic-derived molecules in

counteracting pro-inflammatory effects of PAF in diseases. Since

PAF-induced NF-kB activation via CARMA3-Bcl10-MALT1

signalosome could highlight important targets for intervention,

we investigated the effects of probiotic Lactobacilli in counteracting

PAF-induced inflammation and explored the underlying mecha-

nisms.

Results

L. acidophilus blocks PAF-induced NF-kB activation and
IL-8 production in human intestinal epithelial cells

We have previously shown that PAF has a specific direct effect

on NF-kB activation and IL-8 secretion in human colonic

NCM460 and Caco-2 cells [24]. In this study, we examined the

efficacy of few important Lactobacillus species in blocking the effects

of PAF on NF-kB activation. During NF-kB activation, inhibitory

IkB proteins are phosphorylated by the IKK signalosome, thereby

releasing NF-kB for nuclear translocation to activate target genes

[19,20]. Therefore, we used oligonucleotide-based ELISA and

immunoblotting to measure NF-kB (p65) in the nuclear fractions

isolated from control and treated NCM460/Caco-2 cells.

NCM460 cells were pre-incubated for 6 h with one of the

following Lactobacillus species: L. acidophilus, L. rhamnosus, L.

plantarum and L. casei followed by 24 h further incubation with or

without 5 mM PAF. NF-kB activation was assessed by measuring

p65 levels in the nuclear extracts from NCM460 cells, control and

different treatment groups, utilizing oligonucleotide probe-based

ELISA. As shown in Figure 1A, the two species, L. acidophilus (LA)

and L. rhamnosus (LR) significantly attenuated the PAF-induced

increase in nuclear p65, whereas the other two species were

ineffective. We, therefore, utilized only one species, LA, for all

subsequent studies. We next examined the effects of heat-killed LA

or its conditioned culture supernatant (CS) on nuclear p65 levels.

Heat-killed LA failed to attenuate PAF-induced increase in nuclear

p65, whereas, similar to live LA, its CS (diluted 1:10 in DMEM/

F12) was equally effective in attenuating the PAF effects on nuclear

p65 (Figure 1B). A dose-dilution response of CS was initially

performed and 1:10 dilution was chosen to obtain the optimal

effect and at the same time to avoid adverse effects of long-term

incubation on cell viability as observed with lesser dilutions (1:2 or

1:5). These results indicate that LA effects on PAF-induced NF-kB

activation are mediated by secreted soluble factor(s) in the CS.

Therefore, for all subsequent experiments we used LA-CS instead

of live LA for treatment of cells. Nuclear p65 levels as assessed by

immunoblotting are shown in Figure 2A. PAF increased nuclear

p65 in both NCM460 and Caco-2 cells, whereas LA-CS blocked

the PAF effects on nuclear p65. We also measured NF-kB activity

by transfecting Caco-2 cells with the NF-kB transcription reporter

vector p-NF-kB-Luc (BD Biosciences). This vector contains NF-kB

consensus sequence located upstream of the firefly luciferase

reporter gene. After 16 h of stimulation, PAF (5 mM) activated NF-

kB-dependent reporter gene in Caco-2 cells (,2-fold compared to

control). This increase was significantly attenuated in cells

preincubated with LA-CS for 6 h, followed by continued

treatments along with PAF. (Figure 2B).

L. acidophilus attenuates PAF-induced I-kB
phosphorylation

We also measured phospho-IkB utilizing an ELISA-based

method to assess the levels in response to PAF and/or LA-CS

treatments. LA-CS significantly attenuated phospho-IkB levels

compared to control and also blocked the PAF-induced increase in

phospho-IkB levels in NCM460 cells (Figure 3A).

L. acidophilus blocks PAF-induced IL-8 production
We next tested whether the PAF-induced increase in IL-8 in the

spent media, as reported earlier [24], was reversed by LA-CS

treatments. LA-CS alone did not affect IL-8 levels in the spent

media of NCM460 cells, as measured by ELISA. However, pre-

and continued incubation of the cells with LA-CS significantly

attenuated the PAF-induced IL-8 in the spent media (Figure 3B)

Figure 1. L. acidophilus and its culture supernatant counteract
PAF-induced NF-kB activation in IECs. (A) Nuclear extracts of
control or PAF 6 L. acidophilus (LA), L. rhamnosus (LR), L. plantarum (LP)
or L. casei (LC)-treated NCM460 cells for 24 h were utilized to measure
p65 levels by oligonucleotide-based ELISA (n = 5, *P,0.05); (B) p65
levels in the nuclear extracts from control or PAF 6 L. acidophilus
culture supernatant (CS) or heat-killed LA-treated NCM460 cells (n = 3,
*P,0.05).
doi:10.1371/journal.pone.0075664.g001

Probiotics Counteract PAF-Induced Inflammation
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LA-CS attenuated PAF-induced increase in Bcl10 mRNA
and protein expression, and Bcl10 promoter activity

Our previous studies showed that PAF treatments caused a

dose-dependent increase in Bcl10 protein expression, and that

Bcl10 was required for PAF-induced NF-kB activation and IL-8

secretion [24]. Therefore, we sought to investigate whether LA-

CS, which blocked PAF-induced NF-kB activation and IL-8

production, also regulates expression of Bcl10. LA-CS alone had

no effects on Bcl10 mRNA levels (Figure 4A), Bcl10 protein, as

measured by ELISA (Figure 4B) and immunoblotting (Figure
4C) in NCM460 cells, and Bcl10 promoter activity (Figure 4D) in

Caco-2 cells. However, pre-treatment of the cells with LA-CS

significantly attenuated the PAF-induced increase in Bcl10 mRNA

and protein expression and Bcl10 promoter activity.

Probiotic supernatants reduced PAF-induced Bcl10-
MALT1 interaction and ubiquitination of IKKc

Recent reports from our laboratory and others [22,24–26]

showed that Bcl10-dependent inflammatory pathways in nonim-

mune cells involve the CARMA-3/Bcl10/MALT1 signalosome

complex. Our previous studies also showed that PAF increased

interaction of Bcl10 with CARMA3 and MALT1 [24]. Therefore,

we used co-immunoprecipitation studies to examine the effects of

preincubating NCM460 cells with LA-CS on the PAF-induced

interactions of Bcl10-CARMA3-MALT1. LA-CS did not alter

PAF-mediated enhancement of Bcl10-CARMA3 interactions (not

shown), but significantly reduced PAF-induced interaction of

Bcl10 and MALT1 (Figure 5A). Specificity of Bcl10/MALT1 co-

immunoprecipitation was confirmed by incubation of the cell

lysate with isotype specific rabbit IgG instead of anti-Bcl10

antibody that failed to immunoprecipitate MALT1 (not shown).

We next sought to analyze the effects of PAF on ubiquitination

of IKKc, the regulatory subunit of IKK complex, which is

reported to be important in Bcl10-mediated NF-kB activation

[29]. Caco-2 cells were transfected with recombinant constructs,

Myc-tagged IKKc and HA-tagged ubiquitin. Ubiquitinated IKKc
was immunoprecipitated with anti-Myc antibody and probed with

anti-HA antibody in immunoblots to assess ubiquitination. PAF

treatment increased ubiquitination of IKKc (,2-fold), which was

attenuated in cells preincubated with LA-CS prior to PAF

treatments (Figure 5B)

Discussion

Gut bacteria play a key role in inflammatory bowel diseases

(IBD) and necrotizing enterocolitis (NEC) [1–4]. Although much

attention has been focused on the search for a pathogen or inciting

inflammatory bacteria, of equal importance is the search for

beneficial commensal bacteria that normally confer anti-inflam-

matory effects in the gut. Probiotics, a group of gut commensals

that confer health benefits are known to ameliorate inflammation

and has been used in clinical trials and experimental models to

alleviate inflammation in IBD and NEC [30–33]. However, the

nature of the probiotic-derived active components that mediate

their beneficial effects and underlying mechanisms of action has

not been fully elucidated. Pathophysiology of IBD and NEC

involves production of diverse lipid mediators, platelet-activating

factor (PAF) being one of them mediating inflammatory responses

in these diseases [9–11,30]. PAF is produced by the human

intestinal epithelium [14], where it mediates a range of biological

effects such as modulation of ion transport, prostaglandin and

eicosanoid synthesis and apoptosis [34–39]. On the other hand,

PAF has also been shown to trigger inflammatory responses via

NF-kB activation [12,15,38] and cytokine and chemokine gene

Figure 2. L. acidophilus culture supernatant attenuates PAF-induced increase in nuclear p65 and NF-kB reporter activity. (A) p65
levels measured by immunoblotting of nuclear extracts prepared from control or PAF 6 LA-CS-treated Caco-2 and NCM460 cells (representative blots
from n = 3); (B) NF-kB reporter activity, expressed as percent of control, in control or PAF 6 LA-CS-treated Caco-2 cells (n = 4, *P,0.05).
doi:10.1371/journal.pone.0075664.g002

Probiotics Counteract PAF-Induced Inflammation
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expression in a wide variety of cells [17,40,41]. However, the

signaling events that mediate PAF-induced NF-kB activation are

not completely defined. In this regard, we have recently described

a novel inflammatory pathway induced by PAF to activate NF-kB

and produce IL-8 in NCM460, a cell line derived from normal

human colon, and Caco-2, a transformed human intestinal cell

line [24]. Our studies showed that direct in vitro activation of NF-

kB by PAF in intestinal epithelial cells required Bcl10, an adaptor

protein, and its interactions with CARMA3 and MALT1 [24].

The hallmark of antigen receptor-induced NF-kB activation in

lymphocytes has been shown to be the formation CARMA1-

Bcl10-MALT1 signalosome, which directly or indirectly activates

I-kB kinase (IKK) complex to phosphorylate I-kB proteins thereby

releasing NF-kB for nuclear translocation [23]. In non-immune

cells, however, this pathway utilizes CARMA3, a second member

of the CARMA family having a wider tissue distribution [42].

PAF-induced IkBa phosphorylation, NF-kB activation, and IL-8

production in NCM460 and Caco-2 cells were Bcl10-dependent.

PAF upregulated Bcl10 expression in these cells via transcriptional

mechanisms and enhanced its interactions with CARMA3 and

MALT1 [24]. Since proinflammatory effects of PAF play

prominent roles in the pathogenesis of IBD and NEC, it was of

great interest to investigate the effects of probiotic Lactobacilli in

counteracting PAF-induced NF-kB activation via CARMA3-

Bcl10-MALT1 signalosome and to elucidate the underlying

mechanisms. Our results demonstrated that Lactobacillus acidophilus,

an important gut commensal, counteracted PAF induction of

Bcl10-dependent NF-kB activation and IL-8 production in

intestinal epithelial NCM460 and Caco-2 cells. Earlier we have

shown that this specific strain of L. acidophilus, and more

importantly its conditioned culture supernatant, exhibited pro-

absorptive effects via distinct mechanisms to stimulate intestinal

absorption of NaCl, thereby defining its novel therapeutic

potential to ameliorate diarrhea associated with IBD [43,44].

Interestingly, our current studies also showed that heat-killed LA

failed to attenuate PAF-induced increase in nuclear p65 and

importantly, bacteria-free CS of LA was as effective as live LA in

attenuating the PAF effects on nuclear p65, indicating that LA

effects on PAF-induced NF-kB activation are mediated by secreted

soluble factor(s) in the CS. LA-CS also attenuated basal NF-kB

reporter activity as well as completely blocked PAF-mediated

increase in NF-kB reporter activity. Further, LA-CS not only

attenuated IL-8 secretion and I-kB phosphorylation compared to

control, but also blocked PAF-induced increase in IL-8 secretion

and I-kB phosphorylation. Various earlier studies have shown the

importance of bacteria-secreted soluble factors, cell wall compo-

nents, and bacterial DNA as mediators of the beneficial effects of

bacteria [45–48]. These studies are of great significance for

eliminating the concerns in using live bacteria to treat diseases like

IBD. However, determining the exact chemical nature of the

bacteria-derived factors and elucidating their mechanisms of

action will only help design targeted therapies for these

inflammatory diseases.

Our previous studies showed that PAF-induced increase in NF-

kB activation and IL-8 production critically required Bcl10 and

were associated with PAF-induced increase in Bcl10 gene

transcription [24]. On the other hand, LA-CS did not alter

Bcl10 mRNA and protein levels or Bcl10 promoter activity, but

attenuated PAF-induced increase in Bcl10 mRNA, protein and

promoter activity. Since LA-CS alone showed no effects on Bcl10

transcription, its effects in attenuating PAF-induced increase in I-

kB phosphorylation, NF-kB activation, and IL-8 production could

involve different mechanisms. LA-CS significantly blocked Bcl10

interactions with MALT1, but had no effect on its interactions

with CARMA3, the scaffold protein known to act upstream of

Bcl10 and MALT1. Previous studies have reported that in the T-

cell receptor pathway involving CARMA1/Bcl10/MALT1, inter-

action with MALT1 (a paracaspase) brings Bcl10 closer to IKK

complex, and that Bcl10 activates NF-kB pathway through

ubiquitination of IKKc (NEMO), the regulatory subunit of IKK

complex [29]. NEMO ubiquitination has been suggested to

represent a way to attract the IKK complex to upstream activators

and critical for canonical NF-kB activation pathway [49].

Interestingly, our current studies showed increased NEMO

ubiquitination in response to PAF treatments, whereas LA-CS

substantially attenuated this effect of PAF. These results suggest

that LA-CS could ameliorate PAF-induced intestinal inflammato-

ry responses via modulation of signaling events associated with

activation of IKK complex, rather than either the early events

following receptor activation by PAF or later events downstream

of IKK signalosome (Figure 6).

In essence, our current set of studies suggests a distinct

mechanism of functionality of probiotic-derived molecules to

combat PAF-induced intestinal inflammation at the epithelial cell

level. Our future studies to precisely define the underlying

mechanisms of LA-CS attenuation/reversal of PAF-induced

inflammatory cascade will further increase our understanding of

molecular basis of these effects in ameliorating intestinal inflam-

mation. Further, molecular characterization of the LA-secreted

Figure 3. L. acidophilus culture supernatant attenuates PAF-
induced I-kB phosphorylation and IL-8 production. (A) Phospho-
I- kB levels, as measured by ELISA, in total lysates prepared from control
or PAF 6 LA-CS-treated NCM460 cells (n = 3, *P,0.05); (B) IL-8 level as
measured by ELISA, in the spent media of control or PAF 6 LA-CS-
treated NCM460 cells (n = 3, *P,0.05).
doi:10.1371/journal.pone.0075664.g003

Probiotics Counteract PAF-Induced Inflammation
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soluble factors mediating these effects will be of great clinical

significance for the management of IBD and/or NEC.

Materials and Methods

Materials, reagents and antibodies
PAF (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was ob-

tained from Sigma-Aldrich (St. Louis, MO). Antibodies specific for

Bcl10 (Cat# sc-13153), CARMA3 (Cat# sc-47826), MALT1

(Cat# sc-46677) and NF-kB p65 (Cat# sc-8008) were purchased

from Santa Cruz Biotechnology (Santa Cruz, CA).

Cell lines, Cell culture and Treatments
The human colonic epithelial cell line NCM460, derived from

normal colonic mucosa, was grown in M3:10 medium (INCELL,

St. Antonio, TX) and maintained at 37uC in a humidified, 5%

CO2 environment. Caco-2 cells were maintained in DMEM with

4.5 g/L glucose, 50 kU/L penicillin, 5 mg/L streptomycin, and

20% fetal bovine serum. For experiments, confluent cells in cell

culture flasks were trypsinized and seeded into 24-well plates at a

cell density of 26104 cells/ml. At 60–70% confluency, cells were

used for treatments. Serum was reduced to 1% for overnight

before treatments and also during the treatments.

Bacterial culture and preparation of conditioned medium
The following probiotic Lactobacillus species, with strain numbers

given in parentheses, were obtained from American Type Culture

Collection (ATCC): L. acidophilus (4357), L. rhamnosus (53103), L.

plantarum (14917) and L. casei (393). They were grown in Mann-

Rogosa-Sharpe broth (Difco) for 24 h at 37uC without shaking.

The overnight culture was centrifuged at 3000 x g for 10 min at

4uC. The supernatant, filtered through a 0.22-mm filter (Millex,

Millipore) to sterilize and remove all bacterial cells, was designated

as conditioned medium (CS). For treating the cells with live

bacteria, the bacterial pellet was washed with DMEM/F-12 media

(Invitrogen) containing 5 mg/L mannose and resuspended in the

same media.

Treatment of cells
NCM460 or Caco-2 cells grown on 24-well plates to 60–70%

confluency were pre-treated for 6 h either with live bacteria

suspended in DMEM/F-12 media (0.56107 CFU per well) or with

CM diluted 1:10 in the same media. The 1:10 dilution was chosen

to obtain the optimal effect and at the same time to avoid adverse

effects of long-term incubation on cell viability as observed with

lesser dilutions (1:2 or 1:5). For subsequent co-incubation with or

without PAF for 24 h, the CFU of live bacteria used was reduced

to 0.56106 per well whereas CS was used at the same dilution

(1:10). Changes of pH towards acidic range upon addition of

culture supernatant to DMEM/F12 were normalized with 0.5N

NaOH before incubation.

RNA extraction and real-time RT-PCR
The total RNA from NCM460 cells was prepared using RNeasy

Mini Kit (Qiagen, Valencia, CA) according to manufacturer’s

instructions. An equal amount of RNA for each sample was

reverse-transcribed and amplified in a one-step reaction using

Brilliant SYBR Green QRT-PCR master mix kit (Stratagene, La

Jolla, CA) and using Mx 3000 (Stratagene). The gene specific

primers for human Bcl10 (59-39), were, forward: AAGGTCTG-

GACACCCTTGTT and reverse: ACAGTGGATGCCCT-

CAGTTT. The quantification of the amplification was expressed

Figure 4. L. acidophilus culture supernatant does not alter Bcl10 expression but attenuates PAF-induced increase in Bcl10
expression in IECs. (A) relative levels of Bcl10 mRNA in control or PAF 6 LA-CS-treated NCM460 cells measured by real-time RT-PCR as described in
Methods (n = 3, *P,0.05); (B) Bcl10 protein levels measured by ELISA in control or PAF 6 LA-CS-treated NCM460 cells (n = 3, *P,0.05); (C)
representative blot (n = 3) of Bcl10 protein levels measured by immunoblotting (upper panel) in control or PAF 6 LA-CS-treated Caco-2 cells and
densitometric analysis of the relative band intensities (lower panel); (D) Bcl10 promoter activity in control or PAF 6 LA-CS-treated Caco-2 cells (n = 4,
*P,0.05).
doi:10.1371/journal.pone.0075664.g004

Probiotics Counteract PAF-Induced Inflammation

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e75664



as a ratio of 2DCt-Bcl10/2DCt-b-actin, where DCt-Bcl10 and DCt-b-

actin represent the difference between the threshold cycles of

amplification of Bcl10 and b-actin.

Immunoblotting
Proteins in the NCM460 or Caco-2 cell lysates were separated

by SDS-PAGE on an 8% gel. Proteins were transferred to a

nitrocellulose membrane (Amersham Biosciences, Piscataway, NJ)

and probed with the Bcl10 antibody. Immunoreactive bands were

visualized using the ECL detection kit (Amersham).

Co-immunoprecipitation
Control NCM460 cells and cells treated with PAF, LA-CM

with or without PAF were washed in cold PBS and lysed in a lysis

buffer [20 mM Tris pH 7.5, 150 mM NaCl, 1% TritonX-100,

1 mM EDTA, 30 mM NaF, 2 mM sodium pyrophosphate and

1X protease inhibitor cocktail (Roche)]. The cell lysates were

pre-cleared with protein A/G plus-agarose (Santa Cruz) and then

incubated with anti-CARMA3 or anti-MALT1 antibodies at 4uC
for 16 h followed by incubation with protein A/G plus-agarose for

5 h. The agarose beads were collected by centrifugation, washed 4

times with lysis buffer and heated to 95uC for 5 min after adding

Laemmli buffer. The resulting immunoprecipitates were separated

by SDS-PAGE and probed with anti-Bcl10 antibody in immuno-

blotting.

Preparation of nuclear extract and measurement of p65
Nuclear extracts from control and treated NCM460 or Caco-2

cells were prepared using the nuclear extraction kit from Active

Motif following the manufacturer’s protocol as described earlier by

us [26]. NF-kB activation was assessed by measuring levels of

nuclear p65 by oligonucleotide-based ELISA as previously

described by us [26], or by immunoblotting with anti-p65

antibody.

NF-kB activity
NF-kB activation in response to PAF with or without pre-

incubation and co-incubation with LA-CM was measured by NF-

kB-Luciferase reporter assay as described earlier [24]. Briefly,

NCM460 or Caco-2 cells were transfected with p-NF-kB-Luc

(Clontech, CA) using Lipofectamine 2000 reagent (Invitrogen,

Carlsbad, CA). This plasmid contains NF-kB binding consensus

element upstream of luciferase reporter gene. Twenty-four hours

after transfection, cells were treated with PAF (10 mM) with or

without pre- and co-treatments with LA-CM for another 24 h.

Luciferase assays were performed and results were expressed as

RLU/mg protein.

ELISA for Bcl10
The levels of Bcl10 were determined by a solid-phase sandwich

ELISA, as previously developed by us [50].

ELISA for IL-8
The secretion of IL-8 in the spent media of control and treated

cells was measured by DuoSet ELISA kit for human IL-8 (R&D

Systems, Minneapolis, MN), according to the manufacturer’s

instructions as described previously by us [24].

Measurement of Bcl10 promoter activity
A 1310 bp fragment of the 59-untranslated region (p-Bcl1310) of

Bcl10 gene cloned earlier [24] into the pGL2 reporter plasmid

(Promega, Madison, WI) was transfected into Caco-2 cells were

using Lipofectamine 2000 (Invitrogen). Twenty-four h after

transfection, cells were treated with PAF for an additional 24 h

period. Subsequently, promoter activity was determined by

measuring luciferase activity and normalizing with the corre-

sponding b-galactosidase activity, according to the procedure

described previously [24].

Ubiquitination of IKK-c
Caco-2 cells were transfected with pcDNA3 expression vectors

encoding Myc-tagged IKKc and HA-tagged ubiquitin (kind gifts

from PC Lucas of the University of Michigan Medical School,

Ann Arbor, MI) and then treated with PAF and/or LA-CS as

described above. After immunoprecipitating the IKKc from the

cell lysate with anti-Myc antibody (Santa Cruz, CA), the protein

was assayed for ubiquitination by Western blotting with anti-HA

antibody (Santa Cruz, CA).

Figure 5. L. acidophilus culture supernatant attenuates PAF-
induced Bcl10 interaction with MALT1 and ubiquitination of
IKKc (NEMO). (A) Cell lysates of control or PAF 6 LA-CS-treated
NCM460 cells, containing equal amounts of proteins, were used to
immunoprecipitate (IP) MALT1 with anti-Bcl10 antibody. Immunopre-
cipitates were subjected to SDS-PAGE and probed with anti-MALT1
antibody in immunoblotting (IB). After stripping with 0.2N NaOH, blots
were re-probed with anti-Bcl10 antibody; upper panel: representative
blot of 3 independent experiments; lower panel: densitometric analysis
of relative band intensities; (B) Caco-2 cells co-transfected with
expression vectors encoding pcDNA3-IKKc-Myc and pcDNA3-ubiqui-
tin-HA were untreated or treated with PAF 6 LA-CS as described in
Methods. After purification by anti-Myc antibody immunoprecipitation,
the IKKc protein was assayed for ubiquitination by Western blotting
with anti-HA antibody.
doi:10.1371/journal.pone.0075664.g005
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Statistical analyses
The data presented are mean 6 SEM of 3–4 independent

experiments. Difference between controls versus various treat-

ments was analyzed using one-way ANOVA, with Dunnett’s

multiple comparison tests for repeated comparisons to the control.

Differences were considered significant at P,0.05.
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