
Marshall University
Marshall Digital Scholar

Geology Faculty Research Geology

8-16-2008

Direct evidence from anisotropy of magnetic
susceptibility for lateral melt migration at superfast
spreading centers
R. J. Varga

Andrew J. Horst
Marshall University, horsta@marshall.edu

J. S. Gee

J. A. Karson

Follow this and additional works at: https://mds.marshall.edu/geology_faculty

Part of the Geology Commons, and the Tectonics and Structure Commons

This Article is brought to you for free and open access by the Geology at Marshall Digital Scholar. It has been accepted for inclusion in Geology Faculty
Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact zhangj@marshall.edu,
beachgr@marshall.edu.

Recommended Citation
Varga, R. J., A. J. Horst, J. S. Gee, and J. A. Karson (2008), Direct evidence from anisotropy of magnetic susceptibility for lateral melt
migration at superfast spreading centers, Geochem. Geophys. Geosyst., 9, Q08008, doi:10.1029/2008GC002075.

https://mds.marshall.edu?utm_source=mds.marshall.edu%2Fgeology_faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/geology_faculty?utm_source=mds.marshall.edu%2Fgeology_faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/geology?utm_source=mds.marshall.edu%2Fgeology_faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/geology_faculty?utm_source=mds.marshall.edu%2Fgeology_faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=mds.marshall.edu%2Fgeology_faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/164?utm_source=mds.marshall.edu%2Fgeology_faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zhangj@marshall.edu,%20beachgr@marshall.edu
mailto:zhangj@marshall.edu,%20beachgr@marshall.edu


Direct evidence from anisotropy of magnetic susceptibility for
lateral melt migration at superfast spreading centers
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[1] Rare, fault-bounded escarpments expose natural cross sections of ocean crust in several areas and
provide an unparalleled opportunity to study the end products of tectonic and magmatic processes that
operated at depth beneath oceanic spreading centers. We mapped the geologic structure of ocean crust
produced at the East Pacific Rise (EPR) and now exposed along steep cliffs of the Pito Deep Rift near the
northern edge of the Easter microplate. The upper oceanic crust in this area is typified by basaltic lavas
underlain by a sheeted dike complex comprising northeast striking, moderately to steeply southeast
dipping dikes. Paleomagnetic remanence of oriented blocks of dikes collected with both Alvin and Jason II
indicate clockwise rotation of �61� related to rotation of the microplate indicating structural coupling
between the microplate and crust of the Nazca Plate to the north. The consistent southeast dip of dikes
formed as the result of tilting at the EPR shortly after their injection. Anisotropy of magnetic susceptibility
of dikes provides well-defined magmatic flow directions that are dominantly dike-parallel and shallowly
plunging. Corrected to their original EPR orientation, magma flow is interpreted as near-horizontal and
parallel to the ridge axis. These data provide the first direct evidence from sheeted dikes in ocean crust for
along-axis magma transport. These results also suggest that lateral transport in dikes is important even at
fast spreading ridges where a laterally continuous subaxial magma chamber is present.

Components: 2965 words, 5 figures.

Keywords: spreading centers; magma migration; anisotropy of magnetic susceptibility; East Pacific Rise; Easter microplate.

Index Terms: 3035 Marine Geology and Geophysics: Midocean ridge processes; 3618 Mineralogy and Petrology: Magma

chamber processes (1036); 3614 Mineralogy and Petrology: Mid-oceanic ridge processes (1032, 8416).

Received 27 April 2008; Revised 2 June 2008; Accepted 11 June 2008; Published 16 August 2008.

Varga, R. J., A. J. Horst, J. S. Gee, and J. A. Karson (2008), Direct evidence from anisotropy of magnetic susceptibility for

lateral melt migration at superfast spreading centers, Geochem. Geophys. Geosyst., 9, Q08008, doi:10.1029/2008GC002075.

G3G3Geochemistry
Geophysics

Geosystems

Published by AGU and the Geochemical Society

AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES

Geochemistry
Geophysics

Geosystems

Article

Volume 9, Number 8

16 August 2008

Q08008, doi:10.1029/2008GC002075

ISSN: 1525-2027

Copyright 2008 by the American Geophysical Union 1 of 8



[2] Increments of plate separation at oceanic
spreading centers are accommodated, in part, by
dike intrusion. At relatively high spreading rates
(>50 mm/a), virtually continuous magma chambers
beneath spreading centers feed magma through
dikes, in some cases resulting in surface eruptions
of basaltic lavas [Cann, 1970]. In detail, oceanic
spreading centers appear to be both structurally and
magmatically segmented with magmatic activity
focused near segment centers and less robust
toward segment extremities [Dunn and Toomey,
1997; Macdonald et al., 1988; White et al., 2000].
Although it has been suggested on the basis of
studies of exposed and eroded ocean crustal ana-
logs [Baragar et al., 1987; Sigurdsson and Sparks,
1978; Staudigel et al., 1999; Varga et al., 1998],
there is little direct evidence for lateral transport of
magma from modern spreading centers. Probable
diking events along spreading centers have been
inferred in a number of localities, coupled in some
cases by corresponding seismic events interpreted
as indicating lateral magma flow through a dike
[Delaney et al., 1998]. Our study complements
these indirect observations with direct evidence
for lateral magma migration from the dikes them-
selves. We present anisotropy of magnetic suscep-
tibility (AMS) results for sheeted dikes collected
and oriented in situ from remarkable, mid-crustal
cliff face exposures of the Pito Deep Rift in the

southern Pacific Ocean. AMS fabric, widely shown
to be a reliable proxy for magma transport structure
in igneous rocks [Knight and Walker, 1988;
MacDonald and Palmer, 1990; Varga et al.,
1998], offers direct insights into magma flow in
crust formed at the superfast spreading East Pacific
Rise (EPR). Our results demonstrate the impor-
tance of lateral magma flow, even at superfast
spreading ridges which typically show evidence
for nearly continuous magma chambers. Not only
is this study the first to directly demonstrate lateral
flow of mid-crustal magmas, it is the first to use
AMS on fully oriented rocks from the oceans
demonstrating the utility of this approach to study
of magmatic processes in oceanic crust.

[3] Located at �23�S, the Pito Deep Rift (Figure 1)
is a >6,000 m-deep, elongate extensional basin
with flanking, fault-bounded cliff faces exposing
more than 4,000 m of upper and middle crustal
rocks. The Pito Deep Rift is one of several rifted
areas in the ocean floor where steep, fault-bounded
escarpments expose nearly complete vertical sec-
tions of the ocean crust. These so-called ‘‘tectonic
windows’’ offer a unique three-dimensional view
of the detailed architecture of ocean crust not
available at actively spreading ridges [Karson,
1998] or by deep crustal drilling. Rock units
exposed at the Pito Deep Rift include basalt lava
(principally pillowed) in the upper part of the
section, sheeted dikes and gabbro. In this study
we focus on the sheeted dike complex which crops
out beneath approximately 600 m of basaltic lavas.
These rock units were originally formed �3 Ma
along the superfast spreading (full spreading rate >
140 mm/a.) Southern East Pacific Rise. The Pito
Deep Rift cut into this crust about 1 Ma as the
amagmatic tip of a propagating segment of the East
Pacific Rise advanced northward. The Rift forms
the eastern boundary of the Easter microplate
which appears to be moving independently with
respect to the Nazca Plate to the north and has
rotated on average clockwise �21�/Ma over the
past �5 Ma [Naar and Hey, 1991]. Both magnetic
anomaly boundaries and bathymetric lineaments in
the area northeast of the Pito Deep Rift and outside
of the microplate (Figure 2) are rotated �20–45�
clockwise with respect to �N/S oriented fabrics of
the East Pacific Rise [Karson et al., 2005;Martinez
et al., 1991; Rusby and Searle, 1995] indicating
coupling between the microplate and outlying
Nazca crust. The northwest trending fault scarps
flanking the Pito Deep Rift cut the rotated, north-
east trending fabric resulting in the observed,

Figure 1. Location and tectonic setting of the Easter
microplate (EMP) and the Pito Deep Rift areas of the
southern East Pacific Rise (EPR). Fine lines are
bathymetric lineaments and are presumed to be parallel
to fissures and faults. Thick lines are segments of the
EPR surrounding the EMP. CP, Cocos plate; HD, Hess
Deep Rift; JFMP, Juan Fernandez microplate; WR-IPF,
western ridge inner pseudofault; ER-IPF, eastern ridge
inner pseudofault; ER-OP, eastern ridge outer pseudo-
fault. Modified from Searle et al. [1989] with permis-
sion from Macmillan Publishers Ltd.
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nearly cross-sectional views of the upper to middle
crust.

[4] Our 2005 cruise to the Pito Deep Rift [Karson
et al., 2005] was motivated by earlier studies
[Francheteau et al., 1994] that demonstrated the
presence of well-exposed regions of crustal as well
as mantle rocks along several southwest facing
fault escarpments. These earlier results helped us
identify two promising areas for further detailed
study (Figure 2). In addition to detailed SeaBeam
and sea-surface magnetometer mapping of the area
surrounding the Pito Deep Rift, we mapped the
fine detail of the two study areas using DSL-120
side-scan sonar which helped focus a series of
subsequent transects using the remotely operated
vehicle (ROV) Jason II and the submersible Alvin
[Karson et al., 2005]. During this dive program we
collected oriented blocks of sheeted dike rock and
gabbro using the Geocompass [Hurst et al., 1994]
from the steep canyon walls of the Pito Deep Rift.
This device allowed us to fully characterize the
orientation of several surfaces on each block en-
abling the blocks, and subsequent cores cut from
them, to be later reoriented. Our suite of oriented
samples was collected from 15 separate dives in
both focus areas (‘‘A’’ and ‘‘B’’ in Figure 2). A
+14� correction was added to all Geocompass
measurements based on empirical comparison of
gyroscopic and magnetic north directions on sev-

eral control dives. This correction is close to the
expected magnetic declination in the area suggest-
ing little vehicle (Jason II or Alvin) related inter-
ference. Multiple standard paleomagnetic cores
were drilled from each reoriented block. In this
study we present AMS and accompanying mag-
netic remanence results from 36 blocks of sheeted
dike rock collected during both Alvin and Jason II
dives. While several previous studies have pre-
sented paleomagnetic results from oriented sam-
ples collected using Alvin [Cogné et al., 1995;
Hurst et al., 1994; Varga et al., 2004] or vertical
drilling [Allerton and Tivey, 2001], our study is the
first to report AMS on ocean rocks from fully
oriented samples as well as the first to collect
oriented block samples using an ROV.

Figure 2. (a) Map of the northeastern Easter micro-
plate and surrounding Nazca plate region. Color
contours show the magnetization solution from inver-
sion of sea surface magnetic anomaly data and
bathymetry (incorporating data used by Martinez et al.
[1991] and more recent data of Karson et al.
(unpublished cruise report, 2005)). A magnetic source
layer 1 km thick was assumed, and the solution was
determined using a band-pass filter which passes
wavelengths of 100 to 7 km unattenuated and removes
wavelengths >200 km or <3.5 km. Heavy lines indicate
probable main normal faults (barbell on downthrown
side) bounding the northeast edge of the Pito Deep Rift
(enclosed area > �4200 m depth labeled ‘‘Pito Deep’’).
Fine lines show prominent bathymetric lineaments
interpreted from detailed SeaBeam data [Karson et al.,
2005] presumed to parallel faults and fissures. White
boxes show detailed study areas ‘‘A’’ and ‘‘B’’ of the
2005 Pito Deep cruise [Karson et al., 2005]. Note near-
parallelism of bathymetric lineaments and crustal
magnetization and the continuation of positive magne-
tization into both study areas. Magnetization trends
northeast of study areas are continuous with those of the
Nazca plate (ages of beginning and end of anomaly 2A
[from Cande and Kent, 1995] shown; K, Keana; M,
Mammoth reversals, respectively), while more east-west
trends southwest of the Pito Deep Rift are in crust of the
Easter microplate. Northwest trending, possibly
Brunhes, magnetization is inferred to be the related to
recent eastern propagator. Anomaly identification after
Rusby and Searle [1995] and Martinez et al. [1991].
(b) Detailed SeaBeam data showing topographic linea-
ments in dive areas (A, B) and surrounding region. Thin,
white lines are parallel to local lineaments. Note that
lineaments vary from northeast to east-northeast trend-
ing across the transition from Nazca plate crust to the
Easter microplate. Data from D. Naar cited by Karson et
al. (unpublished cruise report, 2005). Bathymetry varies
from �6000 m (dark blue) to �2000 m (red).
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[5] Dikes averaging 1–2 m in thickness are beau-
tifully exposed in each of the two study areas
(Figure 3). The orientation of dikes is visually
obvious in most localities with a dominant pattern
of continuous fractures parallel to the dike margins
and an orthogonal set of discontinuous fractures
representing cooling joints. This interpretation is
confirmed in many cases by observation of dike
chilled margins in oriented samples. We were able
to use the Geocompass to measure dike orienta-
tions directly. With only a few exceptions, the
dikes dip southeast and strike northeast (Figure 4),
subparallel to the orientation of bathymetric linea-
ments and magnetic anomaly directions in adjacent
Nazca plate crust immediately to the northeast
(Figure 2).

[6] To interpret flow directions in dikes exposed at
the Pito Deep Rift it is critical to restore them to

their original orientation when they were formed
at the EPR. To accomplish this, we compare
the characteristic remanent magnetization (ChRM;
determined from stepwise thermal or alternating
field demagnetization) of dikes to the expected
time-averaged magnetic direction at the site (000�/
�40� for normal polarity). Because the remanence
of an individual dike may also reflect paleosecular
variation of the magnetic field, we collected
samples from 11 subparallel dikes in a relatively
small area (Alvin dive 4081; Figure 3b) to allow
calculation of an average remanence direction
that should minimize effects of paleosecular var-
iation. Any remaining differences with respect to
the expected direction should reflect structural
rotations.

[7] ChRM in cores from oriented blocks was
interpreted from principal component analysis of
demagnetization data [Kirschvink, 1980]. Median
destructive temperature (temperature at loss of 50%
NRM) averages �520�C and susceptibility of
standard (2.54 cm diameter, 2.16 cm length) cores
averages �6000 mSI, both suggesting probable
dominance of low-Ti titanomagnetite as the prin-
cipal carrier of magnetic remanence as well as the
dominance of ferromagnetic contributors to AMS
fabrics.

[8] ChRM data from 10 of 11 dikes from Alvin
dive 4081 that gave reliable results are shown in
Figure 4a. The data are normal polarity (up to the
north for the southern hemisphere), and have a
dispersion that suggests that these data approxi-
mately average out paleosecular variation. The site
mean is well removed from the expected position
suggesting that significant, post-intrusion structural
rotations have occurred. Significantly, this subset
of data from closely spaced sampling in a small
area also suggest relatively small errors related to
Geocompass measurement, to sampling or to post-
dive reorientation.

[9] ChRM directions from all 36 oriented blocks
are shown in reference to the current, expected
direction for the Pito Deep Rift (Figure 4d).
Directions are dominantly normal as predicted
from the location of the two study areas adjacent
to areas of positive crustal magnetization (Figure 2).
Despite consideration of secular variation (�14�)
[McElhinny and McFadden, 1997] and probable
measurement errors (�10�) [Cogné et al., 1995;
Varga et al., 2004], the average remanence direc-
tion is well removed from the expected direc-
tions, again indicating post-intrusion structural
rotations.

Figure 3. (a) Photographic mosaic of well-exposed,
steeply southeast dipping sheeted dikes at �3213 m
depth along Jason II transect 5 (Karson et al.,
unpublished cruise report, 2005). Dikes in this area
average �1 m in width. View to northeast. Mosaicking
by Steve Hurst. (b) Close-up photograph of southeast
dipping dikes taken at �3084 m depth during Alvin
dive 4081. View is to northeast. Note well-developed,
dike-parallel fractures that dip steeply to right (south-
east) and dike-perpendicular cooling fractures dipping
shallowly to left.
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[10] There is no unique number or path of struc-
tural rotations determined simply by the current
orientation of dikes at the Pito Deep Rift. However,
we can compare our data to a sequence of model
rotations that represent a likely sequence of geo-
logical events for the area, a methodology that has
been successful in restoring rotated dikes in both
oceanic crust and in ophiolites [Varga, 2003; Varga

et al., 1999, 2004]. Our model invokes an initial
rotation at the spreading center of �24� about a
ridge-parallel, horizontal axis that would produce
the observed southeast dip of dikes. This interpre-
tation is based on the assumption that the average
dike orientation was approximately vertical when
formed and that tilting beneath the ridge axis
results from rotation of blocks bounded by normal

Figure 4. Stereographic projections (all equal-area) of field and magnetic remanence data. Great circles (dike
margins) are plotted into lower hemisphere. Open symbols are plotted in upper hemisphere, and closed symbols are
plotted in the lower hemisphere. (a) Data from Alvin dive 4081. Star is expected normal north direction (up to the
north for southern hemisphere) at Pito Deep (000�/�40�) surrounded by a 14� small circle representing approximate
expected secular variation [McElhinny and McFadden, 1997]. Open square is Fisher-distributed vector mean (030�/
�27�) of ChRM (open circles) directions for 11 blocks of oriented dikes surrounded by its a95 confidence interval.
Small closed square symbols are poles to dike margins, and large closed square is vector mean to dike poles
surrounded by its a95 confidence ellipse. (b) Field data associated with 36 oriented blocks collected from both study
areas A and B (Figure 2). Dike margin orientations (great circles) and their poles (small closed squares). Large closed
square and its a95 error ellipse represent vector mean pole to average dike margin (061�/66�). (c) Two-stage rotation
model. Vertical dikes produced at EPR (dashed great circle 1) rotated through normal faulting by �24� (dashed great
circle 2) about strike of dikes which rotates dike remanence (open circles and surrounding 14� small circles
representing secular variation) from position 1 to 2. Clockwise rotation of Easter microplate causes subsequent 61�
vertical axis rotation of dikes and remanence to current positions 3. Closed square symbols show pole to dikes at each
stage. (d) ChRM data for 36 oriented blocks. Each open (upper hemisphere) or closed (lower hemisphere) circle
represents a block-averaged site mean. Open star surrounded by solid confidence ellipse as in Figure 4a. Open star
surrounded by dashed confidence ellipse represents expected remanence direction after two-stage rotation model
discussed above (Figure 4c). Open square and ellipsoid confidence intervals as in Figure 4a.
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faults. This kinematic pattern appears to be an
important mode of deformation in the upper oce-
anic crust formed at fast spreading ridges that is
exposed in tectonic windows and sampled by deep
crustal drilling [Karson, 2002]. This interpretation
is compatible with our observation of fault-related
breccias bounding panels of southeast dipping
dikes (J. A. Karson et al., unpublished cruise
report, 2005). These dike-parallel breccias are
similar to those observed in ophiolites where the
crust is inferred to have been structurally extended
by rotational-planar, dike-parallel normal faults
near the ridge axis [Varga, 1991, 2003]. Our model
invokes a second, vertical axis, clockwise rotation
of 61� to explain the northeast strike of the dikes.

This rotation is related to rotation of the Easter
microplate which, apparently, was coupled to
Nazca plate crust to the north. This second rotation
explains the northeast strike of dikes at the Pito
Deep Rift and the northeast trend of dike ChRM
directions that are clearly displaced in a clockwise
direction from their expected orientation when
formed.

[11] Figure 4c illustrates the two step rotation
model and shows the path of both dike and ChRM
orientations to their final positions. Note that our
ChRM data from the Pito Deep Rift dikes (Figure
4d) is generally compatible with the model. Indeed
the two-step model explains both the northeast
trend of ChRM as well as the apparent greater
rotation of dikes than corresponding ChRM orien-
tations (Figures 4a and 5b). In detail, however, the
ChRM mean is slightly shallower and has a more
northerly trend than the model. This difference
may reflect slight errors in the model assumptions
about the original strike of dikes at the ridge axis
and �10� north-directed tilt in crustal blocks
bounded by NW striking normal faults bounding
the Pito Deep Rift (Figure 2), respectively. We note
that our model does predict an angular divergence
between the north/south trend of the EPR and the
ChRM of tilted dikes near the ridge axis. This
divergence is a testable prediction of our restora-
tion and, if generally applicable, might represent a
theoretically observable skewness to magnetic
anomalies at the EPR.

[12] The AMS of 314 cores from oriented blocks
was determined on an AGICO Kappabridge
KLY 2. AMS fabric is characterized by a second-
rank tensor commonly depicted by a representa-
tion ellipsoid with eigenvectors k1, k2, k3 and
corresponding eigenvalues K1 � K2 � K3. The
degree of anisotropy (100 * (K1 � K3)) [Tauxe,
2002] ranges between 0.07% and 3.4% with a
mean anisotropy of 0.6%, similar to that found in
studies of dikes in ophiolites [Rochette et al.,
1991; Staudigel et al., 1999]. Representation
AMS ellipsoids are highly prolate to triaxial
(e.g., K1 > K2 � K3).

[13] Figure 5a shows typical AMS data from Pito
Deep Rift dikes. In this diagram we have plotted all
of the individual core data from the 11 subparallel
dikes collected on Alvin dive 4081. The mean
positions for k1 (squares), k2 (triangles) and k3
(circles) and their confidence ellipses were calcu-
lated using bootstrap statistics [Constable and
Tauxe, 1990]. The symmetry of these AMS data
with respect to the dike margin orientation is

Figure 5. Stereographic projections (all equal-area) of
AMS data from all oriented blocks. All data plotted into
the lower hemisphere. (a) AMS ellipsoid k1 (open
squares), k2 (open triangles), k3 (open circles) axes,
bootstrapped means (corresponding closed symbols),
and confidence intervals (ellipses) for all oriented dike
blocks from Alvin dive 4081. Each symbol represents
measurement of a single core sample. Thick great circle
is average dike orientation (051�/69�). All data plotted
into the lower hemisphere. (b) The k1 confidence
ellipses for all oriented blocks with distinct k1 orienta-
tions. Thick great circle is average dike orientation from
data in Figure 5a. (c) The k1 directions for 26 oriented
blocks displaying ‘‘normal’’ symmetry with respect to
dike margins. Contours are in intervals of 2s from an
assumed random distribution. Data have been returned
to their assumed, original ‘‘EPR’’ coordinates using
the two-stage rotation model discussed in text and in
Figure 4c. Dashed great circle represents vertical dike.
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typical of that found in most Pito Deep Rift dikes.
Note that mean k1 and k2 lie close to the average
dike margin in this area while k3 lies at a high
angle to the margin. There is also clear distinction
between the eigenvectors as shown by lack of
overlap of their respective confidence ellipses.
Detailed study of such ‘‘normal’’ fabrics in mafic
dikes from a variety of geologic settings indicates
that k1 directions are close to magmatic flow
directions determined independently by field and
microscopic criteria [Knight and Walker, 1988;
Shelley, 1985; Tauxe et al., 1998; Varga et al.,
1998]. These studies support a model in which
AMS is controlled by late-crystallizing magnetic
carriers (typically titanomagnetite in mafic dikes)
that fill interstitial spaces between a flow-aligned
silicate (typically plagioclase) fabric [Hargraves et
al., 1991]. AMS data from Alvin dive 4081 dikes
would thus be interpreted as indicating near-hori-
zontal flow of magma during emplacement.

[14] To summarize AMS data from Pito Deep, we
have plotted (Figure 5b) the confidence intervals
surrounding k1 axes for 30 of the samples that gave
interpretable results and where k1 is distinct from
the other axes (k2, k3). Note that 26 of the 30
blocks that meet this criteria have normal fabrics
while four samples have so-called ‘‘inverse’’ fab-
rics where k1 lies at a high angle to the average
dike margin [Tauxe, 2002]. Of the samples with
normal fabrics, 5 have relatively steep k1 axes
while the majority have shallow to moderately
inclined k1 axes. Figure 5c shows these k1 data
plotted in ‘‘EPR coordinates’’ after restoring dikes
to their ridge crest orientation of formation using
the above, two-step rotational model (Figure 4c).
Interpreting k1 in these normal fabrics as indicative
of the magmatic flow direction, magma transport in
Pito Deep Rift dikes was predominantly near-
horizontal and parallel to the EPR.

[15] Shallow intrusive directions are particularly
surprising because original magma flow direction
is typically best recorded within <10 cm of chilled
dike margins and these margins were generally not
visible during seafloor outcrop sampling. Dikes
commonly show steeper flow fabrics in their inte-
riors due to drain-back during the waning phase of
flow when magmatic fluid pressures drop. Thus,
our sample collection might be expected to include
many dike interiors where magma is subject to
vertical, gravitational drain-back which can over-
print earlier fabrics. The four inverse fabrics are
difficult to explain in terms of magma flow. Such
fabrics have been interpreted as being due to a

variety of causes including ‘‘rolling’’ of elongate
grains during fluid flow, alteration, magnetic grain
size, and dike width [Rochette et al., 1991, 1999].

[16] In summary, a majority of AMS fabrics in
dikes from two study areas of the Pito Deep Rift
indicate near-horizontal magma flow at the EPR
ridge crest �3 Ma ago. These results highlight the
importance of lateral melt migration from localized
magma chambers as a means of distributing magma
along spreading center segments. They support
inferences based on the geochemistry of dikes and
lavas in tectonic windows from intermediate to
superfast spread crust wherein the upper crust is
constructed from dikes and lavas derived from
magma sources that developed at different locations
along the ridge axis [Pollock et al., 2005; Stewart et
al., 2002]. Though we cannot uniquely determine
the sense of magma flow in this study, the southern
plunge of the majority of k1 directions (Figure 5c)
may suggest upward flow to the north, possibly
toward a segment boundary and away from a
centralized magma chamber. These results docu-
ment lateral magma migration at a superfast spread-
ing center, suggesting that such migration occurs
even beneath ridges with evidence for nearly con-
tinuous subaxial magma chambers. Our data also
demonstrate the utility of the AMSmethod for study
of igneous flow patterns in modern ocean crust and
the feasibility of collecting fully oriented blocks
using ROVs which allows nearly continuous sam-
pling over long time periods and in difficult terrain.
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