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Abstract

The long-term effects of intermittent ethanol exposure during adolescence (AIE) are of
intensive interest and investigation. The effects of AIE on learning and memory and the neu-
ral functions that drive them are of particular interest as clinical findings suggest enduring
deficits in those cognitive domains in humans after ethanol abuse during adolescence.
Although studies of such deficits after AIE hold much promise for identifying mechanisms
and therapeutic interventions, the findings are sparse and inconclusive. The present results
identify a specific deficitin memory function after AIE and establish a possible neural mech-
anism of that deficit that may be of translational significance. Male rats (starting at PND-30)
received exposure to AIE (5g/kg, i.g.) or vehicle and were allowed to mature into adulthood.
At PND-71, one group of animals was assessed using the spatial-temporal object recogni-
tion (stOR) test to evaluate memory function. A separate group of animals was used to
assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohis-
tochemistry. AIE exposed animals manifested deficits in the temporal component of the
stOR task relative to controls, and a significant decrease in the number of ChAT labeled
neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating
long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that
memory-related deficits after AIE depend upon the tasks employed, and possibly their
degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density
suggests a possible mechanism underlying the effects of AIE on memory and hippocampal
function as well as possible therapeutic or preventive strategies for AIE.

Introduction

Nearly four decades ago Donald Walker and his group showed that months of chronic ethanol
exposure during adulthood resulted in enduring deficits in learning and memory [1] that were
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accompanied by changes in hippocampal neuronal morphology [2] and cell loss [3]. Those ini-
tial studies sparked a line of research that has had a major impact on the alcohol research field
in general and has had both mechanistic and clinical implications. More recently, as it has
become clear that adolescence is a time of distinctive sensitivity to the acute effects of ethanol
[4-8], the question of whether repeated exposure to ethanol during adolescence results in
enduring learning and memory impairments has begun to be addressed.

Initial studies found that adolescent intermittent ethanol exposure (AIE) did not alter subse-
quent spatial reference memory learning in the radial arm maze [9], or learning in the Barnes
maze [10]. However, AIE did increase the susceptibility of adult animals pre-exposed to AIE to
the memory disrupting effects of acute ethanol [9,11]. Consistent with the lack of effect of AIE
on learning, comparable exposure to chronic intermittent ethanol in adulthood (CIE) also did
not disrupt subsequent spatial learning [9]. However, in contrast to the effect of AIE, CIE failed
to increase subsequent responsiveness to acute ethanol. Thus, while neither AIE nor CIE influ-
enced subsequent spatial learning in the radial arm maze, AIE enhanced subsequent sensitivity
to the mnemonic effects of acute ethanol, whereas CIE did not, suggesting that AIE produced
enduring effects that CIE did not. Both the enhancement of subsequent memory disruption by
AIE and its lack of effect on baseline spatial learning in the radial arm maze were replicated in
arecent study [11]. In contrast to the lack of effect of AIE or CIE on learning in the radial arm
maze, AIE has been shown to impair learning in the Morris water maze up to 25 days after then
end of AIE exposure [12], and Broadwater and Spear [13] have observed deficits in fear retention
at a similar time interval after AIE, but not after CIE. Earlier ethanol exposure, spanning the late
juvenile period and early adolescence, has also been shown to induce deficits in object recogni-
tion memory and discrimination learning at approximately three weeks after the termination of
ethanol exposure [14]. With respect to subsequent sensitivity to the memory-impairing effects of
ethanol, Silvers and colleagues [15,16] found that AIE reduced the efficacy with which acute etha-
nol impaired spatial learning in the water maze 24 hours after the last ethanol dose, though that
effect must be interpreted in light of possible withdrawal and/or tolerance effects that would be
expected at that time after AIE. Most recently, it has been shown that AIE impairs adult learning
on a novel object recognition task when a long delay (24 hours) was imposed between initial
exposure to the novel object and retrieval testing [17]. Thus, AIE appears to impair learning and
memory in adulthood, but not uniformly across dependent measures.

In this regard it is notable that in instances where animals pre-exposed to AIE were chal-
lenged, either with long inter-trial intervals [17,18] or acute ethanol treatment [9,11], deficits
were observed relative to controls. This suggests that AIE may not induce a state of markedly
compromised learning capacity on nominally complex or challenging tasks, but when task
complexity is increased or other challenges to memory-related CNS function are introduced,
AlE-induced deficits may be unmasked. Therefore, part of our rationale for the present study
was to use a task that involved both spatial and temporal memory components to determine if
either was more vulnerable to the effects of AIE than the other. In addition, because the stOR
test alters both spatial and temporal cues in parallel within the animals’ environment, we
hypothesized that this environmental complexity would be more challenging to AIE animals
than controls. We predicted therefore that AIE would result in memory deficits using this task
even with relatively brief inter-trial intervals relative to the longer interval at which previous
studies have demonstrated AIE-induced deficits in object recognition [17,18].

In addition to the behavioral effects of AIE, recent findings indicate that AIE causes a reduc-
tion in the density of cholinergic neurons in the medial septum and the vertical limb of the
diagonal band of Broca (also known as Ch1-2) [19,20]. Hippocampal circuit excitability and
memory-related hippocampal functions are driven by those cholinergic inputs, suggesting that
AIE may lead to chronic deprivation of cholinergic input to the hippocampal formation, which
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would be expected to alter both memory and memory-related hippocampal structure and func-
tion. Interestingly, unlike general lesions of Ch1-2, selective cholinergic lesions often do not
result in robust learning deficits unless complex or challenging tasks are used (see Kanju et al.,
[21]). Thus it may be that the lack of effect of AIE on most measures of spatial memory (but
see Sircar and Sircar [12]) could be related to either their relative ease across multiple days of
testing, lack of task complexity, and/or their reliance on procedural components that might not
be affected by moderate depletion of cholinergic hippocampal inputs.

To begin to address this, we used an adaptation of the novel object recognition task that
involves both spatial and temporal memory components and does not rely on procedural train-
ing, to assess the long-term effect of AIE on spatial memory. In addition, we assessed the den-
sity of cholinergic neurons in Ch1-4 using choline acetyltransferase (ChAT)
immunohistochemistry. In addition to Ch1-2, which project to the hippocampus, we also
included areas Ch-3 and Ch-4 in the analysis. Ch-3 projects to the pyriform and entorhinal
cortices (in addition to the olfactory bulbs) and thus would be expected to regulate hippocam-
pal function, whereas Ch-4 projects widely across the neocortex as well as to the basolateral
amygdala. Thus a comparison of the effects of AIE on ChAT immunohistochemistry across
those regions will provide potentially meaningful comparisons.

Materials and Methods

All of the procedures used in this study were conducted in accordance with the guidelines of

the American Association for the Accreditation of Laboratory Animal Care and the National
Research Council’s Guide for Care and Use of Laboratory Animals and were approved by the
Durham VA Medical Center and the Duke University Animal Care and Use Committees. All
animals used were male rats of the Sprague-Dawley strain.

Thirty-six rats (Charles River, USA) were double housed and maintained in a temperature-
and humidity-controlled room with ad libitum access to food and water. Animals were dosed
using modified methods previously described in Risher et al., [11]. Briefly, animals were deliv-
ered at PND-25 and allowed to acclimatize for 5 days in the vivarium on a reverse 12:12-hr
light:dark cycle (lights off at 9:00 am) prior to beginning AIE (adolescent intermittent ethanol)
or saline administration on PND-30. All animals were exposed to an AIE or saline exposure
regimen beginning PND-30, consisting of 10 doses of 5 g/kg ethanol (35% v/v in saline at
18.12 mL/kg, VWR, Suwanee, GA, USA) or isovolumetric saline administered by intragastric
gavage using a 2 days on, 1 day off, 2 days on, 2 days off intermittent schedule for 16 days fol-
lowed by a 25-day washout period, thus allowing all animals to reach adulthood prior to sacri-
fice or behavioral testing. These ethanol doses were selected in order to produce BECs that are
consistent with adolescent human BECs during binge drinking episodes. In a recent study, we
found that animals receiving 5g/kg ethanol (i.g.) achieved average blood ethanol concentra-
tions of 199.7mg/dl (+ 19.9) 60 minutes after the first dose, and 172.8 (£ 13.3) 60 minutes after
the last dose [22]. Those animals were treated in parallel with those described in the present
experiments. Moreover, those blood ethanol concentrations are consistent with those achieved
in our earlier studies [23], and by adolescent humans during binge drinking episodes [24].

Previous studies have suggested that AIE selectively promotes adolescent-like characteristics
into adulthood [25], therefore we conducted a second stOR experiment with a separate cohort
of animals to compare treatment-naive adult and adolescent animals in the same task. A total
of 24 male rats (PND-24 (adolescent) and PND-64 (adult), n = 12/age group) were double
housed and maintained in a temperature- and humidity-controlled room with ad libitum
access to food and water. These animals were handled 5 times across three days to habituate
the animals to the experimenter and received no gavage.
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Spatial-Temporal Object Recognition (stOR)

We used a modified version of the spatial-temporal object recognition (stOR) task described by
Kart-Teke et al. [26] to assess object memory in rats exposed to AIE and tested in adulthood.
This task requires no external motivation, reward, punishment, or training while still allowing us
to measure the memory for spatial locations [27] and object recency [28] by using the animals’
ability to recognize and differentiate between objects [29]. This task also relies on a rodent’s
innate interest in exploring novelty, be it objects in novel locations or objects novel in appearance
(the latter serving as the basis for traditional novel object recognition tests). Spatial memory is
inferred by the relative preference for objects in a novel location compared to a familiar location.
That is, any demonstrable preference for objects in the novel location requires that animals recall
the familiar location from a previous trial. Temporal memory is inferred by the relative prefer-
ence for objects that have not been seen recently (2 hours since last encounter) when presented
with objects that have been seen more recently (1 hour since last encounter).

Apparatus and habituation. Rats were handled and dosed as previously described. Two
cohorts of animals were used for each experiment (saline vs. CIE and adolescent vs. adult),
resulting in an n = 12/treatment group. Following the 24-day washout period, animals (PND-
70 and PND-30) were habituated to the testing apparatus (33cm L x 38cm W x 68cm H),
devoid of objects, once a day for 5-min/session for 3 days. Animals were then habituated to the
testing apparatus containing two pseudo-randomly selected objects once a day for 5 min per
session/day for the following 2 days (these objects were not used in the following test trials). All
objects were made of metal, glass, plastic or ceramic, and measured 11-17cm H x 7-8cm W.
Multiple object placement combinations were used and all objects and locations were counter-
balanced across treatment groups (see Fig 1 for an example of object placement across trials).

Trial1 Trial 2

1hr

A - &
Al [&

Recentobject | - ¢ 1hr Old object
Novel position "] Novel position

Old object :

ol » g | Recent object
Familiar position N & @./ Familiar position

Trial 3

Fig 1. Depiction of the three test trials used in the stOR task. Animals were placed in the chamber with
two objects (trial 1). After a 1-hour delay, animals were returned to the chamber with two new objects; after
another 1-hour delay animals were returned to the chamber containing the four previously encountered
objects. One object from trial 1 and one object from trial 2 were placed in new positions while the other objects
remained in their original positions.

doi:10.1371/journal.pone.0140042.g001
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Balancing of objects based on basal preferences and the effect of object location was minimized
within the pilot studies. Time spent with an object regardless of position in the stOR pilot
study was: 7.467-9.667 (seconds) + 1.665-2.707 (SEM) within Trials 1 and 2. Testing

box location within the room, handling of animals, noise attenuation, and lighting were all
optimized in the same earlier pilot studies using male Sprague Dawley rats. White noise and
ambient lighting was maintained (7-10 lux) throughout habituation and testing trials.

stOR testing. Trial 1—Animals were placed in the apparatus with two identical objects for
5 minutes and then immediately removed and placed in the home cage. All objects to which
the animals were exposed on Trial 1 were subsequently referred to as ‘old objects’. Trial 2—
After a 60 min delay, the animals were placed back in the apparatus with two novel objects in
two new locations (subsequently referred to as ‘recent objects’) for 5 min and then returned to
the home cage. Trial 3—After another 60 min delay the animals were placed back in the appa-
ratus with the two ‘old objects” and the two ‘recent objects’, one old object and one recent object
remained in the same locations in which they had been previously placed (‘familiar position”)
while the other objects were moved to new locations (‘novel position’). The animals were
allowed to explore the arena for 5 min before being removed and placed back in their home
cages. The object manipulations are depicted in Fig 1. Object placement and order was coun-
terbalanced across cage mates and treatment groups. Use of the 60-minute delay was based on
a study by Clark and colleagues [30]. Using various delays (10 seconds to 24 hours) and various
hippocampal lesion paradigms they showed that the 60-minute delay was the most sensitive
delay to uncover hippocampal deficits in the object recognition task.

All behavior was recorded using digital video software and subsequently analyzed by trained
observers (AnyMaze, Stoelting, Chicago, IL, USA). Two independent raters reviewed and
scored each video. The two individuals (H.S. and K.M.) were blind to the animals’ dose condi-
tion. Both raters were previously trained to confirm scoring accuracy by the study author
(M-L.R.). Inter-rater agreement was assessed and scores were averaged across the two raters.
Object exploration/inspection time was operationally defined as the time during which the ani-
mal was directing its nose and/or moving their vibrissae towards the object at a distance <Icm
and/or touching the object with its nose or vibrissae. Running around the object, attempting to
sit or climb on the object was not recorded as object exploration. Any animal that failed to
interact with the objects during Test 1 or 2 was removed from the analysis.

Inspection behavior was expressed as position preference or a recency preference. Position
preference was defined as the difference between the inspection time for objects in the novel
position and the inspection time for objects in the familiar position, divided by the total inspec-
tion time (T yovel— T famitiar)/ (Ttota). Similarly, the recency preference was defined as the differ-
ence between the inspection time for recent objects and the inspection time for older objects,
divided by the total inspection time (T ecent—To1d)/(T1otar)- Total inspection time during the test
phase was defined as the sum of time inspecting all objects in any position (Te,1). Using this
value in the denominator serves to account for individual differences in general exploratory
behavior.

ChAT Immunohistochemistry

Twenty-five days after AIE (n = 6) or vehicle (n = 6) exposure, a separate group of animals was
anesthetized with isoflurane and transcardially perfused with 0.1 M phosphate buffer saline
(PBS; pH 7.4; 300 ml at 25 ml/min) followed by perfusion with 300 ml 4% paraformaldehyde
(PFA; freshly prepared) in 0.1 M PB. The brains were post-fixed for 24 hours in 4.0% PFA at
4°C, followed by transfer to sucrose solution until they were sectioned. 40pum thick sections
were cut coronally on a vibratome and stored in cryoprotectant (30% glycol/30% ethylene

PLOS ONE | DOI:10.1371/journal.pone.0140042 November 3, 2015 5/13



@'PLOS ‘ ONE

Adolescent Intermittent Ethanol: Memory, and Brain Cholinergic Markers

glycol in PBS) at -20°C. Free-floating sections (every 12th section containing the region of
interest) were washed in 0.1 M PBS, incubated in 0.3% H202, and blocked with normal goat
serum (MP Biomedicals, Solon, OH, USA). The sections were incubated in goat polyclonal
anti-ChAT (1:800, AB144P; Millipore, Temecula, CA, USA) for 24 hours at 4°C. The sections
were then washed with PBS, incubated with biotinylated secondary anti-goat antibody (1:200;
Vector Laboratories, Burlingame, CA, USA) for one hour, and incubated in avidin-biotin com-
plex solution (Vector ABC Kit; Vector Laboratories) for one hour. The chromagen, nickel-
enhanced diaminobenzidine (DAB, Sigma-Aldrich, St. Louis MO, USA), was used to visualize
immunoreactivity. Negative control for non-specific binding of the secondary antibody was
conducted on separate sections employing the aforementioned procedures with the exception
that the primary antibody was omitted.

The number of ChAT positive neurons was quantified by image analysis software as previously
described [19]. Briefly, Bioquant Nova Advanced Image Analysis (R&M Biometric, Nashville,
TN, USA) was used for image capture and analysis. Images were captured by using an Olympus
BX50 Microscope and Sony DXC-390 video camera linked to a computer. For ChAT+IR (immu-
noreactivity), the ChAT positive neurons were counted within the region of interest and expressed
as cells per square millimeter. Ch1 and Ch2 are contained in the medial septal nucleus (MS) and
the nucleus of vertical limb of the diagonal band (VDB) respectively. Ch3 is mostly in the lateral
portion of the horizontal limb nucleus of the diagonal band, and Ch4 is the nucleus basalis, and
also parts of the diagonal band nuclei. For Ch1 and Ch2 sectors, coronal sections were from
bregma 0.7 to 0.2 mm; for Ch3 and Ch4, from 0.48 to -0.30 mm. Both sides in every section were
used, at least four to five sections for each brain, and the average value were used.

Statistical Analysis

The stOR data was analyzed using hierarchical linear regression. This approach was chosen
because it allows for making inferences about pre-treatment effects (saline vs. AIE) while con-
trolling for object inspection time during the initial training trials. That is, regression allows us
to determine the strength of the association between group membership and either recency or
location preference. For example, a significant positive relationship would indicate that mem-
bership in the “AIE” class is associated with greater preference for the novel object (in the loca-
tion preference) or the more recent object (in the recency preference). A significant negative
relationship would indicate that membership in the “AIE” class is associated with greater pref-
erence for the familiar object (in the location preference) or the older object (in the recency
preference). Importantly, this regression procedure allows us to determine these associations
after controlling for individual differences in object inspection time during the initial learning
trials by entering those data in the first step of the regression equation. Separate regressions
were run for each dependent measure (object recency preference and object location prefer-
ence). Trial 1 and Trial 2 inspection times were entered in the first step of the regression to con-
trol for initial object exposure. Group (experiment 1: saline v. AIE; experiment 2: adolescent v.
adult) was entered on the second step. Model, R change (R?A), and beta coefficient statistics
were calculated. Where the regression analyses were significant, we calculated and presented
the predicted preference indices (i.e., the preference after correcting for individual differences
in initial object inspection) as well as the observed preference indices. Independent Student’s -
tests were used to evaluate group differences on the predicted and observed preference indices.
One-sample t-tests were used to determine if the group mean preference was significantly dif-
ferent from zero. Where the preference index is not different from zero, there is no demonstra-
ble preference. Independent Student’s t-tests were used to assess differences in ChAT+IR in
tissue from AIE- vs. vehicle-exposed animals. All analyses were conducted using SPSS (v.22;
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Chicago, IL, USA). Statistical significance was assessed using an alpha level of 0.05. All data are
presented in figures as the mean +/- S.E.M.

Results
Selective Memory Deficits

stOR—temporal component. Animals encountered two pairs of identical objects, having
been exposed to one of those object pairs 1hr before (recent objects) and the other pair 2hrs
before. In this paradigm, we expected AIE exposed animals to spend more time exploring the
older objects versus the more recent objects, because the memory for the older objects had
diminished relative to the memory for the more recently encountered objects. Results reveal
that the complete model (Trial 1, Trial 2, and pretreatment group) accounts for a significant
proportion of variance in recency preference (Adjusted R* = 0.30, F(3,19) = 4.17, p = 0.02).
Moreover, the addition of Group (AIE v. saline) in the second step significantly improves the
predictive value of the model (R*A = 0.28, F(1,19) = 8.85, p = 0.008). That is, the AIE group is
associated with a preference for the older objects after controlling for time spent inspecting
those objects in Trials 1 and 2 (f = -0.59, t = -2.97, p = 0.008). This is illustrated in the partial
regression plot (Fig 2A). The color inset in Fig 2 demonstrates the relative preference (+/-
SEM) for the older object in the AIE group (red bars) and the control group (blue bars). The
left side of that inset shows the mean preference based on predicted scores (P; after correcting
for individual differences in object inspection during the learning trials). The right side of that
inset shows the mean preference based on observed scores (O), which were not corrected for
individual differences in object inspection during the learning trials.

Analysis of predicted preference scores (i.e., after correcting for individual differences in
object inspection during the learning trials) from the inset reveals that AIE pretreated animals
(red bar denoted “P”) spend significantly more time inspecting the old objects than do control
pretreated animals (blue bar denoted “P”; t(21) = 2.88, p<0.005). Indeed, the preference for
old objects that the model predicted for AIE pretreated animals was significantly different from
zero (t(10) = -2.74, p = 0.01) while no preference was observed among the control animals, i.e.,
their preference scores were not significantly different from zero (t(11) = 1.69, p = 0.06). Analy-
sis of observed (i.e. uncorrected) preference scores revealed no significant difference between
AIE (red bar denoted “O”) and control (blue bar denoted “O”; t(21) = 1.63, p = 0.06). Interest-
ingly, when no correction is made for individual differences in initial object inspection during
the learning trials, there is a significant preference for older objects (relative to zero) in both
AIE (t(10) = -4.07, p = 0.001) and control (t(11) = -2.02, p = 0.04) animals.

stOR- spatial component. Using this task, our expectation was that control animals
would show a greater preference for the object in the novel position than would AIE pre-
treated animals. This was not the case. The complete model (Trial 1, Trial 2, and pretreatment
group) did not account for a significant proportion of variance in object location preference
(Adjusted R?=0.096, F(3,19) = 1.78, p = 0.19); and the addition of Group (AIE vs. saline) in
the second step did not significantly improve the predictive value of the model (R°A = 0.06, F
(1,19) = 1.51, p = 0.24; Fig 1B). This indicates that memory for the location of the objects
(novel versus familiar) was not affected by the pre-treatment condition (ethanol vs. control).

Because some studies have suggested that AIE promotes the perpetuation of adolescent-like
characteristics into adulthood [22], [31], we conducted a second experiment with a separate
cohort of animals to determine if the deficits observed after AIE were reminiscent of immatu-
rity we compared treatment-naive adult and adolescent animals in the same stOR task. Analy-
ses were conducted in the same fashion as describe above (see Fig 1C and 1D). The complete
model (Trial 1, Trial 2, and age group) did not account for a significant proportion of variance
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dependent variable (recency preference or position preference) after controlling for time spent inspecting objects in Trials 1 and 2. Pretreatment was
significantly predictive of the recency preference (panel A), but was not significantly predictive of position preference (panel B). Age was not predictive of
recency or position preference (panels C and D). Panel A inset depicts the group mean (+/- SEM) predicted preference indices (derived from the regression
model, denoted by “P”) and the observed preference indices based on uncorrected data (denoted by “O”).

doi:10.1371/journal.pone.0140042.9002

in recency preference (Adjusted R?=-0.20, F(3,8) = 0.38, p = 0.77); and the addition of Group
(adolescent v. adult) in the second step did not significantly improve the predictive value of the
model (R*A = 0.04, F(1,8) = 0.34, p = 0.57). Similar results were obtained for object location
preference: the complete model (Trial 1, Trial 2, and age group) did not account for a signifi-
cant proportion of variance in object location preference (Adjusted R? =-0.34, F(3,8) = 0.07,

p = 0.98); and the addition of Group (adolescent v. adult) in the second step did not signifi-
cantly improve the predictive value of the model (R?A = 0.009, F(1,8) = 0.08, p=0.79).

ChAT Staining in Areas Ch1-4

As Fig 2 illustrates, AIE decreased ChAT+IR in the medial septum and vertical limb of the
diagonal band of Broca (Ch1 and Ch2) nuclei of the basal forebrain of adult rats 25 days after
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Fig 3. AIE decreases ChAT+IR in the basal forebrain in adulthood. AIE decreases ChAT+IR in the Ch1 and Ch2 nuclei of the basal forebrain of adult rats
(a). Left Panel—the cell density of ChAT+IR is significantly decreased in the Ch1 and Ch2 nuclei at 0.70 ~ 0.20 mm from bregma 25 days after AIE,
**p<0.01. Right Panel—representative photomicrography ChAT+IR neurons in the Ch1 and Ch2 nuclei from a control animal (Control), and an AIE-exposed
animal (ETOH). AIE decreases ChAT+IR in the Ch3 and Ch4 nuclei of the basal forebrain of adult rats (b). Left Panel—the cell density of ChAT+IR is
significantly decreased in the Ch3 and Ch4 nuclei at 0.48 ~ 0.40 mm from bregma 25 days after AIE, *p = 0.046. Right Panel—representative
photomicrography ChAT+IR neurons in the Ch3 and Ch4 nuclei from a control animal (Control), and an ethanol-exposed animal (ETOH). Scale bar = 50 pm.

doi:10.1371/journal.pone.0140042.9003

the termination of AIE. Specifically, ChAT+IR cell density was decreased by approximately 50%
(p<0.01) in cholinergic Ch1 and Ch2 nuclei. This is illustrated quantitatively in the left panel of
Fig 2, with visualization of ChAT+IR neurons in the right panel. We also assessed diagonal
band/nucleus basalis (Ch3-4) ChAT+IR neurons and found 220426 (SEM) and 161+17 (SEM)
ChAT+IR neurons/mm? control and AIE animals, respectively (p = 0.046; Fig 3). These findings
indicate AIE leads to a persistent loss of adult ChAT+ neurons, consistent with previous studies
[19,20].

Discussion

The long-term impact of repeated ethanol exposure during adolescence on neurobehavioral
function in adulthood has become a topic of intensive interest and recent investigation.
Because acute ethanol is well known to affect memory and hippocampal function, and to do so
more potently during adolescence than adulthood [31,32], the enduring effects of AIE on
memory is of particular interest. In this study we found that AIE impaired object recognition
memory in the stOR task. Specifically, we found that adult animals that had been exposed to
AIE during adolescence manifested deficits in recalling information over time, independent of
their spatial location. In addition, naive adolescent and adult animals performed similarly on
the task, suggesting that the AIE-induced memory deficits were not related to behavioral
immaturity on the part of AIE exposed adult animals. Finally, consistent with previous studies
[19,20], AIE significantly reduced the density of ChAT-positive neurons on forebrain areas
Ch1-2, which project widely to the hippocampal formation and influence memory-related hip-
pocampal function, as well as in areas Ch3-4.

Although the persistence of adolescent-typical characteristics in adulthood has been
observed in electrophysiological studies and behavioral studies across multiple laboratories and
multiple strains using varying adolescent exposure regimens (see [31] for review), that mecha-
nism does not appear to have driven the behavioral effects of AIE in this study. Thus there is
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selectivity in the persistence of certain immature characteristics in adulthood after AIE, and
possibly a propensity for hippocampal vulnerability to such changes. For example, the reduc-
tion in tonic inhibition in the dentate gyrus after AIE is reminiscent of adolescence [33]. While
greater behavioral disinhibition in the open field conflict task [34] and adolescent-typical
behavioral responses in the context-dependent (and hippocampal-dependent) fear condition-
ing task [13,35] are also observed after AIE, they are not present in other aspects of those tasks
or others. Additional studies are needed in order to more fully explore the neural and behav-
ioral domains in which AIE induces the persistence of adolescent-like characteristics into
adulthood.

The functional relevance of the effects of AIE on adult hippocampal physiology, morphol-
ogy, and synaptic organization that we have reported recently [22] is consistent with the pres-
ent findings that AIE disrupted memory in the stOR task. Although we observed AIE-induced
memory impairment for the temporal, but not the spatial component of the stOR task, the fact
that this effect was observed on a task that included both spatial and temporal components is
consistent with previous studies in which AIE had little effect on simple spatial learning tasks
[9,11], but markedly impaired performance under challenged or challenging conditions
[9,11,17]. Clarke and colleagues [36] have shown that, in the novel object recognition task,
memory consolidation is marked by transient hippocampal potentiation and a short de-poten-
tiation phase necessary for reconsolidation. This vulnerable reconsolidation phase is an impor-
tant aspect of the stOR task used in the present study since it is required every time new objects
or new object locations are introduced, thus allowing this novel information to be added to the
previously stored memory. This continuing need to reconsolidate memory about ‘what’,
‘where’, and ‘when’ makes this task more cognitively demanding than the traditional novel
object recognition task. The cognitive challenge of this ‘layering of information’ in the stOR
task may be what distinguished it from other less challenging tasks on which AIE animals per-
form as well as controls, such as the version of the radial arm maze task that we have used pre-
viously [11].

The fact that hippocampal networks must potentiate and de-potentiate relatively rapidly for
novel object recognition learning to occur [36], suggests that the effects of AIE on LTP induc-
tion that we have observed previously [22] could underlie the parallel effects of AIE on memory
in the stOR task. If, as we have suggested previously [22], AIE induces a state of hippocampal
hyperplasticity that may transiently occlude subsequent manifestations of plasticity, then it is
possible that the affected hippocampal circuits would not be capable of the rapid shifts between
potentiation and de-potentiation required for the learning to occur. Put another way, the facili-
tated induction of LTP in the hippocampus after AIE [22] could render the circuits less “nim-
ble” in their capacity to engage in rapid sequences of potentiation and de-potentiation, thus
compromising the memory consolidation and reconsolidation needed for stOR learning to
occur optimally. Alternatively, since reconsolidation is necessary for complete information
retrieval in Trial 3, the information presented in Trial 2 could interfere with the retention and/
or retrieval of information from Trial 1 in animals with hyperplastic hippocampal circuits.

Previous studies have shown reductions of the density of ChAT+ neurons in the Ch1-4
regions of the forebrain [19,20,37], thus indicating that AIE affects cholinergic neurons
throughout the extent of the Chl through Ch4 regions. We observed similar effects in the pres-
ent study, suggesting persistently diminished hippocampal cholinergic signaling after AIE.
This finding provides an important replication of the previous studies, using our specific AIE
parameters. Although this finding does not establish a causal relationship between AIE-
induced decreases in forebrain cholinergic neurons and the memory deficits we observed, their
co-occurrence is informative because cholinergic neurons in Ch1-2 project diffusely into the
hippocampal formation, drive the activity of both primary and inhibitory neurons throughout
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the structure, and modulate circuit function [38]. In addition, a decrease in the cholinergic pro-
jections from Ch-3 to the entorhinal cortex would also be expected to compromise hippocam-
pal function. However, it should be noted that Ch-3 also projects to the pyriform cortex and
olfactory bulbs and Ch-4 projects widely to the neocortex. Thus the effect of AIE on cholinergic
marker in those regions would be expected to influence cholinergic function beyond the hippo-
campal formation.

Although it appears that AIE compromises cholinergic projections rather broadly, it is
important to note that cholinergic projections from the forebrain are known to regulate hippo-
campal neurogenesis [39-41]. Forebrain cholinergic neurons have monosynaptic connections
with dentate gyrus neuroprogenitors [41], and AIE, but not adult CIE, causes a persistent loss
of hippocampal neurogenesis [42]. Although the role of neurogenesis in hippocampal function
is poorly understood it is implicated in complex components of learning as well as negative
affect. In contrast to non-specific lesions of the Ch1-2 region, selective lesions of cholinergic
neurons in that region, as found after AIE, often do not result in robust learning and memory
deficits [43], but have been shown to induce learning deficits that are evident as task complex-
ity is increased [44,45], consistent with the present finding of deficits in stOR memory. More
work will be required to determine whether AIE-induced depletion of Ch1-2 cholinergic neu-
rons bears a causal relationship to the stOR deficits we have observed or the deficits observed
previously on long-delay temporal object recognition [17]. However, the present results do
suggest that AIE-induced deficits in hippocampally mediated behavioral deficits might be ame-
liorated by acute treatment with agents that increase cholinergic function. In addition, since
the AIE-induced reduction of Ch1-2 cholinergic neuron density is likely to be initiated during
the AIE exposure period, it is possible that cholinergic replacement during that time would
mitigate the effects of the chronic deprivation of hippocampal circuits from their normal cho-
linergic inputs, thereby mitigating the long-term effects of AIE on hippocampal function.

In conclusion, the present findings identify a specific deficit in object recognition memory
after AIE. This deficit was accompanied by a decrease in the density of cholinergic neurons
that are known to project to the hippocampal formation and modulate learning-related circuit
function. These findings add to a growing literature indicating that intermittent ethanol expo-
sure during adolescence results in neurobehavioral deficits in the domain of memory and
memory-related function that persist into adulthood.
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