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ABSTRACT 

Herein we describe a method to fabricate submicron bioactive glass tubes using of sol-gel and 

co-axial electrospinning techniques for applications in bone tissue engineering. Heavy mineral 

oil and gel solution were delivered by two independent syringe pumps during the co-axial 

electrospinning process. Subsequently, submicron bioactive glass tubes were obtained by 

removal of poly(vinyl pyrrolidone) (PVP) and heavy mineral oil via calcination at 600 °C for 5 

h. Tubular structure was confirmed by scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) imaging. We examined the bioactivity of submicron bioactive glass 

tubes and fibers and evaluated their biocompatibility taking electrospun poly(ε-caprolactone) 

fibers – a bio-inactive material for comparison. The bioactivity of glass tubes was examined in a 

simulated body fluid (SBF) and these structures demonstrated the formation of hydroxyapatite-

like minerals on both the outer and inner surfaces. In contrast, mineralization only occurred on 

their surface for bioactive glass solid fibers. Energy dispersive x-ray (EDX) data suggested that 

bioactive glass tubes had a faster induction of mineral formation compared that observed for the 

solid fibers. We demonstrate that the proliferation rate of mouse pre-osteoblastic MC3T3-E1 

cells on bioactive glass tubes was comparable to that on solid fibers. We also show that bioactive 

glass tubes can be loaded with a model protein drug - bovine serum albumin (BSA) and that 

these structures, exhibit delayed release properties. The bioactivity of released lysozyme can be 

as high as 90.9%. Taken together, these data suggest that submicron bioactive glass tubes could 

hold great potential for use in bone tissue engineering as well as topical drug or gene delivery.  

 

Keywords: Bioactive glass, Electrospinning, Submicron Tubes, Bone tissue engineering, Drug 

delivery 

 

 
 
 
 
 
 
 
 
 
 



2 
 

1. Introduction 

 Bioactive glasses hold significant promise for hard tissue engineering as they are resorbable 

and readily form a bioactive hydroxycarbonate apatite (HCA) layer [1-3]. Bioactive glasses can 

also be tailored to deliver ions, i.e. Si, at levels capable of promoting cell differentiation and 

osteogenesis [4, 5]. Moreover, bioactive glasses also exhibit anti-inflammatory properties, anti-

bacterial activity, and have been shown to stimulate the secretion of angiogenic growth factors in 

vitro [6-8]. Taken together, these properties suggest that these materials may be one of the most 

promising biomaterials for bone regeneration [9].   

 Bioactive glasses are generally formulated in the forms of bulk, crushed powders, foams, and 

micron-scale fibers. Owing to its high porosity and large surface area, a nonwoven mat of 

electrospun nanofibers can serve as an ideal scaffold to mimic the hierarchical architecture of 

extracellular matrix for cell attachment and nutrient transportation [10]. The nanofiber itself can 

also be functionalized through encapsulation and immobilization of bioactive materials such as 

extracellular matrix proteins, enzymes, and growth factors. In addition, the nanofibers can be 

further assembled into a variety of arrays or architectures by manipulating their alignment, 

stacking, or folding. Recently, bioactive glass nanofibers were developed using electrospinning 

and laser spinning techniques [11-14]. Although a significant advancement, it is likely that these 

nanofibers do not exhibit sufficient surface area for the rapid mineralization and enhancement of 

bone formation that can be critical for determining whether an implant will perform in an 

optimal fashion. To address this deficiency, recent work has attempted to fabricate hollow 

bioactive glass fibers via electrospinning where a high molecular weight poly(ethylene oxide) 

(PEO) is used as a phase-separation agent [15]. Whether these fibers are suited for bone tissue 

engineering applications has not been examined.  

The objective of this study is to fabricate submicron hollow bioactive glass tubes and to 

examine the use of these structures in bone tissue engineering. Given the potential difficulties in 

accurately directing the formation of these types of structures using phase separation methods we 

chose to employ a sol-gel approach with the electrospinning process via the application of two 

syringe pumps to independently and precisely control the flow rates for the core and shell [16, 

17]. Although similar approaches were reported for producing TiO2 nanotubes, in the present 

study we demonstrated that a modified method can be used to generate submicron bioactive glass 

tubes with a more complicated composition than TiO2 [16, 17]. And the inner and outer 
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diameters of tubes can be readily tailored by simply changing the feeding rates of inner and outer 

solutions during electrospinning process. This approach may be simpler and more robust than the 

phase separation method [15]. Compared to that observed for solid fibers, we hypothesized that 

the rate of HCA formation in a simulated body fluid (SBF) would be greater on the hollow 

fibers. The submicron bioactive glass tubes generated using this approach could be highly suited 

for use in bone tissue engineering applications.  

2. Materials and methods 

2.1. Fabrication of submicron bioactive glass tubes and fibers 

A solution containing 1.34 g tetraethyl orthosilicate (TEOS) (Sigma-Aldrich, St. Louis, MO), 

0.116 g triethyl phosphate (TEP) (Sigma-Aldrich), 0.296 g calcium nitrate (Ca(NO3)2·4H2O) 

(Sigma-Aldrich), 0.1 mL of HCL (Fisher, Pittsburgh, PA) solution (1 mol/L) and 10 mL ethanol 

(Fisher) was prepared. After stirring for 2 h, 10 mL of this solution was mixed with 10 mL of 

ethanol with 0.8 g poly(vinyl pyrrolidone) (PVP) (Sigma-Aldrich). Then, the mixed solution was 

stirred for another 2 h.  Subsequently, the mixture was utilized for electrospinning with a coaxial 

spinneret, as outlined previously [17]. The typical feeding rate for PVP solution ranged from 1 to 

2 mL/h. For the heavy mineral oil (Fisher), the feeding rate was set at 0.05 and 0.1 mL/h, 

respectively. The polymer PVP and heavy mineral oil were removed by sintering them at 600 ºC 

for 5 h in air. For comparison, solid bioactive glass and poly(ε-caprolactone) (PCL) (Sigma-

Aldrich) fibers were fabricated by traditional electrospinning as detailed previously [23, 24]. The 

bioactive glass tube sample for cell culture and drug delivery test was fabricated with injection 

rates of 1.5 mL/h and 0.05 mL/h for PVP solution and mineral oil, respectively. The 

corresponding fiber sample was fabricated with an injection rate of 1.5 ml/h for PVP solution. 

2.2. Characterization of submicron bioactive glass tubes 

Scanning electron microscopy (SEM) images and energy dispersive x-ray (EDX) 

spectroscopy were obtained by imaging the samples supported on a Si substrate with an FEI 

Sirion microscope at an accelerating voltage of 15 kV. Samples were sputtered with Au for 40 s 

before imaging.  Transmission electron microscopy (TEM) images were obtained from samples 

supported on carbon-coated copper grids using a Philips CM100 TEM microscope with a Gatan 

689 digital camera.  
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2.3. In vitro mineralization 

The in vitro mineralization of submicron bioactive glass tubes and fibers was performed in a 

SBF for different time intervals. The composition of SBF consisted of 142 mM Na+, 5.0 mM K+, 

1.5 mM Mg+, 2.5 mM Ca+, 147.8 mM Cl-, 4.2 mM HCO3
-, 1.0 mM HPO4

3-, and 1.0 mM SO4
2-

[25, 26]. At different time points, we quantified the Ca and Si ion concentrations in the SBF 

using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Specifically, we 

firstly collected the solutions and then we diluted each solution by 5 times. ICP-AES was carried 

out using a Varian spectrometer Model Liberty 110. 

2.4. Cell culture and cell seeding 

Mouse calvaria-derived, preosteoblastic cells (MC3T3-E1; ATCC CRL-2593) were cultured 

in alpha minimum essential medium (α-MEM, Invitrogen Corp., Grand Island, NY), 

supplemented with 10% fetal bovine serum (FBS, Invitrogen), and 1% antibiotics (containing 

penicillin and streptomycin, Invitrogen). The medium was changed every other day, and the 

cultures were incubated at 37 C in a humidified atmosphere containing 5% CO2. Samples were 

cut into circular shape and fixed to the well edge of 96 well culture plates using medical grade 

silicone adhesive. Around 1×104 cells were seeded to each well. 

2.5. Cell morphology observation 

The cell morphology at day 3 was characterized by fluorescent microscopy.  The cells on the 

samples were washed twice with PBS, fixed in 3.7% formaldehyde solution (Sigma-Aldrich) in 

PBS for 30 min at room temperature, and dyed with Alexa Fluor® 488 phalloidin (Invitrogen) 

and 4'-6-Diamidino-2-phenylindole (DAPI, Invitrogen) for 1 h. The fluorescent images were 

taken using a QICAM Fast Cooled Mono 12-bit camera (Q Imaging, Burnaby, BC, Canada) 

attached to an Olympus microscope with Capture 2.90.1 (Olympus, Tokyo, Japan).   

2.6. Cell proliferation 

The cell viability was measured using the 3-(4, 5-dimethylthiazol-2, 5-diphenyl tetrazolium 

bromide (MTT) assay (Sigma-Aldrich), which is based on the mitochondrial conversion of 

tetrazolium salt.  After 1, 3, 5 and 7 days of incubation, the medium was removed, 270 l fresh 

medium and 30 l MTT (5 mg/mL in PBS) (Invitrogen) were added to each well and incubated 

at 37 C, 5% CO2 for 3 h. After removal of the medium, the converted dye was dissolved with 
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isopropanol and the absorbance measured at 560 nm in triplicate using a microplate reader 

(Tecan, Durham, NC).  

2.7. BSA loading and release 

Submicron bioactive glass tube (10 mg) and fiber samples were immersed in 2 mL PBS 

buffer solution containing bovine serum albumin (BSA) (2 mg/mL) for 2 h.  Samples were 

washed using water three times to remove any loosely attached molecules. BSA loading was 

determined by measuring the difference between the BSA concentration in the original solution 

and in the washes using a micro BCA protein assay kit. To determine the release kinetics, 

supernants were collected at several time intervals and the amount of BSA was measured as 

above.  

2.8. Bioactivity of released biomacromolecules 

Lysozyme was similarly loaded to the glass tubes. The bioactivity of the lysozyme released 

from tubes after 165-minute incubation was characterized by the rate of lysis of Micrococcus 

lysodeikticus cells by lysozyme [27]. Briefly, the experiments were carried out as follows. First, 

2.5 mL of Micrococcus lysodeikticus cells in suspension was pipetted in 24 well plates. An 

aliquot of 0.1 mL of lysozyme solution at the same concentration of released and control samples 

(concentration determined by micro BCA assay kit) were added to the 24 well plates and tested 

by a microplate reader. The change in A450 per minute from the initial linear portion of the curve 

was recorded over 6 min.  The bioactivity of lysozyme was deduced from the ratio of slopes of 

the two curves, namely, released lysozyme and native lysozyme. 

2.8. Statistical analysis 

All experiments were performed in triplicate, and data were presented as means ± standard 

deviation, unless stated otherwise. Data were analyzed using one-way ANOVA with Tukey’s 

HSD post hoc test to determine significance. Values of P < 0.05 were chosen to indicate 

statistical significance.  

3. Results and discussion 

3.1. Fabrication of submicron bioactive glass tubes and fibers 

A schematic illustrating the preparation of submicron bioactive glass tubes is depicted in Fig. 

1. A solution containing TEOS, TEP, Ca(NO3)2·4H2O, HCL, PVP and ethanol and heavy 
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mineral oil were introduced to the shell and core of a co-axial spinneret, respectively. After 

electrospinning, PVP and heavy mineral oil were removed by thermal treatment of the samples 

through converting them to CO2 at 600 °C for 5 h. In addition, during the sintering process, 

TEOS, TEP and Ca(NO3)2 converted to SiO2, P2O5 and CaO, respectively. For comparison, 

submicron bioactive glass and PCL fibers were generated using traditional electrospinning 

technique following our previous studies [23, 24]. Fig. 2A shows a representative SEM image of 

heavy mineral oil/PVP and glass composites core-sheath fibers as prepared after co-axial 

electrospinning. This sample was fabricated with injection rates for PVP solution and mineral oil 

of 1.5 mL/h and 0.05 mL/h, respectively. After sintering, tube diameter was decreased and cross 

sectional imaging indicated a tubular structure (Fig. 2B). The corresponding TEM images are 

shown in Figs. 2 C and D further confirming the shrinkage of diameter and the hollow structure. 

We also performed selective area electron diffraction (SAED) for submicron bioactive glass 

tubes and demonstrated an amorphous structure (Fig. S1A). EDX analysis suggested that the 

composition of bioactive glass tubes was 107SiO2•69CaO•5P2O5. One advantage of this 

approach lies in the ease of controlling the inner and outer diameters by simply adjusting the 

inner and outer flow rates. After changing the inner and outer flow rates accordingly, the inner 

and outer diameters of tubes increased from 185 nm to 500 nm and 285 nm to 665 nm, 

respectively (Fig. S2). 

3.2. Bioactivity test 

In order to test bioactivity, we immersed the glass tube samples in SBF at room temperature 

for different time intervals. For comparison, we also immersed the glass fiber samples in SBF 

under the same conditions. SEM images demonstrated that immersion in SBF for 1 day was 

found to result in HVA-like mineral clusters on the surface of the tubes (Fig. 3A) Inset in Fig. 3A 

shows a higher magnification image, presenting significant morphology change compared to the 

samples before immersion in SBF. Fig. 3B shows a TEM image of the same sample in Fig. 3A. 

As expected, we observed the presence of HCA-like minerals were not only on the outside but 

also inside the tubes. Similarly, prolonged immersion appeared to result in increased mineral 

deposition (Fig. 3C) on both the outside and inner surfaces (Fig. 3D). In addition, the results of 

selected area electron diffraction (SAED) analysis generated a pattern consistent with the 

presence of poorly crystallized apatite after 3 days of mineralization (Fig. S1B). In contrast to 

that observed for the tubes, imaging of the solid fibers indicated the presence of minerals on only 
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the outer surface (Fig. 3 E and F).  

Elemental analysis on the bioactive glass tube and fiber samples after immersion in SBF over 

different periods of time was used to determine the atomic percentage of each element (Fig. 4A). 

Consistent with our imaging data, we observed that the percentage of Si and O atoms decreased 

with increasing immersion time. The percentages of Ca and P atoms showed opposite trends. 

Specifically, the percentage of Si atom for tubes dropped much faster than that observed using 

the solid fiber samples. The Si element was not detectable for tube samples after incubation for 3 

days. In contrast, the percentage of Si element was around 7% for fiber samples under the same 

conditions. At the same time, the percentages of Ca and P atoms increased faster in the tube 

samples compared to that seen with the fibers. Taken together, these data demonstrate that the 

mineralization process is much faster on the tubes compared to that observed on the fibers as the 

reaction can occur not only outside but also inside tubes. Although not examined here, these data 

suggest that it is possible that bioactive glass tubes would form a biologically reactive 

hydroxycarbonate apatite layer in shorter period of time after implantation than solid fibers. We 

also used ICP-AES to quantify the ion concentrations in SBF after incubation with submicron 

glass tubes and fibers at different times (Fig. 4B). It shows that Ca and Si ion concentrations 

decrease and increase dramatically with increasing incubation time. Compared with fiber 

samples, more Ca ions were lost in the SBF solution after 3-day incubation with tube samples. 

Simultaneously, more Si ions were detected in the SBF incubated with tubes than with fibers for 

3 days. In addition, Si ion concentration appeared to increase marginally from 2-day to 3-day 

incubation with glass tubes in the SBF, indicating that almost all the Si ions on glass tubes could 

move to the solution. This result seemed to agree well with that the EDX result – Si element was 

undetectable on glass tubes after 3-day incubation with SBF. The mechanism of mineralization 

for bioactive glass has been investigated by Hench [1]. We postulate that this mechanism is also 

suitable for explanation of the mineralization of bioactive glass tubes, and that it would involve 

the following steps:  

 

i) Rapid exchange of Ca2+ with H+ or H3O
+ from solution from both inner surface and outer 

surface of tubes:  

Si – O – Ca2+ + H+ + OH-
 → Si – OH+ + Ca2+(solution) + OH-; 
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ii) Loss of soluble silica in the form of Si(OH)4 to the solution, leading to breaking of Si-O-Si 

bonds and formation of Si-OH (silanols) at the inner and outer surfaces:  

Si – O – Si + H2O → Si – OH + HO – Si; 

 

iii) Condensation and repolymerization of a SiO2-rich layer on the inner and outer surfaces 

depleted in alkalis and alkaline-earth cations: 

                                                O                         O                   O           O  
 ׀ ׀ ׀                          ׀                                                 

O – Si – OH + HO – Si – O → O – Si – O – Si – O + H2O; 
׀                                  ׀ ׀                          ׀                                                   
                                                O                         O                    O            O 
 

iv) Migration of Ca2+ and PO4
3- groups to the inner and outer surfaces through the SiO2-rich 

layer forming a CaO-P2O5-rich film on top of the SiO2-rich layer, followed by growth of the 

amorphous CaO-P2O5-rich film by incorporation of soluble calcium and phosphates from 

solution.  

 

v) Crystallization of the amorphous CaO-P2O5 film by incorporation of OH- and CO3
2-  anions 

from solution to form a mixed hydroxyl and carbonate apatite layer. 

 

It is likely that immersion of the bioactive glass tubes into water can lead to the formation of 

minerals (Fig. 5). As prepared, the submicron tubes showed a smooth surface (Fig. 5A) however 

after immersion in water for 1 day, the surface became coarse (Fig. 5B) which may suggest that 

there is a rapid exchange of Ca2+ with H+ or H3O
+ from the solution which may be leading to the 

loss of soluble silica to the solution. After 3 days, the morphology had significantly changed 

(Fig. 5C) although the shape of tubes was still maintained. It seems that the tubes consisted of 

nanorods, which is a typical morphology of hydroxyl apatite. The length and width of nanorods 

were 100-200 nm and 5-10 nm, respectively. During this period of time, it is likely that the 

soluble silica was being continually being lost to the solution which may have helped in 

facilitating a reaction between Ca2+ and PO4
3- to form hydroxyl apatite. After 6 days, the tubes 

were collapsed and only nanorods were observed under SEM (Fig. 5D). This finding is 

consistent with the possibility that prolonged incubation led to a breaking of all of the Si-O-Si 

bonds and the subsequent release of all soluble silica to the solution.   
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3.3. Cell culture 

 In order to test the potential of tubes for use as a bone scaffold, we cultured pre-osteoblastic 

MC3T3-E1 cells on the submicron bioactive glass tubes. We chose electrospun PCL fibers for 

comparison because PCL is a biocompatible and biodegradable but bio-inactive material and has 

been used for bone tissue engineering [28]. After 3 days of culture, cells were stained with Alexa 

Fluor® 488 phalloidin (green) to visualize F-actin, while cell nuclei were stained with DAPI 

(blue). We observed that although the cells can spread very well on the surface of PCL fibers, the 

cell density was lower compared to other two samples based on the counting of nuclei (Fig. 6A-

C). It appeared that more cell nuclei were observed on the bioactive glass tube sample and that 

these cells exhibited a high level of actin organization as most of the stress fibers appeared to be 

orientated in a parallel fashion (Fig. 6C). By utilization of MTT assay, we attempted to quantify 

the MC3T3-E1 cell proliferation (Fig. 7) [29]. Here, we assume all the cells have the same level 

of metabolic activity on different substrates. While there was no difference between the samples 

at day 1, after 3 days of culture the OD values for cells on the bioactive glass tubes were  

significantly higher than those of PCL fibers (P<0.05). The MTT assay is measuring metabolic 

activity, which is proportional to cell number in normal conditions. However, the cells were 

compared on different substrates in the present work and the cells were likely to have a different 

metabolic activity on the different substrates (e.g., cells may be more active on the glass tubes.). 

Therefore, it is possible that this assay an indirect measurement could not accurately measure 

cell number. The use of a direct measurement of cell number (e.g., DNA assay and pico green) to 

quantify the cell number on each substrate will be more appropriate for further study. 

3.4. BSA loading and release 

For bone tissue engineering, the incorporation of growth factors (e.g., bone morphorgenic 

proteins) to bone scaffolds and the sustained release of these proteins from scaffolds is highly 

desirable for the effective regeneration of bone [30, 31]. To examine the potential utility of 

bioactive glass tubes for this type of application these structures were loaded with BSA and we 

then determined the release kinetics. BSA was chosen as a model protein drug as it has been 

previously used for these types of experiments [32, 33]. For purposes of comparison, parallel 

experiments were carried out using submicron bioactive glass fibers. Drug loading and release 

were quantified by micro BCA protein assay kit. The amount of BSA that could be loaded into 
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the submicron bioactive glass tubes and fibers was 82.98 µg/mg and 66.63 µg/mg, respectively. 

Fluorescence microscopy after incubation with FITC-BSA appeared to demonstrate a uniform 

distribution of FITC-BSA into the bioactive glass tubes (Fig. 8A-B). Analysis of the release 

kinetics demonstrated an initial burst of BSA liberation into the solution followed by a certain 

period of delayed release (Fig. 8C). After incubation for 165 min, no BSA was detected from the 

fiber samples, whereas BSA release was still detectable from the tube samples (Fig. 8D). This 

finding is consistent with the possibility that drug release occurs over a longer duration in the 

tube samples. This could be due to the morphology change of tubes after incubation in the 

releasing medium.  

3.5. Bioactivity of released biomacromolecules 

 In order to test the bioactivity of biomacromolecules after release, we prepared lysozyme-

loaded, submicron bioactive glass tubes. The concentration of released lysozyme from glass 

tubes after 165-minute incubation was quantified by the Micro BCA assay kit. The same 

concentration of fresh lysozyme solution was prepared. The bioactivity was characterized by the 

rate of lysis of M. lysodeikticus cells. The bioactivity of lysozyme during the loading and 

releasing process was around 90.9%, which can be deduced from the ratio of the slopes from the 

two lines shown in Fig. 9 [32]. 

4. Conclusions 

 We have demonstrated the fabrication of submicron bioactive glass tubes by injecting heavy 

mineral oil and gel solution to the core and shell independently during co-axial electrospinning 

followed by sintering to remove polymer and heavy mineral oil. This approach is simple, 

versatile and robust. In vitro bioactivity test indicates bioactive glass tubes had a faster induction 

of HCA-like mineral formation compared to solid fibers. Pre-osteoblastic cells showed a higher 

proliferation rate on submicron bioactive glass tubes than on PCL fibers. In addition, the model 

protein drug BSA showed a longer period of release from bioactive glass tubes than that 

observed using the solid fibers. The bioactivity of released lysozyme from glass tubes can be as 

high as 90.9%. This novel class of bioactive glass could be promising for applications in bone 

tissue engineering and drug delivery.   
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Fig. 1. Schematic illustrating preparation of submicron bioactive glass tubes. (a): Aging the sol 

solution for 2 h. (b) Mixing gel solution and PVP solution for 2 h. (c) Sintering at 600 °C for 5 h. 

(1) Sol solution (TEOS, TEP, Ca(NO3)2·4H2O, HCl, Ethanol). (2) Gel solution. (3) PVP ethanol 

solution. (4) Bioactive glass tubes. 
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Fig. 2. (A) SEM image of submicron PVP/glass composite tubes before sintering. (B) SEM 

image of submicron bioactive glass tubes after sintering.  (C) TEM image of submicron 

PVP/glass composite tubes before sintering.  (D) TEM image of submicron bioactive glass tubes 

after sintering. Insets: higher magnification images. This sample was fabricated with injection 

rates of 1.5 mL/h and 0.05 mL/h for PVP solution and mineral oil, respectively. 
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Fig. 3. SEM images of submicron bioactive glass tubes after immersion in SBF for 1 day (A) and 

3 days (C).  TEM images of submicron bioactive glass tubes after immersion in SBF for 1 day 



18 
 

(B) and 3 days (D).  Particles detected in (C) but not in (D) could be due to washing during TEM 

sample preparation. (E) SEM image of submicron bioactive glass solid fibers after immersion in 

SBF for 3 days. (F) TEM image of bioactive glass solid fibers after immersion in SBF for 3 days. 

The tube sample was fabricated with injection rates of 1.5 mL/h and 0.05 mL/h for PVP solution 

and mineral oil, respectively. The fiber sample was fabricated with an injection rate of 1.5 mL/h 

for PVP solution.    
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Fig. 4. (A) Elemental analysis via EDX of submicron bioactive glass tubes and fibers after 

immersion in SBF over different periods of time. (B) Ion concentrations in SBF were quantified 

by ICP-AES after incubation with submicron bioactive glass tubes and fibers at different times.  
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Fig. 5. SEM images of submicron bioactive glass tubes (A), after immersion in water for 1 day 

(B); 3 days (C); and 6 days (D). Inset: TEM image showing the surface of tubes. This sample 

was fabricated with injection rates of 1.0 mL/h and 0.05 mL/h for PVP solution and mineral oil, 

respectively. 
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Fig. 6. Representative fluorescence microscopy images showing MC3T3-E1 cell morphology 

after culturing for 3 days on electrospun PCL fibers (A), bioactive glass fibers (B), and bioactive 

glass tubes (C). The F-actin of cells was stained with Alexa Fluor® 488 phalloidin (green), while 

the cell nucleus was stained with 4'-6-Diamidino-2-phenylindole (DAPI) (blue). White arrows 

indicate stress fibers and actin organizations. 
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Fig. 7. Cell proliferation on different substrates quantified by MTT assay.  
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Fig. 8. Fluorescence micrographs showing submicron bioactive glass fibers (A) and tubes (B) 

after adsorption of FITC-BSA.  (C, D) In vitro release of BSA from submicron bioactive glass 

tubes and fibers.  
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Figure 9. Lysozyme bioactivity test (y: absorbance; x: time). ○: linear fit of released lysozyme 
after incubation for 165 minutes, y = -0.0161x + 0.483, R2 = 0.9876; ●: linear fit of native 
lysozyme, y = -0.0177x + 0.5571, R2 = 0.9993. 
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Fig. S1. SAED pattern of bioactive glass nanotubes before (A) and after immersion in SBF for 3 

days (B). 
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Fig. S2. TEM images of bioactive glass nanotubes. (A) The sample was fabricated with injection 

rates of 1 mL/h and 0.05 mL/h for PVP solution and mineral oil, respectively. (B) The sample 

was fabricated with injection rates of 2 mL/h and 0.1 mL/h for PVP solution and mineral oil, 

respectively.  
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