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.is paper investigates the creep groan of a vehicle’s brake experimentally, analytically, and numerically. Experimentally, the effects of
acceleration on caliper and strut, noise, brake pressure, and tension are measured. .e results show that the measured signals and
their relevant spectra broadly capture the complex vibrations of creep groan. .is includes the simple stick-slip, severe stick-slip
vibrations/resonances, multiple harmonics, half-order harmonics; stick-slip-induced impulsive vibrations, steady/unstable vibra-
tions, and their transitions. Analytically, a new mathematical model is presented to capture the unique features of half-order
harmonics and the connections to fundamental stick-slip/resonant frequency and multiple harmonics. .e analytical solution and
the experimental results show that the vibro-impact of the brake pad-disc system can be triggered by severe stick-slip vibrations and is
associated with instable, impulsive stick-slip vibration with wideband. .e induced stick-slip vibro-impact can evolve into a steady
and strong state with half-order, stick-slip fundamental, and multiple-order components. .is new mechanism is different from all
previously proposedmechanisms of creep groan in that we also view some type of creep groan as a stick-slip vibration-induced vibro-
impact phenomenon in addition to conventional stick-slip phenomena..e newmechanism comprehensively explains the complex
experimental phenomena reported in the literature. Numerically, the salient features of phase diagrams of instable stick-slip and
vibro-impact are examined by using a seven-degree-of-freedom brake system model, which shows that the phase diagrams of the
dynamics of creep groan with and without vibro-impact are substantially different. .e phase diagram of the dynamics with vibro-
impact is closer to the experimental results. In contrast to existing mechanisms, the proposed new mechanism encompasses the
instable stick-slip nature of creep groan and elaborates the inherent connections and transition of the spectrogram. .e new
knowledge can be used to attain critical improvements to brake noise and vibration analysis and design. By applying the proposed
new model in addition to existing models, all experimental phenomena in creep groan are elaborated and quantified.

1. Introduction

Noise, vibration, and harshness (NVH) are important fac-
tors for customers’ rating of vehicles. In vehicle brake NVH
problems, creep groan is a specific brake noise that usually
occurs at low wheel speed and low brake pressure [1–5]. .e
range of the vibratory frequency of the creep groan is usually
50 to 500Hz. Due to the dramatic increase in the number of
complaints about brake creep groan, much attention has
recently been paid to this problem in the automotive in-
dustry. To understand the mechanism and find the coun-
termeasures of brake creep groan, much research has been
conducted on vehicles [3–5], brake dynamometers [6–8],

tribometers [9–12], and chassis dynamometers [13]. Creep
groan-related vibrations from the caliper/knuckle could be
transferred to the lower arm and then to the frame front and
the rear MTG to body, or be transferred to the strut and then
to the body, giving rise to an uncomfortable structurally
borne noise. In addition to the brake system, both the
suspension system and driveline system have effects on the
occurrences and features of creep groan [4, 8, 9, 13].

Experimentally, researchers have studied varied creep
groan phenomena and the effects of structural parameters on
creep groan, such as sliding stick-slip [7, 12, 14], torsional
stick-slip of torque [15], tangential or torsional stiffness
[9, 10], and variations of caliper, suspension, chassis, and
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drivelines [12, 13]. .e tribological parameters of pad-disc
interface are also characterized in terms of varied friction
models such as LuGre and the bristle friction law in addition
to the Coulomb and Stribeck model with varied slopes,
magnitudes, and gap of static and dynamic friction co-
efficients [16–23].

Analytically and numerically, different models have
been developed to characterize creep groan. Conven-
tionally, friction oscillator models with a single degree of
freedom (DOF) and two DOFs have been used as a caliper
model with a contact sliding interface to quantify vibra-
tions [17–19]. Usually, two major subsystems are included
in groan analytical models. .e nonrotating substructure
includes the brake, mounting brackets, and suspension
systems. .e rotating structure is the drive train side,
including the rotor, wheel, and tire. In general, all
suspension-type modes could exhibit resonances in the
creep groan range. By considering the components of the
brake and driveline, and even the tire and vehicle mass,
three, four, five, and seven-DOFs models have been used to
investigate varied aspects of brake friction vibrations
[20–22, 24–26]. .e multibody dynamic models of the
chassis corner have also been used [27]. Moreover, finite
element (FE) models of the disc brake for creep groan
analysis have been proposed to quantify creep groan
[28–30]. FEA models have advantages in the calculation of
the interface contact, as well as multiple elastic subsystems,
including pad, caliper, suspension, and driveline systems.
However, FE models of creep groan have not been suc-
cessfully used to elaborate the complex mechanisms of
creep groan, except for evaluating the effects of structural
design change on vibrations. In fact, for this kind of
problem of elastic bulky components connected by rela-
tively compliant parts such as springs, finite element
analysis may not be the most suitable tool for simulating
problems due to their weakness dealing with “weak con-
nections” among different components. Possible ill con-
ditioning due to large differences in the stiffness of varied
components and interconnections can degrade the accu-
racy of the results. Moreover, the modeling of interacting
components in low-frequency events in an elastic model
with huge numbers of elements and nodes is far from
efficient, and the data interpretation is very difficult. As
such, theoretical models with varied DOFs have been used
to classify varied mechanisms and resources of low-
frequency vibrations [31–33].

.e sensing and evaluation of “creep groan” noise has
been a challenge for the NVH community. .e creep groan
is usually not a purely tonal sound, although ultimately it
could generate a tonal subjective perception of users [34].
.e vibrations resulting in creep groan noise have con-
ventionally been considered friction-induced vibrations of
the stick-slip mode, characterized by simple phase diagrams
of velocity and displacement of caliper motions. However,
the recorded vibration usually does not exhibit simple stick-
slip periodic vibration but rather exhibits complex prop-
erties with multiple frequencies, time-varying frequencies,
and their transitions. .e real creep groan has been found to
exhibit complex motions in addition to typical stick-slip

motions, which include single stick-slip, continuous stick-
slip, resonance, varied complex motions, and transitions
[7, 9, 11, 15, 20, 30]. Basically, stick-slip is a sustained
“attach-detach” vibration process that arises via specific
friction properties, specific system elastic properties, and
relative motion [31, 35]. In particular, negative slopes of
friction-velocity curves yield equivalently negative damping
to system dynamic motion and could cause system in-
stability and a self-excited vibration, which are likely locked
in certain natural frequencies or resonances. .e spectral
content of the creep groan usually shows a response at
multiples of a certain fundamental frequency of stick-slip or
its induced resonance. .e stick-slip vibrations may occur at
the 1st, 2nd, or 3rd order of the fundamental frequency
corresponding to the sustained “stick-slip” cycle. .e stick-
slip motions mainly depend on the properties of the me-
chanical system and are also related to different charac-
teristics of the interface friction [36–38]. However, existing
theories and models are unable to explain these phenomena
comprehensively and consistently. For example, in the event
of creep groan, there could be half-order components in
addition to fundamental components corresponding to the
stick-slip repetition frequency and the multiple components
[16, 21, 24, 30]..e root causes of the half-order components
and their transitions with other components have not been
explained. .e inherent connections among fundamental
stick-slip, multiple harmonics, half-order component, res-
onance, impulsive components of wideband, and transitions
have not been explained consistently.

In this study, a vehicle road test of creep groan under the
downhill condition is conducted, and the varied complicated
types of vibrations in creep groans are comprehensively
recorded, which consist of simple stick-slip motion,
continuous/discontinuous stick-slip motions, and sliding/
impulsive motions with varied spectrum signatures from
half-order, fundamental order, multiple orders, time-
varying spectrum transition, and wideband components.
A new mechanism of severe stick-slip motion-induced
vibro-impact is proposed to interpret the occurrence and
the transition of the half-order vibrations, and a theoretical
vibro-impact model with transient pad-disc separation is
applied for the analysis.

Conventionally, the phase diagram of brake vibration
with limit cycles has been used as experimental evidence of
the stick-slip mechanism in creep groan. In this study, the
phase diagram of experimentally recorded brake vibrations
is found to exhibit a complex unsymmetrical pattern. To
characterize this, a seven-DOFs model with and without
vibro-impact effect were used for simulations to derive
phase diagrams, which showed that only the model with the
vibro-impact effect gives rise to an unsymmetrical phase
diagram.

Creep groan has been investigated widely, and many
mechanisms have been proposed in the last two decades. In
contrast to all of these existing mechanisms, the proposed new
mechanism can encompass the transient vibro-impact nature
of a braking process, which is different from conventional
excitation resources such as periodic torque, stick-slip, neg-
ative friction-velocity gradient, and resonance. .e severe
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stick-slip vibration-induced interface separation gives rise to
unique vibrational features of vibro-impact, such as half-order
components. .is mechanism is different from all previously
proposed mechanisms in that we also view severe creep groan
as a stick-slip-caused vibro-impact phenomenon in addition to
conventional stick-slip phenomena. .is research offers some
insights to guide the analysis of brake creep groan.

2. Vehicle Brake System and Experiments

2.1. Experimental Test Setup. Based on our existing un-
derstanding, when creep groan occurs, the vehicle-driving
force does not necessarily come from the engine. .is may
come from the inertia force when the vehicle is downhill. In
most existing research, the vehicle tests were conducted on
horizontal road when the engine was running. .e engine
could induce some extra vibration in the suspension, which
aggravates the complexity of creep groan motion. To reduce
the effect of the engine, in this study, a vehicle road test of
creep groan was conducted under a downhill vehicle con-
dition. In the experiment, an A-class car is used, which is
equipped with six-speed automatic transmission and has
McPherson suspension in front and torsion beam suspen-
sion in the rear. .e total mass of the vehicle is 1431 kg,
including two passengers in the front seats.

.e vehicle is put on a ramp road with a slope of 10%..e
driver presses the brake pedal and starts the engine, releases the
handbrake and hangs in the N gear, and finally releases brake
pedal slowly until the vehicle starts to move.When creep groan
occurs, the brake pressure is maintained to prevent creep groan
from occurring, if possible.

2.2. Measurement Instrumentation. Two triaxial acceler-
ometers are mounted at the piston side of the caliper and
suspension strut, respectively. To induce the effect of added
mass by vibration transducer and its attachment the mass of
one vibration transducer is less than 5 g, and each vibration
transducer is stuck to the surface of the caliper and strut using
a 454 instant adhesive. .e X, Y, and Z directions of the
accelerometer on the caliper are aligned to be the tangential,
radial, and axial directions of the disc, respectively. An oil
pressure sensor connecting the brake tube with a hose is used
to measure the brake pressure. .ese sensors are arranged in
the front left chassis corner of the car, as shown in Figure 1.
.e sampling frequency of the vibration signal is 5120Hz.

2.3. Experimental Results. Existing research has found that
the specific stick-slip vibrations of brake calipers are the
index of the occurrence of groan and have a good corre-
lation with the subjective rating of creep groan noise. In this
study, all kinds of caliper vibrations associated with creep
groan noise are recorded in the test and analyzed using
advanced methods. Figure 2 shows the time history of
typical oil pressure and the vibration accelerations and
spectrograms of calipers recorded while severe creep
groan occurs. Before severe creep groan occurs, simple stick-
slip motions were recorded, which are quasi-harmonic vi-
brations. .e accelerations in all directions are consistent,

except that acceleration in the X direction is larger than that
in the other two directions. .e result of short-time Fourier-
transform or spectrogram of clipper acceleration in the X
direction is shown in Figure 2(e). Because the interior noise
of creep groan occurs within 500Hz, the vibration frequency
is analyzed up to 500Hz in Figure 2(e). As shown in Figure 2,
when the brake pressure drops to 8 bar, creep groan lasts for
approximately 18 s. According to the characteristics of ac-
celeration in the X direction, the whole process is divided
into seven stages, which are respectively named A to G in
Figures 2(b)–2(d). As seen, the characteristics of caliper
acceleration in amplitude and frequency evolve complexly
with time when creep groan occurs.

.e accelerations in stages B and F have smaller am-
plitudes than the other stages (A, C, D, and E) and exhibit
simple and clear harmonics that correspond to fundamental
periodic stick-slip motions (approximately 90Hz) and
multiple harmonic components. .is type of regular stick-
slip has been widely studied and reported in existing re-
search. .is kind of severe vibration is likely to be a systemsʼ
resonance in which the stick-slip frequency is close or equal
to the specific natural frequency of the system.

.e accelerations in stages A, C, and E have relatively
larger amplitudes and are half-order of the fundamental
periodic stick-slip motions (approximately 45Hz), wideband
components and transitions, in addition to the fundamental
components (approximately 90Hz) and multiple compo-
nents. .is indicates that stick-slip motions have evolved into
unstable motions and triggered impulsive effects.

.e accelerations in stage D have the largest amplitudes
and clearly have half-order fundamental periodic stick-slip
motions (approximately 45Hz), fundamental components
(approximately 90Hz), and their multiple components. .is
suggests that steady, strong, and periodic impulsive vibra-
tions were formed by the severe stick-slip motion.

Table 1 shows the recorded tension in the experiments.
When creep groan occurs, the tension varies obviously. .e
maximum and minimum of the tension variation, respectively,
correspond to the maximum static friction force and dynamic
friction force. Based on the radius of the piston, equivalent
brake radius, level arm, and recorded tension, the friction
coefficients are calculated and shown in Figure 3.

3. New Model of Vibro-Impact for
Mechanism of Instable Stick-Slip in
Creep Groan

Various stick-slip vibration models of brake creep groan
have been developed, and these models can generally be
classified into two categories: one is the tangential vibra-
tion model, and the other is the torsional vibration model.
Some research has also considered both the tangential and
torsional vibrations of the brake system in creep groan..is
work quantified the influence of system parameters such as
speed and friction properties on tangential and torsional
stick-slip vibrations. .e existing models for characterizing
creep groan have been focused on the sliding motion be-
tween the pad and disc and the associated vibrations of
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Figure 2: Test results: (a) time history of oil pressure; (b) X-acceleration of caliper; (c) Y-acceleration of caliper; (d) Z-acceleration of caliper;
(e) spectrogram of caliper X-acceleration.

(a) (b)

Tension sensor

(c)

Figure 1: Sensors used to test brake creep groan: (a) accelerometer at strut and oil pressure sensor; (b) accelerometer at caliper; (c) tension
sensor.
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suspension and driveline systems [20, 21, 30]. However, the
instable stick-slips and complex features such as half-order
harmonics observed in the last decade have not been
explained using existing models [16, 21, 24, 30]. To inter-
pret the system complex motions in creep groan recorded
in stages A, C, D, and E in Figure 2, we propose the fol-
lowing mechanism, noting that during the whole creep
groan process, the oil pressure and speed remain constant
or change slightly. In stages B and F, the strong system
stick-slip vibrations and possibly the resonance of some
suspension subsystems are steadily established and are
characterized by the fundamental frequency approximately
90Hz and their multiple harmonics (e.g., approximately
180Hz or 270Hz). �e similar phenomena of severe stick-
slip vibrations/resonance have been reported in many
existing reports. �is critical state of both severe vibrations
and low oil pressure on the pad is likely to further cause the
transient separation of the pad-disc interface, which leads
to vibro-impact vibrations in stage C (similarly A and E).
�e triggered vibro-impacts exaggerate the vibrations and
possess a half-order component of 45Hz and multiple
components. At the same time, the interface separation/
close and vibro-impact cause unstable impulsive excitation
of the system, leading to the vibrations with a wideband
spectrum.

�is composite e�ect allows vibrations in stage C that are
stronger than those in stage B. �e system’s stick-slip vi-
brations and the induced instable vibro-impact gradually
evolve into a steady state denoted as stage D, which has
clearer periodic signature and larger amplitudes. Since the
whole process is unstable, the vibration instability or slight
changes in oil pressure or speed could allow the system to
further evolve into stage E (similar to stage C) and �nally
change to stage F (similar to stage B).

To further quantify this mechanism, we propose the
following analytical model. Figure 4 shows the schematic

model of the pad-disc interface of an idealized brake. In
contrast to all existing studies focusing on sliding and
torsional vibrations, we consider the critical vibrations
vertical to the sliding surface, which are likely triggered
when the system enters the severe stick-slip vibrations/
resonance with speci�c fundamental stick-slip/resonance
frequency ω (stage B, ω � 90 Hz).

Consider the idealized vertical vibration equation of the
pad/disk for the contact/separation event or vibro-impact
e�ect due to severe stick-slip vibration with speci�c fun-
damental stick-slip/resonant frequency ω,

m€y + k + kc( )y � F cosωt, y<yc,

m€y + ky � F cosωt, y≥yc,
(1)

in which ω could be speci�c stick-slip fundamental fre-
quency or some stick-slip-induced resonant frequency of
subsystems such as suspension; y is the pad displacement in
the direction perpendicular to the disc; yc could be assumed
to be the root mean square of the roughness of interface; k is
the sti�ness of the pad-caliper system; kc is the contact
sti�ness of the pad-disk interface, which consists of solid
body sti�ness and surface roughness sti�ness characterized
by elasticity and the Hertz contact model; and m is the mass
of the pad. �e vibro-impact could occur after severe stick-
slip is established. �e simple and severe stick-slips in the
brake system have been widely characterized in existing
research and will not be proceeded here. �e stick-slip
fundamental frequency of the system is the speci�c exci-
tation frequency to vibro-impact motion. Equation (1) is a

Table 1: Friction coe�cient under 8 bar oil pressure.

Times 1 2 3 4 5 6 Average Standard deviation
Oil pressure (bar) 7.67 7.67 7.65 7.66 7.65 7.65 7.66 0.0095
Maximum of tension (N) 388.29 391.04 382.42 393.20 387.95 398.53 390.24 5.45
Minimum of tension (N) 351.41 356.03 359.30 360.47 354.13 358.50 356.64 3.44
Static friction coe�cient 0.3987 0.4014 0.3936 0.4041 0.3991 0.4102 0.4012 0.0056
Dynamic friction coe�cient 0.3608 0.3654 0.3698 0.3705 0.3643 0.3690 0.3666 0.0038
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Figure 4: Schematic model of pad-disk interface of an idealized
brake.
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strong nonlinear equation, and the solutions can be derived
as follows:

(a) Primary resonant solutions:

y �
2F

ω2
2 −ω2

1( m(2Δ + 1)
+

3F

4ω2m(2Δ + 1)2
 sinωt

−
πF

2ω2m(2Δ + 1)
cosωt +

F

πω2m(2Δ + 1)

· 
∞

n�1,3,5

cos(n− 1)ωt− cos(n + 1)ωt

n
−

F(ωt− π)

πω2m(2Δ + 1)

· 
∞

n�1,3,5

sin(n− 1)ωt + sin(n + 1)ωt

n
,

(2)

inwhichω1 �
����
k/m

√
,ω2 �

���������
(k + kc)/m


,ω0 � 2ω1ω2/

(ω1 + ω2), α0 � πω0/(2ω1), β0 � π(1− (ω2/ω1))/2,
and Δ � (ω2

1 −ω2)/(ω2
2 −ω2

1).
(b) Superharmonic solutions:

When the system natural frequency is close to the
multiple times for the specific excitation frequency,
multiple harmonics are excited:

y �
F 2n2ω2 −ω2 −ω2

1( 

m n2 − 1( )
2ω4

sinωt

+
2F ω2

2 −ω2
1( 

πm n2 − 1( )
2 ω2

1 − n2ω2( ω2
cosωt

− 

∞

n�2,3,4

2F ω2
2 −ω2

1( 

πm n2 − 1( )
2 ω2

1 − n2ω2( ω2
cos nωt.

(3)

.is could be attributed to the periodic effect of
stick-slip excitation, which in principle can be de-
veloped into multiple harmonics by using the
Fourier series concept.

(c) Subharmonic solutions:
When a certain system natural frequency is close to
half the specific excitation frequency, the half-order
component (frequency is half of the specific exci-
tation frequency) can be excited:

y �
4lF

π2mω1 l2 − 1( ) ω− lω1( 

· 
∞

n�1,3,5

cos[((n + 1)ωt)/l]− cos[((n− 1)ωt)/l]
n

,

l � 2, 4, 6, . . ..

(4)

.is solution consists of a dominant component, which
is a half-order component with frequency equal to half of the
specific stick-slip fundamental frequency, ω/2. Notably, this

kind of specific response also contains multiple harmonics of
the half-order.

.e above analysis suggests that if systems’ vertical
natural frequency is close to the specific excitation frequency
(from stick-slip motion) or close to the multiple order or half
order of the specific excitation frequency, the system will
experience larger vibrations, which correspond to primary,
superharmonic, or subharmonic resonance. Notably, all
existing stick-slip models of creep groan including the most
recently developed ones with a varied friction model are
unable to predict this half-order feature.

.is analytical result also explains the generation and
transition between half order and fundamental order and
multiple orders..e vibrations associated with the half order
in vibro-impact exaggerate the severe stick-slip vibrations.
When the severe stick-slips are high enough and close to a
certain threshold, the vibro-impacts could be triggered,
making the vibrations more severe. .e triggered vibro-
impact could evolve from an unstable state into a steady
state, or deteriorate back to pure-type stick-slip motion
without interface separation.

Moreover, the unstable vibro-impact tends to impart
random impulsive excitations to the system, which
allows system vibrations to exhibit wideband spectrum
features.

By integrating the above theoretical observations in-
cluding stick-slip vibration/system resonance, the induced
vibro-impact vibrations, and the relevant impulsive effects,
the major spectral signatures and transitions in Figure 2(c)
can be fully understood and explained.

4. Characterization of Phase Diagrams of
Creep Groan with and without
Vibro-Impact

Creep groan is generally caused by stick-slip motion
between the disc and pads as a self-excited vibration of the
brake assembly. .e phase diagrams are widely used to
characterize creep groan. .e phase diagram of caliper
acceleration with a limit cycle has been considered the first
experimental evidence of creep groan and stick-slip/
friction-induced vibrations. .is section will further
quantify the phase diagrams of creep groan dynamics
based on experiments and numerical analysis of a system
model with and without vibro-impact. To this end, a
multiple-DOFs model is used, and real measured friction
data are used in the simulation to minimize the effects
from other factors.

Creep groan is generally caused by the stick-slip motion
between discs. .e phase diagrams with the limit cycles of
brake calipers have been used as the first experimental ev-
idence of the stick-slip mechanism of creep groan. In this
section, we employ the experimental data for friction to
simulate a seven-DOFmodel, as shown in Figure 5, with and
without vibro-impacts.

.e parameters are summarized in Table 2, which is
slightly different from the previous seven-DOF model [26]:
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k1 � k1dx � k2dx,
c1 � c1dx � c2dx,
k2 � k1cy � k2cy,

c2 � c1cy � c2cy,

k3 � k1cx � k2cx,
c3 � c1x � c2x,
k4 � kdx,
c4 � cdx,
k5 � kcx,
c5 � ccx,
c6 � ccy,

F � 1000N,

Ff1 � Ff2 � μsF.

(5)

In the following analysis, a nonlinear vibro-impact, or
the separation e�ect between the disc and pad in a brake, is
considered. In the dynamic model, a spring and a damper
are modeled between the mass of the disc and two pads.
When each part in the brake model starts to oscillate, there is
a severe condition in which the surfaces of disc and pads lose
contact and separate. �e motion equation of the system is
given as follows:

mc €xc � −ccx _xc + c2cx _x2 − _xc( )− c1cx _xc − _x1( )− kcxxc
+ k2cx x2 −xc( )− k1cx xc −x1( ),

mc €yc � −ccy _yc + c2cy _y2 − _yc( )− c1cy _y1 −yc( )− kcyyc
+ k2cy y2 −yc( )− k1cy y1 −yc( ),

md €xd � −cd _xd + S δx2( )c2dx _x2 − _xd( )− S δx1( )c1dx _xd − _x1( )
− kdxd + S δx2( )k2dx x2 −xd( )− S δx1( )k1dx xd −x1( ),

m1 €x1 � −F + S δx1( )c1dx _xd − _x1( ) + c1cx _xc − _x1( )
+ S δx1( )k1dx xd −x1( ) + k1cx xc −x1( ),

m1 €y1 � −S δx1( )Ff1 − c1cy _y1 − _yc( )− k1cy y1 −yc( ),
m2 €x2 � F− S δx2( )c2dx _x2 − _xd( )− c2cx _x2 − _xc( )

− S δx2( )k2dx x2 −xd( )− k2cx x2 −xc( ),
m2 €y2 � S δx2( )Ff2 − c2cy _y2 − _yc( )− k2cy y2 −yc( ),

(6)

in which S(δxi)(i � 1, 2) is a piecewise linear function. �is
piecewise linear function de�nes the contact loss between
the brake disc and pad as follows:

S δxi( ) �
1, δxi <Li,

0, δxi >Li,
{ (7)

in which Li represents the free length of the equilibrium
spring between disc and pad. Since S(δxi) is a discontinuous
function, we need a smooth function to approximate it
perfectly. �us, we employ a continuous function with a
smooth factor σ:

S δxi( ) �
1
2
− tanh

σ δxi
∣∣∣∣
∣∣∣∣− Li( )( )
2

, (8)

where σ is often a large positive number. Figure 6 shows the
e�ects of a smooth function with di�erent values of σ.

As seen in Figure 6, the approximation tends to converge
when σ � 1000. Because the results are sensitive to the in-
terface separation approximation, we use a value of σ � 106
for the simulation.

Figure 7 shows the phase diagrams from simulations and
experiments. Figure 7(a) shows simulation results for the

Knuckle

Caliper

Piston

Disc

Brake pad

Brake fluid

(a)

mc

c2cx c1cxc1dx

c2cy c1cy

ccy

ccx

c2dx

cdx

k2cx k1cxk2dx

kdx

k1dx

k2cy k1cy

kcy

kcx

m2 m1md

v0

F F

Y

X

(b)

Figure 5: Schematic of �xed-caliper disc brake (a) and seven-DOF model (b) [26].

Table 2: Parameters used in system model of �xed-caliper disc
brake.

Mass Value (kg) Sti�ness Value
(N·m−1) Damping Value

(N·s·m−1)
m1 0.35 k1 1.5× 105 c1 6.5
m2 0.35 k2 7.5× 105 c2 30
mc 5.56 k3 7.5× 105 c3 19.5
md 7.04 k4 1.0× 106 c4 40

k5 1.5× 106 c5 50
k6 1.5× 106 c6 50
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brake model without contact loss. Figure 7(b) shows the
simulation results for the brake model with contact loss.
Figure 7(c) is the phase diagram evaluated from measured
vibration data in stage C in Figure 2(b).

Phase diagrams have been used to judge whether the
behaviors of the dynamical system are cyclic. Generally, if
the phase plane trajectory is a limit cycle, the system is cyclic;
if the phase plane trajectory forms a ring belt area, the system

σ = 1000
σ = 100
σ = 10

S 
(δ
x i)

 |δxi| – Li
0.40.30.20.10 0.5 0.6 0.7 0.8 0.9 1

0
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0.4

0.6

0.8

1

(a)

σ = 10e6
σ = 10e5

σ = 10e4
σ = 1000

 |δxi| – Li
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(δ
x i)
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0.6

0.8

1

–1.5 –1 –0.5 0 0.5 1 1.5
×10–3

(b)

Figure 6: Approximating e�ects for various values of σ.
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Figure 7: Phase diagrams: (a) simulation results for brake model without contact loss; (b) simulation results for brake model with contact
loss; (c) phase diagram evaluated from measured vibration data in stage C in Figure 2(b).

8 Shock and Vibration



is quasi-periodic, and if the phase diagram is distributed
within an area of the phase plane and not clear, the system
behaviors could be random or even chaotic.

As seen in Figure 7, the simulation results of the brake
model with interface separation or vibro-impact (Figure 7(b))
exhibit a much more irregular trend than the case without
vibro-impact (Figure 7(a)). .is suggests that the irregularity
is increased by vibro-impact effects. Moreover, compared
with Figures 7(a) and 7(b) more closely resembles the ex-
perimental results shown in Figure 7(c), which exhibits the
unsymmetrical “fingerprints” in the phase diagram.

.e phase diagram of the system with vibro-impact
(Figure 7(b)) exhibits random close loops with multiple
sharp corners and exhibits transition from the half order to
integer order with an unsymmetrical signature, which are
closer to the measured results (Figure 7(c)). Pure stick-slip
vibrations, in contrast, exhibit a fixed phase diagram with
relatively fixed signature.

5. Conclusions

.rough experimental, analytical, and numerical in-
vestigations of creep groan vibrations of vehicle brake, we
can draw the following conclusions:

(1) .e experimental results comprehensively exhibit
varied vibrations in creep groan phenomena, which
include simple stick-slip, stick-slip resonance,
instable/sliding/impulsive stick-slip, stick-slip-
induced vibro-impacts, and their back-and-forth
transitions.

(2) In contrast to conventional theories of creep groan,
which comprehensively characterized the simple
stick-slip, sliding stick-slip, stick-slip-induced reso-
nances of suspension systems, we develop a new
mechanism and analytical model of creep groan, and
stick-slip-induced vibro-impacts, which quantita-
tively explain the existence of half-order harmonics
and its transitions to a stick-slip fundamental
frequency.

(3) .e severe stick-slip vibration-induced vibro-impact
vibrations are unstable and could be triggered when
stable stick-slip vibration is strong enough and could
deteriorate back to pure, stable stick-slip vibrations
without vibro-impact. .e transitions have inherent
connections with clear trend patterns of increase or
decrease in specific frequencies in the spectrogram,
which are also accompanied by a wideband spectrum
due to the random impulsive effect in the unstable
transition. .e varied vibrations associated with
creep groan are not irrelevant but rather have reg-
ularity and internal relationships.

(4) Based on numerical simulations, the phase diagrams
of the dynamics of brake creep groan have different
patterns for cases with and without vibro-impacts.
.e irregularity of the phase diagram is increased by
the vibro-impact effect, which is more similar to the
experimental phase diagram.
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[23] X. Zhao, N. Gräbner, and U. von Wagner, “Experimental and
theoretical investigation of creep groan of brakes through
minimal models,” Pamm, vol. 16, no. 1, pp. 295-296, 2016.

[24] Z. Fuadi, K. Adachi, H. Ikeda, H. Naito, and K. Kato, “Ex-
perimental model for creep groan analysis,” Lubrication
Science, vol. 21, no. 1, pp. 27–40, 2009.

[25] L. Zhang, P. Zhang, and D. Meng, “Tests and theoretical
analysis of creep groan in vehicle disc brake,” Automotive
Engineering, vol. 38, no. 9, pp. 1132–1139, 2016.

[26] S. Hu and Y. Liu, “Disc brake vibration model based on
Stribeck effect and its characteristics under different braking
conditions,”Mathematical Problems in Engineering, vol. 2017,
pp. 1–13, 2017.

[27] M. Donley and D. Riesland, “Brake groan simulation for a
mcpherson strut type suspension,” SAE Technical Paper Se-
ries, 2003.

[28] K. Uchiyama and Y. Shishido, “Study of creep groan simu-
lation by implicit dynamic analysis method of FEA (Part 2),”
SAE Technical Paper Series, 2014.

[29] K. Uchiyama and Y. Shishido, “Study of creep groan simu-
lation by implicit dynamic analysis method of FEA (Part 3),”
SAE Technical Paper Series, 2015.

[30] D. Meng, L. Zhang, J. Xu, and Z. Yu, “A transient dynamic
model of brake corner and subsystems for brake creep groan
analysis,” Shock and Vibration, vol. 2017, Article ID 8020797,
18 pages, 2017.

[31] Z. Li, H. Ouyang, and Z. Guan, “Friction-induced vibration
of an elastic disc and a moving slider with separation and

reattachment,” Nonlinear Dynamics, vol. 87, no. 2, pp. 1045–
1067, 2017.

[32] M. Stender, M. Tiedemann, N. Hoffmann, and S. Oberst,
“Impact of an irregular friction formulation on dynamics of a
minimal model for brake squeal,” Mechanical Systems and
Signal Processing, vol. 107, pp. 439–451, 2018.

[33] A. Mercier, L. Jezequel, S. Besset, A. Hamdi, and J.-F. Diebold,
“Nonlinear analysis of the friction-induced vibrations of a
rotor-stator system,” Journal of Sound and Vibration, vol. 443,
pp. 483–501, 2019.

[34] M. Abdelhamid and W. Bray, “Braking systems creep groan
noise: detection and evaluation,” SAE Technical Paper Series,
2009.

[35] X. Sui and Q. Ding, “Instability and stochastic analyses of a
pad-on-disc frictional system in moving interactions,” Non-
linear Dynamics, vol. 93, no. 3, pp. 1619–1634, 2018.

[36] N. Gaus, C. Proppe, and C. Zaccardi, “Modeling of dynamical
systems with friction between randomly rough surfaces,”
Probabilistic Engineering Mechanics, vol. 54, pp. 82–86, 2018.

[37] D. Tonazzi, F. Massi, L. Baillet, J. Brunetti, and Y. Berthier,
“Interaction between contact behaviour and vibrational re-
sponse for dry contact system,” Mechanical Systems and
Signal Processing, vol. 110, pp. 110–121, 2018.

[38] G. Lacerra, M. Di Bartolomeo, S. Milana, L. Baillet,
E. Chatelet, and F. Massi, “Validation of a new frictional law
for simulating friction-induced vibrations of rough surfaces,”
Tribology International, vol. 121, pp. 468–480, 2018.

10 Shock and Vibration



International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive  
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and 
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in 

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

	Sensing and Quantifying a New Mechanism for Vehicle Brake Creep Groan
	Recommended Citation

	tmp.1606251434.pdf.CPSp2

