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Abstract

In this work, an attempt is made to apply the Local Lagged Adapted Generalized Method of Moments (LLGMM)

to estimate state and parameters in stochastic differential dynamic models. The development of LLGMM is mo-

tivated by parameter and state estimation problems in continuous-time nonlinear and non-stationary stochastic dy-

namic model validation problems in biological, chemical, engineering, energy commodity markets, financial, med-

ical, physical and social sciences. The byproducts of this innovative approach (LLGMM) are the balance between

model specification and model prescription of continuous-time dynamic process and the development of discrete-time

interconnected dynamic model of local sample mean and variance statistic process (DTIDMLSMVSP). Moreover,

LLGMM is a dynamic non-parametric method. The DTIDMLSMVSP is an alternative approach to the GARCH (1,1)

model, and it provides an iterative scheme for updating statistic coefficients in a system of generalized method of

moment/observation equation. Furthermore, applications of LLGMM to energy commodities price, U.S. Treasury

Bill interest rate and the U.S.-U.K. foreign exchange rate data strongly exhibit its unique role, scope and performance,

in particular, in forecasting and confidence-interval problems in applied statistics.
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1. Introduction

For the past 40 years, researchers [3, 9, 11, 15, 17, 18, 19, 42, 31, 32, 35, 36, 38, 39, 40, 41] have given a lot

of attention to estimating continuous-time dynamic models from discrete time data sets. The Generalized Method of

Moments (GMM) developed by Hansen [17] and its extensions [11, 18, 19] have played a significant role in literature

related to the parameter and state estimation problems in linear and nonlinear stochastic dynamic processes.

Most of the existing parameter and state estimation techniques are centered around the usage of either overall data

sets [11, 18, 19], batched data sets [7], or local data sets [39] drawn on an interval of finite length T . This leads to an

overall parameter estimate on the interval.

In this paper, recently developed method referred to as an innovative method, called the ”Local Lagged Adapted

Generalized Method of Moments” (LLGMM) [30] is used to estimate state and parameters in stochastic differential

dynamic models. The LLGMM approach [30] is composed of seven interconnected components: (1) development

of stochastic mathematical model of continuous time dynamic process [23, 24], (2) development of the discrete-time

interconnected dynamic model for statistic process, (3) utilizing the Euler-type discretized scheme [21] for nonlinear

and non-stationary system of stochastic differential equations (1), (4) employing lagged adaptive expectation process

[33] for developing generalized method of moment/observation equations, (5) introduction of the conceptual and

computational parameter estimation problem, (6) formulation of the conceptual and computational state simulation

scheme and (7) defining the mean square ε-sub-optimal procedure.

In fact, the LLGMM approach [30] is also applicable to apparently different dynamic processes that are in actuality

conceptually similar dynamic processes in biological, chemical, engineering, financial, medical, physical and social

sciences. Moreover, one of the goals of the parameter and state estimation problems is for model validation rather

than model misspecification [11]. For the continuous-time dynamic model validation, we utilize existing real world

data. The real world time varying data is drawn/recorded at discrete-time on a time interval of finite length. Because

of this, instead of using existing econometric specification/Euler-type numerical scheme, we construct the stochastic

numerical approximation scheme [21] using continuous time stochastic differential equations. In real world dynamic

modeling problems [23, 24, 25, 33, 34], future states of continuous time dynamic processes are influenced by the past

state history. This is due to the influence of response/reaction time delay processes [25, 29, 30, 33]. The influence

of state history, the concept of lagged adaptive expectation process [33], and the idea of a moving average [20] are

incorporated in the development of the DTIDMLSMVSP (we refer readers to Lemma 2.1 of [30]). The presented

approach is more suitable and robust for forecasting problems than existing methods. It also provides upper and lower

bounds for the forecasted state of the system. Moreover, its computational aspect is a nested ”two scale hierarchic”

quadratic mean-square optimization process whereas the existing GMM and its extensions are ”single-shot”.
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The organization of this paper is as follows.

In Section 2, we utilize the theoretical components (1)-(7) of the LLGMM method. For easy reference, we con-

struct a local observation system from nonlinear stochastic functional differential equations. This is based on the

Itô-Doob stochastic differential formula, Euler-type numerical scheme in the context of the original stochastic sys-

tems of differential equations and the given data. In addition, we briefly outline a procedure to estimate the state and

parameters, locally. Using the LLGMM components (2), (3) and (4), conceptual computational iterative scheme, state

and parameter estimation scheme, the simulation processes are coordinated with a real world data process in Section

3. This has led to generate the following concepts: (a) local admissible set of lagged sample/data/ observation size,

(b) local class of admissible lagged-adapted finite sequence of conditional sample/data, (c) local admissible sequence

of parameter estimates and corresponding admissible sequence of simulated values, (d) ε-best sub-optimal admissible

subset of set of mk-size local conditional samples at time tk in (a), (e) ε-sub-optimal lagged-adapted finite sequence

of conditional sample/data, and (f) finally, the ε-best sub-optimal parameter estimates and simulated value at time tk

for k = 1, 2, ...,N. These are summarized in Section 3 in a systematic way. Moreover, the local lagged adaptive pro-

cess and DTIDMLSMVSP generate a finite chain of discrete-time admissible sets/sub-data and a corresponding chain

described by the simulation algorithm. Furthermore, in Section 4, the usefulness of the conceptual computational

LLGMM algorithm is illustrated by applying the algorithm to energy commodity’s price, U.S. Treasury Bill interest

rate and the U.S.-U.K. foreign exchange rate data for the state and parameter estimation problems. The graphical,

simulation and statistical results as well as the goodness-of-fit measures are also outlined. In Section 5, the LLGMM

is applied to investigate the forecasting and confidence-interval problems in applied statistics. The presented results

show the long-run prediction exhibiting a degree of confidence. Moreover, it exhibits a wider role and scope to play in

the 21st century. Because of the knowledge of nanotechnology coupled with the usage of advancements in electronic

communication systems/tools which exhibit that almost everything is dynamic, highly nonlinear, non-stationary and

operating under endogenous and exogenous processes, a multitude of applications of the proposed model exists. A

few by-products of LLGMM namely: (a) the development of the second component, DTIDMLSMVSP and its com-

ponent with the GARCH as well as Ex Post Volatility work in Section 6, (b) the Aggregated Generalized Method of

Moments(AGMM) (described in Section 7 and Appendix Appendix B) and (c) Orthogonal Condition Based Gener-

alized Method of Moments (OCBGMM-Analytic) are compared in Section 7. Using the average of locally estimated

parameters in LLGMM, an aggregated generalized method of moment (AGMM) is also developed and applied to six

data sets in Appendix B. In fact, in Section 7, we summarize a comparative study between LLGMM and the existing

parametric OCBGMM techniques. The details are outlined in Appendix C. The LLGMM method exhibits superior

performance to the existing and newly developed OCBGMM methods. The LLGMM method is independent and
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dynamic. On the other hand, the OCBGMM method is highly dependent and static.

2. Theoretical Parametric Estimation Procedure

In this section, for the sake of completeness and easy reference, we outline the theoretical components (1), (3) and

(4) of the LLGMM [30]. The outline is based on a mathematically rigorous theoretical state and parameter estimation

procedure for any general continuous-time nonlinear and non-stationary stochastic dynamic model described by a

system of stochastic differential equations [24]. As stated before, this work is not only motivated by the continuous-

time dynamic model validation problem [29, 30] in the context of real data energy commodities, but also motivated

by any continuous-time nonlinear and non-stationary stochastic dynamic model validation problems in biological,

chemical, engineering, financial, medical, physical and social sciences. For the sake of comparison of the presented

results, we also sketch the existing OCBGMM procedure [9, 10, 18, 19] that uses the entire time series data set for

single-shot parameter and state estimates. It lacks the usage of Itô-Doob calculus, properties of stochastic differential

equations and its connectivity with the usage of econometric specification based discretization scheme, orthogonality

conditional vector and the quadratic form.

We consider a general system of stochastic differential equations under the influence of hereditary effects in both

the drift and diffusion coefficients described by

dy = f(t, yt)dt + σ(t, yt)dW(t), yt0 = ϕ0, (2.1)

where yt(θ) = y(t + θ), θ ∈ [−τ, 0], f, σ : [0,T ] × C → <q are Lipschitz continuous bounded functionals; C is a

Banach space of continuous functions defined on [−τ, 0] into<q equipped with the supremum norm; W(t) is standard

Wiener process defined on a complete filtered probability space (Ω,F , (Ft)t≥0,P); ϕ0 ∈ C, and y0(t0 + θ) is (F )t0

measurables; the filtration function (Ft)t≥0 is right-continuous, and each Ft with t ≥ t0 contains all P-null events in F ;

the solution process y(t0,ϕ0)(t) of (2.1) is adapted and non-anticipating with respect to (F )t≥0.

2.1. Transformation of System of Stochastic Differential Equations (2.1) [30]

Let V ∈ C[[−τ,∞] × <q,<m], and its partial derivatives Vt, ∂V
∂y , ∂2V

∂y2 exist and continuous. We apply Itô-Doob

stochastic differential formula [24] to V and obtain

dV(t, y) = LV(t, y, yt)dt + Vy(t, y)σ(t, yt)dW(t), (2.2)
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where the L operator is defined by


LV(t, y, yt) = Vt(t, y) + Vy(t, y)f(t, yt) + 1

2 tr(Vyy(t, y)b(t, yt)),

b(t, yt) = σ(t, yt)σ
T (t, yt).

(2.3)

2.2. Euler-type Discretization Scheme for (2.1) and (2.2) [30]

For (2.1) and (2.2), we present the Euler-type discretization scheme [21]:


∆yi = f(ti−1, yti−1

)∆ti + σ(ti−1, yti−1
)∆W(ti),

∆V(ti, y(ti)) = LV(ti−1, y(ti), yti−1
)∆ti + Vy(ti−1, y(ti−1))σ(ti−1, yti−1

)∆W(ti), i = 1, 2, ..., n.
(2.4)

Define Fti−1 ≡ Fi−1 as the filtration process up to time ti−1.

2.3. Formation of Generalized Moment Equations From (2.4)

With regard to the continuous time dynamic system (2.1) and its transformed system (2.2), the more general

moments of ∆y(ti) are as follows:



E
[
∆y(ti)|Fi−1

]
= f(ti−1, yti−1

)∆ti,

E
[(

∆y(ti) − E
[
∆y(ti)|Fi−1

]) (
∆y(ti) − E

[
∆y(ti)|Fi−1

])T
|Fi−1

]
= σ(ti−1, yti−1

)σT (ti−1, yti−1
)∆ti,

E
[
∆V(ti, y(ti))|Fi−1

]
= LV(ti−1, y(ti), yti−1

)∆ti,

E
[(

∆V(ti, y(ti)) − E
[
∆V(ti, y(ti))|Fi−1

]) (
∆V(ti, y(ti)) − E

[
∆V(ti, y(ti))|Fi−1

])T
|Fi−1

]
= B(ti−1, y(ti−1), yti−1

),
(2.5)

where B(ti−1, y(ti−1), yti−1
) = Vy(ti−1, y(ti−1))b(ti−1, yti−1

)Vy(ti−1, y(ti−1))T ∆ti, and T is the transpose of the matrix.

2.4. Basis for Local Lagged Adaptive Discrete-time Expectation Process

For i = 1, 2, ..., n, it follows from (2.4) and (2.5) that


∆yi = E

[
∆y(ti)|Fi−1

]
+ σ(ti−1, yti−1

)∆W(ti),

∆V(ti, y(ti)) = E
[
∆V(ti, y(ti))|Fi−1

]
+ Vy(ti−1, y(ti−1))σ(ti−1, yti−1

)∆W(ti), i = 1, 2, ..., n.
(2.6)

This provides the basis for the development of the concept of lagged adaptive expectation process [33] with

respect to continuous time stochastic dynamic systems (2.1) and (2.2). This indeed leads to a formulation of mk-local

generalized method of moments at time tk.
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2.5. Block Orthogonality Condition Vector for (2.1) and (2.2) [30]

From (2.6), we note that one can define a block vector of orthogonality condition [10] as

H(ti−1, y(ti), y(ti−1)) =

 ∆y(ti) − f(ti−1, y(ti−1))∆ti

∆V(ti−1, y(ti)) − LV(ti−1, y(ti−1, yti−1
))∆ti

 . (2.7)

Remark 2.1. Using the LLGMM method described in [30], we attempt to estimate the state and parameters of the

stochastic differential dynamic model of the type (2.1). This involves the construction of Euler-type discretization

scheme for (2.1) and (2.2) in Sub-section 2.2, the formation of generalized moment equations from (2.4) in Sub-

section 2.3 and the basis for local lagged adaptive discrete-time expectation process in Sub-section 2.4. All of these

are in the framework of correct mathematical reasoning. Further, it is logical and interconnected/interactive within the

context of the continuous-time dynamic system (2.1). The theoretical parameter estimation procedure in this section

adapts to and incorporates the continuous-time changes in the state and parameters of the system and moves into a

discrete-time theoretical numerical schemes in (2.4) as a model validation of (2.1). It further successively moves in

the local moment equations within the context of local lagged adaptive, local discrete-time statistic and computational

processes in a natural, systematic and coherent manner.

We illustrate this by applying the LLGMM method [30] to estimate state and parameters in stochastic differential

dynamic models for energy commodity price, U.S. Treasury Bill interest rate, and the U.S.-U.K. foreign exchange

rate data.

2.6. Illustration 1: Dynamic Model for Energy Commodity Price [29, 30]

We consider the stochastic dynamic model for energy commodities [29, 30] described by the following nonlinear

stochastic differential equation

dy = a(t)(µ(t) − y)ydt + σ(t, yt)ydW(t), yt0 = ϕ0, (2.8)

where yt(θ) = y(t+θ); θ ∈ [−τ, 0], µ, a : [t0,T ]→< are continuous functions; the initial process ϕ0 = {y(t0 +θ)}θ∈[−τ,0]

is Ft0 -measurable and independent of {W(t), t ∈ [t0,T ]}; W(t) is a standard Wiener process defined in (2.1); σ :

[t0,T ] × C → <+ is a Lipschitz continuous and bounded functional; C is the Banach space of continuous functions

defined on [−τ, 0] into< equipped with the supremum norm.
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The solution y(t) of (2.8) satisfies

y(t) − y(t0) =

∫ t

t0
a(s)y(s)(µ(s) − y(s))ds +

∫ t

t0
σ(s, ys)y(s)dW(s),

and

E
[
y(t) − y(t0)|Fs<t

]
=

∫ t

t0
a(s)y(s)(µ(s) − y(s))ds.

Transformation of Stochastic Differential Equation (2.8): We pick a Lyapunov function V(t, y) = ln(y) in (2.2)

for (2.8). Using Itô-differential formula [24], we have

d (ln(y)) =

[
a(t)(µ(t) − y) −

1
2
σ2(t, yt)

]
dt + σ(t, yt)dW(t). (2.9)

The Euler-type Discretization Schemes for (2.8) and (2.9) [21, 30]: By setting ∆ti = ti − ti−1, ai = a(ti),

µi = µ(ti), σi = σ(ti), ∆yi = y(ti) − y(ti−1), the combined Euler discretized scheme for (2.8) and (2.9) is


∆yi = ai−1yi−1(µi−1 − yi−1)∆ti + σ(ti−1, yti−1 )yi−1∆W(ti), yt0 = ϕ0,

∆ (ln(yi)) =
[
ai−1(µi−1 − yi−1) − 1

2σ
2(ti−1, yti−1 )

]
∆ti + σ(ti−1, yti−1 )∆W(ti), yt0 = ϕ0.

(2.10)

where ϕ0 = {yi}
0
i=−r is a given finite sequence ofF0−measurable random variables, and it is independent of {∆W(ti)}Ni=0.

Generalized Moment Equations [30]: Applying conditional expectation to (2.10) with respect to Fti−1 ≡ Fi−1,

we obtain

E
[
∆yi|Fi−1

]
= ai−1yi−1(µi−1 − yi−1)∆t,

E
[
∆ (ln(yi)) |Fi−1

]
=

[
ai−1(µi−1 − yi−1) − 1

2σ
2(ti−1, yti−1 )

]
∆t,

E
[(

∆ (ln(yi)) − E
[
∆ (ln(yi)) |Fi−1

])2
|Fi−1

]
= σ2(ti−1, yti−1 )∆t.

(2.11)

Basis for Lagged Adaptive Discrete-time Expectation Process: From (2.11), (2.10) reduces to


∆yi = E

[
∆yi|Fi−1

]
+ σ(ti−1, yti−1 )yi−1∆W(ti),

∆ (ln(yi)) = E
[
∆ (ln(yi)) |Fi−1

]
+ σ(ti−1, yti−1 )∆W(ti).

(2.12)

(2.12) provides the basis for the development of the concept of lagged adaptive expectation process [33] with

respect to continuous time stochastic dynamic systems (2.8) and (2.9).

Remark 2.2. Orthogonality Condition Vector for (2.8) and (2.9)
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Using (2.10), (2.11) and (2.12), we further remark that the orthogonality condition vector [10] with respect to

continuous-time stochastic dynamic model (2.8) is represented by

H(ti−1, y(ti), y(ti−1)) =


∆y(ti) − a(ti−1)y(ti−1)(µ(ti−1) − y(ti−1))∆ti

∆ ln(y(ti)) − L ln(y(ti−1), yti−1 )∆ti

(∆ ln(y(ti)) − L ln(y(ti−1), yti−1 )∆ti)2 − σ2(ti−1, yti−1 )∆ti

 . (2.13)

where L ln(y(ti−1), yti−1 )∆ti =
(
a(ti−1)(µ(ti−1) − y(ti−1)) − 1

2σ
2(ti−1, yti−1 )

)
∆ti. Moreover, unlike the orthogonality con-

dition vector defined in the literature [8, 10, 38], this orthogonality condition vector is based on the discretization

scheme (2.10) associated with nonlinear continuous-time stochastic differential equations (2.8) and (2.9) and the Itô-

Doob stochastic differential calculus [21, 24]

Local Observation System of Algebraic Equations [30]: Following definition for k ∈ I0(N), applying the

LLGMM method [30] and using Definitions 2.3-2.7 of [30] together with the discretized form (2.12), we formulate

a local observation/measurement process at time tk as algebraic functions of mk-local functions of restriction of the

overall finite sample sequence {yi}
N
i=−r to a subpartition Pk in Definition 2.2 of [30]. Let atk∗ and µtk∗ be estimates of at

and µt, respectively, at each time t. We have



1
mk

k−1∑
i=k−mk

E
[
∆yi|Fi−1

]
= atk∗

[
µtk∗
mk

k−1∑
i=k−mk

yi−1 −
1

mk

k−1∑
i=k−mk

y2
i−1

]
∆t,

1
mk

k−1∑
i=k−mk

E
[
∆ (ln(yi)) |Fi−1

]
= atk∗

[
µtk∗ −

1
mk

k−1∑
i=k−mk

yi−1

]
∆t − 1

2mk

k−1∑
i=k−mk

E
[(

∆ (ln(yi)) − E
[
∆ (ln(yi)) |Fi−1

])2
|Fi−1

]
,

σ̂2
mk ,k

=


1

mk∆t

k−1∑
i=k−mk

E
[(

∆ (ln(yi)) − E
[
∆ (ln(yi)) |Fi−1

])2
|Fi−1

]
if mk is small

1
(mk−1)∆t

k−1∑
i=k−mk

E
[(

∆ (ln(yi)) − E
[
∆ (ln(yi)) |Fi−1

])2
|Fi−1

]
if mk is large,

(2.14)

where mk ∈ I2(r + k − 1) = {2, 3, ..., r + k − 1} is defined as the local admissible sample/data observation size at time tk

(Definition 3.3 [30]). Following Definitions (2.5-2.7) in [30], we define S̄ mk ,k and s2
mk ,k

as the mk-local average/mean

and mk-local variance, respectively, corresponding to a local sequence S mk ,k = {x j}
k−1
k−mk

. From the third equation in

(2.14), it follows that the average volatility square σ̂2
mk ,k

is given by

σ̂2
mk ,k =

s2
mk ,k

∆t
, (2.15)

where s2
mk ,k

is the local sample variance statistics for volatility at time tk in the context of x(ti) = ∆ (ln(yi)) satisfying

the following discrete-time interconnected dynamic model of local sample mean S̄ mk ,k and variance s2
mk ,k

processes

(DTIDMLSMVSP)
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

S̄ mk−p+1,k−p+1 =
mk−p

mk−p+1
S̄ mk−p,k−p + ηmk−p,k−p, S̄ m0,0 = S̄ 0

s2
mk ,k

=



mk−1
mk

 p∑
i=1

 mk−i
i−1∏
j=0

mk− j

 s2
mk−i,k−i +

mk−p
p−1∏
j=0

mk− j

S̄ 2
mk−p,k−p

 + εmk−1,k−1, for small mk,mk−1 ≤ mk

p∑
i=1

 mk−i−1
i−1∏
j=0

mk− j

 s2
mk−i,k−i +

mk−p
p−1∏
j=0

mk− j

S̄ 2
mk−p,k−p + εmk−1,k−1, for large mk, mk−1 ≤ mk

s2
mi,i

= s2
i , i ∈ I−p(0), initial conditions

(2.16)

where p is the order of the system (2.16) and



ηmk−p,k−p = 1
mk−p+1

 −mk−p+1∑
i=−mk−p+1+1

F ixk−p − F−mk−p+1xk−p − F−mk−p xk−p + F0xk−p

 ,
εmk−1,k−1 = mk−1

mk

 p∑
i=1

(F−i+1 xk−1)2

i−1∏
j=0

mk− j

−
p∑

i=1

(F−i+1−mk−i xk−1)2

i−1∏
j=0

mk− j

−
p∑

i=1

(F−i+2−mk−i xk−1)2

i−1∏
j=0

mk− j


+ mk−1

mk


p∑

i=1


−i+2−mk−i∑

l=−i+2−mk−i+1
(Fl xk−1)2

i−1∏
j=0

mk− j

 +
p∑

i=1


−i+1∑

l,s=−i+2−mk−i+1
l,s

Fl xk−1F s xk−1

i−1∏
j=0

mk− j




− 1
mk

0∑
l,s=−mk+1

l,s

F lxk−1F sxk−1,

εmk−1,k−1 =
p∑

i=1

(F−i+1 xk−1)2

i−1∏
j=0

mk− j

−
p∑

i=1

(F−i+1−mk−i xk−1)2

i−1∏
j=0

mk− j

−
p∑

i=1

(F−i+2−mk−i xk−1)2

i−1∏
j=0

mk− j

+
p∑

i=1


−i+2−mk−i∑

l=−i+2−mk−i+1
(Fl xk−1)2

i−1∏
j=0

mk− j


+

p∑
i=1


−i+1∑

l,s=−i+2−mk−i+1
l,s

Fl xk−1F s xk−1

i−1∏
j=0

mk− j

 − 1
mk−1

0∑
l,s=−mk+1

l,s

F lxk−1F sxk−1

(2.17)

For details, see [30] (Lemma 2.1) and [29].

Thus, by the application of the Implicit Function Theorem [2], we conclude that for every non-constant mk-local

sequence {x(ti)}k−1
i=k−mk

, there exists a unique solution âmk ,k ≡ atk and µ̂mk ,k ≡ µtk of system of algebraic equations (2.14)

as a point estimates of a(t) and µ(t), respectively, at time t = tk, given by



âmk ,k =

 1
mk

k−1∑
i=k−mk

∆(ln yi)+
s2
mk ,k

2

 1
mk

k−1∑
i=k−mk

yi−1

− 1
mk

k−1∑
i=k−mk

∆yi

1
mk

 k−1∑
i=k−mk

y2
i−1−

1
mk

 k−1∑
i=k−mk

yi−1

2∆t

µ̂mk ,k =

1
mk∆t

k−1∑
i=k−mk

∆(ln yi)+
s2
mk ,k
2∆t +

âmk ,k
mk

 k−1∑
i=k−mk

yi−1


âmk ,k

,

σ̂2
mk ,k

=
s2

mk ,k

∆t .

(2.18)
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Remark 2.3. We note that without loss of generality, the discrete-time data set {y−r+i : i ∈ I1(r − 1)} is assumed to

be close to the true values of the solution process of the continuous-time dynamic process. In fact, this assumption

is feasible in view of the uniqueness and continuous dependence of the solution process for stochastic functional or

ordinary differential equation with respect to the initial data [24].

Remark 2.4. If the sample {yi}
k−1
i=k−mk−1 is a constant sequence, then it follows from (2.18) and the fact that ∆(ln yi) = 0

and s2
mk ,k

= 0, that µ̂mk ,k →
1

mk

k−1∑
i=k−mk

yi−1. Also, it follows from (2.14) that âmk ,k = 0.

Remark 2.5. As we stated before, the theoretically estimated parameters a, µ, and σ2 depend upon the time at which

a data point is drawn. This is what we expected because of the fact that nonlinearity of the dynamic model together

with environmental stochastic perturbations generates a non-stationary solution process. Using locally estimated

parameters of the continuous-time dynamic system, we can find the average of the local parameters over the entire

size of data set as follows:

{
ā = 1

N

N∑
i=0

am̂i,i, µ̄ = 1
N

N∑
i=0
µm̂i,i, σ2 = 1

N

N∑
i=0
σ2

m̂i,i
. (2.19)

where ā, µ̄, and σ2 are referred to as aggregated parameter estimates of a, µ, and σ2 over the given entire finite interval

of time, respectively. Further detailed statistical analysis is outlined in Appendix B.

Remark 2.6. The discrete-time interconnected dynamic model for statistic process (DTIDMLSMVSP) (Lemma 2.1

[30]) and its transformation of data are utilized in (2.14), (2.15), (2.18), and (2.19) for updating statistic coefficients

of equations in (2.11). This indeed accelerates the computation process. Furthermore, DTIDMLSMVSP plays a very

significant role in the local discretization and model validation process.

2.7. Illustration 2: Dynamic Model for U.S. Treasury Bill Interest Rate and the U.S.-U.K. Foreign Exchange Rate

We also apply the above presented scheme for estimating parameters of a continuous-time model for U.S. Treasury

Bill interest rate [44] and U.S.-U.K. foreign exchange rate [45] processes. By employing dynamic modeling process

[23, 24], a continuous time dynamic model of interest rate process under random environmental perturbations is

described in [30] as follows:

dy = (βy + µyδ)dt + σyγdW(t), y(t0) = y0, (2.20)

where β, µ, δ, σ, γ ∈ <; y(t, t0, y0) is adapted, non-anticipating solution process with respect to Ft; the initial process

y0 is Ft0 -measurable and independent of {W(t), t ∈ [t0,T ]} ; W(t) is a standard Wiener process defined on a filtered

probability space (Ω,F , (Ft)t≥0,P).
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Transformation of Stochastic Differential Equation (2.20): For (2.20), we consider the Lyapunov functions

V1(t, y) = 1
2 y2 and V2(t, y) = 1

3 y3 as in (2.2). The Itô differentials of Vi, for i = 1, 2, are given by


dV1 =

[
y(βy + µyδ) + 1

2σ
2y2γ

]
dt + σyγ+1dW(t),

dV2 =
[
y2(βy + µyδ) + σ2y2γ+1

]
dt + σyγ+2dW(t).

(2.21)

The Euler-type Numerical Schemes for (2.20) and (2.21) [21, 30]: Following the approach in Section 3 and

illustration 2.6, the Euler discretized scheme (∆t = 1) for (2.20) is defined by


∆yi = (βyi−1 + µyδi−1) + σyγi−1∆W(ti),

1
2 ∆(y2

i ) = yi−1(βyi−1 + µyδi−1) + 1
2σ

2y2γ
i−1 + σyγ+1

i−1 ∆W(ti),

1
3 ∆(y3

i ) = y2
i−1(βyi−1 + µyδi−1) + σ2y2γ+1

i−1 + σyγ+2
i−1 ∆W(ti).

(2.22)

Generalized Moment Equations: Applying conditional expectation to (2.22) with respect to Fi−1, we obtain

E
[
∆yi|Fi−1

]
= βyi−1 + µyδi−1,

1
2E

[
∆(y2

i )|Fi−1

]
= βy2

i−1 + µyδ+1
i−1 + 1

2σ
2y2γ

i−1,

1
3E

[
∆(y3

i )|Fi−1

]
= βy3

i−1 + µyδ+2
i−1 + σ2y2γ+1

i−1 ,

E
[(

∆yi − E
[
∆yi|Fi−1

])2
|Fi−1

]
= σ2y2γ

i−1,

1
4E

[(
∆(y2

i ) − E
[
∆(y2

i )
])2
|Fi−1

]
= σ2y2γ+2

i−1 .

(2.23)

Remark 2.7. Orthogonality Condition Vector for (2.20) and (2.21): Again, in the context of (2.20), (2.21), (2.22),

and (2.23), the orthogonality condition vector [10, 30] with respect to continuous-time stochastic dynamic model

(2.20) is as:

H(ti−1, y(ti), y(ti−1)) =



∆y(ti) − (βy(ti−1) + µyδ(ti−1))∆ti
1
2 ∆(y2(ti)) − L(y2(ti−1))∆ti
1
3 ∆(y3(ti)) − L(y3(ti−1))∆ti(

∆y(ti) − (βy(ti−1) + µyδ(ti−1))∆ti
)2
− σ2y2γ(ti−1)∆ti(

1
2 ∆(y2(ti)) − L(y2(ti−1))∆ti

)2
− σ2y2γ+2(ti−1)∆ti


, (2.24)

where L(y2(ti−1))∆ti =
(
y(ti−1)

(
βy(ti−1) + µyδ(ti−1)

)
+ 1

2σ
2y2γ(ti−1)

)
∆ti and

L(y3(ti−1))∆ti =
(
y2(ti−1)

(
βy(ti−1) + µyδ(ti−1)

)
+ σ2y2γ+1(ti−1)

)
∆ti. Moreover, unlike the orthogonality condition vector

defined in the literature [8, 10, 38], this orthogonality condition vector is based on the discretization scheme (2.22)
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associated with nonlinear continuous-time stochastic differential equations (2.20) and (2.21).

Local Observation System of Algebraic Equations: Following the argument used in (2.14), for k ∈ I0(N),

from Definitions 2.3-2.7 in [30] and using (2.23), we formulate a local observation/measurement process at tk as

an algebraic functions of mk-local functions of restriction of the overall finite sample sequence {yi}
N
i=−r to mk-point

subpartition Pk := tk−mk < tk−mk+1 < ... < tk−1 as follows:



1
mk

k−1∑
i=k−mk

E
[
∆yi|Fi−1

]
= β

k−1∑
i=k−mk

yi−1

mk
+ µ

k−1∑
i=k−mk

yδi−1

mk
,

1
2mk

k−1∑
i=k−mk

[
E

[
∆(y2

i )|Fi−1

]
− E

[(
∆yi − E

[
∆yi|Fi−1

])2
|Fi−1

]]
= β

k−1∑
i=k−mk

y2
i−1

mk
+ µ

k−1∑
i=k−mk

yδ+1
i−1

mk
,

1
mk

k−1∑
i=k−mk

[
1
3E

[
∆(y3

i )|Fi−1

]
− σ2y2γ+1

i−1

]
= β

k−1∑
i=k−mk

y3
i−1

mk
+ µ

k−1∑
i=k−mk

yδ+2
i−1

mk
,

1
mk

k−1∑
i=k−mk

E
[(

∆yi − E
[
∆yi|Fi−1

])2
|Fi−1

]
= σ2

k−1∑
i=k−mk

y2γ
i−1

mk
,

1
4mk

k−1∑
i=k−mk

E
[(

∆(y2
i ) − E

[
∆(y2

i )
])2
|Fi−1

]
= σ2

k−1∑
i=k−mk

y2γ+2
i−1

mk
.

(2.25)

The solution σmk ,k is given by

σmk ,k =


s2

mk ,k

1
mk

k−1∑
i=k−mk

y
2γmk ,k

i−1


1/2

, (2.26)

and γmk ,k satisfies the following nonlinear algebraic equation

s2
mk ,k

k−1∑
i=k−mk

y
2γmk ,k+2
i−1 −

1
4

s2
mk ,k

k−1∑
i=k−mk

y
2γmk ,k

i−1 = 0, (2.27)

where s2
mk ,k

and s2
mk ,k

denote the local moving variance of ∆yi and ∆(y2
i ), respectively.

By the application of the Implicit Function Theorem [2], we conclude that for every non-constant mk-local se-

quence {y(ti)}k−1
i=k−mk

, δ , 1, there exist solution β̂mk ,k, µ̂mk ,k, and δ̂mk ,k of system of algebraic equations (2.25) as a point

estimates of β, µ and δ respectively, at time tk, given by



µ̂mk ,k =

1
mk

k−1∑
i=k−mk

∆yi
k−1∑

i=k−mk
y2

i−1−
1
2

 1
mk

k−1∑
i=k−mk

∆(y2
i )−s2

mk ,k

 k−1∑
i=k−mk

yi−1

1
mk

 k−1∑
i=k−mk

y
δmk ,k
i−1

k−1∑
i=k−mk

y2
i−1−

k−1∑
i=k−mk

y
1+δmk ,k
i−1

k−1∑
i=k−mk

yi−1


β̂mk ,k =

k−1∑
i=k−mk

∆yi−µ̂mk ,k
k−1∑

i=k−mk
y
δmk ,k
i−1

k−1∑
i=k−mk

yi−1

,

(2.28)
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where δmk ,k satisfies the third equation in (2.25) described by

1
3mk

k−1∑
i=k−mk

∆(y3
i ) −

σ2
mk ,k

mk

k−1∑
i=k−mk

y
2γmk ,k+1
i−1 − βmk ,k

k−1∑
i=k−mk

y3
i−1

mk
− µmk ,k

k−1∑
i=k−mk

y
δmk ,k+2
i−1

mk
= 0. (2.29)

We further note that the parameters of continuous-time dynamic process (2.20) are time-varying functions. This

justifies the modifications needed for the development of continuous-time models of dynamic processes.

Remark 2.8. The presented illustrations exhibit the important features of the theoretical parameter estimation pro-

cedure [30]. The illustrations further clearly differentiate the Itô-Doob differential formula [24] based formation of

orthogonality condition vectors in Remarks 2.2 and 2.7 and the algebraic manipulation and discretized scheme using

the econometric specification based orthogonality condition vectors in [9, 11, 17].

Remark 2.9. The DTIDMLSMVSP and its transformation of data are utilized in (2.25), (2.26), (2.27), (2.28) and

(2.29) for updating statistic coefficient of equations in (2.23). This indeed accelerates the computation process. Fur-

thermore, DTIDMLSMVSP plays a very significant role in the local discretization and model validation errors.

3. Computational Algorithm

In this section, we outline theoretical computational components (5), (6) and (7) of LLGMM [30]. Again, for

easy reference, we review the definitions of terms and expressions regarding computational, data organizational and

simulation schemes. We introduce the idea of iterative data process and data simulation process time schedules in

relation to the real time data observation/collection schedule. For the computational estimation of continuous time

stochastic dynamic system state and parameters, it is essential to determine an admissible set of local conditional

sample average and sample variance of local conditional sample in the context of a partition of time interval [−τ,T ].

Moreover, the discrete time dynamic model of conditional sample mean and sample variance statistic processes in

Section 2 of [30] and the theoretical parameter estimation scheme in Section 3 coupled with the lagged adaptive

expectation process motivate to outline a computational scheme in a systematic and coherent manner. A brief summary

of the conceptual computational and simulation scheme is shown below.

3.1. Coordination of data observation, Iterative process, and Simulation schedules.

For easy reference, we present definitions 2.1-2.7 of iterative process and simulation time schedules discussed in

Otunuga et al. [30]. Without loss of generality, we assume that the real data observation/collection partition schedule

13



P of [−τ,T ] is defined in [30] by

P := {ti = −τ + (r + i)∆t}, for i ∈ I−r(N), (3.1)

where Ii(k) = { j ∈ Z : i ≤ j ≤ k}, r + N stands for the total size of data.

Definition 3.1. An iterative process time schedule in relation with a real data collection schedule is defined by

IP = {F−rti : for ti ∈ P}, (3.2)

where F−rti = ti−r, and F−r is a forward shift operator [6], and r is a discrete version of time delays of τ defined in

[30] by r =

[∣∣∣∣ τ∆ti

∣∣∣∣] + 1.

The simulation time depends on an order p of the time series model (2.16) of mk-local conditional sample mean

and variance processes.

Definition 3.2. Let P, F−r and p be as defined in Definition 3.1. A simulation process time schedule in relation with

a real data observation schedule is defined by

S P =


{Frti : for ti ∈ P}, if p ≤ r

{F pti : for ti ∈ P}, if p > r.
(3.3)

Remark 3.1. We note that initial times of iterative and simulation processes are equal to the real data times tr and tp,

respectively. Moreover, iterative and simulation processes time in (3.2) and (3.3), respectively, justify Remark 2.3. In

short, ti is a scheduled time clock for a collection of ith observation of the state of the system under investigation. The

iterative and simulation process times are ti+r and ti+p, respectively.

3.2. Conceptual Computational Parameter Estimation Scheme [30]

For a conceptual computational dynamic system parameter estimation, we need to introduce a few concepts of

local admissible sample/data observation size, mk-local admissible conditional finite sequence at tk ∈ S P, local finite

sequence of parameter estimates at tk.

Definition 3.3. For each k ∈ I0(N), we define a local admissible sample/data observation size mk at tk ∈ S P in (3.3)

as mk ∈ OS k, where

OS k =


I2(r + k − 1), if p ≤ r,

I2(p + k − 1), if p > r,
(3.4)
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Moreover, OS k is referred to as the local admissible set of lagged sample/data observation size at tk; OS k ⊆ S P for

k ∈ I0(N) and OS k ⊆ OS k+1 for k ∈ I0(N − 1).

Definition 3.4. For each admissible mk ∈ OS k in Definition 3.3, a mk-local admissible lagged-adapted finite restric-

tion sequence of conditional sample/data observation at tk to subpartition Pk of P is defined by {E[yi|Fi−1]}k−1
i=k−mk

.

Moreover, a mk- class of admissible lagged-adapted finite sequences of conditional sample/data observation of size

mk at tk is defined by

ASk = {{E[yi|Fi−1]}k−1
i=k−mk

: mk ∈ OS k} = {{E[yi|Fi−1]}k−1
i=k−mk

}mk∈OS k , (3.5)

for each k ∈ I0(N).

Without loss of generality, in the case of energy commodity model, for each mk ∈ OS k, we find corresponding

mk- local admissible adapted finite sequence of conditional sample/data observation at tk, {E[yi|Fi−1]}k−1
i=k−mk

. Us-

ing this sequence and (2.18), we compute âmk ,k, µ̂mk ,k and σ̂2
mk ,k

. This leads to a local admissible finite sequence

of parameter estimates at tk defined on OS k as follows:
{
(âmk ,k, µ̂mk ,k, σ̂

2
mk ,k

)
}
mk∈OS k

= {(âmk ,k, µ̂mk ,k, σ̂
2
mk ,k

)}r+k−1
mk∈2

or

{(âmk ,k, µ̂mk ,k, σ̂
2
mk ,k

)}p+k−1
mk∈2

. It is denoted by

(Ak,Mk,Sk) =
{
(âmk ,k, µ̂mk ,k, σ̂

2
mk ,k)

}
mk∈OS k

, (3.6)

for k ∈ I0(N).

3.3. Conceptual Computation of State Simulation Scheme: Energy Commodity Model

For the development of a conceptual computational scheme, we need to employ the method of induction. The

presented simulation scheme is based on the idea of lagged adaptive expectation process [33]. An autocorrelation

function (ACF) analysis [6, 8] performed on s2
mk ,k

suggests that the discrete time interconnected dynamic model of

local conditional sample mean and sample variance statistic in (2.8) of [30] is of order p = 2. Because of this, we need

to identify an initial data. We begin with a given initial data yt0 , {ŝ2
m0,0
}m0∈OS 0 , {ŝ2

m−1,−1}m−1∈OS −1 , and {S̄ 2
m−1,−1}m−1∈OS −1 .

Let ys
mk ,k

be a simulated value of E[yk |Fk−1] at time tk corresponding to a local admissible lagged-adapted finite

sequence {E[yi|Fi−1]}k−1
i=k−mk

∈ ASk of conditional sample/data observation of size mk at tk defined in (3.5). This

simulated value is derived from the discretized Euler scheme (2.10) by

ys
mk ,k = ys

mk−1,k−1 + âmk−1,k−1(µ̂mk−1,k−1 − ys
mk−1,k−1)ys

mk−1,k−1∆t + σ̂mk−1,k−1ys
mk−1,k−1∆Wmk ,k. (3.7)
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Let

{ys
mk ,k}mk∈OS k , k ∈ I0(N), (3.8)

be a mk- local admissible sequence of simulated values corresponding to mk-class ASk of local admissible lagged-

adapted finite sequences of conditional sample/data observation of size mk at tk in (3.5) for k ∈ I0(N).

3.4. Mean-Square Sub-Optimal Procedure

For each k ∈ I0(N), to find the best estimate of E[yk |Fk−1] at time tk from a mk -local admissible finite sequence

{ys
mk ,k
}mk∈OS k of a simulated value of {E[yi|Fi−1]} defined in (3.8), we need to compute a local admissible finite sequence

of quadratic mean square error corresponding to {ys
mk ,k
}mk∈OS k . A quadratic mean square error is defined below.

Definition 3.5. A local quadratic mean square error of E[yk |Fk−1] relative to each member of the term of local admis-

sible sequence {ys
mk ,k
}mk∈OS k of simulated values in (3.8) is defined by

Ξmk ,k,yk =
(
E[yk |Fk−1] − ys

mk ,k

)2
, (3.9)

for k ∈ I0(N).

For any arbitrary small positive number ε and for each time tk, to find the best estimate from the mk-local admissible

sequence {ys
mk ,k
}mk∈OS k of simulated values, we determine the following ε-sub-optimal admissible subset of set of

mk-size local admissible lagged sample size mk at tk (OS k):

Mk = {mk : Ξmk ,k,yk < ε for mk ∈ OS k}, (3.10)

for k ∈ I0(N). There are three different cases that determine the ε-best sub-optimal sample size m̂k at time tk.

Case 1: If mk ∈ Mk gives the minimum, then mk is recorded as m̂k.

Case 2: If more than one value of mk ∈ Mk, then the largest of such mk’s is recorded as m̂k.

Case 3: If condition (3.10) is not met (the property that definesMk) at time tk, (that is,Mk = ∅), then the value of

mk where the minimum min
mk

Ξmk ,k,yk is attained is recorded as m̂k. The ε− best sub-optimal estimates of the parameters

âmk ,k, µ̂mk ,k and σ̂2
mk ,k

at the ε-best sub-optimal sample size m̂k are also recorded as am̂k ,k, µm̂k ,k and σ2
m̂k ,k

, respectively,

for k ∈ I0(N).

Finally, the simulated value ys
mk ,k

at time tk with m̂k is now recorded as the ε-best sub-optimal state estimate for

E[yk |Fk−1] at time tk and denoted by ys
m̂k ,k

. Similar reasoning can be provided for the estimates of the parameters of

the U.S. Treasury Bill interest rate and U.S.-U.K. foreign exchange rate model.
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Remark 3.2. We augment a few more Conceptual Computational Comparison between the LLGMM and the existing

OCBGMM (Appendix C) [30] as follows.

a: The LLGMM approach is focused on parameter and state estimation problems at each data collection/observation

time tk using the local lagged adaptive expectation process. In fact, LLGMM is discrete-time dynamic process.

On the other hand, OCBGMM is centered on the state and parameter estimates using entire data that is to the

left of the final data collection time TN = T . Implied weakness in forecasting, as seen in the next section, is

explicitly shown with the OCBGMM approach and the ensuing results.

b: We note that Remark 2.1 exhibits the interactions/interdependence between the first three components of LL-

GMM [30], namely (1) development of stochastic model for continuous-time dynamic process, (2) development

of the discrete-time interconnected dynamic model for statistic process, (3) utilizing the Euler-type discretized

scheme for nonlinear and non-stationary system of stochastic differential equations and their interactions. On

the other hand, the OCBGMM is partially connected.

c: From the development of the computational algorithm section, we remark that the interdependence/ intercon-

nectedness of the four remaining components of the LLGMM [30], ”(4) employing lagged adaptive expectation

process for developing generalized method of moment equations, (5) introducing conceptual computational pa-

rameter estimation problem, (6) formulating conceptual computational state estimation scheme, and (7) defining

conditional mean square ε-sub optimal procedure” is clearly illustrated. Moreover, the above stated components

as well as data are directly connected with the original continuous-time SDE. On the other hand, OCBGMM

is composed of single size, single sequence, single estimates, single simulated value and single error. Hence,

OCBGMM is ”single shot approach” and highly dependent on its second component rather than the first com-

ponent.

d: The LLGMM method [30] is a discrete-time dynamic system composed of seven interactive interdependent

components. In fact, it is a dynamic non-parametric applied statistics method. On the other hand, the OCBGMM

is static dynamic process of five almost isolated components.

e: Furthermore, LLGMM is a ”two scale hierarchic” quadratic mean-square optimization process, but the opti-

mization process of OCBGMM is ”single-shot”

f: Although LLGMM performs in discrete-time, it operates like the original continuous-time dynamic process.

The performance of the LLGMM approach is superior to the OCBGMM and IRGMM approaches.
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g: The LLGMM method does not require a large size data set. In addition, as time tk increases, it generates a

larger size of lagged adapted data set thereby further stabilizing the state and parameter estimation procedure

with finite size data set. On the other hand, the OCBGMM does not exhibit this flexibility.

h: Further comparative summary analysis is described in Sections 7 in the context of conceptual, computational

and statistical settings, exhibiting the role, scope and performance of LLGMM.

Remark 3.3. We note that the choice of p = 2 was determined based on the statistical procedure known as the

Autocorrelation Function Analysis (AFA) [6, 8].

4. LLGMM and Statistical Analysis

In this section, we apply the theoretical LLGMM algorithm [30] to four energy commodities, U.S. Treasury Bill

interest rate and the U.S.-U.K. foreign exchange rate data sets. In addition, we investigate the parameter and state

estimation, forecasting and confidence-interval problems in the context of stochastic dynamic models (2.8) and (2.20)

for these data sets.

4.1. Application to Four Energy Commodity Data Sets:

In this section, we apply the above conceptual computational algorithm to the real time data sets, namely, daily

Henry Hub natural gas data set for the period 01/04/2000-09/30/2004, daily crude oil data set for the period

01/07/1997 − 06/02/2008, daily coal data set for the period of 01/03/2000 − 10/25/2013, and weekly ethanol

data set for the period of 03/24/2005−09/26/2013, [12, 13, 14, 48] in the context of stochastic dynamic model (2.8).

The descriptive statistics of data for the daily Henry Hub natural gas, daily crude oil data, daily coal data, and

weekly ethanol data are recorded in Table 1 below.

Table 1: Descriptive Statistics for [12, 13, 14, 48]

Data Set Y N Ȳ Std(Y)
Nat. Gas 1184 (days) 4.5504 1.5090)
Crude Oil 4165 (days) 54.0093 31.0248

Coal 3470 (days) 27.1441 17.8394
Ethanol 438 (weeks) 2.1391 0.4455

Graphical, Simulation and Statistical Results-Case 1: We consider three cases for initial discrete-time delay r.

We then later show that as r increases, the root mean square error reduces, significantly. Here, we pick r = 5, ∆t = 1,

ε = 0.001, and p = 2. The ε- best sub-optimal estimates of parameters a, µ and σ2 at each real data times are exhibited

in Table 2 below.

18



Table 2: Estimates m̂k , σ2
m̂k ,k

, µm̂k ,k and am̂k ,k for initial delay r = 5.

tk Natural gas tk Crude oil tk Coal tk Ethanol
m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k

5 3 0.0001 2.2231 0.6011 5 3 0.0001 24.4100 0.0321 5 3 0.0001 11.5534 0.0142 5 2 0.0002 1.1767 0.5831
6 3 0.0002 2.2160 0.6122 6 3 0.0002 24.7165 0.0341 6 3 0.0000 11.2529 0.4109 6 5 0.0008 1.1717 0.5159
7 3 0.0002 2.2513 0.6087 7 4 0.0003 25.5946 0.0537 7 3 0.0001 9.9161 0.0165 7 4 0.0007 1.1707 1.4925
8 4 0.0002 2.2494 0.1628 8 5 0.0006 25.5550 0.0467 8 3 0.0002 11.4663 -0.0403 8 5 0.0008 1.1713 1.4791
9 4 0.0002 2.2658 -0.1497 9 4 0.0006 25.5695 0.0499 9 3 0.0005 10.5922 -0.0843 9 5 0.0006 1.1709 2.1406

10 4 0.0003 2.1371 0.1968 10 4 0.0004 25.4787 0.0221 10 4 0.0009 8.9379 0.0714 10 4 0.0004 1.1900 0.8621
11 4 0.0004 2.5071 -0.2781 11 3 0.0001 25.7742 0.0100 11 4 0.0023 8.9051 0.1784 11 3 0.0025 1.1900 0.3719
12 4 0.0000 2.2550 0.3545 12 3 0.0002 26.9477 -0.0157 12 3 0.0015 9.0169 0.0855 12 3 0.0004 1.2188 0.5368
13 4 0.0005 2.5122 0.6246 13 3 0.0001 25.8786 -0.0112 13 3 0.0020 8.6231 0.0739 13 5 0.0004 1.1120 12.2917
14 4 0.0015 2.4850 0.5604 14 5 0.0005 22.1834 0.0049 14 2 0.0001 10.0100 0.0564 14 5 0.0007 1.1669 -0.9289
15 3 0.0007 2.5378 0.4846 15 5 0.0004 23.5425 0.0010 15 5 0.0067 9.5281 0.0741 15 5 0.0014 0.7492 -0.0879
16 3 0.0007 2.5715 0.7737 16 4 0.0002 23.8500 0.0000 16 4 0.0058 6.1821 0.0694 16 5 0.0011 1.7968 0.3087
17 5 0.0011 2.5688 0.5984 17 4 0.0002 23.8486 0.0502 17 4 0.0015 8.8087 0.0404 17 5 0.0002 1.8484 -0.1901
18 4 0.0010 2.5831 0.5423 18 5 0.0004 23.2913 -0.0113 18 4 0.0035 9.0681 0.0652 18 5 0.0003 1.1650 -0.1611
19 5 0.0007 2.5893 0.4256 19 3 0.0000 24.4715 0.1282 19 3 0.0040 9.0752 0.1527 19 5 0.0022 1.8943 0.1502
20 5 0.0006 2.6100 0.0683 20 3 0.0004 24.3878 0.0415 20 3 0.0049 9.0801 0.1405 20 5 0.0047 1.8144 0.2073
21 5 0.0007 2.3171 0.2893 21 5 0.0003 24.3336 0.2067 21 4 0.0043 8.9898 0.0946 21 4 0.001 1.8400 0.0464
22 4 0.0015 2.7043 0.6983 22 4 0.0002 23.9993 0.0200 22 5 0.0054 8.9148 0.0036 22 3 0.0020 3.7350 0..1628
23 3 0.0009 2.6590 0.8316 23 4 0.0001 24.1909 -0.0894 23 4 0.0018 8.6771 0.0884 23 3 0.0008 1.9905 0.1599
24 3 0.0010 2.6917 0.1822 24 3 0.0002 25.0812 -0.0252 24 5 0.0035 8.7586 0.0985 24 3 0.0018 1.9006 -3.4926
25 4 0.0017 2.5620 0.2201 25 3 0.0002 22.2942 0.0064 25 5 0.0006 8.4779 -0.1155 25 4 0.0234 2.4827 0.1837
... ... ... .. ... ... ... ... .. ... ... ... ... .. .. ... ... ... ... ...
... ... ... .. ... ... ... ... .. ... ... ... ... .. .. ... ... ... ... ...

1145 4 0.0003 5.7203 0.1225 2440 5 0.0003 58.431 0.0141 2865 3 0.001 37.657 0.0397 375 3 0.0008 2.1456 1.1005
1146 3 0.0003 5.6651 0.2031 2441 5 0.0003 57.205 0.0084 2866 3 0.0006 37.73 0.0468 376 4 0.0012 2.0689 0.2666
1147 3 0.0002 5.6601 0.3133 2442 4 0.0001 57.554 0.0165 2867 5 0.0014 39.6 0.0087 377 3 0.0009 2.0538 0.4339
1148 5 0.0006 5.6909 0.216 2443 5 0.0003 57.871 0.0168 2868 3 0.0006 38.769 0.0331 378 3 0.0008 2.054 0.7726
1149 3 0.0003 5.6982 0.2404 2444 5 0.0003 60.441 0.0023 2869 5 0.0019 38.272 0.0245 379 4 0.0007 2.0551 0.7588
1150 5 0.0006 5.6108 0.1362 2445 5 0.0003 38.954 -0.0006 2870 3 0.0014 37.627 0.0234 380 3 0.0003 2.0692 4.5252
1151 5 0.0006 5.61 0.1089 2446 4 0.0006 59.659 0.0165 2871 3 0.0004 37.753 -0.243 381 5 0.0021 1.995 -0.4407
1152 5 0.0006 5.4383 0.06272 2447 4 0.001 59.548 0.016 2872 4 0.0008 36.11 0.0101 382 5 0.0025 1.3252 -0.048
1153 4 0.0003 5.4307 0.1755 2448 4 0.0007 58.964 0.0115 2873 5 0.0015 33.823 0.0042 383 5 0.0023 0.82891 -0.04
1154 5 0.0005 5.4155 0.1569 2449 4 0.0005 58.415 0.0166 2874 4 0.0009 35.221 0.0183 384 4 0.0025 2.5937 0.3073
1155 3 0.0004 5.3742 -2.275 2450 5 0.0003 58.61 0.0193 2875 5 0.0011 33.381 0.0084 385 3 0.0064 2.6054 0.6097
1156 5 0.0006 5.4405 0.1392 2451 4 0.0004 59.244 0.0091 2876 4 0.0007 34.6 0.0228 386 5 0.0044 2.5947 0.4157
1157 4 0.0003 5.4423 0.2339 2452 5 0.0003 58.955 0.0143 2877 3 0.001 34.463 0.0441 387 3 0.0035 2.595 0.354
1158 4 0.0008 5.4276 0.1712 2453 4 0.0004 59.508 0.0179 2878 5 0.0009 34.583 0.0334 388 3 0.0018 2.6054 0.6561
1159 5 0.0006 5.3958 0.1309 2454 4 0.0003 59.978 0.0193 2879 5 0.0008 34.63 0.0443 389 5 0.0043 2.5992 0.3862
1160 3 0.0002 5.3557 -0.1882 2455 5 0.0003 59.957 0.0199 2880 4 0.0005 35.221 0.0207 390 3 0.0009 2.5812 0.3334
1161 3 0.0003 5.5081 -0.0696 2456 4 0.0005 59.849 0.0163 2881 5 0.0007 35.249 0.0196 391 4 0.0013 2.6299 -0.3594
1162 4 0.0003 4.908 0.0381 2457 5 0.0004 59.441 0.0095 2882 3 0.0003 35.583 0.1566 392 4 0.0013 2.6776 -0.2827
1163 4 0.0002 5.0635 0.1038 2458 4 0.0003 58.479 0.0103 2883 4 0.0004 36.036 0.0224 393 4 0.0011 1.5114 0.0394
1164 3 0.0002 5.082 0 2459 4 0.0002 57.917 0.0158 2884 3 0.0005 36.276 0.0373 394 3 0.0006 2.2927 0.5982
1165 4 0.0002 5.1099 -0.2756 2460 4 0.0005 56.122 0.0062 2885 4 0.0004 36.195 0.0374 395 5 0.0035 2.3275 0.3191

Table 2 shows the ε- best sub-optimal local admissible sample size m̂k and the parameters am̂k ,k, σ2
m̂k ,k

, and µm̂k ,k

for four energy commodity price data at time tk. This is based on p ≤ r and r = 5. Here, the range of the ε-best

sub-optimal local admissible sample size m̂k for any time tk ∈ [5, 25]
⋃

[1145, 1165], tk ∈ [5, 25]
⋃

[2440, 2460],

tk ∈ [5, 25]
⋃

[2865, 2885], and tk ∈ [5, 25]
⋃

[375, 395] for natural gas, crude oil, coal and ethanol data, respectively,

is

2 ≤ m̂k ≤ 5. (4.1)

Remark 4.1. From (4.1), we draw the following conclusions:

a: From (3.4) and Definition 3.3 (OS k), at each time tk, for the four energy price data sets, the ε-best sub-optimal

local admissible sample size m̂k is attained on the subset {2, 3, 4, 5} of (OS k). Hence, the ε-best sub-optimal

local state and parameter estimates are obtained in at most four iterates rather than k + r − 1.

b: The basis for the conclusion (a) is due to the fact that the ε-best sub-optimization process described in Subsec-
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tions 3.3 and 3.4 stabilizes the local state and parameter estimations at each time tk.

c: From (a) and (b), we further remark that, in practice, the entire local lagged admissible set OS k of size mk at

time tk is not fully utilized. In fact, for any mk ∈ OS k and mk > m̂k such that as mk approached k + r − 1,

the corresponding state and parameters relative to mk approach the ε-best sub-optimal local state and parameter

estimates relative to the ε-best sub-optimal local admissible sample size m̂k at time tk. This is not surprising

because of the nature of the state hereditary process, that is, as the size of the time-delay mk increases, the

influence of the past state history decreases.

d: From (c), we further conclude that the second (DTIDMLSMVSP) and the fourth (local lagged adaptive process)

component of the LLGMM [30] are stabilizing agents. This justifies the introduction of the term, namely,

conceptual computational state and parameter estimation scheme. In fact, these components play a role in not

only the local ε-best suboptimal quadratic error reduction, but also local error stabilization problem depending

on the choice of ε > 0.

e: The conclusions (a), (b), (c) and (d) are independent of ”large” data size and stationary conditions.

In the following, the graphs of am̂k ,k for natural gas, crude oil, coal and ethanol are exhibited in Figures 1 (a), (b),

(c) and (d), respectively.

(a) (b)

20



(c) (d)

Figure 1: The graphs of mean reverting rate am̂k ,k with time tk using initial delay r = 5.

Figure 1: (a), (b), (c) and (d) are the graphs of am̂k ,k (with respect to (2.8)) against time tk for the daily Henry Hub natural gas data [14] , daily

crude oil data [13], daily coal data [12], and weekly ethanol data [48], respectively. Each sketch exhibits the rate at which the data sets are reverting

to the mean level.

Furthermore, we show the graphs of µm̂k ,k for each of the data set.

(a) (b)
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(c) (d)

Figure 2: The graphs of mean level µm̂k ,k with time tk using initial delay r = 5

Figure 2: (a), (b), (c) and (d) are the graphs of µm̂k ,k (with respect to (2.8)) against time tk for the daily Henry Hub natural gas [14], daily

crude oil [13], daily coal [12], and weekly ethanol data [48], respectively. The sample mean value of the real data yk for natural gas, crude oil,

coal and ethanol data are given by 4.5385, 54.0093, 27.1441 and 2.1391, respectively. It can be seen from Figure 2: (a), (b), (c) and (d) that the

graph of µm̂k ,k for the Henry Hub natural gas, crude oil, coal and ethanol data moves around the mean value 4.5385, 54.0093, 27.1441 and 2.1391,

respectively. This analysis shows that the parameter µm̂k ,k is close to the respective mean value of the data at time tk . We also note that {µm̂i ,i}
N
i=0

and {am̂i ,i}
N
i=0 are discrete-time ε- best sub-optimal simulated random samples generated by the scheme described at the beginning of Section 4.1

Figures 3 (a), (b), (c) and (d) show the graph of s2
m̂k ,k

for natural gas, crude oil, coal and ethanol, respectively.

(a) (b)
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(c) (d)

Figure 3: Moving Variance s2
m̂k ,k

against tk with initial delay r = 5.

Figure 3: (a), (b), (c) and (d) are graphs of s2
m̂k ,k

(with respect to (2.8)) against time tk with initial delay r = 5 for the daily Henry Hub natural

gas data [14] , daily crude oil data [13], daily coal data [12], and weekly ethanol data [48], respectively. We found these estimates using the discrete

time dynamic model (2.16) (see Lemma 2.1 in [30]) with p = 2. This is based on the autocorrelation and partial autocorrelation function described

in [6, 8]. Using the third part of (2.18), the volatility square at time tk can be calculated.

In Table 3, the real and LLGMM simulated price values for the four energy commodities: natural gas, crude oil,

coal and ethanol are exhibited in columns 2-3, 6-7, 10-11, and 14-15, respectively. The absolute error of each of the

energy commodity’s simulated value is shown in columns 4, 8, 12, and 16.
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Table 3: Real, Simulation using LLGMM method, and absolute error of simulation with starting delay r = 5.

tk Natural gas tk Crude oil tk Coal tk Ethanol
Real Simulated |Error| Real Simulated |Error| Real Simulated |Error| Real Simulated |Error|
yk ys

m̂k ,k
|yk − ys

m̂k ,k
| ys

m̂k ,k
|yk − ys

m̂k ,k
| ys

m̂k ,k
|yk − ys

m̂k ,k
| ys

m̂k ,k
|yk − ys

m̂k ,k
|

(LLGMM) (LLGMM) (LLGMM) (LLGMM)
5 2.216 2.216 0 5 25.200 25.200 0 5 10.560 10.560 0 5 1.190 1.190 0
6 2.260 2.253 0.007 6 25.100 25.077 0.023 6 10.240 10.436 0.196 6 1.150 1.174 0.024
7 2.244 2.241 0.003 7 25.950 25.606 0.344 7 10.180 10.325 0.145 7 1.180 1.180 0.000
8 2.252 2.249 0.003 8 25.450 25.494 0.044 8 9.560 10.072 0.512 8 1.160 1.148 0.012
9 2.322 2.329 0.007 9 25.400 25.411 0.011 9 8.750 8.338 0.412 9 1.190 1.196 0.006

10 2.383 2.376 0.007 10 25.100 24.981 0.119 10 9.060 9.072 0.012 10 1.190 1.209 0.019
11 2.417 2.417 0.000 11 24.800 24.763 0.037 11 8.880 9.084 0.204 11 1.225 1.186 0.039
12 2.559 2.534 0.025 12 24.400 24.301 0.099 12 9.440 9.581 0.141 12 1.220 1.217 0.003
13 2.485 2.554 0.069 13 23.850 24.862 1.012 13 10.310 9.739 0.571 13 1.290 1.250 0.040
14 2.528 2.525 0.003 14 23.850 23.961 0.111 14 9.810 9.633 0.177 14 1.410 1.320 0.090
15 2.616 2.615 0.001 15 23.850 24.010 0.160 15 9.060 9.197 0.137 15 1.470 1.392 0.078
16 2.523 2.478 0.045 16 23.900 24.071 0.171 16 8.750 8.806 0.056 16 1.530 1.461 0.069
17 2.610 2.638 0.028 17 24.500 24.554 0.054 17 8.820 8.879 0.059 17 1.630 1.545 0.085
18 2.610 2.606 0.004 18 24.800 24.795 0.005 18 9.560 9.326 0.234 18 1.750 1.743 0.007
19 2.610 2.614 0.004 19 24.150 24.165 0.015 19 8.820 8.749 0.071 19 1.750 1.858 0.108
20 2.699 2.726 0.027 20 24.200 23.971 0.229 20 8.820 8.774 0.046 20 1.840 1.886 0.046
21 2.759 2.748 0.011 21 24.000 24.028 0.028 21 8.690 8.867 0.177 21 1.895 1.916 0.021
22 2.659 2.638 0.021 22 23.900 23.886 0.014 22 8.630 8.519 0.111 22 1.950 2.034 0.084
23 2.742 2.737 0.005 23 23.050 23.253 0.203 23 8.690 8.693 0.003 23 1.974 2.033 0.059
24 2.562 2.561 0.001 24 22.300 22.586 0.286 24 8.940 8.952 0.012 24 2.700 2.011 0.69
25 2.495 2.487 0.008 25 22.450 22.418 0.032 25 9.310 9.374 0.064 25 2.515 2.332 0.179
... ... .... ... ... ... ... .... ... ... ... ... ... ... ... ...
... .... .... ... .... ... .... .... ... ... ... ... ... ... ... ...

1145 5.712 5.709 0.003 2440 57.350 57.298 0.052 2865 29.310 29.065 0.245 375 2.073 2.019 0.054
1146 5.588 5.592 0.004 2441 56.740 56.650 0.090 2866 28.680 28.619 0.061 376 2.020 2.003 0.017
1147 5.693 5.650 0.043 2442 57.550 57.613 0.063 2867 26.770 28.408 1.638 377 2.073 2.094 0.021
1148 5.791 5.786 0.005 2443 59.090 59.152 0.062 2868 27.450 27.480 0.03 378 2.065 2.076 0.011
1149 5.614 5.458 0.156 2444 60.270 58.926 1.344 2869 27.000 27.250 0.250 379 2.055 2.061 0.006
1150 5.442 5.460 0.018 2445 60.750 59.675 1.075 2870 26.670 26.544 0.126 380 2.209 2.169 0.040
1151 5.533 5.571 0.038 2446 58.410 59.408 0.998 2871 26.510 26.497 0.013 381 2.440 2.208 0.232
1152 5.378 5.397 0.019 2447 58.720 58.917 0.197 2872 26.480 26.463 0.017 382 2.517 2.220 0.297
1153 5.373 5.374 0.001 2448 58.640 58.502 0.138 2873 25.150 25.781 0.631 383 2.718 2.362 0.356
1154 5.382 5.420 0.038 2449 57.870 58.721 0.851 2874 25.570 25.615 0.045 384 2.541 2.687 0.146
1155 5.507 5.501 0.006 2450 59.130 58.985 0.145 2875 25.880 25.948 0.068 385 2.566 2.607 0.041
1156 5.552 5.551 0.001 2451 60.110 60.087 0.023 2876 25.240 25.451 0.211 386 2.626 2.549 0.077
1157 5.310 5.272 0.038 2452 58.940 58.858 0.082 2877 25.000 24.649 0.351 387 2.587 2.606 0.019
1158 5.338 5.348 0.010 2453 59.930 59.390 0.540 2878 25.080 24.984 0.096 388 2.628 2.624 0.004
1159 5.298 5.353 0.055 2454 61.180 60.283 0.897 2879 25.050 25.158 0.108 389 2.587 2.556 0.031
1160 5.189 5.207 0.018 2455 59.660 59.939 0.021 2880 25.890 25.835 0.055 390 2.536 2.546 0.010
1161 5.082 5.087 0.005 2456 58.590 58.49 0.100 2881 25.230 25.211 0.019 391 2.420 2.425 0.005
1162 5.082 5.207 0.125 2457 58.280 58.624 0.344 2882 25.940 25.727 0.213 392 2.247 2.245 0.002
1163 5.082 4.783 0.299 2458 58.790 59.188 0.398 2883 25.260 25.347 0.087 393 2.223 2.196 0.027
1164 4.965 4.849 0.116 2459 56.23 55.442 0.788 2884 25.250 25.276 0.026 394 2.390 2.381 0.009
1165 4.767 4.733 0.034 2460 55.900 56.055 0.155 2885 26.060 25.660 0.400 395 2.380 2.398 0.018

Remark 4.2. We have used the estimated parameters am̂k ,k, µm̂k ,k, and σ2
m̂k ,k

, in Table 2 to simulate the daily prices

of natural gas, crude oil, coal, and ethanol. For this purpose, we pick ε = 0.001. For each time tk, we estimate the

simulated prices ys
m̂k ,k

. Among the set of admissible set values mk, the value that gives the minimumMk is recorded

as m̂k. If condition (3.10) is not satisfied at time tk, the value of mk where the minimum min
mk

Ξmk ,k,yk is attained, is

recorded as m̂k. The ε- best sub-optimal estimates of the parameters âmk ,k, µ̂mk ,k and σ̂2
mk ,k

at m̂k are also recorded as

am̂k ,k, µm̂k ,k and σ2
m̂k ,k

; the value of ys
mk ,k

at time tk corresponding to m̂k, am̂k ,k, µm̂k ,k and σ2
m̂k ,k

is also recorded as the ε−

best sub-optimal simulated value ys
m̂k ,k

of yk.

Next, we show the graphs of the simulated data using the LLGMM method for each commodity in Figure 4.
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(a)
(b)

(c) (d)

Figure 4: Real and Simulated Prices using initial delay r = 5.

Figures 4: (a), (b), (c) and (d) under the application of the LLGMM approach show the graphs of the real and simulated spot prices for the

daily Henry Hub natural gas [14] , daily crude oil [13], daily coal [12], and weekly ethanol data [48], respectively. The red line represents the real

data yk while the blue line represents the simulated value ys
m̂k ,k

.

Graphical, Simulation and Statistical Results-Case 2: For better simulation results in Figure 4, we increase the

magnitude of time delay r. We pick r = 10, ∆t = 1, ε = 0.001, and p = 2. The ε− best sub-optimal estimates of

parameters a, µ and σ2 at each real data times are exhibited in Appendix A.1, Table A.13. In Table A.14, the real and

LLGMM simulated price values of each of the four energy commodities: natural gas, crude oil, coal and ethanol are

exhibited in columns 2-3, 6-7, 10-11, and 14-15, respectively. The absolute error of each of the energy commodity’s

simulated value is shown in columns 4, 8, 12, 16, respectively.
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The following graphs exhibit the simulation using the LLGMM approach for natural gas, crude oil, coal and

ethanol data with an initial time delay r = 10:

(a) (b)

(c) (d)

Figure 5: Real and Simulated Prices for initial delay r = 10.

Figures 5: (a), (b), (c) and (d) show the graphs of the real and simulated spot prices for the daily Henry Hub natural gas data [14], daily crude

oil data [13], daily coal data [12], and weekly ethanol data [48], respectively using r = 10. The red line represents the real data yk while the blue

line represent the simulated value ys
m̂k ,k

. The root mean square error of the simulation for the natural gas, crude oil, coal and ethanol data are given

by 0.1004, 0.5401, 0.8879 and 0.0618, respectively.

Graphical, Simulation and Statistical Results-Case 3: Again, we pick r = 20, ∆t = 1, ε = 0.001, and p = 2,

the ε− best sub-optimal estimates of parameters a, µ and σ2 at each real data times are recorded in Appendix A.2,

Table A.15. In Appendix A.2, Table A.16, the real and the LLGMM simulated price values of natural gas, crude oil,
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coal and ethanol are exhibited in columns 2-3, 6-7, 10-11, and 14-15, respectively. The absolute error of each of the

energy commodity’s simulated value is shown in columns 4, 8, 12, 16, respectively. The following graphs exhibit the

simulation using the LLGMM method for natural gas, crude oil, coal and ethanol data with an initial discrete-time

delay r = 20:

(a) (b)

(c) (d)

Figure 6: Real and Simulated Prices for initial delay r = 20.

Figures 6: (a), (b), (c) and (d) for r = 20 show the graphs of the real and simulated spot prices for the daily Henry Hub natural gas data [14],

daily crude oil data [13], daily coal data [12], and weekly ethanol data [48], respectively. The red line represents the real data yk while the blue line

represent the simulated value ys
m̂k ,k

.

Goodness-of-fit Measures: We find the goodness-of-fit measures for four energy commodities: natural gas, crude

oil, coal and ethanol. This is achieved by using the goodness-of-fit measures described in [11]:
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(4.2)

where
{
y(s)

t

}s=1,2,...,S

t=1,2,...,N
is a double sequence of simulated values at the data collected/observed time t = 1, 2, ....,N;

̂RAMS E is the root mean square error of the simulated path, ÂMAD measures the variability and ÂMB measures the

average median bias. The goodness-of-fit measures are computed using S = 100 pseudo-data sets. The comparison

of the goodness-of-fit measures ̂RAMS E, ÂMAD and ÂMB for the four energy commodities are recorded in Table 4.

Remark 4.3. As the ̂RAMS E decreases, the state estimates approach the true value of the state. As the value of

ÂMAD increases, the influence of the random environmental fluctuations on the state dynamic process increases. In

addition, if the value of ̂RAMS E decreases and the value of ÂMAD increases, then the method of study possesses a

greater degree of ability for state and parameter estimation accuracy and greater degree of ability to measure the vari-

ability of random environmental perturbations on the state dynamic of system. Moreover, as the ̂RAMS E decreases,

ÂMAD increases and the ÂMB decreases, the method of study increases its performance under the three goodness of

fit measures in a coherent way. On the other hand, as the ̂RAMS E increases, the state estimates tend to move away

from the true value of the state. As the value of ÂMAD decreases, the influence of the random environmental fluc-

tuations on state dynamic process decreases. In addition, if the value of ̂RAMS E increases and the value of ÂMAD

decreases, then the method of study possesses a lesser degree of ability for state and parameter estimation accuracy

and lesser degree of ability to measure the variability of random environmental perturbations on the state dynamic of

system. Moreover, as the ̂RAMS E increases, ÂMAD decreases and the ÂMB increases, the method of study decreases

its performance under the three goodness-of-fit measures in a coherent manner.

The Comparison of Goodness-of-fit Measures: The following table exhibits the Goodness-of-fit Measures for

the energy commodities natural data, crude oil, coal, and ethanol data using the initial delays r = 5, r = 10, and

r = 20.

Table 4: Goodness-of-fit Measures for the cases: r = 5, r = 10, and r = 20.

Goodness
of-fit Mea-
sure

r = 5 r = 10 r = 20

Natural gas Crude oil Coal Ethanol Natural gas Crude oil Coal Ethanol Natural gas Crude oil Coal Ethanol
R̂AMS E 0.1801 1.1122 1.2235 0.1001 0.1004 0.5401 0.8879 0.0618 0.0674 0.4625 0.4794 0.0375
ÂMAD 1.1521 24.6476 9.4160 0.3409 1.1330 24.5376 9.4011 0.3233 1.1318 24.5010 9.4009 0.3213
ÂMB 1.1372 27.2707 12.8370 0.3566 1.1371 27.2708 12.8369 0.3566 1.1371 27.2707 12.8370 0.3566
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Remark 4.4. From Tables 3, A.14 and A.16, it is clear that as r increases the absolute error decreases. Furthermore,

the comparison of the Goodness-of-fit measures in Table 4 for the energy commodities using the initial delays r = 5,

r = 10, and r = 20 shows that as the delay r increases, the root mean square error decreases, significantly; ÂMAD,

the average median absolute deviation decreases very slowly, and ÂMB, the average median bias remains unchanged.

Remark 4.5. All the codes for the parameter estimation, simulations and forecasting are written and tested using

Matlab program. Due to the online control nature of mk in our model, it is worth mentioning that the execution times

for each of the four commodities depend on the robustness of the data.

4.2. Application to U.S. Treasury Bill Interest Rate and U.S.-U.K. Foreign Exchange Rate Data Sets:

In this subsection, we apply the conceptual computational algorithm discussed in Sections 3 and 4 to estimate

the parameters in equation (2.20) in the context of the U.S. Treasury Bill interest rate (U.S. TBYIR) [44] and the

U.S.-U.K. foreign exchange rate (U.S.-U.K. FER) [45] data collected on Forex database.

Graphical, Simulation and Statistical Results: Using ε = 0.001, r = 20, and p = 2, the ε− best sub-optimal

estimates of parameters β, µ, δ, σ and γ for each U.S. Treasury Bill and U.S.-U.K. Foreign Exchange rate data sets

are exhibited in Tables 5 and 6, respectively.

Table 5: Estimates for m̂k , βm̂k ,k , µm̂k ,k , δm̂k ,k , σm̂k ,k , γm̂k ,k for U.S. Treasury Bill interest rate data.
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Table 6: Estimates for m̂k , βm̂k ,k , µm̂k ,k , δm̂k ,k , σm̂k ,k , γm̂k ,k for U.S.-U.K. Foreign Exchange Rate.
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Tables 5 and 6 show the ε- best sub-optimal local admissible sample size m̂k and the corresponding parameter estimates βm̂k ,k , µm̂k ,k , δm̂k ,k ,

σm̂k ,k , and γm̂k ,k for the U.S. Treasury Bill interest rate (U.S.-TBYIR) and U.S.-U.K. foreign exchange rate (U.S.-U.K. FER) data at each time tk ,

respectively. This is based on p ≤ r, and the initial real data time-delay r = 20, that is, the data schedule time tr = t20. Furthermore, note that

the range of the ε-best sub-optimal local admissible sample size for the U.S. TBYIR and U.S.-U.K. FER data for time tk ∈ [21, 45]
⋃

[420, 445]

and tk ∈ [21, 45]
⋃

[155, 180], respectively, is 2 ≤ m̂k ≤ 20. All comments (Remark 4.1) made with regard to Table 2 remains valid with regard

to Tables 5 and 6 in the context of the U.S. Treasury Bill interest rate and the U.S.-U.K. foreign exchange rate data at time tk and the LLGMM

approach.

We show the graphs of βm̂k ,k , µm̂k ,k , δm̂k ,k, σm̂k ,k, and γm̂k ,k for both monthly U.S. TBYIR and U.S.-U.K. FER.

(a) (b)
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(c) (d)

(e)

Figure 7: βm̂k ,k , µm̂k ,k , δm̂k ,k , σm̂k ,k , and γm̂k ,k for U.S. TYBIR using r = 20.

(a) (b)
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(c) (d)

(e)

Figure 8: βm̂k ,k , µm̂k ,k , δm̂k ,k , σm̂k ,k , and γm̂k ,k for U.S.-U.K. FER using r = 20.

Figures 7-8: (a), (b), (c), (d) and (e) are graphs of parameters in model (2.20) for U.S. TYBIR and U.S.-U.K. FER, respectively.

The following graphs show simulated path for the U.S. Treasury Bill interest rate and U.S.-U.K. FER with r = 20.

32



(a) (b)

Figure 9: Real and Simulated value for Interest rate and U.S.-U.K. foreign exchange rate using r = 20.

Figures 9(a) and (b) show the real and simulated path for U.S. TBYIR and U.S.-U.K. FER, respectively.

Comparison of Goodness-of-fit Measures for U.S. TBYIR and U.S.-U.K. FER using r = 20: The following

table compares the Goodness-of-fit Measures for the U.S. TBYIR and U.S.-U.K. FER data using r = 20.

Table 7: Goodness-of-fit Measures for the U.S. TBYIR and U.S.-U.K. FER data using r = 20.

Goodness of-fit Measure r = 20
U.S. TBYIR U.S.-U.K. FER

̂RAMS E 0.0024 0.0137
ÂMAD 0.0148 0.0718
ÂMB 0.0165 0.1033

5. Forecasting

In this section, we outline the application of the LLGMM approach to robust forecasting and the confidence inter-

val problems. Moreover, this approach does not require a large data size as well as any type of stationary conditions

[6]. First, we shall sketch an outline of the forecasting problem. The ε− best sub-optimal simulated value ys
m̂k ,k

at time

tk is used to define a forecast y f
m̂k ,k

for yk at a lead time tk for each of the energy commodity model, the U.S. TBYIR

and U.S.-U.K. FER.

5.1. Forecasting for Energy Commodity Model

In the context of Illustration 1 (Section 2.6), we begin forecasting from a lead time tk. Using the data up to time

tk−1, we compute m̂i, σ2
m̂i,i

, am̂i,i and µm̂i,i for i ∈ I0(k − 1). We assume that we have no information about the real
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data {yi}
N
i=k. Under these considerations, imitating the computational procedure outlined in Sections 3 and 4 and using

(2.18), we find the estimate of the forecast y f
m̂k ,k

at time tk by employing the following discrete-time iterative process

y f
m̂k ,k

= ys
m̂k−1,k−1 + am̂k−1,k−1ys

m̂k−1,k−1(µm̂k−1,k−1 − ys
m̂k−1,k−1)∆t + σm̂k−1,k−1ys

m̂k−1,k−1∆W(tk), (5.1)

where the estimates σ2
m̂k−1,k−1, am̂k−1,k−1 and µm̂k−1,k−1 are defined in (2.18) with respect to the known past data up to the

time tk−1. We note that y f
m̂k ,k

is the ε-sub-optimal estimate for yk at time tk .

To determine y f
m̂k+1,k+1, we need σ2

m̂k ,k
, am̂k ,k and µm̂k ,k. Since we only have information of real data up to time tk−1,

we use the forecasted estimate y f
m̂k ,k

as the estimate of yk at time tk, and to estimate σ2
m̂k ,k

, am̂k ,k and µm̂k ,k. Hence,

we can write am̂k ,k as am̂k ,k ≡ am̂k ,yk−m̂k+1,yk−m̂k+2,...,yk−1,y
f
mk ,k

. We can also re-write µm̂k ,k ≡ µm̂k ,yk−m̂k+1,yk−m̂k+2,...,yk−1,y
f
m̂k ,k

. To find

y f
m̂k+2,k+2, we use the estimates am̂k+1,k+1 ≡ am̂k+1,yk−m̂k+2,yk−m̂k+3,...,yk−1,y

f
m̂k ,k

,y f
m̂k+1 ,k+1

, µm̂k+1,k+1 ≡ µm̂k+1,yk−m̂k+2,yk−m̂k+3,...,yk−1,y
f
m̂k ,k

,y f
m̂k+1 ,k+1

.

Continuing this process in this manner (using principle of Mathematical Induction, [23]), we use the estimates

am̂k+i−1,k+i−1 ≡ am̂k+i−1,yk−m̂k+i,yk−m̂k+i+1,...,yk−1,y
f
m̂k ,k

,y f
m̂k+1 ,k+1,...,y

f
m̂k+1 ,k+i−1

, µm̂k+i−1,k+i−1 ≡ µm̂k+i−1,yk−m̂k+i,yk−m̂k+i+1,...,yk−1,y
f
m̂k ,k

,y f
m̂k+1 ,k+1,...,y

f
m̂k+1 ,k+i−1

to estimate y f
m̂k+i,k+i

5.2. Prediction/Confidence Interval for Energy Commodities

In order to be able to assess the future certainty, we also discuss the prediction/confidence interval. We define the

100(1 − α)% confidence interval for the forecast of the state y f
m̂i,i

at time ti, i ≥ k, as y f
m̂i,i
± z1−α/2

(
s2

m̂i−1,i−1

)1/2
y f

m̂i−1,i−1,

where
(
s2

m̂i−1,i−1

)1/2
y f

m̂i−1,i−1 is the estimate for the sample standard deviation for the forecasted state derived from the

following iterative process

y f
m̂k ,k

= y f
m̂k−1,k−1 + am̂k−1,k−1y f

m̂k−1,k−1(µm̂k−1,k−1 − y f
m̂k−1,k−1)∆t + σm̂k−1,k−1y f

m̂k−1,k−1∆W(tk). (5.2)

It is clear that the 95 % confidence interval for the forecast at time ti is

(
y f

m̂i,i
− 1.96

(
s2

m̂i−1,i−1

)1/2
y f

m̂i−1,i−1, y
f
m̂i,i

+ 1.96
(
s2

m̂i−1,i−1

)1/2
y f

m̂i−1,i−1

)

where the lower and upper end of the interval denotes the lower and upper bound of the state estimate, respectively.
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(a)

(b)

(c)

(d)

Figure 10: Real, Simulated and Forecasted values using initial delay r = 20.

Figures 10: (a), (b), (c) and (d) show the graphs of the forecast and 95% confidence limit for the daily Henry Hub natural gas [14], daily crude

oil [13], daily coal [12], and weekly ethanol data [48], respectively. Moreover, Figure 10: (a), (b), (c) and (d) show two regions: the simulation

region S and the forecast region F. For the simulation region S , we plot the real price data in red color and the simulated price data in blue color.

For the forecast region F, we plot the real price in red color, the forecast price in green and the 95% confidence estimate of the forecast (as explained

in Section 5.1) in black dots. The upper and lower simulated sketches in Figures 10 (a), (b), (c) and (d) corresponds to the upper and lower ends

of the 95% confidence interval, respectively.

5.2.1. Sample forecasting error for energy commodities: r = 20

In this subsection, utilizing the procedure described in Subsection 5.1, we consider ten samples of forecast for

each four energy commodities for each lead time greater than or equal to corresponding initial lead times. We draw
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scattered plots of deviations of the ten sample forecasts from corresponding real and 95% forecast price for each lead

time. These plots would exhibit the degree of stability and reliability of LLGMM approach. In addition, it would shed

a light on the behavior of long-range forecasting. For the four energy commodities, namely, natural gas, crude oil,

coal and ethanol, we choose the following initial lead-time forecast times and the lead-time domains as: 08/01/2004

to 12/13/2004 for natural gas, from lead time 06/03/2008 to 08/12/2008 for crude oil, from lead time 10/28/2013

to 01/08/2014 for coal and from lead time 10/03/2013 to 09/11/2014 for ethanol data.

(a) (b)

(c) (d)

Figure 11: Out-Of-Sample Forecast deviation from future price for energy commodities using r = 20.

Figures 11 (a), (b), (c) and (d) exhibit scattered plots of 10 out-of-sample forecast errors/deviation from real/future price for the daily Henry

Hub natural gas, daily crude oil, daily coal, and weekly ethanol data with lead times 08/01/2004, 06/03/2008, 10/28/2013 and 10/03/2013,

respectively. The 10 scattered sample error points for each lead time are identified by blue, red, orange, purple circles (◦), dots (•), triangles (B and

C), diamond (�), mark (x). It is easily noticeable that at least 8/9 are within one unit absolute deviations with 70-80% lead time domain.
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(a) (b)

(c) (d)

Figure 12: Ten samples forecast and 95% confidence forecast with bounds for energy commodities using r = 20.

Figures 12 (a), (b), (c) and (d) show the 95% confidence and 10 forecast sample path trajectories coupled with 95% confidence upper and lower

sample bound trajectories for the daily Henry Hub natural gas, daily crude oil, daily coal, and weekly ethanol data with lead times 08/01/2004,

06/03/2008, 10/28/2013 and 10/03/2013, respectively. 10 sample and the 95% sample forecasts are represented by black, blue, red, etc. colors.

It is obvious that all 11 sample forecast paths are within the 95% upper and lower bounds. In short, the 95% confidence interval is robust with

respect to a sample of 10 forecast realizations. 95% interval estimate is highly reliable and stable in the sense of longer lead times.

5.2.2. Sensitivity of forecast estimates to perturbations in model parameters for energy commodity: r = 20

In this subsection, we demonstrate the influence of the state dynamic parametric variations with respect to a

nominal forecasting dynamic process (5.1) for each of the four energy commodities. We introduce random parametric
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perturbations in the ε-sub-optimal parameters am̂k ,k, µm̂k ,k and σm̂k ,k as follows

am̂k ,k,ν1 ≡ am̂k ,k = am̂k ,k + ν1e1, µm̂k ,k,ν2 ≡ µm̂k ,k = µm̂k ,k + ν2e2, (5.3)

where ei, i = 1, 2, 3 are independent standard normal random variables and νi, i = 1, 2, 3 characterize the magnitudes

(noise intensities) of the random fluctuations. A dynamic process corresponding to the ε-sub-optimal parameters am̂k ,k

and µm̂k ,k is referred as nominal price dynamic process of (5.1) or (5.2). A price dynamic process corresponding to

parameters described in (5.3) is referred to perturbation of (5.1) or (5.2). This, together with (5.1)-(5.2) are now used

to estimate the forecast value.

(a) (b)

(c) (d)

Figure 13: Forecast error sensitivity analysis of the mean level nominal parameter µm̂k ,k,ν2 using initial delay r = 20.

Figures 13 (a), (b), (c) and (d) exhibit the absolute value of the sample forecast error/deviation of parametric perturbation in the mean level

µm̂k ,k,ν2 from the corresponding nominal parameter (the ε-sub-optimal parameters µm̂k ,k) for the natural gas, crude oil, coal and ethanol data,
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respectively. These plots show how the absolute value of the sample forecast error changes with respect to the sample nominal forecast and noise

intensity introduced in the mean level µm̂k ,k,ν2 as described in (5.3) for each energy commodity. The lead time for each forecast is the same as that

presented in Subsubsection 5.2.1. It is clear from the sample path trajectories’ plots that as the noise intensity in the mean level parameter µm̂k ,k,ν2

increases, the color of the graph changes from blue to yellow. Here, a dark blue color represents region with very low absolute value of the error; a

light blue error represents region with low error; a light yellow color represents region with high magnitude error and a dark yellow color represents

regions with very high error.

(a) (b)

(c) (d)

Figure 14: Forecast error sensitivity analysis in the mean reverting rate am̂k ,k,ν1 (the nominal parameter) using initial delay r = 20.

Figures 14 (a), (b), (c) and (d) show the sensitivity of the energy commodity price out-of-sample-forecast error to perturbation in the mean

reverting rate am̂k ,k,ν1 for the natural gas, crude oil, coal and ethanol data, respectively. By definition, the mean reverting rate, am̂k ,k,ν1 , is the rate by

which price shocks dissipate and the variable reverts towards the mean. They show how the out-of-sample-forecast error changes with respect to

out-of-sample-time and noise intensity introduced in the mean reverting rate am̂k ,k,ν1 as described in (5.3) for each energy commodity.
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5.3. Prediction/Confidence Interval for U.S. Treasury Bill Interest Rate and U.S.-U.K. Foreign Exchange Rate

Following the procedure presented in Section 5.1, we show the graph of the real, simulated, forecast and 95 %

confidence limit (with respect to (2.20)) for the U.S. TBYIR and U.S.-U.K. FER for the initial delay r = 20.

(a)
(b)

Figure 15: Real, Simulated, Forecast and 95% Confidence Limit for U.S. TBYIR and U.S.-U.K.-FER Data.

Figure 15(a) shows the real, simulated, forecast and 95% confidence limit for the Interest rate data and Figure 15(b) shows the real, simulated,

forecast and 95% confidence level for the U.S.-U.K. FER.

5.3.1. Sensitivity of forecast estimates to perturbations in model parameters for USTBYIR and U.S.-U.K. FER: r = 20

Similar to the approach discussed in Subsection 5.2.2, we give the sensitivity of forecast estimates to perturbation

plot for the U.S. Treasury Bill Interest Rate and U.S.-U.K. FER.

(a1) (b1)
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(a2) (b2)

Figure 16: Forecast error sensitivity analysis in βm̂k ,k and µm̂k ,k (the nominal parameter) for USTBYIR: r = 20.

Figures 16 (a1) and (b1) show both the sensitivity analysis of the absolute value of sample forecast errors corresponding to the perturbed

and nominal parameter βm̂k ,k for the U.S. Treasury Bill interest rate and the U.S.-U.K.-FER, respectively. Figures 16 (a2) and (b2) show both the

sensitivity analysis of the absolute value of sample forecast errors corresponding to the perturbed and nominal parameter µm̂k ,k for the U.S. Treasury

Bill interest rate and the U.S.-U.K.-FER, respectively.

6. The byproduct of the LLGMM approach

The second component, DTIDMLSMVSP (2.16) of the LLGMM [30] in Section 2 plays role: (a) to initiate ideas

for the usage of discrete-time interconnected dynamic approach parallel to the continuous-time dynamic process, (b)

to speed-up the computation time, (c) to significantly reduce the state error estimates, and also (d) as an alternative

approach to the GARCH(1,1) model [4, 5] as well as comparable results with ex post volatility results of Chan et al

[9]. Furthermore, LLGMM directly generates (Remark 2.5, Section 3) a GMM based method. In this section, we

briefly discuss these comparison in the context of four energy commodity, U.S. TBYIR and U.S.-U.K. FER data.

6.1. Comparison between DTIDMLSMVSP and GARCH Model

In this subsection, we briefly compare the applications of DTIDMLSMVSP (2.16) and GARCH in the context of

four energy commodities. We compare the estimates s2
m̂k ,k

with the estimate derived from the usage of a GARCH(1,1)

model described in [4] and defined by

zt |Ft−1 ∼ N(0, ht),

ht = α0 + α1ht−1 + β1z2
t−1, α0 > 0, α1, β1 ≥ 0.

(6.1)
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The parameters α0, α1, and β1 of the GARCH(1,1) conditional variance model (6.1) for the four commodities natural

gas, crude oil, coal, and ethanol are estimated. The estimates of the parameters are given in Table 8 below.

Table 8: Parameter estimates for GARCH(1,1) Model (6.1).

Data Set α0 α1 β1

Natural Gas 6.863 × 10−5 0.853 0.112
Crude Oil 9.622 × 10−5 0.917 0.069

Coal 3.023 × 10−5 0.903 0.081
Ethanol 4.152 × 10−4 0.815 0.019

We later show a side by side comparison of s2
m̂k ,k

[30] and the volatility described by GARCH(1,1) model (6.1)

with coefficients in Table 8.

(a) (b)
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(c) (d)

Figure 17: s2
m̂k ,k

and GARCH(1,1) .

Figure 17: (a), (b), (c) and (d) show comparison of the volatility graphs using s2
m̂k ,k

and GARCH(1,1) model (6.1) for the daily Henry Hub

natural gas [14], daily crude oil [13], daily coal [12] and weekly ethanol data [48], respectively. The blue and red lines show the graphs of estimates

using s2
m̂k ,k

and GARCH(1,1) model, respectively. The GARCH model does not estimate volatility as heavily evidenced in Figure 17 (d). In fact, it

demonstrated insensitivity.

We also compare Figure 4 with simulations using the GARCH(1,1) model (6.1) as the conditional variance below.

(a)

(b)
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(c)
(d)

Figure 18: Simulation derived by using s2
m̂k ,k

and GARCH(1,1)

Figure 18: (a), (b), (c) and (d) are graphs of the simulations using s2
m̂k ,k

and GARCH(1,1) model (6.1) to estimate the volatility process for the

daily Henry Hub natural gas [14] , daily crude oil [13], daily coal [12], and weekly ethanol data [48], respectively. The blue dotted line shows the

graph of estimates for the simulations using GARCH(1,1) model to simulate the volatility, the green dotted line is simulated estimates described in

Figure 4, and the red line shows the real data. It can be seen that the GARCH model fails to capture most of the spikes in the data. Moreover, the

GARCH model creates significant errors by over-and-under estimating the variance. These spikes were perfectly captured in Figure 4 where we

use the discrete-time dynamic model of local sample variance statistics process [30] to estimate the volatility process described by GARCH (1,1)

model (6.1). This illustrates the significance of dynamic statistic model (2.16) (Lemma 2.1of [30]) that performs better than the GARCH (1,1)

volatility model.

6.2. Comparison of DTIDMLSMVSP [30] with the work of Chan et al [9]:

In this subsection, using the U.S. TBYIR and U.S.-U.K. FER data, the comparison between the DTIDMLSMVSP

and ex post volatility of Chan et al [9] is made.

According to the work of Chan et al [9], we define the ex post volatility by the absolute value of the change in

U.S. TBYIR data. Likewise, we define simulated volatility by the square root of the conditional variance implied by

the estimates of the model (2.20). Using (2.20), we calculate our simulated volatility as σm̂k ,k

(
ys

m̂k ,k

)δm̂k ,k . Figure 19

below shows the comparison between ex post volatility and simulated volatility. We compare our result with the result

of Chan et al [9] and conclude that our method performs better than their method.
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Figure 19: Ex Post Volatility and Simulated Volatility for Interest Rate.

Figure 19 shows the Ex post volatility and simulated volatility for the U.S. Treasury Bill interest rate data [44]. We compare our work in Figure

19 (using DTIDMLSMVSP [30]) with Figure 1 of Chan et al [9]. Their model does not clearly estimate the volatility. It demonstrated insensitivity

in the sense that it was unable to capture most of the spikes in the interest rate ex post volatility data.

7. Comparisons of LLGMM with Existing and Newly Developed OCBGMM

In this Section, we briefly compare LLGMM and OCBGMM in the frame-work of the conceptual, computational,

mathematical and statistical results coupled with role, scope and applications. For this purpose, to better appreciate

and understand the comparative work, we utilize the state and parameter estimation problems for the stochastic dy-

namic model of interest rate that has been studied extensively [9, 11] in the frame-work of orthogonality condition

vector based generalized method of moments (OCBGMM). We recall that the LLGMM approach is based on seven in-

teractive components (Section 1). On the other hand, the existing OCBGMM (GMM [9] and IRGMM [11]) approach

and its extensions are based on five components (Section 3, [30] ). We further remark that the basis for the formation

of orthogonality condition parameter vectors (OCPV) in the LLGMM (Section 3) and OCBGMM (GMM/IRGMM)

are different. In fact, in the existing OCBGMM (GMM/IRGMM [9, 11]), the orthogonality condition vectors are

formed on the basis of algebraic manipulation coupled with econometric specification-based discretization scheme
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(OCPV-Algebraic) rather than stochastic calculus and a continuous-time stochastic dynamic model independent based

(OCPV-Analytic). This motivates to extend a couple of OCBGMM-based state and parameter estimation methods.

In this section, using the stochastic calculus based formation of the OCPV-Analytic in the context of the continuous-

time stochastic dynamic model (Section 2), we develop two new OCBGMM based methods for the state and parameter

estimation problems. The proposed OCBGMM methods are direct extensions of the existing OCBGMM method and

its extension IRGMM [9, 11] in the context of the OCPV. Because of this difference and for the sake of comparison,

the newly developed OCBGMM and the existing OCBGMM methods are referred to as the OCBGMM-Analytic and

OCBGMM-Algebraic, respectively. In particular, the GMM [9] and IRGMM [11] with OCPV-algebraic are denoted as

GMM-Algebraic and IRGMM-Algebraic and corresponding extensions under the OCPV-Analytic as GMM-Analytic

and IRGMM-Analytic, respectively. Furthermore, using LLGMM based method, the aggregated generalized method

of moments (AGMM) (2.19) introduced in Subsection 2.6 and described in Appendix B is also compared along with

the above stated methods, namely, GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, and IRGMM-Analytic.

A comparative analysis of the results of GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic

and Aggregated Generalized Method of Moment (AGMM) methods with the LLGMM for the state and parameter es-

timation problems of the interest rate and energy commodities stochastic dynamic models are briefly outlined in

Appendix B, Appendix C.2, and Appendix D. First, based on the material in Sections 1, 2, and 3, we briefly summa-

rize the comparison between the LLGMM and OCBGMM methods.

7.1. Theoretical Comparison Between LLGMM and OCBGMM

Based on the foundations of the analytical, conceptual, computational, mathematical, practical, statistical and

theoretical motivations in the context of the material in Sections 2, 3, 4, 5 and 6, we summarize the comparison

between the applications of innovative LLGMM [30] approach with the existing and newly developed LLGMM based

OCBGMM methods. The comparative results are presented in tables in Appendix C in a systematic manner.

7.2. Comparisons of LLGMM and existing methods: Stochastic Interest rate model

The continuous-time interest rate process is described by a nonlinear Itô-Doob-type stochastic differential equa-

tion:

dy = (α + βy)dt + σyγdW(t). (7.1)

An energy commodity stochastic dynamic model described in (2.8) in Subsection 2.6 is a modified generalized

version of (7.1). These models would be utilized to further compare the role, scope and merit of the LLGMM and
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OCBGMM methods in the frame-work of the graphical, computational and statistical results and its applications to

forecasting and prediction with certain degree of confidence.

Remark 7.1. The continuous-time interest rate model (7.1) was chosen so that we can compare our LLGMM method

with OCBGMM method described in [9] and [11]. Our proposed model for the continuous-time interest rate model

is described in (2.20). We will later compare the results derived using model (7.1) with the results using (2.20) in

Subsections 2.7 and 4.2.

In order to fulfil the objectives of the comparison, we need to construct the necessary tools outlined in Section 2.

Descriptive Statistic for Time-series Data Set: First, we consider one-month risk free rates from the Monthly

Interest rate data sets for the period of June 30, 1964 to December 31, 2004.

Table 9: Statistics for the interest rate data for June 30, 1964 to December 31, 2004

Variable N Mean Std dev ρ1 ρ2 ρ3 ρ4 ρ5 ρ6

yt 487 0.0592 0.0276 0.9809 0.9508 0.9234 0.8994 0.8764 0.8519
∆yt 486 −0.00003 0.0050 0.3305 −0.0919 -0.1048 -0.0351 0.0403 -0.1877

Mean, standard deviations, and autocorrelations of monthly U.S. Treasury Bill interest rate data. ρ j denotes the autocorrelation coefficient of

order j, N represents the total number of observations used in this study.

The Orthogonality Condition Vector for (7.1): In the following, we first present the orthogonality condition pa-

rameter vectors (OCPV) for the GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, and IRGMM-Analytic meth-

ods. These orthogonality vectors are then used for the state and parameter estimation problems. For this, we need to

follow the procedure (Section 2) for obtaining the analytic orthogonality condition parameter vector (OCPV-Analytic).

We consider the Lyapunov functions V1(t, y) = 1
2 y2 and V2(t, y) = 1

3 y3. The Itô differentials of V1 and V2 with

respect to (7.1) are:


d
(

1
2 y2

)
=

[
αy + βy2 + 1

2σ
2y2γ

]
dt + σyγ+1dW(t)

d
(

1
3 y3

)
=

[
αy2 + βy3) + σ2y2γ+1

]
dt + σyγ+2dW(t).

(7.2)

The components of orthogonality condition vector (OCPV-Analytic) are listed below:



∆yt −
(
E

[
yt |Ft−1

]
− yt−1

)
1
2 ∆

(
y2

t

)
− 1

2

(
E

[
y2

t |Ft−1

]
− y2

t−1

)
1
3 ∆

(
y3

t

)
− 1

3

(
E

[
y3

t |Ft−1

]
− y3

t−1

)
E

[(
∆yt − E

[
∆yt |Ft−1

])2
|Ft−1

]
− σ2y2γ

t−1∆t,

(7.3)
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where



E
[
yt |Ft−1

]
− yt−1 = (α + βy)∆t

1
2

(
E

[
y2

t |Ft−1

]
− y2

t−1

)
=

[
αyt−1 + βy2

t−1 + 1
2σ

2y2γ
t−1

]
∆t

1
3

(
E

[
y3

t |Ft−1

]
− y3

t−1

)
=

[
αy2

t−1 + βy3
t−1 + σ2y2γ+1

t−1

]
∆t

E
[(

∆yt − E
[
∆yt |Ft−1

])2
|Ft−1

]
= σ2y2γ

t−1∆t.

(7.4)

On the other hand, using discrete-time econometric specifications coupled with algebraic manipulations, the com-

ponents of orthogonality condition parameter vector (OCPV-Algebraic) [9, 18, 30] are as follows:



yt − yt−1 − (α + βy)∆t

yt−1 (yt − yt−1 − (α + βy)∆t)

(yt − yt−1 − (α + βy)∆t)2 − σ2y2γ
t−1

yt−1

[
(yt − yt−1 − (α + βy)∆t)2 − σ2y2γ

t−1

]
(7.5)

Now, we are ready to apply the GMM-Algebraic, IRGMM-Algebraic, GMM-Analytic and IRGMM-Analytic

methods.

Parameter Estimates of (7.1) using LLGMM and OCBGMM Methods: Following the construction in Remark

2.5, we define the average ᾱ, β̄, σ̄, and γ̄ by

{
ᾱ = 1

N

N∑
k=1

αm̂k ,k, β̄ = 1
N

N∑
k=1

βm̂k ,k, σ̄ = 1
N

N∑
k=1

σm̂k ,k, γ̄ = 1
N

N∑
k=1

γm̂k ,k, (7.6)

where the parameters αm̂k ,k, βm̂k ,k, σm̂k ,k, and γm̂k ,k are estimated in Table C.27 at time tk using LLGMM method.

Imitating the argument used in Appendix B, the parameters and state are also estimated. These parameter estimates

are recorded in the row of AGMM approach in Table 10.

We also estimate the parameters in (7.1) by following the computational procedure described in [9] and applying

it to both the GMM-algebraic and GMM-analytic frame-work. Similarly, following the computational procedure

described in [11], the parameter estimates in (7.1) are determined under the IRGMM-algebraic and IRGMM-analytic

approaches. These parameter estimates are recorded in rows of GMM-algebraic, GMM-analytic, IRGMM-algebraic

and IRGMM-analytic approaches, respectively, in Table 10.

Comparison of Goodness-of-fit Measures: In order to statistically compare the different estimation techniques,

we estimate the statistics ̂RAMS E, ÂMAD, and ÂMB defined in (4.2).

The goodness-of-fit measures are computed using S = 100 pseudo-data sets of the same sample size, and the real
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data set, N = 487 months. The t−statistics of each parameter estimate is in parenthesis in Table 10, the smallest value

of ̂RAMS E for all method is italicized. The goodness-of-fit measures ̂RAMS E , ÂMAD and ÂMB are recorded under

the columns 6, 7, and 8, respectively.

Table 10: Comparison of Parameter estimates of model (7.1) and the goodness-of-fit measures ̂RAMS E, ÂMAD and ÂMB using GMM-Algebraic,
GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic, AGMM and LLGMM methods.

Method α β σ γ ̂RAMS E ÂMAD ÂMB
GMM-Algebraic 0.0017 -0.0308 0.4032 1.5309 0.0424 0.0098 0.0195

(1.53) (-1.33) (1.55) (3.21)
GMM-Analytic 0.0009 -0.0153 0.0184 0.4981 0.0315 0.0161 0.0190

(1.06) (-0.90) (1.25) (1.73)
IRGMM-Algebraic 0.0020 -0.0410 0.207 1.3031 0.03186 0.00843 0.01972

(0.32) (-0.21) (0.25) (1.02)
IRGMM-Analytic 0.0084 -0.1436 0.1075 1.3592 0.0278 0.0028 0.01968

(0.44) (-0.40) (0.22) (1.01)
AGMM 0.0084 -0.1436 0.1075 1.3592 0.0288 0.0047 0.0207

(0.41) (-0.33) (0.25) (0.98)
LLGMM 0.0027∗ 0.0146 0.0178

Table 10 shows a comparison of parameter estimates of model (7.1) and the goodness-of-fit measures ̂RAMS E, ÂMAD and ÂMB under

the usage of GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic, AGMM and LLGMM methods. The LLGMM estimates

are derived using initial discrete-time delay r = 20, p = 2 and ε = 0.001. Among these stated methods, the LLGMM method generates the

smallest ̂RAMS E value. In fact, the ̂RAMS E value for the LLGMM is smaller than one tenth of any other ̂RAMS E values. Moreover, second,

third and fourth smaller ̂RAMS E values are due to the IRGMM-Analytic, AGMM and GMM-Analytic methods, respectively. This exhibits the

superiority of the LLGMM method over all other methods. We further observe that the LLGMM approach yields the smallest ÂMB in comparison

with the OCBGMM approaches. The GMM-Analytic, IRGMM-Analytic and IRGMM-Algebraic rank the second, third and fourth smaller values,

respectively. The high value of ÂMAD for the LLGMM method signifies that LLGMM captures the influence of random environmental fluctuations

on the dynamic of interest rate process. We further note that the first, second, third and fourth smaller ÂMB values are due to the LLGMM, GMM-

Analytic, GMM-Algebraic and IRGMM-Analytic methods, respectively. These statements can be confirmed by comparing fluctuations in LLGMM

simulation in Figure C.22 with other simulations in Figures C.23-C.26. Again, from Remark 4.3, the smallest ̂RAMS E, higher ÂMAD and smallest

ÂMB value under the LLGMM method exhibits superior performance under the three goodness-of-fit measures. We also notice that the performance

of stochastic calculus based-OCPV-Analytic methods (GMM-Analytic, IRGMM-Analytic and AGMM) is better than the performance of OCPV-

Algebraic based methods (GMM-Algebraic and IRGMM-Algebraic). In short, this suggests that the OCPV-Analytic based GMM methods are

superior to the OCPV-Algebraic based GMM methods.

49



Table 11: Parameter estimates and goodness of fit tests for month risk free rates for periods 06/1964 − 12/1981 and 01/1982 − 12/2004

Orthogonality Condition 06/1964 − 12/1981 01/1982 − 12/2004

̂RAMS E ̂RAMS E
GMM-Algebraic 0.0468 0.0377
GMM-Analytic 0.0315 0.0347

IRGMM-Algebraic 0.0307 0.0326
IRGMM-Analytic 0.0200 0.0215

LLGMM 0.0030∗ 0.0017∗

Table 11 shows the goodness-of-fit measures ̂RAMS E using GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic and

LLGMM methods for two separate sub-periods: 06/1964-12/1981 and 01/1982-12/2004. Among all methods, the LLGMM method generates

the smallest ̂RAMS E value for each subperiods. Moreover, the goodness-of-fit measure ̂RAMS E regarding the LLGMM method is less than one

sixth, and one twelfth of any other ̂RAMS E value, respectively. In fact, the ranking of IRGMM-Analytic, IRGMM-Algebraic, GMM-Analytic and

GMM-Algebraic methods are second, third, fourth and fifth place, respectively.

In the following, using the LLGMM method and three goodness of fit measures, we validate dynamic models

(2.20) and (7.1) in the context of real data set.

7.3. Comparison of Goodness of fit Measures of model (2.20) with model (7.1) using LLGMM method

As stated in Remark 7.1, we compare the Goodness of fit Measures ̂RAMS E, ÂMAD, and ÂMB using the U.S.

Treasury Bill interest rate data and the LLGMM applied to the model validation problems of two proposed continuous-

time dynamic models of U.S. Treasury Bill interest rate process described by (2.20) and (7.1). The LLGMM state

estimates of (2.20) and (7.1) are computed under the same initial discrete-time delay r = 20, p = 2 and ε = 0.001.

The results are recorded in the following table.

Table 12: Comparison of Goodness of fit Measure of model (2.20) with model (7.1)

LLGMM ̂RAMS E ÂMAD ÂMB
Model (2.20) 0.0024∗ 0.0145 0.0178
Model (7.1) 0.0027 0.0146 0.0178

Table 12 shows that the Goodness of fit Measures ̂RAMS E, ÂMAD, and ÂMB of the LLGMM method using both models (7.1) and (2.20) are

very close. Model (2.20) appears to have the least ̂RAMS E value. This shows that the model (2.20) is a better dynamic model for U.S. Treasure

Bill interest rate prices than model (7.1) under the LLGMM application, since it has a lower root mean square error. The ÂMAD value using (7.1) is

larger than the value using (2.20). This suggests that the influence of the random environmental fluctuations on state dynamic model (7.1) is higher

than using the model (2.20). The ÂMB value derived using both models appeared to be the same, indicating that both models give the same average

median bias estimates. Based on this statistical analysis, we conclude that (2.20) is most realistic continuous-time stochastic dynamic model for the
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short-term riskless rate model. Model (2.20) includes many well-known interest rate models such as CKLS diffusion model [9] as a special case

(with δ = 0).
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APPENDIX AND SUPPLEMENTAL MATERIALS

For ∆t = 1, ε = 0.001, p = 2, the ε− best sub-optimal estimates of parameters a, µ and σ2 in (2.8) for four

energy commodity data sets using r = 10 and r = 20 are outlined in Appendix A. The AGMM approach generated

by the idea in Remark 2.5 is fully outlined, applied and compared with four energy data sets in Appendix B. A

detailed comparison regarding the theoretical, graphical and performance of the LLGMM and OCBGMM methods

are presented in Appendix C. In addition, a comparison of LLGMM with a few nonparametric statistical methods is

also outlined in Appendix D

Appendix A. State and Parameter Estimates of daily Natural gas, daily Crude oil, daily Coal, and weekly

Ethanol data for initial delays r = 10 and r = 20

An initial choice of r and p in Section 3 plays a very significant role in computational coordination, parameter and

state estimation and state simulation. The ACF [6, 8] is used to determine the value p. An initial discrete-time delay r

is used based on the increasing sequential choice r = 5, 10, 20 for the best graphical simulation result. The results are

outlined in Appendix A.1 and Appendix A.2.
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Appendix A.1. State and Parameter Estimates for daily Natural gas, Crude oil, Coal, and weekly Ethanol data using

initial delay r = 10

Table A.13: Estimates m̂k , σ2
m̂k ,k

, µm̂k ,k and am̂k ,k for initial delay r = 10.

tk Natural gas tk Crude oil tk Coal tk Ethanol
m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k

11 8 0.0003 2.0015 0.1718 11 4 0.0003 24.3532 0.0100 11 6 0.0015 8.5931 0.0245 11 6 0.0009 1.1830 0.8082
12 6 0.0003 2.1346 0.0131 12 4 0.0001 25.8537 -0.0157 12 10 0.0011 9.2573 0.0208 12 6 0.0009 1.2087 0.3843
13 7 0.0004 2.5701 0.0630 13 3 0.0003 25.8786 -0.0152 13 2 0.0029 7.6663 -0.0520 31 9 0.0013 4.0236 0.0040
14 9 0.0007 2.6746 0.0461 14 10 0.0010 24.0633 0.0084 14 5 0.0053 9.7962 0.0481 14 2 0.0009 1.1073 0.0509
15 7 0.0012 2.4425 0.4071 15 10 0.0009 22.7352 0.0025 15 10 0.0041 9.4047 0.0496 15 9 0.0024 1.0755 -0.1896
16 3 0.0013 2.5549 0.4621 16 4 0.0002 23.8665 0.0423 16 5 0.0050 9.4886 0.0694 16 2 0.0025 2.8800 0.0289
17 8 0.0015 2.5576 0.1934 17 7 0.0005 24.0777 0.0194 17 10 0.0048 9.1694 0.0598 17 9 0.0023 0.9139 -0.1012
18 8 0.0014 2.5628 0.2495 18 9 0.0008 24.2210 0.0138 18 4 0.0016 9.0681 0.1119 18 2 0.0018 0.7387 -0.0826
19 7 0.0015 2.5705 0.3522 19 7 0.0006 24.1147 0.0268 19 4 0.0043 9.0152 0.1527 19 7 0.0017 2.0655 0.0896
20 9 0.0011 2.5943 0.2946 20 6 0.0004 24.2748 0.0256 20 3 0.0039 9.0801 0.1613 20 8 0.0023 2.2742 0.0690
21 9 0.0010 2.6947 0.0775 21 7 0.0005 24.2175 0.0258 21 3 0.0030 8.7421 0.0946 21 7 0.0014 2.4094 0.0554
22 9 0.0010 2.6464 0.1883 22 4 0.0002 23.9993 0.0317 22 8 0.0085 8.8853 0.0944 22 6 0.0029 2.0457 0.1327
23 3 0.0009 2.7139 0.6983 23 10 0.0008 23.8479 0.0130 23 3 0.0010 8.6669 0.1055 23 7 0.0016 2.0441 0.1332
24 10 0.0013 2.6421 0.2966 24 10 0.0009 24.7657 -0.0087 24 6 0.0060 8.7592 0.0967 24 9 0.0020 1.3966 -0.2082
25 9 0.0018 2.6387 0.2382 25 4 0.0001 21.8903 0.0115 25 7 0.0064 8.8440 0.0908 25 6 0.0200 2.4981 0.1465
26 2 0.0015 2.5223 0.6595 26 4 0.0003 22.2871 0.0258 26 8 0.0067 8.8464 0.0895 26 7 0.0173 2.3356 0.1927
27 4 0.0018 2.5464 0.3474 27 10 0.0011 35.7200 -0.0010 27 3 0.0012 9.0667 0.1633 27 9 0.0143 2.3860 0.1416
28 3 0.0008 2.5780 0.2807 28 4 0.0003 22.1582 0.0391 28 8 0.0053 8.9557 0.0539 28 8 0.0138 2.3919 0.2196
29 2 0.0011 2.6588 -0.1271 29 6 0.0004 22.2194 0.0401 29 4 0.0007 9.0561 0.1246 29 7 0.0152 2.4087 0.3983
30 7 0.0031 2.5610 0.3718 30 7 0.0005 22.2596 0.0394 30 8 0.0041 8.9685 0.1025 30 10 0.0106 2.3164 0.2386
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

1145 4 0.0002 5.7203 0.1225 2440 6 0.0004 58.4990 0.0149 2865 4 0.0001 29.6070 0.0339 375 5 0.0008 2.1469 0.9842
1146 4 0.0003 5.6485 0.0951 2441 6 0.0004 57.7330 0.0070 2866 6 0.0005 29.3520 0.0213 376 4 0.0009 2.0689 0.2666
1147 4 0.0003 5.6704 0.2152 2442 8 0.0006 58.1010 0.0086 2867 7 0.0008 29.8620 -0.0231 377 6 0.0011 2.0999 0.2756
1148 7 0.0007 5.7138 0.1245 2443 8 0.0006 58.2670 0.0105 2868 3 0.0002 27.4300 0.0253 378 7 0.0014 2.0924 0.2551
1149 4 0.0004 5.6800 0.2544 2444 6 0.0004 60.6030 0.0027 2869 7 0.0016 26.8240 0.0056 379 10 0.0044 2.0941 0.2867
1150 6 0.0007 5.6331 0.1455 2445 6 0.0003 70.6110 0.0005 2870 3 0.0010 27.0540 0.0542 380 5 0.0007 2.0731 0.8434
1151 4 0.0007 5.5648 0.0971 2446 7 0.0003 58.6010 0.0072 2871 6 0.0009 26.7590 0.0182 381 6 0.0017 2.0214 -0.4677
1152 10 0.0026 5.5382 0.0588 2447 9 0.0009 58.7720 0.0077 2872 3 0.0006 26.4340 0.0220 382 6 0.0024 1.4504 -0.0549
1153 5 0.0006 5.4049 0.1000 2448 4 0.0006 58.9640 0.0115 2873 3 0.0004 26.6850 -0.1453 383 6 0.0017 1.6343 -0.0794
1154 5 0.0004 5.4155 0.1569 2449 10 0.0011 58.4730 0.0073 2874 9 0.0023 25.9970 0.0131 384 10 0.0057 2.7780 0.0309
1155 8 0.0010 5.4718 0.0725 2450 4 0.0003 58.5010 0.0344 2875 3 0.0014 25.5990 0.0532 385 8 0.0039 2.7055 0.0750
1156 7 0.0007 5.4528 0.1645 2451 3 0.0003 59.6250 0.0077 2876 4 0.0010 25.5580 0.0543 386 6 0.0018 2.6000 0.3021
1157 8 0.0009 5.4395 0.2011 2452 5 0.0003 58.9550 0.0143 2877 10 0.0027 25.2940 0.0067 387 8 0.0031 2.6118 0.1997
1158 5 0.0007 5.4183 0.1614 2453 10 0.0014 59.3090 0.0137 2878 6 0.0012 25.3300 0.0391 388 6 0.0027 2.6058 0.6130
1159 7 0.0008 5.3905 0.1281 2454 10 0.0013 59.4310 0.0108 2879 9 0.0019 25.2960 0.0155 389 8 0.0035 2.5973 0.4169
1160 9 0.0011 5.3367 0.0973 2455 10 0.0012 59.2480 0.0133 2880 9 0.0017 25.4620 0.0264 390 5 0.0024 2.5947 0.5364
1161 8 0.0008 4.9339 0.0155 2456 9 0.0010 59.3460 0.0112 2881 7 0.0012 25.3400 0.0369 391 5 0.0019 2.6500 -0.2801
1162 8 0.0007 5.0020 0.0210 2457 6 0.0005 59.2690 0.0106 2882 9 0.0018 25.4310 0.0416 392 5 0.0017 2.6321 -0.3394
1163 7 0.0004 5.0947 0.0732 2458 4 0.0002 58.4790 0.0103 2883 7 0.0011 25.3550 0.0445 393 6 0.0020 3.0563 -0.0442
1164 5 0.0001 4.9554 0.0671 2459 3 0.0004 58.4160 0.0976 2884 9 0.0016 25.3400 0.0445 394 9 0.0055 2.4093 0.0868
1165 9 0.0009 4.0877 0.0148 2460 10 0.0014 57.0380 0.0026 2885 4 0.0005 25.5440 0.0675 395 4 0.0027 2.3140 0.4706

Table A.13 shows the ε- best sub-optimal local admissible sample size m̂k and the parameter estimates am̂k ,k , µm̂k ,k and σ2
m̂k ,k

for four energy

commodities price at time tk . This is based on the value of p and the initial real data time delay r = 10. We further note that the range of the ε-best

sub-optimal local admissible sample size m̂k for any time tk ∈ [11, 30]
⋃

[1145, 1165], tk ∈ [11, 30]
⋃

[2440, 2460], tk ∈ [11, 30]
⋃

[2865, 2885],

and tk ∈ [11, 30]
⋃

[375, 395] for natural gas, crude oil, coal and ethanol data, respectively, is 2 ≤ m̂k ≤ 10. Moreover, all comments (Remark 4.1)

that are made with regard to Table 2 regarding the four energy commodities remain valid with regard to Table A.13
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Table A.14: Real, Simulation using LLGMM method, and absolute error of simulation using starting delay r = 10

tk Natural gas tk Crude oil tk Coal tk Ethanol
Real Simulated |Error| Real Simulated |Error| Real Simulated |Error| Real Simulated |Error|
yk ys

m̂k ,k
|yk − ys

m̂k ,k
| ys

m̂k ,k
|yk − ys

m̂k ,k
| ys

m̂k ,k
|yk − ys

m̂k ,k
| ys

m̂k ,k
|yk − ys

m̂k ,k
|

(LLGMM) (LLGMM) (LLGMM) (LLGMM)
10 2.3830 2.3830 0.0000 10 25.1000 25.1000 0.0000 10 9.0600 9.0600 0.0000 10 1.1900 1.1900 0.0000
11 2.4170 2.4179 0.0009 11 24.8000 25.0181 0.2181 11 8.8800 8.8800 0.0000 11 1.2250 1.2249 0.0001
12 2.5590 2.4935 0.0655 12 24.4000 24.3221 0.0779 12 9.4400 9.4216 0.0184 12 1.2200 1.2425 0.0225
13 2.4850 2.4949 0.0099 13 23.8500 23.7260 0.1240 13 10.3100 10.0621 0.2479 13 1.2900 1.2278 0.0622
14 2.5280 2.5123 0.0157 14 23.8500 24.4203 0.5703 14 9.8100 9.8058 0.0042 14 1.4100 1.5339 0.1239
15 2.6160 2.6158 0.0002 15 23.8500 23.8174 0.0326 15 9.0600 8.8075 0.2525 15 1.4700 1.3390 0.1310
16 2.5230 2.5233 0.0003 16 23.9000 23.8845 0.0155 16 8.7500 8.4774 0.2726 16 1.5300 1.5745 0.0445
17 2.6100 2.6314 0.0214 17 24.5000 24.0924 0.4076 17 8.8200 8.7839 0.0361 17 1.6300 1.5996 0.0304
18 2.6100 2.5852 0.0248 18 24.8000 24.3340 0.4660 18 9.5600 9.3610 0.1990 18 1.7500 1.6320 0.1180
19 2.6100 2.6130 0.0030 19 24.1500 24.1566 0.0066 19 8.8200 8.6667 0.1533 19 1.7500 1.7495 0.0005
20 2.6990 2.6728 0.0262 20 24.2000 24.5277 0.3277 20 8.8200 8.7833 0.0367 20 1.8400 1.8586 0.0186
21 2.7590 2.7601 0.0011 21 24.0000 23.7803 0.2197 21 8.6900 8.5498 0.1402 21 1.8950 1.8874 0.0076
22 2.6590 2.6427 0.0163 22 23.9000 24.1935 0.2935 22 8.6300 8.7065 0.0765 22 1.9500 1.9257 0.0243
23 2.7420 2.7365 0.0055 23 23.0500 23.0564 0.0064 23 8.6900 8.7620 0.0720 23 1.9740 1.9548 0.0192
24 2.5620 2.5610 0.0010 24 22.3000 23.2208 0.9208 24 8.9400 8.9706 0.0306 24 2.7000 2.1431 0.5569
25 2.4950 2.5455 0.0505 25 22.4500 23.1640 0.7140 25 9.3100 8.8231 0.4869 25 2.5150 2.6941 0.1791
26 2.5400 2.5245 0.0155 26 22.3500 22.7275 0.3775 26 8.9400 8.9945 0.0545 26 2.2900 2.2753 0.0147
27 2.5920 2.5996 0.0076 27 21.7500 21.5907 0.1593 27 8.9400 8.9676 0.0276 27 2.4400 2.3645 0.0755
28 2.5700 2.5849 0.0149 28 22.1000 22.0868 0.0132 28 9.1300 9.1741 0.0441 28 2.4150 2.4019 0.0131
29 2.5410 2.5403 0.0007 29 22.4000 22.4301 0.0301 29 9.1900 9.1766 0.0134 29 2.3000 2.2440 0.0560
30 2.6180 2.6151 0.0029 30 22.5000 22.6614 0.1614 30 8.5700 8.4567 0.1133 30 2.1000 2.2048 0.1048
... ... .... ... ... ... ... .... ... ... ... ... ... ... ... ...
... .... .... ... .... ... .... .... ... ... ... ... ... ... ... ...

1145 5.712 5.7533 0.0413 2440 57.35 57.762 0.412 2865 29.31 29.518 0.2083 375 2.073 2.0662 0.0068
1146 5.588 5.5892 0.0012 2441 56.74 56.743 0.0028 2866 28.68 28.495 0.1851 376 2.02 2.0267 0.0067
1147 5.693 5.7143 0.0213 2442 57.55 57.739 0.189 2867 26.77 28.727 1.9571 377 2.073 2.0731 0.0001
1148 5.791 5.8127 0.0217 2443 59.09 58.925 0.1646 2868 27.45 26.979 0.471 378 2.065 2.0709 0.0059
1149 5.614 5.5940 0.0200 2444 60.27 59.663 0.607 2869 27.00 26.879 0.121 379 2.055 2.0232 0.0318
1150 5.442 5.6266 0.1846 2445 60.75 61.161 0.4109 2870 26.67 27.32 0.6499 380 2.209 2.2109 0.0019
1151 5.533 5.5122 0.0208 2446 58.41 58.011 0.3994 2871 26.51 25.468 1.0415 381 2.44 2.296 0.144
1152 5.378 5.3971 0.0191 2447 58.72 58.762 0.042 2872 26.48 26.263 0.2174 382 2.517 2.4074 0.1096
1153 5.373 5.3496 0.0234 2448 58.64 58.409 0.2309 2873 25.15 25.395 0.2445 383 2.718 2.6839 0.0341
1154 5.382 5.3735 0.0085 2449 57.87 57.762 0.1081 2874 25.57 25.555 0.0153 384 2.541 2.5246 0.0164
1155 5.507 5.5360 0.0290 2450 59.13 59.243 0.1135 2875 25.88 26.08 0.2003 385 2.566 2.5629 0.0031
1156 5.552 5.5507 0.0013 2451 60.11 60.068 0.0419 2876 25.24 25.528 0.2879 386 2.626 2.6248 0.0012
1157 5.310 5.3019 0.0081 2452 58.94 58.956 0.0155 2877 25 25.337 0.3375 387 2.587 2.5871 0.0001
1158 5.338 5.3884 0.0504 2453 59.93 59.924 0.0062 2878 25.08 24.685 0.3951 388 2.628 2.6363 0.0083
1159 5.298 5.2554 0.0426 2454 61.18 62.168 0.9876 2879 25.05 24.848 0.2024 389 2.587 2.5332 0.0538
1160 5.189 5.1644 0.0146 2455 59.66 59.381 0.2786 2880 25.89 25.638 0.2518 390 2.536 2.5374 0.0014
1161 5.082 5.0874 0.0054 2456 58.59 58.468 0.1224 2881 25.23 25.405 0.1749 391 2.42 2.3401 0.0799
1162 5.082 5.0977 0.0157 2457 58.28 58.487 0.2067 2882 25.94 25.739 0.2007 392 2.247 2.1792 0.0678
1163 5.082 5.1334 0.0514 2458 58.79 58.896 0.1058 2883 25.26 24.858 0.4025 393 2.223 2.1661 0.0569
1164 4.965 5.0340 0.0690 2459 56.23 57.202 0.9715 2884 25.25 25.147 0.1028 394 2.39 2.5122 0.1222
1165 4.767 4.9143 0.1473 2460 55.9 56.87 0.9701 2885 26.06 25.613 0.4475 395 2.38 2.3583 0.0217

In Table A.14, the real and LLGMM simulated price values for each of the four energy commodities: natural gas,

crude oil, coal and ethanol are recorded in columns 2-3, 6-7, 10-11, and 14-15, respectively. The absolute error of

each of the energy commodity’s simulated value is shown in columns 4, 8, 12, 16, respectively.
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Appendix A.2. State and Parameter Estimates of daily Natural gas, daily Crude oil, daily Coal, and weekly Ethanol

data for initial delay r = 20

Table A.15: Estimates m̂k , σ2
m̂k ,k

, µm̂k ,k and am̂k ,k for initial delay r = 20.

tk Natural gas tk Crude oil tk Coal tk Ethanol
m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k m̂k σ2

m̂k ,k
µm̂k ,k am̂k ,k

21 13 0.0011 2.7056 0.0816 21 11 0.0003 24.115 0.0204 21 19 0.0042 9.1915 0.0255 21 18 0.0024 0.7591 0.0467
22 5 0.0009 2.6748 0.233 22 7 0.0003 24.215 0.0278 22 15 0.0044 9.0773 0.0601 22 4 0.0015 0.7929 -0.0272
23 3 0.0013 2.7139 0.6983 23 2 0.0006 24.013 -0.314 23 19 0.0038 9.1073 0.0319 23 8 0.0004 2.1528 0.0888
24 12 0.0021 2.6197 0.2119 24 15 0.0007 14.246 0.0009 24 10 0.0035 8.8762 0.0924 24 15 0.0025 1.0048 -0.1078
25 10 0.0022 2.6201 0.2199 25 19 0.0011 18.542 0.001 25 14 0.0049 9.1783 0.0517 25 20 0.0094 -0.4372 -0.0208
26 5 0.0015 2.567 0.2063 26 19 0.001 21.738 0.0031 26 9 0.003 8.9447 0.1 26 19 0.0094 3.1726 0.0251
27 9 0.0021 2.6295 0.1919 27 4 0.0001 22.135 0.0355 27 10 0.0031 8.9442 0.1 27 7 0.0205 2.3915 0.2198
28 17 0.0031 2.6074 0.2204 28 14 0.0007 20.045 0.0015 28 6 0.0013 9.0358 0.0767 28 17 0.0087 2.6208 0.0553
29 11 0.0022 2.6099 0.1688 29 14 0.0007 22.096 0.0034 29 3 0.0006 9.4379 0.0213 29 3 0.0218 2.3857 0.634
30 8 0.0014 2.5821 0.2593 30 9 0.0004 22.249 0.0154 30 8 0.0019 8.9685 0.1025 30 19 0.0161 2.3086 0.0752
31 7 0.0013 2.5605 0.3999 31 3 0.0002 22.739 0.0203 31 4 0.0014 8.8837 0.0869 31 18 0.0162 2.2442 0.1049
32 9 0.0016 2.5738 0.3887 32 6 0.0004 22.226 0.0427 32 15 0.0096 8.9287 0.0972 32 9 0.0279 2.3519 0.4089
33 16 0.0035 2.6195 0.2084 33 7 0.0005 22.084 0.0296 33 5 0.0013 8.7634 0.0932 33 12 0.0193 2.2912 0.2631
34 20 0.0041 2.6078 0.2483 34 11 0.001 21.683 0.0138 34 7 0.0018 8.8238 0.0869 34 6 0.0186 2.1259 0.2733
35 16 0.0033 2.6031 0.2024 35 10 0.0009 20.446 0.0041 35 8 0.0021 8.7923 0.0823 35 20 0.0218 2.2078 0.1261
36 5 0.0007 2.579 0.2816 36 3 0 21.027 0.0489 36 9 0.0023 8.7282 0.0671 36 10 0.0199 1.9158 0.0549
37 9 0.0013 2.5814 0.3453 37 4 0.0002 20.962 0.0465 37 13 0.0062 8.7653 0.0502 37 7 0.0146 1.9215 0.088
38 10 0.0014 2.5836 0.3371 38 3 0.0002 21.267 -0.0327 38 7 0.001 8.6612 0.1378 38 7 0.0127 2.0226 0.1587
39 3 0.0015 2.603 0.3923 39 13 0.0014 15.485 0.0012 39 20 0.0151 8.8225 0.0644 39 19 0.0413 2.1885 0.1729
40 18 0.0048 2.6026 0.2551 40 5 0.0004 20.617 0.028 40 17 0.0101 8.8585 0.0667 40 8 0.0112 1.9751 0.1655
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

1145 3 0.0001 5.7243 0.1464 2440 8 0.0007 58.338 0.0143 2865 4 0.0002 29.607 0.034 375 6 0.0013 2.1486 0.7096
1146 17 0.0033 5.7831 0.0272 2441 20 0.0033 58.546 0.0028 2866 12 0.0023 29.257 0.0209 376 3 0.0009 2.0699 0.2808
1147 15 0.0025 5.8662 0.0337 2442 10 0.0008 58.056 0.0098 2867 20 0.0054 26.256 0.0021 377 5 0.0011 2.0858 0.3308
1148 8 0.0006 5.7271 0.0741 2443 8 0.0006 58.267 0.0106 2868 14 0.0028 28.678 0.009 378 11 0.007 2.1286 0.2103
1149 5 0.0004 5.6834 0.2598 2444 7 0.0005 58.414 0.0079 2869 11 0.0019 27.482 0.0052 379 3 0.0007 2.0623 0.6096
1150 18 0.0034 5.6161 0.0138 2445 7 0.0005 65.583 0.001 2870 14 0.0026 26.136 0.0023 380 16 0.0137 2.1586 0.1983
1151 16 0.0026 5.6048 0.0268 2446 8 0.0005 58.733 0.0078 2871 12 0.0019 25.376 0.0021 381 19 0.0185 2.2115 0.1503
1152 18 0.0031 5.3059 0.0099 2447 9 0.0007 58.772 0.0078 2872 9 0.0011 26.067 0.0064 382 11 0.0066 1.7644 -0.0401
1153 9 0.0008 5.4937 0.0517 2448 20 0.0033 58.727 0.0079 2873 4 0.0003 27.22 -0.0313 383 3 0.0025 2.9233 0.1347
1154 7 0.0006 5.4044 0.0549 2449 13 0.0013 58.371 0.0087 2874 10 0.0016 25.744 0.0095 384 4 0.0025 2.5937 0.3073
1155 5 0.0003 5.4342 0.2005 2450 3 0.0001 58.48 0.0345 2875 3 0.0012 25.599 0.0532 385 5 0.0039 2.5887 0.3099
1156 7 0.0006 5.4528 0.1646 2451 9 0.0008 59.324 0.013 2876 3 0.0008 25.559 0.0541 386 3 0.006 2.5861 0.4792
1157 8 0.0006 5.4395 0.2012 2452 5 0.0005 58.955 0.0144 2877 5 0.0006 25.415 0.0446 387 4 0.0039 2.5882 0.4761
1158 14 0.002 5.4704 0.0583 2453 9 0.001 59.171 0.0135 2878 4 0.0005 25.193 0.0206 388 11 0.0087 2.6964 0.077
1159 10 0.0009 5.4035 0.1412 2454 15 0.002 59.298 0.0063 2879 3 0.0002 25.059 0.0528 389 6 0.0038 2.5952 0.4921
1160 14 0.0018 5.3501 0.0373 2455 13 0.0015 59.512 0.0126 2880 5 0.0004 25.256 0.0431 390 10 0.0075 2.5899 0.3122
1161 11 0.001 5.174 0.0277 2456 11 0.0011 59.169 0.0137 2881 5 0.0005 25.254 0.0435 391 9 0.0062 2.5817 0.4568
1162 18 0.0029 5.1069 0.016 2457 12 0.0012 59.072 0.0128 2882 9 0.002 25.431 0.0417 392 7 0.0038 2.6222 -0.3162
1163 18 0.0027 5.1426 0.0213 2458 8 0.0006 59.427 0.0112 2883 13 0.0033 25.507 0.0243 393 15 0.0142 2.5051 0.1102
1164 16 0.002 5.0554 0.0297 2459 15 0.0018 58.808 0.0092 2884 20 0.006 25.52 0.0094 394 12 0.01 2.4881 0.1156
1165 15 0.0016 5.7431 -0.0195 2460 14 0.0015 58.187 0.0042 2885 5 0.0007 25.538 0.069 395 3 0.0036 2.355 0.2939

Table A.15 shows the ε- best sub-optimal local admissible sample size m̂k and the parameter estimates am̂k ,k , µm̂k ,k and σ2
m̂k ,k

for four energy

commodities price at time tk . This was based on the value of p and the initial real data time delay r = 20. We further note that the range of the ε-best

sub-optimal local admissible sample size m̂k for any time tk ∈ [21, 40]
⋃

[1145, 1165], tk ∈ [21, 40]
⋃

[2440, 2460], tk ∈ [21, 40]
⋃

[2865, 2885],

and tk ∈ [21, 40]
⋃

[375, 395] for natural gas, crude oil, coal and ethanol data, respectively, is 3 ≤ m̂k ≤ 20. Moreover, all comments (Remark 4.1)

that are made with regard to Table 2 regarding the four energy commodities remain valid with regard to Table A.15

In Table A.16, the real and the LLGMM simulated price values for each of the four energy commodities: natural

gas, crude oil, coal and ethanol are exhibited in columns 2-3, 6-7, 10-11, and 14-15, respectively. The absolute error

of each of the energy commodity’s simulated value is shown in columns 4, 8, 12, 16, respectively.
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Table A.16: Real, Simulation using the LLGMM method, and absolute error of simulation using starting delay r = 20

tk Natural gas tk Crude oil tk Coal tk Ethanol
Real Simulated |Error| Real Simulated |Error| Real Simulated |Error| Real Simulated |Error|
yk ys

m̂k ,k
|yk − ys

m̂k ,k
| ys

m̂k ,k
|yk − ys

m̂k ,k
| ys

m̂k ,k
|yk − ys

m̂k ,k
| ys

m̂k ,k
|yk − ys

m̂k ,k
|

(LLGMM) (LLGMM) (LLGMM) (LLGMM)
21 2.759 2.7718 0.0128 21 24 24.025 0.025 21 8.69 8.6747 0.0153 21 1.895 1.9024 0.0074
22 2.659 2.6566 0.0024 22 23.9 24.093 0.193 22 8.63 8.6175 0.0125 22 1.95 1.9315 0.0185
23 2.742 2.7353 0.0067 23 23.05 23.051 0.001 23 8.69 8.6862 0.0038 23 1.974 1.9788 0.0048
24 2.562 2.5757 0.0137 24 22.3 22.887 0.587 24 8.94 8.9184 0.0216 24 2.7 2.5529 0.1471
25 2.495 2.5332 0.0382 25 22.45 22.126 0.324 25 9.31 9.3069 0.0031 25 2.515 2.5134 0.0016
26 2.54 2.5336 0.0064 26 22.35 22.409 0.059 26 8.94 8.8992 0.0408 26 2.29 2.3306 0.0406
27 2.592 2.5631 0.0289 27 21.75 22.12 0.37 27 8.94 8.8745 0.0655 27 2.44 2.3718 0.0682
28 2.57 2.5797 0.0097 28 22.1 22.137 0.037 28 9.13 9.1162 0.0138 28 2.415 2.3927 0.0223
29 2.541 2.4846 0.0564 29 22.4 22.315 0.085 29 9.19 9.234 0.044 29 2.3 2.3311 0.0311
30 2.618 2.6245 0.0065 30 22.5 22.531 0.031 30 8.57 8.5495 0.0205 30 2.1 2.072 0.028
31 2.564 2.5469 0.0171 31 22.65 22.712 0.062 31 8.69 8.7241 0.0341 31 2.04 2.0323 0.0077
32 2.667 2.6763 0.0093 32 21.95 22.003 0.053 32 8.88 8.8866 0.0066 32 2.16 2.1561 0.0039
33 2.633 2.6308 0.0022 33 21.6 21.853 0.253 33 8.57 8.5084 0.0616 33 2.13 2.0796 0.0504
34 2.515 2.5021 0.0129 34 21 21.099 0.099 34 8.75 8.7447 0.0053 34 2.155 2.2141 0.0591
35 2.53 2.5136 0.0164 35 20.95 21.012 0.062 35 8.63 8.6003 0.0297 35 2.01 1.9687 0.0413
36 2.549 2.5458 0.0032 36 21.1 20.971 0.129 36 8.44 8.412 0.028 36 1.93 1.8762 0.0538
37 2.603 2.5835 0.0195 37 20.8 20.786 0.014 37 8.44 8.4465 0.0065 37 1.9 1.9186 0.0186
38 2.603 2.5822 0.0208 38 20.3 20.048 0.252 38 8.94 8.9538 0.0138 38 1.975 1.9052 0.0698
39 2.603 2.6075 0.0045 39 20.25 20.244 0.006 39 9 9.0064 0.0064 39 1.98 2.019 0.039
40 2.815 2.8728 0.0578 40 20.75 20.734 0.016 40 8.94 8.8655 0.0745 40 2 1.9385 0.0615
... ... .... ... ... ... ... .... ... ... ... ... ... ... ... ...
... .... .... ... .... ... .... .... ... ... ... ... ... ... ... ...

1145 5.712 5.7577 0.0457 2440 57.35 57.376 0.026 2865 29.31 29.291 0.019 375 2.073 2.09 0.017
1146 5.588 5.6488 0.0608 2441 56.74 56.447 0.293 2866 28.68 28.8 0.12 376 2.02 2.0589 0.0389
1147 5.693 5.7062 0.0132 2442 57.55 57.523 0.027 2867 26.77 26.891 0.121 377 2.073 2.0601 0.0129
1148 5.791 5.7917 0.0007 2443 59.09 58.968 0.122 2868 27.45 27.316 0.134 378 2.065 2.0312 0.0338
1149 5.614 5.5799 0.0341 2444 60.27 60.278 0.008 2869 27 27.189 0.189 379 2.055 2.0725 0.0175
1150 5.442 5.4099 0.0321 2445 60.75 60.737 0.013 2870 26.67 26.812 0.142 380 2.209 2.2254 0.0164
1151 5.533 5.5035 0.0295 2446 58.41 58.494 0.084 2871 26.51 26.709 0.199 381 2.44 2.462 0.022
1152 5.378 5.407 0.029 2447 58.72 58.614 0.106 2872 26.48 26.54 0.06 382 2.517 2.51 0.007
1153 5.373 5.3682 0.0048 2448 58.64 58.95 0.31 2873 25.15 25.313 0.163 383 2.718 2.6979 0.0201
1154 5.382 5.3827 0.0007 2449 57.87 57.865 0.005 2874 25.57 25.47 0.1 384 2.541 2.5164 0.0246
1155 5.507 5.4896 0.0174 2450 59.13 58.967 0.163 2875 25.88 26.078 0.198 385 2.566 2.5328 0.0332
1156 5.552 5.5423 0.0097 2451 60.11 59.937 0.173 2876 25.24 25.208 0.032 386 2.626 2.5831 0.0429
1157 5.31 5.318 0.008 2452 58.94 59.068 0.128 2877 25 25.138 0.138 387 2.587 2.5606 0.0264
1158 5.338 5.3794 0.0414 2453 59.93 60.141 0.211 2878 25.08 25.306 0.226 388 2.628 2.6322 0.0042
1159 5.298 5.3541 0.0561 2454 61.18 61.53 0.35 2879 25.05 25.16 0.11 389 2.587 2.5651 0.0219
1160 5.189 5.1838 0.0052 2455 59.66 59.792 0.132 2880 25.89 25.509 0.381 390 2.536 2.53 0.006
1161 5.082 5.3804 0.2984 2456 58.59 58.481 0.109 2881 25.23 25.278 0.048 391 2.42 2.4268 0.0068
1162 5.082 4.9802 0.1018 2457 58.28 58.224 0.056 2882 25.94 25.961 0.021 392 2.247 2.2228 0.0242
1163 5.082 5.1933 0.1113 2458 58.79 58.928 0.138 2883 25.26 25.255 0.005 393 2.223 2.2072 0.0158
1164 4.965 5.1925 0.2275 2459 56.23 56.329 0.099 2884 25.25 25.298 0.048 394 2.39 2.4141 0.0241
1165 4.767 4.7917 0.0247 2460 55.9 54.676 1.224 2885 26.06 25.882 0.178 395 2.38 2.4265 0.0465

Appendix B. Formulation of Aggregated Generalized Method of Moment (AGMM):

In this section, using the theoretical basis of the LLGMM and Remark 2.5 (Section 2), we generated aggregated

state and parameter estimates based on the method for state and parameter estimation problems. The generalized

method is then applied to energy commodity dynamic model (2.8). The results are compared with the LLGMM

method.

Appendix B.1. AGMM Method Applied to Energy Commodities:

In this Subsection, using the aggregated parameter estimates ā, µ̄, and σ2 described by the mean value of the

estimated samples {am̂i,i}
N
i=0, {µm̂i,i}

N
i=0 and {σ2

m̂i,i
}Ni=0 (Remark 2.5), respectively, we discuss the simulated price values

for the four energy commodities. ā, µ̄, and σ2 defined in (2.19) are referred to as aggregated parameter estimates of

a, µ, and σ2 over the given entire finite interval of time. These estimates are derived using the following discretized

56



system:

yag
i = yag

i−1 + ā(µ̄ − yag
i−1)yag

i−1∆t + σ2
1/2

yag
i−1∆Wi (B.1)

where yag
k denotes the simulated value for yk at time tk. The overall descriptive data statistic regarding the four energy

commodities price and estimated parameters are recorded in Table B.17 below.

Table B.17: Descriptive Statistics for a, µ and σ2 using initial delay r = 20.

Data Set Y Ȳ Std(Y) ∆ln(Y) var(∆ln(Y)) ā Std(a) µ̄ Std(µ) σ2 std(σ2) 95% C. I. µ̄
Nat. Gas 4.5504 1.5090 0.0008 0.0015 0.1867 0.3013 4.5538 2.3565 0.0013 0.0017 (4.4196, 4.6880)
Crude Oil 54.0093 31.0248 0.0003 0.0006 0.0215 0.0517 54.0307 37.4455 0.0005 0.0008 (51.8978, 56.1636)

Coal 27.1441 17.8394 0.0003 0.0015 0.0464 0.0879 27.0567 21.3506 0.0014 0.0022 (25.8405, 28.2729)
Ethanol 2.1391 0.4455 0.0011 0.0020 0.3167 0.8745 2.1666 0.7972 0.0018 0.0030 (2.0919,2.2414)

Table B.17 shows the descriptive statistics for a, µ and σ2 with time delay r = 20. Moreover, µ̄ is approximately close to the overall descriptive

statistics of the mean Ȳ of the real data for each of the energy commodity shown in column 2. Also, σ2 is approximately close to the overall

descriptive statistics of the variance of ∆ ln(Y) = ln(Yi) − ln(Yi−1) in Column 5. Moreover, column 12 shows that the mean of the actual data set in

Column 2 falls within the 95% confidence interval of µ̄. This exhibits that the parameter µm̂k ,k is the mean level of yk at time tk .

Using the aggregated parameter estimates ā, µ̄, and σ2 in Table B.17 (Column 6, 8, and 10), the simulated price

values for the four energy commodities are shown in columns 3, 6, 9 and 12 of Table B.18.
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Table B.18: Real, Simulation value using AGMM with r = 20.
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Figure B.20 below shows a comparison between the real data set, simulated price using LLGMM and AGMM

methods.
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(a)
(b)

(c) (d)

Figure B.20: Real, Simulated Prices using LLGMM, and Simulated Prices using AGMM: initial delay r = 20.

Figure B.20: (a), (b), (c) and (d) show the graphs of the real, simulated prices using the local lagged adaptive generalized method (LLGMM),

and the simulated price using the average of the parameters for Henry Hub natural gas data [14] , daily crude oil data [13], daily coal data [12], and

weekly ethanol data [48], respectively, for r = 20. The red line represents the real data set yk , the blue line represent the simulated prices using the

LLGMM method, while the black line represent the simulated price (AGMM) using the aggregated parameter estimates ā, µ̄, and σ2 in Table B.17,

Columns 6, 8, and 10, respectively. From these simulated graphs, it is clear that the LLGMM simulation results are more realistic than the AGMM

simulation results. This exhibits the superiority of LLGMM over AGMM.

Comparison of Goodness-of-fit Measures for the LLGMM and AGMM methods using initial delay r = 20.
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Table B.19: Comparison of Goodness-of-fit Measures for the LLGMM and AGMM methods using initial delay r = 20.

Goodness
of-fit Mea-
sure

LLGMM AGMM

Natural gas Crude oil Coal Ethanol Natural gas Crude oil Coal Ethanol
R̂AMS E 0.0674 0.4625 0.4794 0.0375 1.4968 30.7760 17.7620 0.4356
ÂMAD 1.1318 24.5010 9.4009 0.3213 0.0068 0.0857 0.0833 0.0035
ÂMB 1.1371 27.2707 12.8370 0.3566 1.2267 27.3050 13.1060 0.3579

Appendix B.2. Formulation of Aggregated Generalized Method of Moment (AGMM) for U.S. Treasury Bill and U.S.-

U.K. Foreign Exchange rate

The overall descriptive statistics of data sets regarding U.S. Treasury Bill interest rate and U.S.-U.K. foreign

exchange rate are recorded in the following table for initial delay r = 20.

Table B.20: Descriptive Statistics for β̄, µ̄, δ̄, σ, and γ for Interest rate data using initial delay r = 20.

Ȳ Std(Y) β̄ Std(β) µ̄ Std(µ) δ̄ Std(δ) σ̄ std(σ) γ̄ Std(γ)
0.05667 0.0268 0.8739 1.8129 -3.8555 8.7608 1.4600 0.00 0.3753 0.5197 1.4877 0.1357

Table B.21: Descriptive Statistics for β̄, µ̄, δ̄, σ, and γ for U.S.-U.K. foreign exchange rate data using initial delay r = 20 .

Ȳ Std(Y) β̄ Std(β) µ̄ Std(µ) δ̄ Std(δ) σ̄ std(σ) γ̄ Std(γ)
1.6249 0.1337 1.5120 2.1259 -1.1973 1.6811 1.4892 0.00 0.0243 0.0180 1.08476 1.0050

Tables B.20 and B.21 show the descriptive statistics for β̄, µ̄, δ̄, σ, and γ for the U.S. TBYIR and the U.S.-U.K. FER data, respectively.

In Table B.22, the real and the LLGMM simulated rates of the US-TBYIR and the U.S.-U.K. foreign exchange rate

(US-UK FER) are exhibited in the first and second columns, respectively. Using the aggregated parameter estimates

β̄, µ̄, δ̄, σ and γ̄ in the respective Tables B.20 (columns 3, 5, 7, 9 and 11) and Table B.21 (columns 3, 5, 7, 9, and 11),

the simulated rates for the U.S. TYBIR and the U.S.-U.K. FER are shown in column 3 of Table B.22. These estimates

are derived using the following discretized system:

yag
i = yag

i−1 + (β̄yag
i−1 + µ̄(yag

i−1)δ̄) + σ̄(yag
i−1)γ̄∆Wi (B.2)

where AGMM, yag
k , yk at time tk are defined in (B.1).
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Table B.22: Estimates for Real, Simulated value using LLGMM and AGMM methods for U.S. TYBIR and the U.S.-U.K. FER, respectively for
initial delay r = 20.
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In Table B.22, we show a side by side comparison of the estimates for the simulated value using LLGMM and AGMM methods for U.S.

Treasury Bill interest rate and U.S.-U.K. foreign exchange rate using initial delay r = 20.

(a) (b)

Figure B.21: Real, Simulated paths using LLGMM and AGMM methods for U.S. Treasury Bill interest rate and U.S.-U.K. foreign exchange rate
for initial delay r = 20.
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Appendix C. Comparative study of the LLGMM with OCBGMM Methods:

In this Appendix, an additional detailed comparisons regarding the theoretical, graphical and performance of the

LLGMM and OCBGMM methods are presented in Appendix C.1, Appendix C.2, and Appendix C.3, respectively. In

fact, by employing three statistical goodness-of-fit measures [11], a comparative performance analysis of forecasting

and ranking of the LLGMM and OCBGMM based methods are presented in Appendix C.3.

Appendix C.1. Theoretical Comparison Between LLGMM and OCBGMM

Based on the foundations of the analytical, conceptual, computational, mathematical, practical, statistical and

theoretical motivations and developments outlined in Sections 2, 3, 4, 5 and 6, we summarize the comparison between

the innovative approach LLGMM with the existing and newly developed OCBGMM methods in separate tables in a

systematic manner.

In the following, we state the differences between the LLGMM method and existing orthogonality condition based

GMM/IRGMM-Algebraic and the newly formulated GMM/IRGMM-Analytic methods together with AGMM.

Table C.23: Mathematical Comparison Between the LLGMM and OCBGMM

Feature LLGMM OCBGMM-
Algebraic

OCGMM-
Analytic

Justifications

Composition: Seven components Five components Five components Sections 1, 2
Model: Development Selection Development/

Selection
Sections 1, 2

Goal: Validation Specification/Testing Validation/Testing Sections 1, 2
Discrete-Time
Scheme:

Constructed from
SDE

Using Econometric
specification

Constructed from
SDE

Remark 2.8

Formation of Or-
thogonality Vec-
tor:

Using stochastic
calculus

Formed using alge-
braic manipulation

Using Stochastic
calculus

Remarks 2.2, 2.7,
2.8

Table C.24: Intercomponent Interaction Comparison Between LLGMM and OCBGMM

Feature LLGMM OCBGMM-
Algebraic

OCGMM-
Analytic

Justifications

Moment Equations: Local Lagged
adaptive process

Single/ global
system

Single/ global
system

Remarks 3.2a, and 3.2b

Type of Moment
Equations:

Local lagged
adaptive process

Single-shot Single-shot Remarks 2.6, 2.8, and 2.9

Component Intercon-
nections:

Strongly con-
nected

Weakly con-
nected

Weakly con-
nected

Remarks 2.6, 2.7, 2.8, 2.9,
and 3.2

Dynamic and Static: Discrete-time
Dynamic

Static Static Remarks 3.2 and Lemma 1
(Section 2)
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Table C.25: Conceptual Computational Comparison Between LLGMM and OCBGMM

Feature LLGMM OCBGMM-
Algebraic

OCGMM-
Analytic

Justifications

Local admissible Lagged Data
Size:

Multi-choice Single-
choice/data
size

Single-
choice/data
size

Definition 3.3, Remark 3.2,
Subsection 3.2

Local admissible class of
lagged finite restriction
sequences

Multi-choice Single-choice
data sequence

Single-choice
data sequence

Adapted finite restricted
sample data: Definition 3.4,
Remark 3.2, Subsection 3.2

Local admissible finite se-
quence parameter estimates:

Multi-choice Single-shot esti-
mate

Single-shot esti-
mates

Subsection 3.2

Local admissible sequence of
finite state simulation values:

Multi-choice Single-choice Single-choice Remark 3.2, Subsection 3.3

Quadratic Mean Square ε-sub-
optimal errors:

Multi-choice Singe-error Single-error Remark 3.2, Subsection 3.3

ε-sub-optimal local lagged
sample size:

Multi-choice Single-choice Single-choice Definition 12, Remark 3.2,
Subsection 3.3

ε-best sub optimal sample
size:

ε-best sub opti-
mal choice

No-choice No-choice Remark 3.2, Subsection 3.3

ε-best sub optimal parameter
estimated:

ε-best estimators No-choice No-choice Remark 3.2, Subsection 3.3

ε-best sub optimal state es-
timate:

ε-best sub opti-
mal choice

No-choice No-choice Remark 3.2, Subsection 3.3

Table C.26: Theoretical Performance Comparison Between LLGMM and OCBGMM

Feature LLGMM OCBGMM-
Algebraic

OCGMM-
Analytic

Justifications

Data Size: Reasonable Size Large Data Size Large Data
Size

For Respectable
results

Stationary Condition: Not required Need Ergotic/

Asymptotic station-
ary

Need Ergodic
/ Asymptotic

For Reasonable
results

Multi-level optimiza-
tion:

At least 2 level hi-
erarchical optimiza-
tion

Single-shot Single-shot Not comparable

Admissible Strategies: Multi-choices Single-shot Single-shot Not comparable
Computational Stability: Algorithm Con-

verges in a single /

double digit trials

Single-choice Single-choice Simulation
results

Significance of lagged
adaptive process:

Stabilizing agent Non-existence of the
feature

Non-
existence

Not comparable

Operation: Operates like Dis-
crete time Dynamic
Process

Operates like a static
dynamic process

Operates like
static process

Obvious, details
see Sections 3,
4, 5, 6 and 7
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Appendix C.2. Graphical Comparison of the LLGMM with OCBGMM Methods

Parameter Estimates of (7.1) using LLGMM and OCBGMM Methods: Using the LLGMM method, the

parameter estimates αm̂k ,k, βm̂k ,k, σm̂k ,k, and γm̂k ,k of (7) in USTBIR are shown in Table C.27. Here, we use ε = 0.001,

p = 2, and initial delay r = 20.

Table C.27: Estimates for m̂k , αm̂k ,k , βm̂k ,k , σm̂k ,k , γm̂k ,k for U.S. Treasury Bill interest rate data using LLGMM.
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Table C.27 shows the parameter estimates of m̂k , αm̂k ,k , βm̂k ,k , σm̂k ,k , γm̂k ,k in the model (7.1) for U.S. Treasury Bill interest rate data. As noted

before, the range of the ε-best sub-optimal local admissible sample size m̂k for ant time tk ∈ [21, 45]
⋃

[420, 445] is 2 ≤ m̂k ≤ 20. We also draw the

similar conclusions (a) to (e) as outlined in Remark 4.1.

Figure C.22: Real and simulated path using LLGMM method

Figure C.22 shows the real and simulated path of the monthly interest rate data [44] using the LLGMM method. The root mean square error

of the simulated value is 0.0027.
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(a) (b)

(c)

Figure C.23: Comparison of simulation result using GMM-Analytic and GMM-Algebraic methods

Figures C.23 (a) and (b) show the real and simulated value of the monthly interest rate data [44] using the GMM-Analytic and GMM-Algebraic

methods, respectively. The root mean square errors of simulated values are shown in Table 10. Figure C.23(c) shows the comparison between the

real and simulated values of GMM-Analytic and GMM-Algebraic methods. The red, green, and blue line represent the real data path [44], the

simulated path using GMM-Algebraic, and the GMM-Analytic, respectively.
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(a) (b)

(c)

Figure C.24: Comparison of simulation result using IRGMM-Analytic and IRGMM-Algebraic methods

Figures C.24(a) and (b) show the real and simulated value of the monthly interest rate data [44] using the IRGMM-Analytic and IRGMM-

Algebraic, respectively. The root mean square errors of simulated values are shown in Table 10. Figure C.24(c) shows the comparison between the

real and simulated values of IRGMM-Analytic and IRGMM-Algebraic method. The red, green, and blue curve represents the real data path [44],

simulated path using IRGMM-Algebraic, and GMM-Analytic, respectively.
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(a) (b)

(c)

Figure C.25: Comparison of simulation results of GMM-analytic, IRGMM-analytic, GMM-algebraic and IRGMM-algebraic methods together
with AGMM method

Figure C.25(a) compares the simulation results using GMM-algebraic and IRGMM-algebraic. The blue denotes the GMM-algebraic simulation

curve while the green line represents the IRGMM-algebraic simulation curve. Figure C.25(b) compares the simulation results using the GMM-

Analytic, and IRGMM-Analytic represented by the black, and green lines, respectively. Figure C.25(c) compares the simulation results using the

GMM-Algebra, IRGMM-Algebra, and LLGMM represented by the black, green, and blue lines, respectively.
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(a) (b)

(c)

Figure C.26: Comparison of simulation results for GMM-Analytic, IRGMM-analytic, GMM-Algebraic and IRGMM-Algebraic methods as well
as the LLGMM and AGMM methods

Figure C.26(a) compares the simulation results using GMM-analytic, IRGMM-analytic and the LLGMM methods. The GMM-analytic,

IRGMM-analytic and the LLGMM simulation results are exhibited by the black, green and blue lines, respectively. Figure C.26(b) compares

the simulation results using the GMM-Algebraic, IRGMM-Algebraic, LLGMM and AGMM methods represented by the black, green, blue and

magenta lines, respectively. Figure C.26(c) compares the simulation results using the GMM-Analytic, IRGMM-Analytic, LLGMM and AGMM

methods represented by the black, green, blue and magenta curves, respectively.

Comparative Analysis of Forecasting with 95% Confidence Intervals: Using data set from June 1964 to De-

cember 1989, the parameters of model (7.1) are estimated. Using these parameter estimates, we forecasted the monthly

interest rate for January 1, 1990 to December 31, 2004. Table C.28 shows the parameter estimates in the context of

the data from June 1964 to December 1989.
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Table C.28: Parameter estimates in (7.1) in the context of data July 1964-December 1989

Method α β σ γ

GMM-Algebraic 0.0033 -0.051 0.4121 1.5311
GMM-Analytic 0.0009 -0.0155 0.0197 0.4854
IRGMM-Algebraic 0.0023 -0.0421 0.3230 1.3112
IRGMM-Analytic 0.0084 -0.1436 0.1073 1.3641
AGMM 0.0154 -0.2497 0.2949 1.4414

Figure C.27: Real, Simulation and Forecast state estimates using LLGMM method

In Figure C.27, region S shows the real, simulated value using the monthly interest rate data from June 30, 1964 to December 31, 1989 [44].

In the F region (forecasting region), the estimated parameters in the context of the data set [44] are used to forecast interest rate from January 1,

1990 to December 31, 2004 using the LLGMM method.

(a) (b)
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(c) (d)

Figure C.28: Real, Simulation and Forecast estimates using GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic and IRGMM-Analytic methods

Figure C.28(a), (b), (c) and (d) exhibit the side-by-side comparison of the simulated forecasting results of the GMM-Analytic, GMM-Algebraic,

IRGMM-Analytic, and IRGMM-Algebraic methods, respectively. The S region represents the simulation region based on the real data while the F

region represents the forecasting region. In addition, the 95% confidence level of the simulation results are also shown (in black).

Appendix C.3. Performance Comparisons of LLGMM Method with Existing and Newly Introduced OCBGMM Meth-

ods Using Energy Commodity Stochastic Model

Using the stochastic dynamic model in (2.8) of energy commodity represented by stochastic differential equation:

dy = ay(µ − y)dt + σ(t, yt)ydW(t), y(t0) = y0, (C.1)

the orthogonality condition parameter vector (OCPV) is described in (2.13) in Remark (2.2). Based on discretized

scheme using the econometric specification [9], the orthogonality condition parameter vector in the context of alge-

braic manipulation is as [9]: OCBGMM looks like


yt − yt−1 − ayt−1(µ − yt−1)∆t

yt−1 (yt − yt−1 − ayt−1(µ − yt−1)∆t)(
yt − yt−1 − ayt−1(µ − yt−1)∆t)2 − σ2y2

t−1

] (C.2)

The goodness-of-fit measures are computed using pseudo-data sets of the same sample size as the real data set:

(i) N = 1184 days for natural gas data, (ii) N = 4165 days for crude oil data, (iii) N = 3470 for coal data, and (iv)

N = 438 weeks for ethanol data. The smallest value of ̂RAMS E for all method is italicized.
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Table C.29: Comparison of Parameter estimates of model (C.1) using GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic
and AGMM for natural Gas Data

Method a µ σ2 ̂RAMS E ÂMAD ÂMB
GMM-Algebraic 0.0023 5.3312 0.0019 1.5119 0.0663 1.1488
GMM-Analytic 0.0018 5.4106 0.0015 1.5014 0.0538 1.1677
IRGMM-Algebraic 0.2000 4.4996 0.0010 1.4985 0.0050 1.2299
IRGMM-Analytic 0.1998 4.4917 0.0011 1.4901 0.0044 1.2329
AGMM 0.1867 4.5538 0.0013 1.4968 0.0068 1.2267
LLGMM 0.0674∗ 1.1318 1.1371

Table C.30: Comparison of Parameter estimates of model (C.1) using GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic
and AGMM for crude oil data

Method a µ σ2 ̂RAMS E ÂMAD ÂMB
GMM-Algebraic 0.0023 54.4847 0.0005 39.2853 0.3577 29.1587
GMM-Analytic 0.0021 51.2145 0.0006 38.8007 0.5181 28.7414
IRGMM-Algebraic 0.0000 88.5951 0.0005 30.7511 0.0920 27.5791
IRGMM-Analytic 0.0021 51.2195 0.0005 28.9172 0.2496 27.3564
AGMM 0.0215 54.0307 0.0005 30.776 0.0857 27.3050
LLGMM 0.4625∗ 24.501 27.2707

Table C.31: Comparison of Parameter estimates of model (C.1) using GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic
and AGMM for coal Data

Method a µ σ2 ̂RAMS E ÂMAD ÂMB
GMM-Algebraic 0.0000 94.4847 0.0006 22.6866 0.2015 16.3444
GMM-Analytic 0.0000 94.4446 0.0006 21.6564 0.2121 16.3264
IRGMM-Algebraic 0.0027 34.4838 0.0013 17.6894 0.3438 13.4981
IRGMM-Analytic 0.0021 23.1151 0.0005 17.6869 0.3448 13.4989
AGMM 0.0464 27.0567 0.0014 17.7620 0.0833 13.106
LLGMM 0.4794∗ 9.4009 12.8370

Table C.32: Comparison of Parameter estimates of model (C.1) using GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic
and AGMM for Ethanol data

Method a µ σ2 ̂RAMS E ÂMAD ÂMB
GMM-Algebraic 0.0000 94.4847 0.0006 22.6866 0.2015 16.3444
GMM-Analytic 0.0000 94.4446 0.0006 21.6564 0.2121 16.3264
IRGMM-Algebraic 0.0014 3.4506 0.0026 0.5844 0.0322 0.4346
IRGMM-Analytic 0.0015 3.4506 0.0026 0.5813 0.0336 0.4303
AGMM 0.3167 2.166 0.0018 0.4356 0.0035 0.3579
LLGMM 0.0375∗ 0.3213 0.3566
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Tables C.29, C.30, C.31, and C.32 show a comparison parameter estimates of model (C.1) and the goodness-of-fit measures ̂RAMS E, ÂMAD

and ÂMB using GMM-Algebraic, GMM-Analytic, IRGMM-Algebraic, IRGMM-Analytic, AGMM and LLGMM method for the daily natural gas

data [14] , daily crude oil data [13], daily coal data [12], and weekly ethanol data [48], respectively. The LLGMM estimates are derived using

initial delay r = 20, p = 2 and ε = 0.001. Among all methods under study, the LLGMM method generates the smallest ̂RAMS E value. In fact,

the ̂RAMS E value is smaller than the 1/22, 1/62, 1/36, and 1/10 of any other ̂RAMS E values regarding the natural gas, crude oil, coal and ethanol,

respectively. This exhibits the superiority of the LLGMM method over all other methods. We further observe that the LLGMM approach yields the

smallest ÂMB and highest ÂMAD value regarding the natural gas, crude oil, coal and ethanol. The high value of ÂMAD for the LLGMM method

signifies that LLGMM method captures the influence of random environmental fluctuations on the dynamic of energy commodity process. From

Remark 4.3, the smallest ̂RAMS E, highest ÂMAD and smallest ÂMB value under the LLGMM method exhibits the superior performance under

the three goodness-of-fit measures.

Ranking of Methods under Goodness of Fit Measure

RANK OF METHODS UNDER GOODNESS OF FIT MEASURE
Method Natural gas Crude oil Coal Ethanol

R̂AMS E ÂMAD ÂMB R̂AMS E ÂMAD ÂMB R̂AMS E ÂMAD ÂMB R̂AMS E ÂMAD ÂMB
GMM-Algebraic 6 2 2 6 3 6 6 5 6 6 3 6
GMM-Analytic 5 3 3 5 2 5 5 4 5 5 2 5

IRGMM-Algebraic 4 5 5 3 5 4 4 3 3 4 5 4
IRGMM-Analytic 2 6 6 2 4 3 3 2 4 3 4 3

AGMM 3 4 4 4 6 2 2 6 2 2 6 2
LLGMM 1 1 1 1 1 1 1 1 1 1 1 1

Table C.33: Ranking result for Natural gas, Crude oil, Coal and Ethanol Under three Statistical measures.

Remark Appendix C.1. The ranking of LLGMM is top one in all three Goodness-of-fit statistical measures for all

four energy commodity data sets. Moreover, one of the IRGMM-Analytic and AGMM is ranked either as top two

or three under ̂RAMS E measure. This exhibits the influence of the usage of stochastic calculus based orthogonality

condition parameter vectors (OCPV-Analytic).

Appendix D. Comparative analysis of LLGMM with Existing Nonparametric Statistical Methods

In this section, we compare our LLGMM method with existing nonparametric methods. We consider the following

existing nonparametric methods.

Appendix D.1. Nonparametric estimation of nonlinear dynamics by metric-based local linear approximation (LLA)

The LLA method [39] assumes no functional form of a given model but estimates from experimental data by

approximating the curve implied by the function of the tangent plane around the neighborhood of a tangent point.

Suppose the state of interest xt at time t is differentiable with respect to t and satisfies dxt = f (xt)dt, where f : <k →<
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is a smooth map, xt ∈ <
k. The approximation of the curve f (xt) in a neighborhood Uε(x0) = {x : d(x, x0) < ε} is

defined by a tangent plane at x0:

yt = f (x0) +

k∑
i=1

∂ f
∂xi

(x0)(xi − x0),

where d is a metric on<k. Allowing error in the equation and assigning a weight w(xt) to each error terms εt, the

method reduces to estimating parameters βi =
∂ f
∂xi

(x0), i = 1, 2, ..., k in the equation

w(t)yt = β0 · w(xt) +

k∑
i=1

βi · w(xt)(xt,i − x0,i).

Applying the standard linear regression approach, the least square estimate β̂ is given by

β̂ =
(
X̃T X̃

)−1
X̃T Ỹ, (D.1)

where

x̃i =
(
w(xt1 )(xt1,i − x0,i), ...,w(xtn )(xtn,i − x0,i)

)T , i = 1, ..., k

w̃ =
(
w(xt1 ), ...,w(xtn )

)T

Ỹ =
(
w(xt1 )yt1 , ...,w(xtn )ytn

)T

X̃ = (w̃, x̃1, ..., x̃k)

Particularly, the trajectory f (xti ) is estimated by choosing x0 = xti , for each i = 1, 2, ..., n. As discussed in [39], we

use d(x, x0) = |x − x0|, where |.| is the standard Euclidean metric on<k, and w(x) = φ(d(x, x0)), where φ(u) = K(u/ε)

and K is the Epanechnikov Kernel [39] K(x) = 0.75(1 − x2)+.

Appendix D.2. Risk Estimation and Adaptation after Coordinate Transformation (REACT) method

Given n pairs of observations (x1,Y1), ..., (xn,Yn). Using the REACT method [47], the response variable Y is

related to the covariate x (called a feature) by the equation

Yi = r(xi) + σεi, (D.2)
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where εi ∼ N(0, 1) are identically independently distributed, and xi = i
n , i = 1, 2, ..., n and the function r(x), approxi-

mated using orthogonal cosine basis φi, i = 1, 2, 3, ... of [0, 1] described by

φ1(x) ≡ 1, φ j(x) =
√

2 cos(( j − 1)πx), j ≥ 2. (D.3)

is expanded as

r(x) =

∞∑
j=1

θ jφ j(x), (D.4)

where θ j =
∫ 1

0 φ j(x)r(x)dx, is approximated. The function estimator r̂(x) =
Ĵ∑

j=1
Z jφ j(x), where Z j = 1

n

n∑
i=1

Yiφ j(xi),

j = 1, 2, ..., n and Ĵ is found so that the risk estimator R̂(J) = Jσ̂2

n +
n∑

j=J+1

(
Z2

j −
σ̂2

n

)
is minimized, σ̂2 is the estimator

of variance of Z j.

Appendix D.3. Exponential Moving Average method (EMA)

The EMA [27] for an observation yt at time t may be calculated recursively as

S t = αyt + (1 − α)S t−1, t = 1, 2, 3, ..., n (D.5)

where 0 < α ≤ 1 is a constant that determines the depth of memory of S t.

Appendix D.4. Goodness-of-fit Measures for the LLA, REACT, and EMA methods

In this subsection, we show the Goodness-of-fit Measures for the LLA, REACT, and EMA methods. We use

Ĵ = 183 for the REACT method and α = 0.5 for the EMA method.

Goodness
of-fit Mea-
sure

LLGMM method LLA method REACT method EMA method

Natural gas Crude oil Coal Ethanol Natural gas Crude oil Coal Ethanol Natural gas Crude oil Coal Ethanol Natural gas Crude oil Coal Ethanol
R̂AMS E 0.0674 0.4625 0.4794 0.0375 0.3114 1.9163 2.1645 0.2082 0.1895 2.0377 2.0162 0.0775 0.1222 0.7845 0.8233 0.0682
ÂMAD 1.1318 24.5010 9.4009 0.3213 1.1406 24.3266 9.4511 0.3290 1.1779 24.6967 9.3791 0.3291 1.1336 24.5858 9.4183 0.3159
ÂMB 1.1371 27.2707 12.8370 0.3566 1.2375 27.2713 12.8388 0.3677 1.12352 27.2711 12.8369 0.3566 1.2352 27.2710 12.8370 0.3567

Table D.34: Goodness-of-fit Measures for the LLGMM, REACT, and EMA methods

Comparison of the results derived using these non-parametric methods with the LLGMM method show that the

results derived using the LLGMM method is far better than the results of the nonparametric methods.

Graphical Comparison of the LLGMM with LLA, REACT, and EMA Methods:
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(a) (b)

(c) (d)

Figure D.29: Real and simulated curve using LLA method

Figure D.29: (a), (b), (c) and (d) show the graphs of the Real and Simulated Spot Prices for the daily Henry Hub natural gas data [14], daily

crude oil data [13], daily coal data [12], and weekly ethanol data [48], respectively, using LLA method. The red line represents the real data yk

while the blue line represents the simulated value.
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(a) (b)

(c) (d)

Figure D.30: Real and simulated curve using REACT method

Figure D.30: (a), (b), (c) and (d) show the graphs of the Real and Simulated Spot Prices for the daily Henry Hub natural gas data [14], daily

crude oil data [13], daily coal data [12], and weekly ethanol data [48], respectively, using the REACT method. The red line represents the real data

yk while the blue line represents the simulated value.
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(a) (b)

(c) (d)

Figure D.31: Real and simulated curve using EMA method

Figure D.31: (a), (b), (c) and (d) show the graphs of the Real and Simulated Spot Prices for the daily Henry Hub natural gas data [14], daily

crude oil data [13], daily coal data [12], and weekly ethanol data [48], respectively, using the EMA method. The red line represents the real data yk

while the blue line represents the simulated value.
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(a)

(b)

(c) (d)

Figure D.32: Comparison of Real and simulated curve using LLGMM, LLA, REACT, and EMA method

Figure D.32: (a), (b), (c) and (d) show the graphs of the Real and Simulated Spot Prices for the daily Henry Hub natural gas data [14], daily

crude oil data [13], daily coal data [12], and weekly ethanol data [48], respectively, using the LLGMM, LLA, REACT, and EMA method. The red

line represents the real data.
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