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Local Lagged Adapted Generalized Method Of Moments And Applications1
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Abstract

In this work, an attempt is made for developing the local lagged adapted generalized method of moments (LLGMM).

This proposed method is composed of: (1) development of the stochastic model for continuous-time dynamic process,

(2) development of the discrete-time interconnected dynamic model for statistic process, (3) utilization of Euler-type

discretized scheme for nonlinear and non-stationary system of stochastic differential equations, (4) development of

generalized method of moment/observation equations by employing lagged adaptive expectation process, (5) intro-

duction of the conceptual and computational parameter estimation problem, (6) formulation of the conceptual and

computational state estimation scheme and (7) definition of the conditional mean square ε-best sub optimal procedure.

The development of LLGMM is motivated by parameter and state estimation problems in continuous-time nonlinear

and non-stationary stochastic dynamic model validation problems in biological, chemical, engineering, financial,

medical, physical and social sciences. The byproducts of LLGMM are the balance between model specification and

model prescription of continuous-time dynamic process and the development of discrete-time interconnected dynamic

model of local sample mean and variance statistic process (DTIDMLSMVSP). DTIDMLSMVSP is the generalization

of statistic (sample mean and variance) drawn from the static dynamic population problems. Moreover, it is also an

alternative approach to the GARCH (1,1) model and its many related variant models (e.g., EGARCH model, GJR

GARCH model). It provides an iterative scheme for updating statistic coefficients in a system of generalized method

of moment/observation equation. Furthermore, application of the LLGMM method to stochastic differential dynamic

models for energy commodity price, U. S. Treasury Bill Yield Interest Rate and U. S.-U.K. Foreign Exchange Rate

exhibits its unique role and scope.

Keywords: Conceptual computational/theoretical parameter estimation scheme; Sample mean/ variance dynamical

model; Local Lagged adapted GMM (LLGMM); Local moving sample mean/variance; Reaction/response time delay.
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1. Introduction

Recently, several models have been developed to investigate the volatility process described by stochastic differ-

ential equations [30, 49] and stochastic difference equations [16]. It is well-recognized that volatility is predictable

in many asset markets [4]. Moreover, it is observed that the volatility predictability varies significantly. Engle [16]

developed a class of discrete-time models where the variance depends on the past history of the commodity/service.

Bollerslev [4] generalized models in [16] to the GARCH(p,q).

The estimate for the variance of general statistic from a stationary sequence can be obtained using the concept

of moving average [7]. Employing the batched mean, the grand mean of the individual batch mean and introducing

ASAP3 [29], it is shown that ASAP3 fits AR(1) time series model to the batch mean and it provides a better technique

for determining points and confidence-interval estimators. The Kalman Filtering approach is another technique for

estimation scheme. It is widely known and well recognized [15, 28, 41] that the Kalman filtering approach for the

system parameter and state estimation problems is based on the continuous time coupled system of state dynamic and

observation systems. Using the batched mean and the first order iterative process for X̄n [48], a first order iterative

process [48] is developed to estimate the population variance from a given time series data set.

For the past 40 years, researchers [3, 9, 11, 15, 17, 18, 19, 29, 31, 32, 35, 36, 38, 39, 40, 41] have given a lot of

attention to estimating continuous-time dynamic models from discrete time data sets. The Generalized Method of Mo-

ments (GMM) developed by Hansen [17] and its extensions [11, 18, 19] have played a significant role in the literature

related to the parameter and state estimation problems in linear and nonlinear stochastic dynamic processes. Under

the continuous-time dynamic and discrete time data collection processes, the GMM and its extensions/generalizations

are comprised of these components, namely: 1). Stochastic differential equations of Itô-Doob type, 2). Euler-type

discretization scheme/using econometric specification, 3). the general moment function, 4). minimizing functional or

objective criterion function [17].

Most of the existing parameter and state estimation techniques except for the Kalman filtering are centered around

the usage of either overall data sets [11, 18, 19], batched data sets [7], or local data sets [39] drawn on an interval of

finite length T . This leads to an overall parameter estimate on the interval of length T .

In this paper, an innovative method, the ”Local Lagged Adapted Generalized Method of Moments” (LLGMM)

is developed in a systematic and unified way. It is based on a foundation of correctly utilized mathematics: (a)

the Itô-Doob Stochastic Calculus, (b) the formation of continuous-time differential equations for suitable functions

of dynamic state with respect to original SDE (using Itô-Doob differential formula), (c) constructing corresponding

+ This is a preprint of a paper whose final and definite form is with Journal of Stochastic Analysis and Applications, available at
https://doi.org/10.1080/07362994.2016.1213640.
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Euler-type discretization schemes, (d) developing general discrete-time interconnected dynamic model of local sam-

ple mean and variance statistic processes (DTIDMLSMVSP), (e) the fundamental properties of solution process of

system of stochastic differential equations, for example: existence, uniqueness, continuous dependence of parame-

ters. The LLGMM approach is composed of seven interconnected components: (1). development of the stochastic

mathematical model of continuous time dynamic process [23, 24], (2). development of the discrete-time intercon-

nected dynamic model for statistic process, (3). utilizing the Euler-type discretized scheme [21] for nonlinear and

non-stationary system of stochastic differential equations (1), (4). employing lagged adaptive expectation process

[33] for developing generalized method of moment/observation equations, (5). introduction of the conceptual and

computational parameter estimation problem, (6). formulation of the conceptual and computational state simulation

scheme and (7). definition of the mean square ε-sub optimal procedure.

A brief outline for the motivation and rationale for the development of the multi-component LLGMM is given

below. The LLGMM is motivated by parameter and state estimation problems of continuous time nonlinear stochas-

tic dynamic model of energy commodity markets [30]. In fact, it is also applicable to apparently different dynamic

processes that are conceptually similar dynamic processes in biological, chemical, engineering, financial, medical and

physical and social sciences. Moreover, one of the goals of the parameter and state estimation problems is for model

validation rather than model misspecification [11]. For the continuous-time dynamic model validation, we need to

utilize the existing real world data set. Of course, the real world time varying data is drawn/recorded at discrete-time

on a time interval of finite length. In view of this, instead of using existing econometric specification/Euler-type nu-

merical scheme, we construct the stochastic numerical approximation scheme [21] using continuous time stochastic

differential equations. In almost all real world dynamic modeling problems [23, 24, 25, 33, 34], future states of con-

tinuous time dynamic processes are influenced by the past state history (that is, history) and response/reaction time

delay processes influencing present states [25, 30, 33]. In fact, the discrete-time dynamic models depend on the past

state of a system [22, 25]. The influence of state history, the concept of lagged adaptive expectation process [33]

and the idea of a moving average [20] lead to the development of the general discrete-time interconnected dynamic

model of local sample mean and variance statistic processes (DTIDMLSMVSP). A few by-products of the discrete-

time sample mean and variance statistic process are: (a) to initiate ideas for the usage of discrete-time interconnected

dynamic approach parallel to the continuous-time dynamic process, (b) shorten the computation time and (c) to sig-

nificantly reduce the state error estimates. Utilizing the Euler-type [21] stochastic discretization of the continuous

time stochastic differential equations/moment/observation, the discrete-time interconnected dynamic approach paral-

lel to the continuous-time dynamic process and the given real world time series data and the method of moments [8],

systems of local moment/observation equations are constructed. Using discrete-time interconnected dynamic model
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for statistic process and the lagged adaptive expectation process [33] for developing generalized method of moment

equations, the notions of data coordination, theoretical iterative and simulation schedule processes, conceptual and

computational parameter estimation scheme, conceptual and computation state simulation and mean-square optimal

procedure are introduced. In fact, our approach is more suitable and robust for forecasting problems than the existing

methods. It also provides upper and lower bounds for the forecasted state of the system. Moreover, its computational

aspect is a nested ”two scale hierarchic” quadratic mean-square optimization process whereas the existing GMM and

its extensions are ”single-shot”.

The organization of this paper is as follows:

In Section 2, using the role of time-delay processes, the concept of lagged adaptive expectation process [33],

moving average [20], local finite sequence, local mean and variance, discrete-time dynamic sample mean and variance

statistic processes, local conditional sequence and local sample mean and variance, we develop a general discrete time

interconnected dynamic model for local sample mean and variance statistic processes (DTIDMLSMVSP). Moreover,

DTIDMLSMVSP is the generalization of statistic of random sample drawn from the ”static” population. In Section 3,

we construct a local observation system from a nonlinear stochastic functional differential equations. This is based on

the Itô-Doob stochastic differential formula and Euler-type numerical scheme in the context of the original stochastic

systems of differential equations and the given data. In addition, using the method of moments [8] in the context of

lagged adaptive expectation process [33], we briefly outline a procedure to estimate the state parameters, locally. Using

the local lagged adaptive process and the discrete-time interconnected dynamic model for statistic process, the idea

of time series data collection schedule synchronization with both numerical and simulation time schedules induces

a finite chain of concepts in Section 4, namely: (a) local admissible set of lagged sample/data/ observation size, (b)

local class of admissible lagged-adapted finite sequence of conditional sample/data, (c) local admissible sequence of

parameter estimates and corresponding admissible sequence of simulated values, (d) ε-best sub-optimal admissible

subset of set of mk-size local conditional samples at time tk in (a), (e) ε-sub-optimal lagged-adapted finite sequence

of conditional sample/data and (f) finally, the ε-best sub optimal parameter estimates and simulated value at time tk

for k = 1, 2, ...,N in a systematic way. In addition, the local lagged adaptive process and DTIDMLSMVSP generate

a finite chain of discrete-time admissible sets/sub-data and corresponding chain described by simulation algorithm.

Furthermore, a conceptual Matlab code and its implementation scheme are designed.

2. Derivation of Discrete Time Dynamic Model for sample mean and variance Processes.

In this section, we introduce an innovative component of an innovative GMM-based approach that plays a role

not only in state and parameter estimation problems in continuous time nonlinear stochastic dynamic model of the
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energy commodity market [30], but also plays the same role in models developed in the areas of economics/finance, in

particular, to the US Treasury Bill Interest Rate and the U.S.-U.K. Foreign Exchange rate models. The existing GMM-

based parameter and state estimation techniques for testing/selecting continuous-time dynamic models [10, 11, 18, 19]

are centered around discretization and model misspecifications errors in the context of usage of entire time-series data,

algebraic manipulations and econometric specification for formation of orthogonality condition parameter vectors

(OCPV). The existing approaches lead to an overall/single-shot state and parameter estimates and requires the ergodic

stationary condition for convergence. Furthermore, the existing GMM-based single-shot approaches are not flexible

to correctly validate the features of continuous-time dynamic models that are influenced by the state parameter and

hereditary processes. In fact, in many real-life problems, the past and present dynamic states influence the future

state dynamic. In the formulation of one of the components of the LLGMM approach, we incorporate the ”past state

history” via local lagged adaptive process [33].

Moreover, based on one of the goals of applied mathematical and statistical research, we develop a tool or method

that is applicable or useful for apparently different yet conceptually similar processes in biological, chemical, engineer-

ing, energy commodity markets, financial, medical and physical and social sciences. In the framework of the stated

goal, employing the hereditary influence of a systems [25, 30, 33], the concept of lagged adaptive expectation process

[33] and the idea of moving average [20], we develop a very general discrete-time interconnected dynamic model of

local sample mean and variance statistic processes (DTIDMLSMVSP) with respect to an arbitrary continuous-time

stochastic dynamic process. The development of idea and discrete-time interconnected dynamic model of statistic for

mean and variance processes is motivated by the state and parameter estimation problems of any continuous time non-

linear stochastic dynamic model. Moreover, the idea of DTIDMLSMVSP was primarily based on the sample mean

and sample variance ideas as statistic for a random sample drawn from a static population in the descriptive statistics

[8]. The role and scope of DTIDMLSMVSP, in particular, the problems of long-term price forecasting and interval

estimation problems with a high degree of confidence are also addressed. For this purpose, we need to introduce a

few definitions and notations.

Let τ and γ be finite constant time delays such that 0 < γ ≤ τ. Here, τ characterizes the influence of the past

performance history of state of dynamic process and γ describes the reaction or response time delay. In general, these

time delays are unknown random variables. These types of delay play a role in developing mathematical models of

continuous time [25] and discrete time [22, 33] dynamic processes. Based upon the practical nature of data collection

process, it is essential to either transform these time delays into positive integers or to design the data collection

schedule in relation to the aforementioned delays. For this purpose, we describe the discrete version of time delays of

τ and γ as
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r =

[∣∣∣∣∣ τ∆ti

∣∣∣∣∣] + 1, and q =

[∣∣∣∣∣ γ∆ti

∣∣∣∣∣] + 1, (2.1)

respectively. Moreover, for the sake of simplicity, we assume that 0 < γ < 1 (q=1).

Definition 2.1. Let x be a continuous time stochastic dynamic process defined on an interval [−τ,T ] into<, for some

T > 0. For t ∈ [−τ,T ], let Ft be an increasing sub-sigma algebra of a complete probability space (Ω,F ,P) for which

x(t) is Ft measurable. Let P be a partition of [−τ,T ] defined by

P := {ti = −τ + (r + i)∆t}, for i ∈ I−r(N), (2.2)

where ∆t = τ+T
N , and Ii(k) is defined by Ii(k) = { j ∈ Z |i ≤ j ≤ k}.

Let {x(ti)}Ni=−r be a finite sequence corresponding to the stochastic dynamic process x and partition P in Definition

2.1. We further note that x(ti) is Fti measurable for i ∈ I−r(N). We recall the definition of forward time shift operator

F [6] :

F ix(tk) = x(tk+i). (2.3)

In addition, let us denote x(ti) by xi for i ∈ I−r(N).

Definition 2.2. For q = 1 and r ≥ 1, each k ∈ I0(N) and each mk ∈ I2(r + k − 1), a partition Pk of closed interval

[tk−mk , tk−1] is called local at time tk and it is defined by

Pk := tk−mk < tk−mk+1 < ... < tk−1. (2.4)

Moreover, Pk is referred as the mk−point sub-partition of the partition P in (2.2) of the closed sub-interval [tk−mk , tk−1]

of [−τ,T ].

Definition 2.3. For each k ∈ I0(N) and each mk ∈ I2(r + k − 1), a local finite sequence at a time tk of the size mk is

restriction of {x(ti)}Ni=−r to Pk in (2.4) [2], and it is defined by

S mk ,k := {F ixk−1}
0
i=−mk+1. (2.5)

As mk varies from 2 to k + r − 1, the corresponding local sequence S mk ,k at tk varies from {xi}
k−1
i=k−2 to {xi}

k−1
i=−r+1. As

a result of this, the sequence defined in (2.5) is also called a mk-local moving sequence. Furthermore, the average
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corresponding to the local sequence S mk ,k in (2.5) is defined by

S̄ mk ,k :=
1

mk

0∑
i=−mk+1

F ixk−1. (2.6)

The average/mean defined in (2.6) is also called the mk-local average/mean. Moreover, the mk-local variance corre-

sponding to the local sequence S mk ,k in (2.5) is defined by

s2
mk ,k :=


1

mk

0∑
i=−mk+1

(
F ixk−1 −

1
mk

0∑
j=−mk+1

F jxk−1

)2

, for small mk

1
mk−1

0∑
i=−mk+1

(
F ixk−1 −

1
mk

0∑
j=−mk+1

F jxk−1

)2

, for large mk

(2.7)

Definition 2.4. For each fixed k ∈ I0(N), and any mk ∈ I2(k + r − 1), the sequence {S̄ i,k}
k−1
i=k−mk

is called a mk− local

moving average/mean process at tk. Moreover, the sequence {s2
i,k}

k−1
i=k−mk

is called a mk− local moving variance process

at tk.

Definition 2.5. Let {x(ti)}Ni=−r be a random sample of continuous time stochastic dynamic process collected at partition

P in (2.2). The local sample average/mean in (2.6) and local sample variance in (2.7) are called discrete time dynamic

processes of sample mean and sample variance statistics.

Definition 2.6. Let {x(ti)}Ni=−r be a random sample of continuous time stochastic dynamic process collected at partition

P in (2.2). The mk-local moving average and variance defined in (2.6) and (2.7) are called the mk-local moving sample

average/mean and local moving sample variance at time tk, respectively. Moreover, mk-local sample average and mk-

local sample variance are referred to as local sample mean and local sample variance statistics for the local mean and

variance of the continuous time stochastic dynamic process at time tk, respectively. Moreover, S̄ mk and s2
mk

are called

sample statistic time series processes.

Definition 2.7. Let {E[x(ti)|Fti−1 ]}Ni=−r+1 be a conditional random sample of continuous time stochastic dynamic pro-

cess with respect to sub-σ algebra Fti , ti ∈ P in (2.2). The mk-local conditional moving average and variance defined

in the context of (2.6) and (2.7) are called the mk-local conditional moving sample average/mean and local conditional

moving sample variance, respectively.

The concept of sample statistic time-series/ process extends the concept of random sample statistic [8] for static

dynamic populations in a natural and unified way. In the following, employing Definition 2.7 , we introduce n discrete-

time interconnected dynamic model of local sample mean and variance statistic processes (DTIDMLSMVSP), namely,

conditional sample mean and variance. This discrete-time algorithm/model would play an important role in state and

parameter estimation problems for nonlinear and non-stationary continuous-time stochastic differential and difference
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equations. Moreover, it provides feedback for both continuous-time dynamic model and corresponding discrete-time

statistic dynamic model for modifications and updates under the influence of exogenous and endogenous varying

forces or conditions in a systematic and unified way. Moreover, it is obvious that the discrete-time algorithm eases

the updates in the time-series statistic. Now we are ready to state and prove a change in S̄ mk ,k and s2
mk ,k

with respect to

change in time tk. This fundamental result is motivated by Exercise 5.15 in [8].

Lemma 2.1. DISCRETE TIME INTERCONNECTED DYNAMIC MODEL OF LOCAL SAMPLE MEAN AND

VARIANCE PROCESSES (DTIDMLSMVSP). Let {E[x(ti)|Fti−1 ]}Ni=−r+1 be a conditional random sample of contin-

uous time stochastic dynamic process with respect to sub-σ algebra Fti , ti belong to partition P in (2.2). Let S̄ mk ,k

and s2
mk ,k

be mk-local conditional sample average and local conditional sample variance at tk for each k ∈ I0(N).

Then, a discrete time interconnected dynamic model of local conditional sample mean and sample variance statistic

is described by



S̄ mk−p+1,k−p+1 =
mk−p

mk−p+1
S̄ mk−p,k−p + ηmk−p,k−p, S̄ m0,0 = S̄ 0

s2
mk ,k

=



mk−1
mk

 p∑
i=1

 mk−i
i−1∏
j=0

mk− j

 s2
mk−i,k−i +

mk−p
p−1∏
j=0

mk− j

S̄ 2
mk−p,k−p

 + εmk−1,k−1, for small mk,mk−1 ≤ mk

p∑
i=1

 mk−i−1
i−1∏
j=0

mk− j

 s2
mk−i,k−i +

mk−p
p−1∏
j=0

mk− j

S̄ 2
mk−p,k−p + εmk−1,k−1, for large mk, mk−1 ≤ mk

s2
mi,i

= s2
i , i ∈ I−p(0), initial conditions

(2.8)

where 

ηmk−p,k−p = 1
mk−p+1

 −mk−p+1∑
i=−mk−p+1+1

F ixk−p − F−mk−p+1xk−p − F−mk−p xk−p + F0xk−p

 ,
εmk−1,k−1 = mk−1

mk

 p∑
i=1

(F−i+1 xk−1)2

i−1∏
j=0

mk− j

−
p∑

i=1

(F−i+1−mk−i xk−1)2

i−1∏
j=0

mk− j

−
p∑

i=1

(F−i+2−mk−i xk−1)2

i−1∏
j=0

mk− j


+ mk−1

mk


p∑

i=1


−i+2−mk−i∑

l=−i+2−mk−i+1
(Fl xk−1)2

i−1∏
j=0

mk− j

 +
p∑

i=1


−i+1∑

l,s=−i+2−mk−i+1
l,s

Fl xk−1F s xk−1

i−1∏
j=0

mk− j




− 1
mk

0∑
l,s=−mk+1

l,s

F lxk−1F sxk−1,

εmk−1,k−1 =
p∑

i=1

(F−i+1 xk−1)2

i−1∏
j=0

mk− j

−
p∑

i=1

(F−i+1−mk−i xk−1)2

i−1∏
j=0

mk− j

−
p∑

i=1

(F−i+2−mk−i xk−1)2

i−1∏
j=0

mk− j

+
p∑

i=1


−i+2−mk−i∑

l=−i+2−mk−i+1
(Fl xk−1)2

i−1∏
j=0

mk− j


+

p∑
i=1


−i+1∑

l,s=−i+2−mk−i+1
l,s

Fl xk−1F s xk−1

i−1∏
j=0

mk− j

 − 1
mk−1

0∑
l,s=−mk+1

l,s

F lxk−1F sxk−1

(2.9)
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Proof. The proof of Lemma 2.1 for small mk, mk−1 ≤ mk, is given in Appendix A. The case for small mk, mk ≤ mk−1
is also described in Appendix B. The proof for large mk, mk−1 ≤ mk, is given in Appendix C. �

Remark 2.1. The interconnected dynamic statistic system (2.8) can be re-written as the one-step Gauss-Sidel dy-

namic system [26] of iterative process described by

X(k; p) = A(k,X(k − 1; p); p)X(k − 1; p) + e(k; p), (2.10)

where X(k; p) =

X1(k; p)

X2(k; p)

, X1(k; p) = S̄ mk−p+1,k−p+1, X2(k) =



s2
mk−p+1,k−p+1

s2
mk−p+2,k−p+2

...

s2
mk−1,k−1

s2
mk ,k


,

A(k,X(k − 1; p); p) =

 A11(k; p) A12(k; p)

A21(k,X(k − 1; p); p) A22(k; p)

, A11(k; p) =
mk−p

mk−p+1 , A12(k; p) =

(
0 0 . . . 0

)
,

A21(k; p) =





0

0
...

0
(mk−1)mk−p

mk

p−1∏
j=0

mk− j

S̄ mk−p,k−p


, for small mk



0

0
...

0
mk−p

p−1∏
j=0

mk− j

S̄ mk−p,k−p


, for large mk,

,
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A22(k; p) =





0 1 0 0 . . . 0

0 0 1 0 . . . 0
... 0 0 0

. . .
...

0 . . . 0 0 0 1
(mk−1)mk−p

mk

p−1∏
j=0

mk− j

(mk−1)mk−p+1

mk

p−2∏
j=0

mk− j

. . .
(mk−1)mk−p+i−1

mk

p−i∏
j=0

mk− j

. . . (mk−1)mk−1

m2
k


, for small mk



0 1 0 0 . . . 0

0 0 1 0 . . . 0
... 0 0 0

. . .
...

0 . . . 0 0 0 1
mk−p−1
p−1∏
j=0

mk− j

mk−p+1−1
p−2∏
j=0

mk− j

. . .
mk−p+i−1−1

p−i∏
j=0

mk− j

. . . mk−1−1
mk


, for large mk

e(k; p) =

e1(k; p)

e2(k; p)

, e1(k; p) = ηmk−p,k−p, e2(k; p) =



0

0
...

ε∗mk−1,k−1


, ε∗mk−1,k−1 =


εmk−1,k−1, f or small mk

εmk−1,k−1, f or large mk

Remark 2.2. For each k ∈ I0(N), p = 2 and small mk, the inter-connected system (2.8) reduces to the following

special case:

X(k; 2) = A(k,X(k − 1; 2); 2)X(k − 1; 2) + e(k; 2), (2.11)

where X(k; 2), A(k; 2) and e(k; 2) are defined by X(k; 2) =

X1(k; 2)

X2(k; 2)

, X1(k; 2) = S̄ mk−1,k−1, X2(k; 2) =

s2
mk−1,k−1

s2
mk ,k

,
A(k; 2) =

A11(k; 2) A12(k; 2)

A21(k; 2) A22(k; 2)

, A11(k; 2) = mk−2
mk−1 , A12(k; 2) =

(
0 0

)
, A21(k; 2) =

 0

(mk−1)mk−2

m2
k mk−1

S̄ mk−2,k−2

,
A22(k; 2) =

 0 1

(mk−1)mk−2

m2
k mk−1

(mk−1)mk−1

m2
k

, e(k; 2) =

e1(k; 2)

e2(k; 2)

; e1(k; 2) = ηmk−2,k−2, e2(k; 2) =

 0

εmk−1,k−1

 and

10





ηmk−2,k−2 = 1
mk

[
−mk−2+1∑

i=−mk−1+1
F ixk−2 − F−mk−2+1xk−2 − F−mk−2 xk−2 + F0xk−2

]
,

εmk−1,k−1 = mk−1
mk

[
(F0 xk−1)2

−(F−mk−1 xk−1)2
−(F1−mk−1 xk−1)2

mk
+

(F−1 xk−1)2
−(F−1−mk−2 xk−1)2

−(F−mk−2 xk−1)2

mkmk−1

]

+ mk−1
mk


−mk−2∑

i=−mk−1
(Fi xk−1)2

mkmk−1
+

−1∑
i, j=−mk−1

i, j

Fi xk−1F j xk−1

mkmk−1
+

1−mk−1∑
i=1−mk

(Fi xk−1)2

mk

 −
0∑

i, j=1−mk
i, j

Fi xk−1F j xk−1

m2
k

.

Remark 2.3. Define ϕ1 = mk−1
mk

mk−1
mk

, ϕ2 = mk−1
mk

mk−2
mkmk−1

, and ϕ3 = mk−2
mk−1

. For small mk, mk−1 ≤ mk, ∀k, we have ϕ1 < 1,

ϕ2 < 1, and ϕ3 ≤ 1. From 0 < ϕi, i = 1, 2, 3, and the fact that ϕ1 + ϕ2 = mk−1
m2

k

[
mk−1 + mk−2

mk−1

]
≤

mk−1
m2

k
[mk−1 + 1] ≤

m2
k−1
m2

k
< 1, the stability of the trivial solution (X(k; 2) = 0) of the homogeneous system corresponding to (2.10) follows.

Moreover, under the above stated conditions, the convergence of solutions of (2.10) also follows.

Remark 2.4. From Remark 2.2, we note that the local sample variance statistics at time tk depends on the state of

the mk−1 and mk−2-local sample variance statistics at time tk−1 and tk−2, respectively, and the mk−2-local sample mean

statistics at time tk−2.

Remark 2.5. The role and scope of the DTIDMLSMVSP are summarized below:

• The ” discrete-time interconnected dynamic model for statistic process” (DTIDMLSMVSP) ” is the second

component of the LLGMM approach.

• The ”discrete-time interconnected dynamic model for statistic process” (DTIDMLSMVSP) (Lemma 2.1) is also

valid for a transformation of data.

• It is generalization of ”statistic” of random sample drawn from ”static” population problems.

• Moreover, ”Lemma-2.1” provides iterative scheme for updating statistic coefficients in the local systems of

moment/observation equations in the LLGMM approach.

• This indeed accelerates the speed of computation .

• The DTIDMLSMVSP does not require any type of stationary condition.

• The DTIDMLSMVSP plays a very significant role in the local discretization and model validation errors.

• The presented approach is more suitable for forecasting problems.

• These features will be further emphasized in the subsequent sections.
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Remark 2.6. The further usefulness of the discrete time interconnected dynamic model of local sample mean and

local sample variance statistic process (DTIDMLSMVSP) arises in the estimation of volatility process of a stochastic

differential or difference equations. This model provides an alternative approach to the GARCH(p,q) model [4, 5]. We

shall later compare the mk-local sample variance statistics with the GARCH(p,q) model and show that the mk-local

sample variance statistics gives a better forecast than the GARCH(p,q) model.

3. Theoretical Parametric Estimation Procedure

In this section, we formulate a foundation based on a mathematically rigorous theoretical state and parameter

estimation procedure for a very general continuous-time nonlinear and non-stationary stochastic dynamic model de-

scribed by a systems stochastic differential equations [24]. This work is not only motivated by the continuous-time

dynamic model validation problem [30] in the context of real data energy commodities, but also motivated by any

continuous-time nonlinear and non-stationary stochastic dynamic model validation problems in biological, chemical,

engineering, financial, medical, physical and social sciences. This is because of the fact that the development of

existing Orthogonality Condition Based GMM (OCBGMM) procedure [9, 10, 18, 19] is primarily composed of five

components: (1) testing/selecting continuous-time stochastic models for a particular dynamic process in finance that

is described by stochastic differential equation, (2) using either Euler-type discretization scheme or a discrete-time

econometric specification regarding the stochastic differential equation specified in (1), (3) formation of orthogonal-

ity condition parameter vector (OCPV) using algebraic manipulation, (4) using (2), (3) and the entire time series

data set, finding a system of moment equations for the OCBGMM and (5) single-shot parameter and state estimates

using positive-definite quadratic form. The existing OCBGMM lacks the usage of Itô-Doob calculus, properties of

stochastic differential equations and its connectivity with the usage of econometric specification based discretization

scheme, orthogonality conditional vector and the quadratic form. In this section, we make an attempt to eliminate

the drawbacks, operational limitations and the lack of connectivity and limited scope of the existing OCBGMM.

This is achieved by utilizing (i) historical role played by hereditary process in dynamic modeling [23, 24, 25, 33],(ii)

Itô-Doob calculus [21, 22, 24], (iii), fundamental properties of stochastic system of differential equations, (iv) the

lagged adaptive process [33] and (v) the discrete-time interconnected dynamics of local sample mean and variances

statistic processes model in Section 2 (Lemma 2.1), (vi) developing the Euler-type numerical schemes [21] for both

stochastic differential equations generated from the original stochastic systems of differential equations and the orig-

inal stochastic systems of differential equations, (vii) systems of moments/observation equations and (viii) forming a

local observation/measurements systems in the context of real world data.

We consider a general system of stochastic differential equations under the influence of hereditary effects in both
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the drift and diffusion coefficients described by

dy = f(t, yt)dt + σ(t, yt)dW(t), yt0 = ϕ0, (3.1)

where yt(θ) = y(t + θ), θ ∈ [−τ, 0], f, σ : [0,T ] × C → <q are Lipschitz continuous bounded functionals; C

is the Banach space of continuous functions defined on [−τ, 0] into <q equipped with the supremum norm; W(t) is

standard Wiener process defined on a complete filtered probability space (Ω,F , (F )t≥0,P); ϕ0 ∈ C, and y0(t0 + θ) is

(F )t0 measurables; the filtration function (F )t≥0 is right-continuous, and each Ft with t ≥ t0 contains all P-null events

in F ; the solution process y(t0,ϕ0)(t) of (3.1) is adapted and non-anticipating with respect to (F )t≥0.

3.1. Transformation of System of Stochastic Differential Equations (3.1)

Let V ∈ C[[−τ,∞] ×<q,<m], and its partial derivatives Vt, ∂V
∂y , ∂2V

∂y2 exist and are continuous. We apply Itô-Doob

stochastic differential formula [24] to V , and we obtain

dV(t, y) = LV(t, y, yt)dt + Vy(t, y)σ(t, yt)dW(t) (3.2)

where the L operator is defined by


LV(t, y, yt) = Vt(t, y) + Vy(t, y)f(t, yt) + 1

2 tr(Vyy(t, y)b(t, yt))

b(t, yt) = σ(t, yt)σ
T (t, yt).

(3.3)

3.2. Euler-type Discretization Scheme for (3.1) and (3.2)

For (3.1) and (3.2), we present the Euler-type discretization scheme [21]:


∆yi = f(ti−1, yti−1

)∆ti + σ(ti−1, yti−1
)∆W(ti), i ∈ I1(N)

∆V(ti, y(ti)) = LV(ti−1, y(ti), yti−1
)∆ti + Vy(ti−1, y(ti−1))σ(ti−1, yti−1

)∆W(ti)
(3.4)

Define Fti−1 ≡ Fi−1 as the filtration process up to time ti−1.
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3.3. Formation of Generalized Moment Equations From (3.4)

With regard to the continuous time dynamic system (3.1) and its transformed system (3.2), the more general

moments of ∆y(ti) are as follows:



E
[
∆y(ti)|Fi−1

]
= f(ti−1, yti−1

)∆ti,

E
[(

∆y(ti) − E
[
∆y(ti)|Fi−1

]) (
∆y(ti) − E

[
∆y(ti)|Fi−1

])T
|Fi−1

]
=

(
σσT

)
(ti−1, yti−1

)∆ti,

E
[
∆V(ti, y(ti))|Fi−1

]
= LV(ti−1, y(ti), yti−1

)∆ti

E
[(

∆V(ti, y(ti)) − E
[
∆V(ti, y(ti))|Fi−1

]) (
∆V(ti, y(ti)) − E

[
∆V(ti, y(ti))|Fi−1

])T
|Fi−1

]
= B(ti−1, y(ti−1), yti−1

)
(3.5)

where B(ti−1, y(ti−1), yti−1
) = Vy(ti−1, y(ti−1))b(ti−1, yti−1

)Vy(ti−1, y(ti−1))T ∆ti, and T stands for the transpose of the ma-

trix.

3.4. Basis for Local Lagged Adaptive Discrete-time Expectation Process

From (3.4) and (3.5), we have


∆yi = E

[
∆y(ti)|Fi−1

]
+ σ(ti−1, yti−1

)∆W(ti), i ∈ I1(N)

∆V(ti, y(ti)) = E
[
∆V(ti, y(ti))|Fi−1

]
+ Vy(ti−1, y(ti−1))σ(ti−1, yti−1

)∆W(ti)
(3.6)

This provides the basis for the development of the concept of lagged adaptive expectation process [33] with

respect to continuous time stochastic dynamic systems (3.1) and (3.2). This indeed leads to a formulation of mk-local

generalized method of moments at tk.

Remark 3.1. (Block Orthogonality Condition Vector for (3.1) and (3.2))

From (3.6), we note that one can define a block vector of orthogonality condition [10] as

H(ti−1, y(ti), y(ti−1)) =

 ∆y(ti) − f(ti−1, y(ti−1))∆ti

∆V(ti−1, y(ti)) − LV(ti−1, y(ti−1, yti−1
))∆ti

 (3.7)

Moreover, unlike the orthogonality condition vector defined in the literature [8, 10, 42], the definition of the block

vector of orthogonality condition (3.7) is based on the discretization scheme [21] associated with nonlinear and non-

stationary continuous-time stochastic system of differential equations (3.1) and (3.2) and the ItÃ´-Doob stochastic

differential calculus [21, 24].

Example 1:
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For V(t, y) in (3.2) is defined by V(t, y) = ||y||pp =
n∑

j=1
|y j|p. In this case, we have

dV =

p
n∑

j=1

|y j|p−1sgn(y j) f (t, y j
t ) +

p(p − 1)
2

|y j|p−2σ(t, y j
t )

 ∆t + p
n∑

j=1

|y j|p−1sgn(y j)σ(t, y j
t )∆W j

i . (3.8)

Hence, the discretized form of (3.8) is given by

∆Vi =

p
n∑

j=1

|y j
i−1|

p−1sgn(y j
i−1) f (ti−1, y

j
ti−1

) +
p(p − 1)

2
|y j

i−1|
p−2σ(ti−1, y

j
ti−1

)

 ∆t + p
n∑

j=1

|y j
i−1|

p−1sgn(y j
i−1)σ(ti−1, y

j
ti−1

)∆W j
i .

(3.9)

In this special case, (3.6) reduces to


∆yi = E

[
∆y(ti)|Fi−1

]
+ σ(ti−1, yti−1

)∆Wi, i ∈ I1(N)

∆

(
n∑

j=1
|y j

i |
p

)
= E

[
∆

(
n∑

j=1
|y j

i |
p

)
|Fi−1

]
+ p

n∑
j=1
|y j

i−1|
p−1sgn(y j

i−1)σ(ti−1, y
j
ti−1

)∆W j
i .

(3.10)

Example 2:

We consider a multivariate AR(1) model as another example to exhibit the parameter and state estimation problem.

The AR(1) model is of the following type

xt = at−1xt−1 + σt−1et, x(0) = x0, for t = 0, 1, 2, ..., t, ...,N, (3.11)

where xt, x0 ∈ <
n, et ∈ <

m is Ft measurable normalized discrete-time Gaussian process; at−1 and σt−1 are n × n and

n × m discrete-time varying matrix functions, respectively. Here

 E [xt |Ft−1]

E
[
xt xt

T |Ft−1

]
 =

 at−1xt−1

at−1xt−1(at−1xt−1)T + σt−1(σt−1)T

 . (3.12)

In this case, the block orthogonality condition vector [10] is based on multivariate stochastic system of difference

equation and difference calculus for (3.11) and (3.12):

H(ti−1, xt, xt−1, at−1,σt−1) =

 xt − at−1xt−1

∆V(xt) − LV(t, xt−1)∆t

 (3.13)

15



where ∆ and L are difference and L operators with respect to V = xxT for x ∈ <n, and are defined by


∆V(xt) = V(xt) − V(xt−1), for t = 1, 2, ..., t, ...,N

LV(t, xt−1) = at−1xt−1 ((2 + at−1) xt−1)T + σt−1σ
T
t−1,

(3.14)

and differential of V with respect to multivariate difference system (3.11) parallel to continuous-time version (3.2) is

as:

∆V(xt) = at−1xt−1 ((2 + at−1) xt−1)T + σt−1σ
T
t−1 + 2(1 + at−1xt−1)(σt−1et)T (3.15)

From the above discussion, it is obvious that the orthogonality condition parameter vector in (3.13) is constructed

with respect to multivariate stochastic system of difference equations and elementary difference calculus.

Remark 3.2. From the transformation of system of stochastic differential equations (3.2) in Sub-section 3.1, the con-

struction of Euler-type Discretization Scheme for (3.1) and (3.2) in Sub-section 3.2, the Formation of Generalized

Moment Equations from (3.4) in Sub-section 3.3 and the Basis for Local Lagged Adaptive Discrete-time Expec-

tation Process in Sub-section 3.4 are in the frame-work of correct mathematical reasoning, logical and intercon-

nected/interactive within the context of the continuous-time dynamic system (3.1). Moreover, a continuous-time state

dynamic process (described by systems of stochastic differential equations (3.1)) moves forward in time. The theoret-

ical parameter estimation procedure in this section adapts to and incorporates the continuous-time changes in the state

and parameters of the system and moves into a discrete-time theoretical numerical schemes in (3.4) as a model valida-

tion of (3.1). It further successively moves in the local moment equations within the context of local lagged adaptive,

local discrete-time statistic and computational processes in a natural, systematic and coherent manner. On the other

hand, the existing OCBGMM approach is ”single-shot with a global approach” and it is highly dependent on the

second component of the OCBGMM, that is, the ”usage of either Euler-type discretization scheme or a discrete-time

econometric specification regarding the stochastic differential equation”. We refer to OCBGMM as the single-shot or

global approach with formation of a single moment equation in a quadratic form.

In the following, we state a result that exhibits the existence of solution of system of non linear algebraic equations.

For ease of reference, we shall state the Implicit function theorem without proof.

Theorem 3.1. Implicit Function Theorem[2] Let F = {F1, F2, ..., Fq} be a vector-valued function defined on an open

set S ∈ <q+k with values in <q. Suppose F ∈ C
′

on S . Let (u0; v0) be a point in S for which F(u0; v0) = 0 and for

which the q × q determinant det
[
D jFi(u0; v0)

]
, 0. Then there exists a k− dimensional open set T0 containing v0
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and unique vector-valued function g, defined on T0 and having values in<q, such that g ∈ C
′

on T0, g(v0) = u0, and

F(g(v); v) = 0 for every v ∈ T0.

3.5. Illustration 1: Dynamic Model for Energy Commodity Price

We consider the stochastic dynamic model of energy commodities [30] described by the following nonlinear

stochastic differential equation

dy = a(t)y(µ(t) − y)dt + σ(t, yt)ydW(t), yt0 = ϕ0, (3.16)

where yt(θ) = y(t+θ); θ ∈ [−τ, 0], µ, a : [t0,T ]→< are continuous functions; the initial process ϕ0 = {y(t0 +θ)}θ∈[−τ,0]

is Ft0 -measurable and independent of {W(t), t ∈ [0,T ]}; W(t) is a standard Wiener process defined in (3.1); σ :

[0,T ] × C → <+ is a Lipschitz continuous and bounded functional; C is the Banach space of continuous functions

defined on [−τ, 0] into< equipped with the supremum norm.

The solution y(t) of (3.16) satisfy

y(t) − y(t0) =

∫ t

t0
a(s)y(s)(µ(s) − y(s))ds +

∫ t

t0
σ(s, ys)y(s)dW(s),

and

E
[
y(t) − y(t0)|Fs<t

]
=

∫ t

t0
a(s)y(s)(µ(s) − y(s))ds.

Transformation of Stochastic Differential Equation (3.16): We pick a Lyapunov function V(t, y) = ln(y) in (3.2)

for (3.16). Using Itô-differential formula [24], we have

d (ln(y)) =

[
a(t)(µ(t) − y) −

1
2
σ2(t, yt)

]
dt + σ(t, yt)dW. (3.17)

The Euler-type Discretization Schemes for (3.16) and (3.17): By setting ∆ti = ti − ti−1, ∆yi = yi − yi−1, the

combined Euler discretized scheme for (3.16) and (3.17) is


∆yi = ai−1yi−1(µi−1 − yi−1)∆ti + σ(ti−1, yti−1 )yi−1∆W(ti), yt0 = ϕ0,

∆ (ln(yi)) =
[
ai−1(µi−1 − yi−1) − 1

2σ
2(ti−1, yti−1 )

]
∆ti + σ(ti−1, yti−1 )∆W(ti), yt0 = ϕ0.

(3.18)

where ϕ0 = {yi}
0
i=−r is a given finite sequence of F0−measurable random variables, and it is independent of {∆W(ti}Ni=0.
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Generalized Moment Equations: Applying conditional expectation to (3.18) with respect to Fti−1 ≡ Fi−1, we

obtain

E
[
∆yi|Fi−1

]
= ai−1yi−1(µi−1 − yi−1)∆t

E
[
∆ (ln(yi)) |Fi−1

]
=

[
ai−1(µi−1 − yi−1) − 1

2σ
2(ti−1, yti−1 )

]
∆t

E
[(

∆ (ln(yi)) − E
[
∆ (ln(yi)) |Fi−1

])2
|Fi−1

]
= σ2(ti−1, yti−1 )∆t.

(3.19)

Basis for Lagged Adaptive Discrete-time Expectation Process: From (3.19), (3.18) reduces to


∆yi = E

[
∆yi|Fi−1

]
+ σ(ti−1, yti−1 )yi−1∆W(ti)

∆ (ln(yi)) = E
[
∆ (ln(yi)) |Fi−1

]
+ σ(ti−1, yti−1 )∆W(ti).

(3.20)

(3.20) provides the basis for the development of the concept of lagged adaptive expectation process [33] with

respect to continuous time stochastic dynamic systems (3.16) and (3.17).

Remark 3.3. (Orthogonality Condition Vector for (3.16) and (3.17)

Following Remark 3.1 and using (3.18), (3.19) and (3.20), we further remark that the orthogonality condition

vector [10] with respect to continuous-time stochastic dynamic model (3.16) is represented by:

H(ti−1, y(ti), y(ti−1)) =


∆y(ti) − a(ti−1)y(ti−1)(µ(ti−1) − y(ti−1))∆ti

∆ ln(y(ti)) − L ln(y(ti−1), yti−1 )∆ti

(∆ ln(y(ti)) − L ln(y(ti−1), yti−1 )∆ti)2 − σ2(ti−1, yti−1 )∆ti

 (3.21)

where Lln(y(ti−1), yti−1 )∆ti =
(
a(ti−1)(µ(ti−1) − y(ti−1)) − 1

2σ
2(ti−1, yti−1 )

)
∆ti. Moreover, unlike the orthogonality con-

dition vector defined in the literature [8, 10, 38], this orthogonality condition vector is based on the discretization

scheme (3.18) associated with nonlinear continuous-time stochastic differential equations (3.16) and (3.17) and the

Itô-Doob stochastic differential calculus [21, 24]

Local Observation System of Algebraic Equations: For k ∈ I0(N), applying the lagged adaptive expectation

process [33], from Definitions 2.3 − 2.7, and using the discretized form of (2.8) and (3.20), we formulate a local

observation/measurement process at tk as a algebraic functions of mk-local functions of restriction of the overall finite

sample sequence {yi}
N
i=−r to a subpartition Pk in Definition 2.2. Let atk∗ , µtk∗ be estimates of at and µt, respectively, at
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each time t. We have



1
mk

k−1∑
i=k−mk

E
[
∆yi|Fi−1

]
= atk∗

[
µtk∗
mk

k−1∑
i=k−mk

yi−1 −
1

mk

k−1∑
i=k−mk

y2
i−1

]
∆t,

1
mk

k−1∑
i=k−mk

E
[
∆ (ln(yi)) |Fi−1

]
= atk∗

[
µtk∗ −

1
mk

k−1∑
i=k−mk

yi−1

]
∆t − 1

2mk

k−1∑
i=k−mk

E
[(

∆ (ln(yi)) − E
[
∆ (ln(yi)) |Fi−1

])2
|Fi−1

]
,

σ̂2
mk ,k

=


1

mk∆t

k−1∑
i=k−mk

E
[(

∆ (ln(yi)) − E
[
∆ (ln(yi)) |Fi−1

])2
|Fi−1

]
if mk is small

1
(mk−1)∆t

k−1∑
i=k−mk

E
[(

∆ (ln(yi)) − E
[
∆ (ln(yi)) |Fi−1

])2
|Fi−1

]
if mk is large.

(3.22)

From the third equation in (3.22), it follows that the average volatility square σ̂2
mk ,k

is given by

σ̂2
mk ,k =

s2
mk ,k

∆t
, (3.23)

where s2
mk ,k

is the local sample variance statistics for volatility at tk in the context of x(ti) = ∆ (ln(yi)). We define

F1
(
E

[
∆yi|Fi−1

]
,E

[
∆(ln yi)|Fi−1

]
; atk∗ , µtk∗

)
=

k−1∑
i=k−mk

E[∆yi |Fi−1]
mk

− atk∗


µtk∗

k−1∑
i=k−mk

yi−1

mk
−

k−1∑
i=k−mk

y2
i−1

mk

 ∆t

F2
(
E

[
∆yi|Fi−1

]
,E

[
∆(ln yi)|Fi−1

]
; atk∗ , µtk∗

)
= 1

mk

k−1∑
i=k−mk

E
[
∆(ln yi)|Fi−1

]
− atk∗

[
µtk∗ −

1
mk

k−1∑
i=k−mk

yi−1

]
∆t +

s2
mk ,k

2 .

(3.24)

Then we have 
F1

(
E

[
∆yi|Fi−1

]
,E

[
∆(ln yi)|Fi−1

]
; atk∗ , µtk∗

)
= 0,

F2
(
E

[
∆yi|Fi−1

]
,E

[
∆(ln yi)|Fi−1

]
; atk∗ , µtk∗

)
= 0.

(3.25)

Let F = {F1, F2}. The determinant of the Jacobian matrix of F is given by

JF(atk∗ , µtk∗ ) = −
atk∗

mk

 k−1∑
i=k−mk

y2
i−1 −

1
mk

 k−1∑
i=k−mk

yi−1


2 (∆t)2 = −atk∗ var(y(ti−1)k−1

i=k−mk
)(∆t)2 , 0, (3.26)

provided that a , 0 or the sequence {x(ti−1)}Ni=−r+1 is neither zero nor a constant sequence. This fulfils the hypothesis

of Theorem 3.1.

Thus, by the application of Theorem 3.1 (Implicit Function Theorem), we conclude that for every non-constant

mk-local sequence {x(ti)}k−1
i=k−mk

, there exists a unique solution of system of algebraic equations (3.25), âmk ,k and µ̂mk ,k

as a point estimates of a and µ, respectively.

We also note that the estimated values âmk ,k ≡ atk∗ , µ̂mk ,k ≡ µtk∗ , of a and µ, respectively, change at each time tk. For

instance, at time t0 = 0 and the given F−1 measurable discrete-time process y−r+1, y−r+2, ..., y−1, (3.22) reduces to
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

1
m0

0∑
i=−m0

∆yi = âm0,0

[
µ̂m0 ,0

m0

0∑
i=−m0

yi−1 −
1

m0

0∑
i=−m0

y2
i−1

]
∆t,

1
m0

0∑
i=−m0

∆(ln yi) = âm0,0

[
µ̂m0,0 −

1
m0

0∑
i=−m0

yi−1

]
∆t −

s2
m0 ,0

2 ,

σ̂2
m0,0

=
s2

m0 ,0

∆t .

(3.27)

The initial solution of algebraic equations (3.27) at time t0 is given by



âm0,0 =

 1
m0

0∑
i=−m0

∆(ln yi)+
s2
m0 ,0

2

 1
m0

0∑
i=−m0

yi−1

− 1
m0

0∑
i=−m0

∆yi

1
m0

 0∑
i=−m0

y2
i−1−

1
m0

 0∑
i=−m0

yi−1

2∆t

µ̂m0,0 =

1
m0∆t

0∑
i=−m0

∆(ln yi)+
s2
m0 ,0
2∆t +

âm0 ,0
m0

 0∑
i=−m0

yi−1


âm0 ,0

σ̂2
m0,0

=
s2

m0 ,0

∆t .

(3.28)

At time t1 = 1 and the given F0 measurable discrete-time process y−r, y−r+1, ..., y−1, y0, we have



âm1,1 =

 1
m1

0∑
i=1−m1

∆(ln yi)+
s2
m1 ,1

2

 1
m1

0∑
i=1−m1

yi−1

− 1
m1

0∑
i=1−m1

∆yi

1
m1

 0∑
i=1−m1

y2
i−1−

1
m1

 0∑
i=1−m1

yi−1

2∆t

µ̂m1,1 =

1
m1∆t

0∑
i=1−m1

∆(ln yi)+
s2
m1 ,1
2∆t +

âm1 ,1
m1

 0∑
i=1−m1

yi−1


âm1 ,1

σ̂2
m1,1

=
s2

m1 ,1

∆t .

(3.29)

Repeating the above procedure, from (3.22) and applying the principle of mathematical induction [23], we have



âmk ,k =

 1
mk

k−1∑
i=k−mk

∆(ln yi)+
s2
mk ,k

2

 1
mk

k−1∑
i=k−mk

yi−1

− 1
mk

k−1∑
i=k−mk

∆yi

1
mk

 k−1∑
i=k−mk

y2
i−1−

1
mk

 k−1∑
i=k−mk

yi−1

2∆t

µ̂mk ,k =

1
mk∆t

k−1∑
i=k−mk

∆(ln yi)+
s2
mk ,k
2∆t +

âmk ,k
mk

 k−1∑
i=k−mk

yi−1


âmk ,k

,

σ̂2
mk ,k

=
s2

mk ,k

∆t .

(3.30)

Remark 3.4. We note that without loss in generality, the discrete-time data set {y−r+i : i ∈ I1(r − 1)} is assumed to

be close to the true values of the solution process of the continuous-time dynamic process. In fact, this assumption is

feasible in view of the uniqueness and continuous dependence of solution process of stochastic functional or ordinary

differential equation with respect to the initial data [24].

Remark 3.5. If the sample {yi}
k−1
i=k−mk−1 is a constant sequence, then it follows from (3.30) and the fact that ∆(ln yi) = 0

and s2
mk ,k

= 0, that µ̂mk ,k →
1

mk

k−1∑
i=k−mk

yi−1. Hence, it follows from (3.22) that âmk ,k = 0.
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Remark 3.6. As we stated before, estimated parameters a, µ, and σ2 depend upon the time at which data point is

drawn. This is what we expected because of the fact that nonlinearity of the dynamic model together with environ-

mental stochastic perturbations generate non stationary solution process. Using this locally estimated parameters of

the continuous-time dynamic system, we can find the average of these local parameters over the entire size of data set

as follows:



ā = 1
N

N∑
i=0

am̂i,i,

µ̄ = 1
N

N∑
i=0
µm̂i,i

σ2 = 1
N

N∑
i=0
σ2

m̂i,i
.

(3.31)

ā, µ̄, and σ2 are referred to as aggregated parameter estimates of a, µ, and σ2 over the given entire finite interval of

time, respectively.

Remark 3.7. The ”discrete-time interconnected dynamic model for statistic process” (DTIDMLSMVSP) (Lemma

2.1) and its transformation of data are utilized in (3.22), (3.23), (3.24), (3.30), and (3.31) for updating statistic coeffi-

cients of equations in (3.19). This indeed accelerates the computation process. Furthermore, DTIDMLSMVSP plays

a very significant role in the local discretization and model validation errors.

3.6. Illustration 2: Dynamic Model for U.S. Treasury Bill Interest Rate and the U.S.-U.K. Foreign Exchange Rate

We also apply the above presented scheme for estimating parameters of a continuous-time model for U.S. Treasury

Bill Interest Rate [43] and U.S.-U.K. Foreign Exchange Rate [44] processes. By employing dynamic modeling process

[23, 24], a continuous time dynamic model of interest rate process under random environmental perturbations can be

described by

dy = (βy + µyδ)dt + σyγdW(t), y(t0) = y0, (3.32)

where β, µ, δ, σ, γ ∈ <; y(t, t0, y0) is adapted, non-anticipating solution process with respect to Ft; the initial process

y0 is Ft0 -measurable and independent of {W(t), t ∈ [t0,T ]} ; W(t) is a standard Wiener process defined on a filtered

probability space (Ω,F , (F )t≥0,P).

Transformation of Stochastic Differential Equation (3.32): For (3.32), we consider the Lyapunov functions
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V1(t, y) = 1
2 y2, and V2(t, y) = 1

3 y3 as in (3.2). The Itô differentials of Vi, for i = 1, 2, are given by


dV1 =

[
y(βy + µyδ) + 1

2σ
2y2γ

]
dt + σyγ+1dW

dV2 =
[
y2(βy + µyδ) + σ2y2γ+1

]
dt + σyγ+2dW.

(3.33)

The Euler-type Numerical Schemes for (3.32) and (3.33): Following the approach in Section 3 and illustration

3.5, the Euler discretized scheme (∆t = 1) for (3.32) is defined by


∆yi = (βyi−1 + µyδi−1) + σyγi−1∆W(ti)

1
2 ∆(y2

i ) = yi−1(βyi−1 + µyδi−1) + 1
2σ

2y2γ
i−1 + σyγ+1

i−1 ∆Wi

1
3 ∆(y3

i ) = y2
i−1(βyi−1 + µyδi−1) + σ2y2γ+1

i−1 + σyγ+2
i−1 ∆Wi.

(3.34)

Generalized Moment Equations: Applying conditional expectation to (3.34) with respect to Fi−1, we obtain

E
[
∆yi|Fi−1

]
= βyi−1 + µyδi−1

1
2E

[
∆(y2

i )|Fi−1

]
= βy2

i−1 + µyδ+1
i−1 + 1

2σ
2y2γ

i−1

1
3E

[
∆(y3

i )|Fi−1

]
= βy3

i−1 + µyδ+2
i−1 + σ2y2γ+1

i−1

E
[(

∆yi − E
[
∆yi|Fi−1

])2
|Fi−1

]
= σ2y2γ

i−1,

1
4E

[(
∆(y2

i ) − E
[
∆(y2

i )
])2
|Fi−1

]
= σ2y2γ+2

i−1 .

(3.35)

Basis for Lagged Adaptive Discrete-time Expectation Process: From (3.35), (3.34) reduces to


∆yi = E

[
∆yi|Fi−1

]
+ σyγi−1∆W(ti)

1
2 ∆(y2

i ) = 1
2E

[
∆(y2

i )|Fi−1

]
+ σyγ+1

i−1 ∆Wi

1
3 ∆(y3

i ) = 1
3E

[
∆(y3

i )|Fi−1

]
+ σyγ+2

i−1 ∆Wi.

(3.36)

Remark 3.8. Orthogonality Condition Vector for (3.32) and (3.33): Again, imitating Remarks 3.1, 3.2 and 3.3

and in the context of (3.32), (3.33), (3.34), (3.35) and (3.36), the orthogonality condition vector [10] with respect to

continuous-time stochastic dynamic model (3.32) is as:

H(ti−1, y(ti), y(ti−1)) =



∆y(ti) − (βy(ti−1) + µyδ(ti−1))∆ti
1
2 ∆(y2(ti)) − L(y2(ti−1))∆ti
1
3 ∆(y3(ti)) − L(y3(ti−1))∆ti(

∆y(ti) − (βy(ti−1) + µyδ(ti−1))∆ti
)2
− σ2y2γ(ti−1)∆ti(

1
2 ∆(y2(ti)) − L(y2(ti−1))∆ti

)2
− σ2y2γ+2(ti−1)∆ti


(3.37)
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where L(y2(ti−1))∆ti =
(
y(ti−1)

(
βy(ti−1) + µyδ(ti−1)

)
+ 1

2σ
2y2γ(ti−1)

)
∆ti and

L(y3(ti−1))∆ti =
(
y2(ti−1)

(
βy(ti−1) + µyδ(ti−1)

)
+ σ2y2γ+1(ti−1)

)
∆ti. Moreover, unlike the orthogonality condition vector

defined in the literature [8, 10, 38], this orthogonality condition vector is based on the discretization scheme (3.34)

associated with nonlinear continuous-time stochastic differential equations (3.32) and (3.33).

Local Observation System of Algebraic Equations: Following the argument used in (3.22), for k ∈ I0(N),

applying the lagged adaptive expectation process [33], from Definitions 2.3 − 2.7, and using (2.8) and (3.35), we

formulate a local observation/measurement process at tk as a algebraic functions of mk-local functions of restriction

of the overall finite sample sequence {yi}
N
i=−r to subpartition Pk in Definition 2.2:



1
mk

k−1∑
i=k−mk

E
[
∆yi|Fi−1

]
= β

k−1∑
i=k−mk

yi−1

mk
+ µ

k−1∑
i=k−mk

yδi−1

mk

1
2mk

k−1∑
i=k−mk

[
E

[
∆(y2

i )|Fi−1

]
− E

[(
∆yi − E

[
∆yi|Fi−1

])2
|Fi−1

]]
= β

k−1∑
i=k−mk

y2
i−1

mk
+ µ

k−1∑
i=k−mk

yδ+1
i−1

mk

1
mk

k−1∑
i=k−mk

[
1
3E

[
∆(y3

i )|Fi−1

]
− σ2y2γ+1

i−1

]
= β

k−1∑
i=k−mk

y3
i−1

mk
+ µ

k−1∑
i=k−mk

yδ+2
i−1

mk

1
mk

k−1∑
i=k−mk

E
[(

∆yi − E
[
∆yi|Fi−1

])2
|Fi−1

]
= σ2

k−1∑
i=k−mk

y2γ
i−1

mk
,

1
4mk

k−1∑
i=k−mk

E
[(

∆(y2
i ) − E

[
∆(y2

i )
])2
|Fi−1

]
= σ2

k−1∑
i=k−mk

y2γ+2
i−1

mk
.

(3.38)

Following the approach discussed in Section 3.5, the solution of σmk ,k is given by

σmk ,k =


s2

mk ,k

1
mk

k−1∑
i=k−mk

y
2γmk ,k

i−1


1/2

(3.39)

and γmk ,k satisfies the following nonlinear algebraic equation

s2
mk ,k

k−1∑
i=k−mk

y
2γmk ,k+2
i−1 −

1
4

s2
mk ,k

k−1∑
i=k−mk

y
2γmk ,k

i−1 = 0, (3.40)

where s2
mk ,k

, and s2
mk ,k

denotes the local moving variance of ∆yi and ∆(y2
i ) respectively.

To solve for the parameters β, µ and δ, we define the conditional moment functions

F j ≡ F j

(
E

[
∆yi|Fi−1

]
,E

[
∆(yi)2|Fi−1

]
,E

[
∆(yi)3|Fi−1

])
, j = 1, 2, 3
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as

F1 = 1
mk

k−1∑
i=k−mk

E
[
∆yi|Fi−1

]
− β

k−1∑
i=k−mk

yi−1

mk
− µ

k−1∑
i=k−mk

yδi−1

mk

F2 = 1
2mk

k−1∑
i=k−mk

[
E

[
∆(y2

i )|Fi−1

]
− E

[(
∆yi − E

[
∆yi|Fi−1

])2
|Fi−1

]]
− β

k−1∑
i=k−mk

y2
i−1

mk
− µ

k−1∑
i=k−mk

yδ+1
i−1

mk

F3 = 1
mk

k−1∑
i=k−mk

[
1
3E

[
∆(y3

i )|Fi−1

]
− σ2y2γ+1

i−1

]
− β

k−1∑
i=k−mk

y3
i−1

mk
− µ

k−1∑
i=k−mk

yδ+2
i−1

mk
.

(3.41)

Using (3.38), we have 
F1 = 0

F2 = 0

F3 = 0

(3.42)

Let F = {F1, F2, F3}. The determinant of the Jacobian matrix of F is given by

JF(β, µ, δ) = − 1
m3

k
det



k−1∑
i=k−mk

yi−1
k−1∑

i=k−mk

yδi−1

k−1∑
i=k−mk

(ln yi−1)yδi−1

k−1∑
i=k−mk

y2
i−1

k−1∑
i=k−mk

yδ+1
i−1

k−1∑
i=k−mk

(ln yi−1)yδ+1
i−1

k−1∑
i=k−mk

y3
i−1

k−1∑
i=k−mk

yδ+2
i−1

k−1∑
i=k−mk

(ln yi−1)yδ+2
i−1


, 0 (3.43)

provided δ , 1 and the sequence {y(ti−1)}k−1
i=k−mk

is neither zero nor a constant sequence. Thus, by the application of

Theorem 3.1 (Implicit Function Theorem), we conclude that for every non-constant mk-local sequence {y(ti)}k−1
i=k−mk

,

δ , 1, there exist a solution of system of algebraic equations (3.42) β̂mk ,k, µ̂mk ,k−1, δ̂mk ,k as a point estimates of β and µ,

and δ respectively.

The solution of equation (3.42) is given by



µ̂mk ,k =

1
mk

k−1∑
i=k−mk

∆yi
k−1∑

i=k−mk
y2

i−1−
1
2

 1
mk

k−1∑
i=k−mk

∆(y2
i )−s2

mk ,k

 k−1∑
i=k−mk

yi−1

1
mk

 k−1∑
i=k−mk

y
δmk ,k
i−1

k−1∑
i=k−mk

y2
i−1−

k−1∑
i=k−mk

y
1+δmk ,k
i−1

k−1∑
i=k−mk

yi−1


β̂mk ,k =

k−1∑
i=k−mk

∆yi−µ̂mk ,k
k−1∑

i=k−mk
y
δmk ,k
i−1

k−1∑
i=k−mk

yi−1

,

(3.44)

where δmk ,k satisfies the third equation in (3.38) described by

1
3mk

k−1∑
i=k−mk

∆(y3
i ) −

σ2
mk ,k

mk

k−1∑
i=k−mk

y
2γmk ,k+1
i−1 − β

k−1∑
i=k−mk

y3
i−1

mk
− µ

k−1∑
i=k−mk

yδ+2
i−1

mk
= 0 (3.45)

24



We further note that the parameters of continuous-time dynamic process described by(3.32) are time-varying

functions. This justifies the modifications/correctness needed for the development of continuous-time models of

dynamic processes.

Remark 3.9. The presented Illustrations exhibit the important features described in Remark 3.2 of the theoretical

parameter estimation procedure. The illustrations further clearly differentiate the Itô-Doob differential formula [24]

based formation of orthogonality condition vectors in Remarks 3.3 and 3.8 and the algebraic manipulation and dis-

cretized scheme using the econometric specification based orthogonality condition vectors in [9, 11, 17].

Remark 3.10. The ”discrete-time interconnected dynamic model for statistic process” (DTIDMLSMVSP) (Lemma

2.1) and its transformation of data are utilized in (3.38), (3.39), (3.40), (3.44) and (3.45) for updating statistic coeffi-

cient of equations in (3.35). This indeed accelerates the computation process. Furthermore, DTIDMLSMVSP plays a

very significant role in the local discretization and model validation errors.

4. Computational Algorithm

In this section, we outline computational, data organizational and simulation schemes. We introduce the ideas

of iterative data process and data simulation process time schedules in relation with the real time data observa-

tion/collection schedule. For the computational estimation of continuous time stochastic dynamic system state and

parameters, it is essential to determine an admissible set of local conditional sample average and sample variance,

in particular, the size of local conditional sample in the context of a partition of time interval [−τ,T ]. Moreover, the

discrete time dynamic model of conditional sample mean and sample variance statistic processes in Section 2 and the

theoretical parameter estimation scheme in Section 3 coupled with the lagged adaptive expectation process motivate

to outline a computational scheme in a systematic and coherent manner. A brief conceptual computational scheme

and simulation process summary is described below:

4.1. Coordination of data observation, Iterative process, and Simulation schedules:

Without loss of generality, we assume that the real data observation/collection partition schedule P is defined in

(2.2). Now, we present definitions of iterative process and simulation time schedules.

Definition 4.1. The iterative process time schedule in relation with the real data collection schedule is defined by

IP = {F−rti : for ti ∈ P}, (4.1)

where F−rti = ti−r, and F−r is a forward shift operator [6].
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The simulation time is based on the order p of the time series model of mk-local conditional sample mean and

variance processes in Lemma 2.1 in Section 2.

Definition 4.2. The simulation process time schedule in relation with the real data observation schedule is defined by

S P =


{Frti : for ti ∈ P}, if p ≤ r

{F pti : for ti ∈ P}, if p > r.
(4.2)

Remark 4.1. We note that the initial times of iterative and simulation processes are equal to the real data times tr

and tp, respectively. Moreover, iterative and simulation process time in (4.1) and (4.2), respectively, justify Remark

3.4. In short, ti is the scheduled time clock for the collection of the ith observation of the state of the system under

investigation. The iterative process and simulation process times are ti+r and ti+p, respectively.

4.2. Conceptual Computational Parameter Estimation Scheme

For the conceptual computational dynamic system parameter estimation, we need to introduce a few concepts of

local admissible sample/data observation size, mk-local admissible conditional finite sequence at tk ∈ S P, local finite

sequence of parameter estimates at tk.

Definition 4.3. For each k ∈ I0(N), we define local admissible sample/data observation size mk at tk as mk ∈ OS k,

where

OS k =


I2(r + k − 1), if p ≤ r,

I2(p + k − 1), if p > r,
(4.3)

Moreover, OS k is referred as the local admissible set of lagged sample/data observation size at tk.

Definition 4.4. For each admissible mk ∈ OS k in Definition 4.3, a mk-local admissible lagged-adapted finite restric-

tion sequence of conditional sample/data observation at tk to subpartition Pk of P in Definition 2.3 is defined by

{E[yi|Fi−1]}k−1
i=k−mk

. Moreover, a mk- class of admissible lagged-adapted finite sequences of conditional sample/data

observation of size mk at tk is defined by

ASk = {{E[yi|Fi−1]}k−1
i=k−mk

: mk ∈ OS k} = {{E[yi|Fi−1]}k−1
i=k−mk

}mk∈OS k . (4.4)

Without loss of generality, in the case of energy commodity model, for each mk ∈ OS k, we find corresponding

mk- local admissible adapted finite sequence of conditional sample/data observation at tk, {E[yi|Fi−1]}k−1
i=k−mk

. Us-

ing this sequence and (3.30), we compute âmk ,k, µ̂mk ,k and σ̂2
mk ,k

. This leads to a local admissible finite sequence

26



of parameter estimates at tk defined on OS k as follows:
{
(âmk ,k, µ̂mk ,k, σ̂

2
mk ,k

)
}
mk∈OS k

= {(âmk ,k, µ̂mk ,k, σ̂
2
mk ,k

)}r+k−1
mk∈2

or

{(âmk ,k, µ̂mk ,k, σ̂
2
mk ,k

)}p+k−1
mk∈2

. It is denoted by

(Ak,Mk,Sk) =
{
(âmk ,k, µ̂mk ,k, σ̂

2
mk ,k)

}
mk∈OS k

(4.5)

4.3. Conceptual Computation of State Simulation Scheme

For the development of a conceptual computational scheme, we need to employ the method of induction. The

presented simulation scheme is based on the idea of lagged adaptive expectation process [33]. An autocorrelation

function (ACF) analysis [6, 8] performed on s2
mk ,k

suggests that the discrete time interconnected dynamic model of

local conditional sample mean and sample variance statistic in (2.8) is of order p = 2. In view of this, we need to

identify the initial data. We begin with a given initial data yt0 , {ŝ2
m0,0
}m0∈OS 0 , {ŝ2

m−1,−1}m−1∈OS −1 , and {S̄ 2
m−1,−1}m−1∈OS −1 .

Let ys
mk ,k

be a simulated value of E[yk |Fk−1] at time tk corresponding to a local admissible lagged-adapted finite

sequences of conditional sample/data observation of size mk at tk {E[yi|Fi−1]}k−1
i=k−mk

∈ ASk in (4.4). This simulated

value is derived from the discretized Euler scheme (3.18) by

ys
mk ,k = ys

mk−1,k−1 + âmk−1,k−1(µ̂mk−1,k−1 − ys
mk−1,k−1)ys

mk−1,k−1∆t + σ̂mk−1,k−1ys
mk−1,k−1∆Wmk ,k. (4.6)

Let

{ys
mk ,k}mk∈OS k (4.7)

be a mk- local admissible sequence of simulated values corresponding to mk-class ASk of local admissible lagged-

adapted finite sequences of conditional sample/data observation of size mk at tk in (4.4).

4.4. Mean-Square Sub-Optimal Procedure

To find the best estimate of E[yk |Fk−1] at time tk from a mk -local admissible finite sequence {ys
mk ,k
}mk∈OS k of a

simulated value of {E[yi|Fi−1]}, we need to compute a local admissible finite sequence of quadratic mean square error

corresponding to {ys
mk ,k
}mk∈OS k . The quadratic mean square error is defined below.

Definition 4.5. The quadratic mean square error of E[yk |Fk−1] relative to each member of the term of local admissible

sequence {ys
mk ,k
}mk∈OS k of simulated values is defined by

Ξmk ,k,yk =
(
E[yk |Fk−1] − ys

mk ,k

)2
. (4.8)
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For any arbitrary small positive number ε and for each time tk, to find the best estimate from the mk-local admissible

sequence {ys
mk ,k
}mk∈OS k of simulated values, we determine the following ε-sub-optimal admissible subset of set of

mk-size local admissible lagged sample size mk at tk (OS k) as:

Mk = {mk : Ξmk ,k,yk < ε for mk ∈ OS k}. (4.9)

There are three different cases that determine the ε-best sub-optimal sample size m̂k at time tk.

Case 1: If mk ∈ Mk gives the minimum, then mk is recorded as m̂k.

Case 2: If more than one value of mk ∈ Mk, then the largest of such mk’s is recorded as m̂k.

Case 3: If condition (4.9) is not met at time tk, (that is, Mk = ∅), then the value of mk where the minimum

min
mk

Ξmk ,k,yk is attained, is recorded as m̂k. The ε− best sub-optimal estimates of the parameters âmk ,k, µ̂mk ,k and σ̂2
mk ,k

at

the ε-best sub-optimal sample size m̂k are also recorded as am̂k ,k, µm̂k ,k and σ2
m̂k ,k

, respectively.

Finally, the simulated value ys
mk ,k

at time tk with m̂k is now recorded as the ε-best sub-optimal state estimate for

E[yk |Fk−1] at time tk. This ε-best sub-optimal simulated value of E[yk |Fk−1] at time tk is denoted by ys
m̂k ,k

. Similar

reasoning can be provided for the estimates of the parameters of the U.S. Treasury Bill Yield Interest Rate and U.S.-

U.K. Foreign Exchange Rate model.

Remark 4.2. In additions to comparative statements in Sections 2 together with Remarks 3.1, 3.2, 3.3, 3.7, 3.8, 3.9,

and 3.10, we further augment a few more Conceptual Computational Comparison between the LLGMM and the

existing OCBGMM as follows.

a: The LLGMM approach is focused on parameter and state estimation problems at each data collection/observation

time tk using the local lagged adaptive expectation process. In fact, LLGMM is discrete-time dynamic process.

On the other hand, the OCBGMM is centered on the state and parameter estimates using the entire data that is

to the left of the final data collection time TN = T . Implied weakness in forecasting, as seen in the next section,

is explicitly shown with the OCBGMM approach and the ensuing results.

b: We note that Remark 3.2 exhibits the interactions/interdependence between the first three components of LL-

GMM,”(1) development of the stochastic model for continuous-time dynamic process, (2) development of the

discrete-time interconnected dynamic model for statistic process, (3) utilization of the Euler-type discretized

scheme for nonlinear and non-stationary system of stochastic differential equations” and their interactions. On

the other hand, the OCBGMM is partially connected.

c: From the development of the computational algorithm section, We remark that the interdependence/ intercon-
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nectedness of the four remaining components of the LLGMM, ”(4) employing lagged adaptive expectation

process for developing generalized method of moment equations, (5) introducing conceptual computational pa-

rameter estimation problem, (6) formulating conceptual computational state estimation scheme and (7) defining

conditional mean square ε-sub optimal procedure” is clearly illustrated. Moreover, the above stated components

as well as data are directly connected with the original continuous-time SDE. On the other hand, the OCBGMM

is composed of single size, single sequence, single estimates, single simulated value and single error. Hence,

the OCBGMM is the ”single shot approach”. Moreover, the OCBGMM is highly dependent on its second

component rather than the first component. See, Section 3.

d: The LLGMM is a discrete-time dynamic system composed of seven interactive interdependent components. On

the other hand, the OCBGMM is static dynamic process of five almost isolated components.

e: Furthermore, the LLGMM is a ”two scale hierarchic” quadratic mean-square optimization process”, but the

optimization process of OCBGMM is ”single-shot”

f: Moreover, the LLGMM performs in discrete-time but operates like the original continuous-time dynamic pro-

cess. The performance of the LLGMM approach is more superior than OCBGMM and IRGMM approaches.

g: The LLGMM does not require a large size data set. In addition, as k increases, it generates a larger size of

lagged adapted data set thereby further stabilizing the state and parameter estimation procedure with finite size

data set, on the other hand the OCBGMM does not have this flexibility.

h: In fact, the local adaptive process component of LLGMM generates conceptual finite chain of discrete-time

admissible sets/sub-data. See ”Flowchart-1: LLGMM Conceptual Computational Algorithm”. The OCBGMM

does not possess this feature.

i: Item (h) indeed generates a finite computational chain that is described by ”Flowchart-2: LLGMM Simulation

Algorithm”. The OCBGMM does not possess this feature.

Remark 4.3. We note that the choice of p = 2 was determined based on the statistical procedure known as the

Autocorrelation Function Analysis [6, 8].

A detailed flowchart of the conceptual algorithm is as follows:
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For each admissible

mk ∈ OS k at tk

mk- local admissible

adapted finite sequence

{E[yi|Fi−1]}k−1
i=k−mk

of size mk at tk,

mk-local

parameter estimate

(âmk ,k, µ̂mk ,k, σ̂
2
mk ,k

)

at tk

Simulated

Estimate

for E[yk |Fk−1]

at tk is ys
mk ,k

Test for ε-sub optimality

of estimate ys
mk ,k

ForMk , ∅

mk ∈ Mk

ε-suboptimal m̂k

m̂k = min
mk∈Mk

Ξmk ,k,yk

ε-suboptimal

estimate ys
m̂k ,k

for E[yk |Fk−1]

For Mk = ∅

Choose the

largest mk

For Mk , ∅ and

OS k −Mk, Delete

yes yes

no

not unique
no

Flowchart 1: LLGMM Conceptual Computational Algorithm.

Moreover, a detailed simulation algorithm is presented in Appendix D

APPENDIX

Appendix A. Proof

Proof of Lemma 2.1 for small mk, mk−1 ≤ mk,

Proof.

S̄ mk ,k =
1

mk

0∑
i=1−mk

F ixk−1

=
1

mk

−1−mk−1∑
i=1−mk

F ixk−1 +

−1∑
i=−mk−1

F ixk−1 + F0xk−1


=

mk−1

mk
S̄ mk−1,k−1 +

1
mk

1−mk−1∑
i=1−mk

F ixk−1 − F1−mk−1 xk−1 − F−mk−1 xk−1 + F0xk−1



s2
mk ,k =

1
mk

 0∑
i=−mk+1

(
F ixk−1

)2
−

1
mk

 0∑
j=−mk+1

F jxk−1


2

=
1

mk

−mk−1−1∑
i=−mk+1

(
F ixk−1

)2
+

−1∑
i=−mk−1

(
F ixk−1

)2
+ (F0xk−1)2 −

1
mk

 0∑
j=−mk+1

F jxk−1


2
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=
1

mk

 −1∑
i=−mk−1

(
F ixk−1

)2
−

1
mk−1

 −1∑
i=−mk−1

F ixk−1


2

+
1

mk−1

 −1∑
i=−mk−1

F ixk−1


2

+
1

mk

(F0xk−1

)2
−

(
F−mk−1 xk−1

)2
−

(
F−mk−1+1xk−1

)2
−

1
mk

 0∑
i=−mk+1

F ixk−1


2

+

−mk−1+1∑
i=−mk+1

(
F ixk−1

)2


=

mk−1

mk
s2

mk−1,k−1 +
mk−1

mk
S̄ 2

mk−1,k−1 − S̄ 2
mk ,k +

(
F0xk−1

)2
− (F−mk−1 xk−1)2

−
(
F−mk−1+1xk−1

)2

mk

+

−mk−1+1∑
i=−mk+1

(
F ixk−1

)2

mk
.

Hence,

s2
m,k = mk−1

mk
s2

mk−1,k−1 + mk−1
mk

S̄ 2
mk−1,k−1 − S̄ 2

mk ,k
+

(F0 xk−1)2
−(F−mk−1 xk−1)2

−(F−mk−1+1 xk−1)2

mk

+

−mk−1+1∑
i=−mk+1

(Fi xk−1)2

mk
.

(A.1)

Next, we find an expression connecting S̄ 2
mk ,k

, S̄ 2
mk−1,k−1 and s2

mk−1,k−1. By definition and simplification,

m2
k S̄ 2

mk ,k
=

[
0∑

i=−mk+1
F ixk−1

]2

=
0∑

i=−mk+1

(
F ixk−1

)2
+

0∑
l,s=−mk+1

l,s

F lxk−1F sxk−1

= (mk−1)s2
mk−1,k−1 + mk−1S̄ 2

mk−1,k−1 + (F0xk−1)2 − (F−mk−1 xk−1)2 − (F−mk−1+1xk−1)2

+
−mk−1+1∑
i=−mk+1

(F ixk−1)2 +
0∑

l,s=−mk+1
l,s

F lxk−1F sxk−1

(A.2)

Substituting (A.2) into (A.1), we have

s2
m,k = mk−1

mk

mk−1
mk

s2
mk−1,k−1 + mk−1

mk
S̄ 2

mk−1,k−1 +
(F0 xk−1)2

−(F−mk−1 xk−1)2
−(F−mk−1+1 xk−1)2

mk
+

−mk−1+1∑
i=−mk+1

(Fi xk−1)2

mk


−

0∑
l,s=−mk+1

l,s

Fl xk−1F s xk−1

mk(mk−1) .

(A.3)

Likewise, using equation (A.2),

m2
k−1S̄ 2

mk−1,k−1 = (mk−2)s2
mk−2,k−2 + mk−2S̄ 2

mk−2,k−2 + (F−1xk−1)2 − (F−mk−2−1xk−1)2 − (F−mk−2 xk−1)2

+

−mk−2∑
i=−mk−1

(F ixk−1)2 +

−1∑
l,s=−mk−1

l,s

F lxk−1F sxk−1.

Also,

m2
k−2S̄ 2

mk−2,k−2 = (mk−3)s2
mk−3,k−3 + mk−3S̄ 2

mk−3,k−3 + (F−2xk−1)2 − (F−mk−3−2xk−1)2 − (F−mk−3−1xk−1)2

+

−mk−3−1∑
i=−mk−2−1

(F ixk−1)2 +

−2∑
l,s=−mk−2−1

l,s

F lxk−1F sxk−1.
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Continuing in this sense and substituting S̄ 2
mk−i,k−i, i = 2, ..., p − 1 into S̄ 2

mk−1,k−1, we have

(mk−1)S̄ 2
mk−1,k−1 =

p∑
i=2

 mk−i
i−1∏
j=1

mk− j

 s2
mk−i,k−i +

mk−p
p−1∏
j=1

mk− j

S̄ 2
mk−p,k−p +

p∑
i=2

(F−i+1 xk−1)2

i−1∏
j=1

mk− j

−
p∑

i=2

(F−i+1−mk−i xk−1)2

i−1∏
j=1

mk− j

−
p∑

i=2

(F−i+2−mk−i xk−1)2

i−1∏
j=1

mk− j

+
p∑

i=2


−i+2−mk−i∑

l=−i+2−mk−i+1
(Fl xk−1)2

i−1∏
j=1

mk− j

 +
p∑

i=2


−i+1∑

l,s=−i+2−mk−i+1
l,s

Fl xk−1F s xk−1

i−1∏
j=1

mk− j


(A.4)

Finally, the result follows by substituting (A.4) into (A.3). �

Appendix B. Proof

Proof of Lemma 2.1 for small mk, mk ≤ mk−1,

Proof. Following the same steps, if mk ≤ mk−1,



s2
mk ,k

= mk−1
mk

 p∑
i=1

 mk−i
i−1∏
j=0

mk− j

 s2
mk−i,k−i +

mk−p
p−1∏
j=0

mk− j

S̄ 2
mk−p,k−p

 +$mk−1,k−1, mk ≤ mk−1

$mk−1,k−1 = mk−1
mk


p∑

i=1

(F−i+1 xk−1)2

i−1∏
j=0

mk− j

−
p∑

i=1


−i+1−mk−i+1∑
l=−i+1−mk−i

(Fl xk−1)2

i−1∏
j=0

mk− j

 +
p∑

i=1


−i+1∑

l,s=−i+2−mk−i+1
l,s

Fl xk−1F s xk−1

i−1∏
j=0

mk− j




− 1
mk

0∑
l,s=−mk+1

l,s

F lxk−1F sxk−1,

�

Appendix C. Proof

Proof of Lemma 2.1 for large mk

Proof.

s2
mk ,k =

1
mk − 1

 0∑
i=−mk+1

(
F ixk−1

)2
−

1
mk

 0∑
j=−mk+1

F jxk−1


2

=
1

mk − 1

 −1∑
i=−mk−1

(
F ixk−1

)2
−

1
mk−1

 −1∑
i=−mk−1

F ixk−1


2

+
1

mk−1

 −1∑
i=−mk−1

F ixk−1


2

+
1

mk − 1

(F0xk−1

)2
−

(
F−mk−1 xk−1

)2
−

(
F−mk−1+1xk−1

)2
−

1
mk

 0∑
i=−mk+1

F ixk−1


2

+
1

mk − 1


−mk−1+1∑

i=−mk+1

F ixk−1


2
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=
mk−1 − 1
mk − 1

s2
mk−1,k−1 +

mk−1

mk − 1
S̄ 2

mk−1,k−1 −
mk

mk − 1
S̄ 2

mk ,k +

(
F0xk−1

)2
− (F−mk−1 xk−1)2

−
(
F−mk−1+1xk−1

)2

mk − 1

+

−mk−1+1∑
i=−mk+1

(
F ixk−1

)2

mk − 1
.

Hence,

s2
m,k = mk−1−1

mk−1 s2
mk−1,k−1 + mk−1

mk−1 S̄ 2
mk−1,k−1 −

mk
mk−1 S̄ 2

mk ,k
+

(F0 xk−1)2
−(F−mk−1 xk−1)2

−(F−mk−1+1 xk−1)2

mk−1

+

−mk−1+1∑
i=−mk+1

(Fi xk−1)2

mk−1 .

(C.1)

Next, we find an expression connecting S̄ 2
mk ,k

, S̄ 2
mk−1,k−1 and s2

mk−1,k−1. By definition and simplification,

m2
k S̄ 2

mk ,k
=

[
0∑

i=−mk+1
F ixk−1

]2

=
0∑

i=−mk+1

(
F ixk−1

)2
+

0∑
l,s=−mk+1

l,s

F lxk−1F sxk−1

= (mk−1 − 1)s2
mk−1,k−1 + mk−1S̄ 2

mk−1,k−1 + (F0xk−1)2 − (F−mk−1 xk−1)2 − (F−mk−1+1xk−1)2

+
−mk−1+1∑
i=−mk+1

(F ixk−1)2 +
0∑

l,s=−mk+1
l,s

F lxk−1F sxk−1

(C.2)

Substituting (C.2) into (C.1), we have

s2
m,k = mk−1−1

mk
s2

mk−1,k−1 + mk−1
mk

S̄ 2
mk−1,k−1 +

(F0 xk−1)2
−(F−mk−1 xk−1)2

−(F−mk−1+1 xk−1)2

mk
+

−mk−1+1∑
i=−mk+1

(Fi xk−1)2

mk

−

0∑
l,s=−mk+1

l,s

Fl xk−1F s xk−1

mk(mk−1) .

(C.3)

Likewise,

m2
k−1S̄ 2

mk−1,k−1 = (mk−2 − 1)s2
mk−2,k−2 + mk−2S̄ 2

mk−2,k−2 + (F−1xk−1)2 − (F−mk−2−1xk−1)2 − (F−mk−2 xk−1)2

+

−mk−2∑
i=−mk−1

(F ixk−1)2 +

−1∑
l,s=−mk−1

l,s

F lxk−1F sxk−1,

m2
k−2S̄ 2

mk−2,k−2 = (mk−3 − 1)s2
mk−3,k−3 + mk−3S̄ 2

mk−3,k−3 + (F−2xk−1)2 − (F−mk−3−2xk−1)2 − (F−mk−3−1xk−1)2

+

−mk−3−1∑
i=−mk−2−1

(F ixk−1)2 +

−2∑
l,s=−mk−2

l,s

F lxk−1F sxk−1.

Continuing in this sense and substituting S̄ mk−i,k−i, i = 2, ..., p − 1 into S̄ mk−1,k−1, we have

(mk−1)S̄ 2
mk−1,k−1 =

p∑
i=2

 mk−i−1
i−1∏
j=1

mk− j

 s2
mk−i,k−i +

mk−p
p−1∏
j=1

mk− j

S̄ 2
mk−p,k−p +

p∑
i=2

(F−i+1 xk−1)2

i−1∏
j=1

mk− j

−
p∑

i=2

(F−i+1−mk−i xk−1)2

i−1∏
j=1

mk− j

−
p∑

i=2

(F−i+2−mk−i xk−1)2

i−1∏
j=1

mk− j

+
p∑

i=2


−i+2−mk−i∑

l=−i+2−mk−i+1
Fl xk−1

i−1∏
j=1

mk− j

 +
p∑

i=2


−i+1∑

l,s=−i+2−mk−i+1
l,s

Fl xk−1F s xk−1

i−1∏
j=1

mk− j


(C.4)
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Finally, the result follows by substituting (C.4) into (C.3). �

Appendix D. Algorithm and Flowchart For Simulation

The simulated estimate ys
mk ,k

for the energy commodity model follows the Euler scheme

ys
mk ,k = ys

mk−1,k−1 + âmk−1,k−1(µ̂mk−1,k−1 − ys
mk−1,k−1)ys

mk−1,k−1∆t + σ̂mk−1,k−1ys
mk−1,k−1∆Wmk ,k. (D.1)

Algorithm 1 Simulation scheme

Given initials r, ε, {ŝ2
m0,0
}m0∈OS 0 , {ŝ2

m−1,−1}m−1∈OS −1 , {S̄ 2
m−1,−1}m−1∈OS −1 , {ys

m0,0
}m0∈OS 0 ,

for k = 1 to N do,
for mk−1 = 2 to r + k − 2 do,

Compute âmk−1,k−1, µ̂mk−1,k−1,
for mk−2 = 2 to r + k − 3 do,

Compute S̄ 2
mk−1,k−1, ŝ2

mk ,k
,ys

mk ,k
, Ξmk ,k,yk

end for
end for

end for
if Ξmk ,k,yk < ε then,
Save m̂k, m̂k−1, m̂k−2
else

Find m̂k that minimizes Ξmk ,k,yk .
end if
Compute am̂k ,k, µm̂k ,k,s2

m̂k ,k
,ys

m̂k ,k
.

Similar algorithm can be generated for the interest rate model.

Remark Appendix D.1. We give the first iterate for the energy commodity model.

Given initials r, ε, {s2
m0,0
}m0∈OS 0 , {s2

m−1,−1}m−1∈OS −1 , {S̄ 2
m−1,−1}m−1∈OS −1 , {ys

m0,0
}m0∈OS 0 ,

Compute am0,0, µm0,0.

For k=1:

Compute ys
m1,1

using (D.1). If Ξm1,1,y1 < ε, save m̂1, m̂0, m̂−1, else, find values of m1 that minimizes Ξm1,1,y1 .

Compute am̂0,0, µm̂0,0,s2
m̂1,1

,ys
m̂1,1

.

Next, we give a flowchart similar to the algorithm above.
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Start

Input r, ε

Is p ≤ r?

Simulation time tk ∈ Ir(N)

Initials ŝ2
m0,0

, ŝ2
m−1,−1, S̄ 2

m−1,−1 , ys
m0,0

Simulation time tk ∈ Ip(N)

Initials,

Follow same process

σ̂mk ,k, âmk ,k, µ̂mk ,k, k ∈ Ir(N), mk ∈ I2(k + r − 1)

ys
mk ,k

, Ξmk ,k, k ∈ Ir(N),mk ∈ I2(k + r − 1)

is Ξmk ,k,yk < ε?

save mk as m̂k

chose mk with min Ξmk ,k,yk as m̂k

ys
m̂k ,k

am̂k ,k, µm̂k ,k, σ2
m̂k ,k

stop

yes

no

yes

no

Flowchart 2: LLGMM Simulation Algorithm.
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