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Abstract It is generally difficult to design feedback controls of nonlinear systems with time delay
to meet time domain specifications such as rise time, overshoot, and tracking error. Furthermore,
these time domain specifications tend to be conflicting to each other to make the control design even
more challenging. This paper presents a cell mapping method for multi-objective optimal feedback
control design in time domain for a nonlinear Duffing system with time delay. We first review the
multi-objective optimization problem and its formulation for control design. We then introduce the
cell mapping method and a hybrid algorithm for global optimal solutions. Numerical simulations of
the PID control are presented to show the features of the multi-objective optimal design. c© 2013
The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306306]

Keywords delayed control system, multi-objective optimal design, cell mapping method, hybrid
algorithm, Pareto optimal

The history of proportional-integral-derivative
(PID) control can be traced to the 1930s. Because of
vast applications of PID controls in industries, there
have been many studies to develop design or tuning
techniques of the control. Two classic designs are a
heuristic tuning method due to Ziegler and Nichols1

and the Smith predictor due to Smith.2 Because feed-
back controls inherently are designed to meet multiple
and often conflicting performance goals, comprehensive
studies are usually carried out to tune control gains in
order to achieve best performance.3,4

To achieve multiple optimized objectives in PID
controlled systems, one has to make the trade-off among
several conflicting performance objectives such as over-
shoot, peak time, settling time and tracking error.5 For
the last three decades, there have been a large number
of publications on multi-objective optimal design of PID
controllers. Different from the traditional single objec-
tive optimization problems (SOPs), the multi-objective
optimization problems (MOPs) do not have unique so-
lutions consisting of a single point in the design space,
but rather a set, called the Pareto set. The correspond-
ing objective function values are called the Pareto front.

Many algorithms for obtaining the Pareto set and
Pareto front of MOPs have been developed. There are
biologically inspired optimization algorithms such as
genetic algorithm,6 ant colony optimization,7 immune
algorithm,8 and particle swarm optimization.9 All these
methods have been successfully applied to tune PID
controls to meet multiple control objectives. Fliege and
Svaiter10 have developed several gradient-based algo-
rithms by converting MOP to SOP for point-wise evo-
lution and step length determination of the steepest de-
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scend search for MOP solutions. Bosman11 expands
the concept of gradient by introducing novel geometric
transformations and combines the genetic algorithm for
MOP searching. A gradient-free approach is introduced
by Zhong et al.12 to address undifferentiable MOPs. In
the work of Custodio et al.,13 ideas from pattern search-
ing are adapted to direct gradient-free search. Despite
the fast computational speed of the gradient-free algo-
rithm, it is still lack of rigorous mathematical proof of
its global convergence. Nevertheless, the gradient-free
algorithm is effective obtaining relatively coarse Pareto
sets.

Another approach to approximate the Pareto set
is to use the set oriented methods with subdivision
techniques.14–16 The advantage of the set oriented
methods is that they generate an approximation of the
global Pareto set in one single run of the algorithm.
Further, they are applicable to a wide range of opti-
mization problems and are characterized by a great ro-
bustness. The cell mapping method in this study is the
predecessor of the set oriented methods, and was pro-
posed by Hsu17 for global analysis of nonlinear dynam-
ical systems. In the cell mapping method for MOPs,
the dynamical systems are derived from multi-objective
optimization search algorithms. Lately, we have found
that the simple cell mapping (SCM) method can obtain
the global optimal solution in a quite effective man-
ner for low and moderate dimensional problems. This
paper presents a variant of the SCM method that hy-
bridizes gradient based and gradient free optimization
techniques for MOP design of delayed PID controls.

Two cell mapping methods have been extensively
studied, namely, the SCM and the generalized cell map-
ping (GCM) to study the global dynamics of nonlinear
systems.17,18 The cell mapping methods have been ap-
plied to optimal control problems of deterministic and
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stochastic dynamic systems.19–21 Other interesting ap-
plications of the cell mapping methods include optimal
space craft momentum unloading,22 single and multi-
ple manipulators of robots,23 optimum trajectory plan-
ning in robotic systems,24 tracking control of the read-
write head of computer hard disks,25 and airfoil flutter
analysis.26 Crespo and Sun27,28 studied the fixed final
state optimal control problems with the simple cell map-
ping method, and applied the cell mapping methods to
the optimal control of dynamical systems described by
Bellman’s principle of optimality.29 The application of
the SCM method to MOPs represents a new application
domain of the cell mapping methods.

In this paper, we demonstrate the SCM method for
MOPs by studying a multi-objective optimal delayed
PID control of a Duffing system. Such a control problem
has not been studied before to our best knowledge.

Consider a second order nonlinear dynamical sys-
tem with time delays given by

ẋ1 = x2,

ẋ2 = f (x1, x2, x1 (t− τs) , x2 (t− τs)) + (1)

u (t− τc) ,

where f is a nonlinear function of its arguments such
that the solution of the differential equation exists. τs
is a system delay, and τc is a control delay. For more
information about time delay, the reader is referred to
the book by Insperger and Stepan.30 We consider a PID
feedback control given by

u(t) = kp (r(t)− x1(t)) + ki

∫ t

0

(
r(t̂)− x1(t̂)

)
dt̂−

kdx2(t), (2)

where r(t) is a reference input, kp, ki, and kd are the
PID control gains. We introduce a third state variable
x3 such that ẋ3(t) = r(t)− x1(t). The extended system
is governed by the following equations.

ẋ1 = x2,

ẋ2 = f (x1, x2, x1 (t− τs) , x2 (t− τs)) + u (t− τc) ,

ẋ3 = r(t)− x1(t), (3)

where

u(t) = kp (r(t)− x1(t)) + kix3 − kdx2(t). (4)

Assume that the closed-loop system is stable and
r(t) is a step function. In steady-state, we have a unique
equilibrium solution,

x∗
1 = 1, x∗

2 = 0, x∗
3 = − 1

ki
f(1, 0, 1, 0). (5)

It should be pointed out that the uncontrolled nonlinear
system may have multiple equilibrium solutions. The
stability of the steady state response can be analyzed
by linearizing the system. Let z = [z1, z2, z3]

T be the
perturbation of the system away from the steady state
x∗ = [x∗

1, x
∗
2, x

∗
3]

T. We have

ż(t) = Az(t) +Asz (t− τs) +Acz (t− τc) , (6)

where A, As, Ac are matrices of the linearized system
and are functions of the control gains. The stability of
the linearized system can be analyzed by the method of
continuous time approximation.31,32

A MOP can be expressed as

min
k∈Q

{F (k)}, (7)

where F is the map that consists of the objective func-
tions fi : Q → R1 under consideration.

F : Q → Rk, F (k) = [f1(k), f2(k), . . . , fk(k)]. (8)

k ∈ Q is a q-dimensional vector of design parameters.
The domain Q ⊂ Rq can in general be expressed by
inequality and equality constraints

Q = {k ∈ Rq | gi(k) � 0,

i = 1, 2, . . . , l; hj(k) = 0, j = 1, 2, . . . ,m}. (9)

Next, we define optimal solutions of the MOP by
using the concept of dominance.33

Definition 1

(a) Let V ,W ∈ Rk. The vector V is said to be less
than W (in short: V <p W ), if Vi < Wi for
all i ∈ {1, 2, . . . , k}. The relation �p is defined
analogously.

(b) A vector v ∈ Q is said to be dominated by a vector
w ∈ Q (w ≺ v) with respect to the MOP (7) if
F (w) �p F (v) and F (w) �= F (v), else v is said
to be non-dominated by w.

If a vector w dominates a vector v, then w can be
considered to be a “better” solution of the MOP. The
definition of optimality or the “best” solution of the
MOP is now straightforward.

Definition 2

(a) A point w ∈ Q is called Pareto optimal or a
Pareto point of the MOP (7) if there is no v ∈ Q
which dominates w.

(b) The set of all Pareto optimal solutions is called
the Pareto set denoted as

P := {w ∈ Q : w is a Pareto point of the MOP(7)}.
(10)

(c) The image F (P) of P is called the Pareto front.

The Pareto front typically forms (k−1)-dimensional
manifolds under certain mild assumptions on the
MOP.34 Recent studies with the SCM method seem to
suggest that the Pareto front may have fine structures
for MOPs of complex dynamical systems.

Multi-objective optimal design
As an example of MOPs, we consider the multi-

objective optimal control design with the gains k =

[kp, ki, kd]
T

as design parameters for the system dis-
cussed previously. Peak time and overshoot are com-
mon objectives in time domain control design.6,35,36 We
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consider the MOP for the optimal control gain k to min-
imize the following three objectives

min
k∈Q

{tp,Mp, eIAE} subject to the stability of

system (6), (11)

where Mp stands for the overshoot of the response to a
step reference input, tp is the corresponding peak time
and eIAE is the integrated absolute tracking error

eIAE =

∫ Tss

0

∣∣r(t̂)− x1(t̂)
∣∣ dt̂, (12)

where r(t) is a reference input and Tss is the time when
the response is close to be in the steady state. The
closed-loop response of the system for each design trial
can be computed with the help of numerical integration
programs of delayed differential equations.

The cell mapping methods describe system dynam-
ics with cell-to-cell mappings by discretizing both the
phase space and time. In MOPs, the SCM method
is applied to the dynamic search process in the design
parameter space, not to the original dynamical system
in time domain. The point-to-point mapping obtained
from the gradient search algorithm for MOPs can be
written as

k(i) = G(k(i− 1)), (13)

where k (i) ∈ Rq is the design vector at the i-th map-
ping step. In the SCM, the dynamics of an entire cell de-
noted as Z is represented by the dynamics of its center.
The center of Z is mapped according to the point-to-
point mapping. The cell that contains the image point
is called the image cell of Z. The cell-to-cell mapping
corresponding to Eq. (13) is denoted by C,

Z(i) = C(Z(i− 1)). (14)

To illustrate how the SCM is constructed for MOPs,
we present a directed search (DS) algorithm,37,38 which
has the benefit of needing less information to perform
the local search for mininum, assuming that the param-
eter space Q is discretized into a collection of finite size
cells and that the SCM method is applied.

The first step of the SCM method for MOP is to
compute the objective functions at the center point of
all the cells in Q. The DS algorithm allows to steer
the search into any pre-selected direction d ∈ Rk in
the objective space. d is usually chosen from the cur-
rent location in the objective function space to point
to a direction along which all the objective functions
decrease.39 To apply the gradient free version of this al-
gorithm within SCM, we can proceed as follows: Choose
r � q neighboring cells of a current cell under process-
ing. Define unit vectors as

νi =
ki − k0

‖ki − k0‖2 , i = 1, 2, · · · , r, (15)

where k0 is the center of the current cell, and ki is the
center of the i-th cell in the immediate neighborhood of
k0. Define a matrix F = {mi,j} ∈ Rk×r as

mi,j =
fi(kj)− fi(k0)

‖kj − k0‖2 , (16)

which is an approximation of the directional derivative
of fi(k0) in direction νj at k0. Compute

λ = F+d, (17)

where F+ denotes the pseudo inverse of F .40 Then a
line search in the parameter space along the direction

ν =

r∑
i=1

λiνi, (18)

leads to a movement along d-direction in the objective
space. If the search along ν-direction near the neigh-
borhood of the current cell k0 ends at a cell kd which
dominates k0, i.e., F (kd) �p F (k0), kd is taken as the
image cell of k0. If no such a cell can be found, the cur-
rent cell k0 may be on the Pareto set, and we assign its
image as itself. This is how the simple cell mappings are
constructed for all the cells in the parameter space Q.
After all the cells are processed, we apply the sorting
algorithm due to Hsu17 to identify periodic and tran-
sient cells in the discretized domain Q. The periodic
cells represent an approximation of the Pareto set, with
possibly one exception.

If no transient cells are mapped to a periodic cell
with period one, the periodic cell is isolated. We change
it to be the sink cell. This can happen when a cell is
not on the Pareto set and none of its neighboring cells
dominates it.

Next, we discuss a hybrid algorithm for computing
the SCM of a MOP. The hybrid algorithm consists of a
gradient free search on a relatively coarse cell space and
a gradient based search on the region of the approxi-
mate Pareto set obtained by the gradient free search
with much refined cells. For the gradient free search,
the image of a cell is selected by comparing the objec-
tive function values of all its neighboring cells. If there is
only one dominant cell in the neighborhood, it becomes
the image of the cell under consideration. If there are
more than one dominant cells, we select the one that
has the highest objective function value decrease per
unit distance. Such a choice mimics the steepest gradi-
ent decent algorithm. The outcome of the gradient free
search on a coarse cell partition is a covering set of the
Pareto set.

We point out that gradient based approaches could
be realized efficiently in the context of SCM. If the cells
are small enough, one could, for instance, use the center
points of the neighboring cells to obtain a finite differ-
ence approximation of the gradient at a given cell. This
would in principle open the door for the usage of all
gradient based search algorithms, but without explic-
itly computing the gradient. Since the function values
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for the center points of neighboring cells in all q direc-
tions are already known, the approximation of the gra-
dient comes for free in terms of the additional function
evaluations. This is the reason that a gradient search
algorithm is proposed for the second step of the hybrid
algorithm over the refined cell space.

Before the refinement step in the hybrid algorithm,
we programmatically make the covering set larger than
the collection of all periodic cells by including their im-
mediate neighboring cells. This is a strategy to avoid
the missing segments of the Pareto set. As a final step,
the dominance of the cells in the Pareto set is checked
in order to remove the additional cells that are brought
in to avoid the missing segments of the Pareto set.

We should note that the exact image of the cen-
ter of a cell is approximated by the center of its image
cell. This approximation can cause significant errors in
the long term solution of dynamical systems.19,20,24 The
cell mapping with a finite number of cells in the com-
putational domain will eventually lead to closed groups
of cells of the period same as the number of cells in
the group. The periodic cells represent invariant sets,
which can be periodic motion and stable attractors of
underlying dynamical systems, and which represent the
Pareto set in the context of MOPs. The rest of the
cells form the domains of attraction of the invariant
sets. For more discussions on the cell mapping meth-
ods, their properties and computational algorithms, the
reader is referred to the book by Hsu.17

Consider a Duffing system such that

f (x1, x2, x1 (t− τs) , x2 (t− τs)) =

−ax1 − bx3
1 − cx2, (19)

where a = −1, b = 0.25, and c = 0.01. Note that the
system at the origin of the state space is unstable. The
control time delay is 0.05 s. The system is under the
delayed PID control in Eq. (4). We study the MOP
defined in Eq. (11) to design the control gain k. The
time-domain response of the Duffing system for each se-
lection of the control gain is generated with the delayed
differential equation integration algorithm (dde23) in
Matlab. The integrated absolute tracking error eIAE is
calculated over time with Tss = 4 s. The design space
for the parameters is chosen as

Q = {k ∈ [80, 120]× [10, 30]× [10, 30] ⊂ R3}. (20)

We impose the constraints

[tp,Mp, eIAE, λss] � [2.5, 6%, 0.75,−0.25], (21)

where λss denotes the largest real part of the eigen-
values of the linearized steady-state system (6). The
eigenvalues of the linearized system are computed with
the method of continuous time approximation and the
Chebyshev interpolation.31,32 The constraint on the
eigenvalues is intended to provide the stability robust-
ness of the optimized control system. Since the original
system is nonlinear, the stability condition should be
imposed on the steady-state equilibrium solutions.
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Fig. 1. The Pareto set obtained on the rough grid by the
SCM method for the Duffing system with delayed control.
The color code indicates the level of the other design vari-
able. Red denotes the highest value, and dark blue denotes
the smallest value.
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Fig. 2. The Pareto front of the Duffing system correspond-
ing to the Pareto set in Fig. 1. The color code indicates
the level of the other objective function. Red denotes the
highest value, and dark blue denotes the smallest value.

Initially, we select the number of divisions of the
three control gain space as N = [30, 15, 15]. The cells
of the rough Pareto set is sub-divided into 27 cells (3×
3× 3). The first run of the SCM method on the rough
grid finds 460 cells representing the Pareto set shown
in Fig. 1. The corresponding Pareto front is shown in
Fig. 2. The CPU time of the first run is 1 382.4 s. The
second run on the sub-divided cells finds the Pareto set
with 2 386 cells shown in Fig. 3. The refined Pareto
front is shown in Fig. 4. The CPU time of the second
run is 5 695.5 s.

We should point out that the Pareto fronts obtained
by the SCM method have fine global structures. Such
fine structures of Pareto fronts are not often found in
the literature before. Finally, we present an example
of step response under the delayed control with the
gain [kp, ki, kd] = [82.444 4, 21.777 8, 14.222 2]. The re-
sult is shown in Fig. 5. The step response shows excel-
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Fig. 3. The refined Pareto set shown in Fig. 1 of the Duffing
system with delayed control by the SCM method. The color
code indicates the level of the other design variable. Red
denotes the highest value, and dark blue denotes the smallest
value.
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Fig. 4. The refined Pareto front of the Duffing system
corresponding to the Pareto set in Fig. 3. The color code
indicates the level of the other objective function. Red de-
notes the highest value, and dark blue denotes the smallest
value.

lent time-domain performance with [tp,Mp, eIAE, λss] =
[0.330 0, 0.048 829, 0.215 5,−0.278 1].

We have presented a multi-objective PID control de-
sign for the Duffing system by using the SCM method.
The time-domain specifications of the step response are
used as the objective functions. A constraint on the
closed-loop eigenvalue of the linearized system about
the steady-state equilibrium solution is also imposed
that provides the stability robustness of the optimized
PID controls. The SCM method is implemented in a hy-
brid manner as described earlier. We have found that
the hybrid algorithm for the SCM method delivers sub-
stantial computational savings while obtaining compa-
rably accurate solutions for the Pareto set and Pareto
front.
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