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Abstract 
 

Employing basic economic principles, we systematically develop both deterministic and stochastic dynamic 

models for the log-spot price process of energy commodity. Furthermore, treating a diffusion coefficient 

parameter in the non-seasonal log-spot price dynamic system as a stochastic volatility functional of log-spot 

price, an interconnected system of stochastic model for log-spot price, expected log-spot price and hereditary 

volatility process is developed. By outlining the risk-neutral dynamics and pricing, sufficient conditions are given 

to guarantee that the risk-neutral dynamic model is equivalent to the developed model. Furthermore, it is shown 

that the expectation of the square of volatility under the risk-neutral measure is a deterministic continuous-time 

delay differential equation. The presented oscillatory and non-oscillatory results exhibit the hereditary effects on 

the mean-square volatility process. Using a numerical scheme, a time-series model is developed to estimate the 

system parameters by applying the Least Square optimization and Maximum Likelihood techniques. In fact, the 

developed time-series model includes the extended GARCH model as a special case. 
 

Keywords: Delayed Volatility, Stochastic Interconnected Model, GARCH model, Non-seasonal Log-Spot Price 

Process Dynamic, Risk-Neutral Model, Oscillatory, Non-Oscillatory 
 

1. Introduction 
 

In a real world situation, the expected spot price of energy commodities and its measure of variation are not cons- 

tant. This is because of the fact that a spot price is subject to random environmental perturbations. Moreover, 

some statistical studies of stock price (Bernard & Thomas, 1989) raised the issue of market’s delayed response. 

This indeed causes the price to drift significantly away from the market quoted price. It is well recognized that 

time-delay models in economics (Frisch R. & Holmes , 1935;  Kalecki, 1935; Tinbergen,  1935) are more realistic 

than the models without time-delay. Discrete-time stochastic volatility models (Bollerslev, 1986; Engle, 1982) 

have been developed in economics. Recently, a survey paper by Hansen and Lunde (2001) has estimated these 

types of models and concluded that the performance of the GARCH (1,1) model is better than any other model. 

Furthermore, Cox-Ingersoll-Ross (CIR) developed a mean reverting interest rate model that was based on the 

mean-level interest rate with exponentially weighted integral of past history of interest rate, the relationship 

between level dependent volatility and the square root of the interest rate (Cox, Ingersoll & Ross, 1985). 

Employing the Ornstein Uhlenbeck (1930) and Cox-Ingersoll-Ross (CIR) (1985) processes, Heston developed a 

stochastic model for the volatility of stock spot asset. Recently (Hobson  & Rogers, 1998), a continuous time 

stochastic volatility models have been generalized.  

 

In this work, using basic economic principles, we systematically develop both deterministic and stochastic 

dynamic models for the log-spot price process. In addition, by treating a diffusion coefficient parameter in the 

non-seasonal log- spot price dynamic system as a stochastic volatility functional of log-spot price, a stochastic 

interconnected model for system of log-spot price, expected log-spot price and hereditary volatility processes is 

developed.   
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Introducing a numerical scheme, a time-series model is developed, and it is utilized to estimate the system 

parameters.  The organization of the paper is as follows: 
 

In Section 2, we develop a stochastic interconnected model for energy commodity spot price and volatility 

processes. An example is outlined in the context of Henry Hub Natural gas daily Spot price from 1997 to  

2011. In Section 3, we obtain closed form solutions of the log-spot and the expected log of spot prices. In Section  

4, by outlining the risk-neutral dynamics of price process, sufficient conditions are given to ensure that the 

presented risk-neutral dynamic model is equivalent to the developed model in Section 2. Furthermore, it is shown 

that the risk-neutral dynamic model is equivalent to the developed model in Section 2. Furthermore, it is shown 

that the mean of the square of volatility under the risk-neutral measure is a deterministic continuous-time delay 

differential equation. In addition, sufficient conditions are also given to investigate both the oscillatory and non- 

oscillatory behavior of the expected value of square of volatility (Ladde, 1979; Ladde 1977). In Section 5, 

numerical scheme is used to develop a time-series model. Using the Least Squares optimization and Maximum 

Likelihood techniques, we outline the parameter estimations for our model.  
 

2. Model Derivation 
 

We denote      to be the spot price for a given energy commodity at a time t. Since the price of energy 

commodity is non-negative. To minimize ambiguity and for the sake of simplicity, it is expressed as an 

exponential function of the following form; 

 
                          ,         (1) 

 

where       stands for the non-seasonal log of the spot price at time t, f (t) is the price at t influenced by the seasonality, 

and it is considered as a Fourier series comprising of linear combinations of sine and cosine functions; 
 

                   ∑ (     [
    

 
]       [

    

 
])  

 

   

                                                              

 

where                          are all constant parameters.   is the period which represents the number of  

trading days in a year. Without loss in generality, we choose    . By modeling the seasonal term this way, we  

are able to account for the peak season high price and off peak season low price of gas. 

 

We present the dynamics for the spot price process. 
 

2.1. Deterministic non-seasonal log-Spot price dynamic model 
 

Under the basic economic principles of demand and supply processes, the price of a energy commodity will remain 

within a given finite upper bound. Let     be the expected upper limit of   . In a real world situation, the non- 

seasonal log of spot price is governed by the spot price dynamic process. This leads to a development of 

dynamic model for the non-seasonal price process   . In this case,         characterizes the market potential of 

non-seasonal log-spot price process per unit of time at a time t. This market potential is influenced by the underlying  

market  forces on the non-seasonal log of spot price process. This leads to the following principle regarding the dynamic  

of non-seasonal log-spot price process of energy goods. The change in non-seasonal log of spot price of the energy  

commodity                       over the interval of length |∆t| is directly proportional to the market  

potential price, that is: 
 

       (       )   .         (3) 

This implies 

 

                     ,                                                         (4) 
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where   is a positive constant of proportionality,        and dt are differentials of       and  , respectively. From this 

mathematical model, we note that as the non-seasonal log price,       falls below the expected price κ, the market 

potential,         is positive. Hence       is increasing at the constant rate γ per unit size of         per unit time 

at a time    On the other hand, if the non-seasonal log price       is above the expected price κ, then         is negative 

and hence       decreases at the rate γ per unit size per unit time at a time  . 
 

From (3), we note that the steady-state or equilibrium state non-seasonal log of spot price is given by 

 

                                                                                      
                                                                        (5) 

 

In the real world situation, the expected price of the non-seasonal log spot price   is not a constant parameter. Therefore, 

we consider the expected non-seasonal log of spot price to be the mean of non-seasonal log spot price,       at time t, and it 

is denoted by      . Under this assumption, (4) reduces to 

 

                       .      (6) 

 

Moreover, in order to preserve the equilibrium of non-seasonal log spot price      
    we further assume that  

the mean of non-seasonal spot price process is operated under the principle described by (3). 

 

 

       (       )        (7) 

and hence 

          (       )  ,      (8) 

 

where   is a positive constant of proportionality. 

 

From (6) and (7), the mathematical model for the deterministic non-seasonal spot price process is described by the 

following system of differential equations: 

 
            (       )                                      

           (             )                                                                   (9) 

 

2.2. Stochastic non-seasonal log-spot price dynamic model 
 

We note that in (3), κ is not just the time-varying deterministic log of spot price, instead it is a stochastic process 

describing random environmental perturbations as follows: 

 

                           (10) 
 

where       is the mean of   and       is the white noise process. From this and following argument used 

 in (Ladde A. G. & Ladde G. S.,2013), (4) can be rewritten as: 

                                                                                         

                                                                                                                                                      (11) 

                                                                                                         (        )         

 

where  (        )                                        . 

Again, following the argument used in the derivation of (11), the dynamic from (8) reduces to 
        

                                                 (12) 

 

where δ > 0 is a constant and                  . 
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From (11) and  (12), the mathematical model for the stochastic non-seasonal spot price process is described by the following 

system of differential equations: 
 

                             
 

       (       )      (     )                                                        (13) 
 

 

2.3. Continuous Time Stochastic Volatility Model with Delay 
 

When considering energy commodities, the measure of variation of the spot price process under random 

environmental perturbations is not predictable, because it depends on non-seasonal log of spot price. Bernard and 

Thomas (1989) in their work raised the issue of market’s delayed response. They observed changes in drift 

returns that lead to two possible explanations. First explanation suggests that a part of the price influence 

response to new information is delayed. The second explanation suggests that researchers fail to adjust fully a 

raw return for risks, because the capital-asset-pricing model is used to calculate the abnormal return that is either 

incomplete or incorrect.  In this paper, we incorporate the past history of non-seasonal log of spot price in the 

coefficient of diffusion parameter, that is, the volatility σ of the spot price that follows the GARCH model 
(Yuriy, Anatoliy & Jianhong, 2005). It is assumed that the measure of variation of random environmental 

perturbations on    is constant. Under these assumptions, we propose an interconnected mean-reverting non-

seasonal stochastic model for mean log-spot price, log-spot price, and volatility as follows: 

 

                                                          

 

                                 (     )                                                       (14) 

 

           [   [∫                       ∫             
 

   

 

   
]
 
          ]   ,   

                                         
   

 
 

where 
 

                                   
 

   
(                 )                                              (15) 

 

For the sake of completeness, we assume the following: 

 
   :                  [    ]                 we will later show that −2 < c < 0), 

    [     ]         is a continuous mapping, where C is the Banach space of continuous functions defined on [     ]  
 

into  and equipped with the supremum norm;                 are standard Wiener processes definedon a filtered prob

ability space 0( , , ( ) , )t t t ,where the filtration function 0( )t t  is right-continuous, and each for  t ≥0 , t  

contains all -null sets. We know that system (14) can be re-written as 

 

                       [      ]      (     )                                         (16) 
 

 

where 
 

     [
     

     
]    [

   
   

]       [
  
 

]   (       )  [
  
         

], 

 

 

  [
  

  
]     [

   

   
]  

 

Moreover, (16) can be considered as a system of nonlinear It ̂-Doob type stochastic perturbed system of the 

following deterministic linear system of differential equations 
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                                                                                       (17) 
 

In the following, we present an illustration to justify the structure of log spot price dynamic model. 
  
2.4. Example  
 

We present an example to illustrate the above described interconnected stochastic dynamic model for non-

seasonal log spot price of energy commodity under the influence of random perturbations on mean-level and  

delayed volatility. We consider the Henry Hub Natural Gas Daily spot price from 1997 to 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Plot of Henry Hub Daily Natural Gas Spot Prices, 1997-2011 

 

We can clearly see that 
 

• Price process appear as being randomly driven and clearly non-negative 

• There is a tendency of spot prices to move back to their long term level (mean reversion). 
• There are sudden large changes in spot prices (jumps/spikes). 

• There is an unpredictability of spot price volatility 
 

Table 1: Descriptive statistics of Henry Hub daily natural gas spot prices, 1997-2010 

 

 

 

 

 

 

 

 

A summary of the statistic is presented in Table 1. We find that   [
      

    
] has the smallest variance. Thus, 

it suggests a  good  candidate  for  our  modeling.  Hence,  we  use  the  logarithmic  price,  rather than the raw price data 

for our model. 
 

 

3. Closed Form Solution 
 

In this section, we find the solution representation of  (16) in terms of the solution of unperturbed system of 

differential  deterministic (17). This is achieved by employing method of variation of constants parameter (Ladde etal, 

2013) 

 

 

 

 

 Mean Variance Skewness Kurtosis Minimum Maximum 

   
St+1

 – St 

ln(St) 

ln[St+1/ St] 

 

4.9519 

-0.0001142 

1.4754 

2.8485e-5 

2.4966 

0.3189 

0.5048 

0.0473 

1.0391 

-0.7735 

-0.0465 

0.4814 

4.3491 

191.8911 

2.1540 

22.0473 

1.05 

-8.01 

0.0488 

-0.56 

18.48 

6.50 

2.9167 

0.5657 
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Theorem 1. (Closed Form Solution) 
 

Let                                                    be the solutions of the perturbed and unperturbed system 

of differential equations (16) and (17), respectively. Then 

 

                    [
          
                

]    [
 (           )

       
]

 ∫ [
               

                       
             

]
 

  

                                                        

 

where 

         [
   

   
]                                        (19) 

 

           ([          ]        )          ,            (20) 

 

and    is defined in (15);  the  fundamental matrix solution,         of  (17) is given by 

 

            [
          
                

]                                                          (21) 

Proof. The result follows by imitating the eigenvalue type method described in (Ladde A. G. & Ladde G. S, 2012; 

Ladde A. G. & Ladde G. S, 2013). Therefore 

 

                       (           )   ∫                
 

  
                                 (22) 

                                       ∫             
 

  

 ∫         
             

 

  

                                                                                             

 

In the following, we present the statistical properties of the solutions (22) and (23). 
 

Theorem 2. Under the hypothesis of Theorem 1, we have 

 

   [    ]  ∫ [
             

                                
]

 

  

 

 

Moreover, 

   
   

[      ]  [
 
 
] 

 

 

   
   

    [    ]  

[
 
 
 
 

  

  

   
   

            

   
 

  

  
[

 

   
]
]
 
 
 
 

  

Proof. From (18), we observe that  

 

 

[    ]  [
          
                

]    [
 (           )

       
]  
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Hence,     [     ]      
                      ) 

 

     [     ]      
                            

 

                     [     ]  
  

  
                 

 

              [     ]   ∫                               

  
    

 

The result follows by taking the limits as      . 

 

Remark 1. From Theorem 2, we observe that on the long-run, the mean-level of       and       are the same and 

it is given by  .  
 

4. Risk-Neutral Dynamics and Pricing 
 

In order to minimize the risk of usage of mathematical model (16), we incorporate the risk neutral measure. From 

the  dynamic nature of (16), it is known [Dai & Singelton, 2000; Duffie & Kan, 2000) that this model has affine multi-

factor structure. In the following, we present a risk neutral measure induced by this type of model. This indeed leads to 

 a risk neutral dynamic model with respect  to  (16). The general market price of risk       (             )  

with respect to the stochastic differential  equation 

 
 

                                     (24) 
 

is given by 

            

       

      
     

         

      

                         (25) 

 

where P(t, T ) = G(Xt, t) is the zero-coupon bond price;       is the short-term rate factor for the risk-free borrowing or 

lending at time t over the interval [       ]; and        ), ζ     ) are defined by  

 

                       {
        

        

  
 

        

  
        

 

 
  (

         

           
       )  

        
        

  
       

                                   

 
 

with                
        

  
 (

        

   
 
        

   
   

        

   
). 

 

In fact, since our price model  (16),                      
 
 is an affine multi-factor model, the short-term 

rate  factor r(t) and the zero-coupon bond price P(t, T ) can be represented by 

 

                                             {
              

                              
                                                       (27) 

 

where                                      (               ) are arbitrary smooth functions. 

 

From (25) and (26), the market price of risk      (           ) is given by 

 

                                                                                    (28) 
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where     [
   

   
]    [

      

      
]        [

     

     
]  

 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
        

 
 
  

               
       

  
  

              
 

        
           

              

        
            

              

        

 
   

                   
       

  
  

        

        
            

        
         

 

 
In the following Lemma, we incorporate a market price of risk process that gives a risk-neutral dynamics of the same 

class as (16). 
 

Lemma 3. Let us assume that   and   ,        are arbitrary constants. The market price of risk process  

reduces to;  

 
                                                                                                                              (29) 

 

                                                                                                   (30)            

                                

In addition, let us assume that   ,        satisfy the Novikov’s condition with the -Wiener process; 

 

                                        

{
 
 

 
  ̅           ∫        

 

  

 ̅           ∫        
 

  

                                                                                 

 

and 
 

                                                 

{
 
 

 
 
        

               

 ̅  
  

  
  ̅  

  

  

 ̅ ̅           

                                                                                 

 

where           are arbitrary real numbers;      and    are defined in (14);                           are  

defined in (28).Then the risk-neutral dynamics of       and       remains within the same class, 

 

 

                                   [ ̅   ̅]              ̅̅̅                                                  (33) 

 

where 
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     [
     

     
]   ̅  [

  ̅  
 ̅   ̅

]   ̅    [
 ̅ ̅
 

]   (       )  [
  
  (       )

], 

 ̅  [
 ̅ 

 ̅ 
]     [

   

   
]  

Moreover, it satisfies Hypothesis    .  Hence, 

 

                                          {
      ̅  ̅            

̅̅ ̅̅    

      ̅                      
̅̅ ̅̅    

                                                    (34) 

 
Proof. The proof follows by substituting (31) and    into (16). 
 

Remark 2. Under the assumption of Lemma 3, it is obvious that the solution to (33) is given by 

 

                                   

{
 
 

 
      [

   ̅       
 ̅         ̅      

]    [
 ̅(     ̅      )

 ̅      
]

 ∫ [
    ̅       ̅    

  ̅       ̅      (       ) 
  ̅       ̅    

]
 

  

                                        

 

where  ̅     ̅ are defined as 

                                      {
 ̅      

 ̅

 ̅   ̅
(   ̅         ̅     )

 ̅        ̅ ([     ̅     ]   ̅     )

                                                                          

 

In the following, we state a result with regard to (35). 
 

Lemma 4. Under the assumption   ,  (35) is equivalent to 

 

{
 
 

 
      [

   ̅  
 ̅        ̅ ]        [

 ̅      ̅  

 ̅     
]

              ∫ [
    ̅       ̅    

  ̅       ̅      (       ) 
  ̅       ̅    

]
 

   

                           (37) 

 

       [
       

       
] 

 

Proof. The proof follows by changing the initial time    in (35) to    . 

Hence 

                  ̅   ̅      ̅    ∫    ̅       ̅     
 

   

                                                                       

 

               ̅                ̅   ̅       ∫  ̅           
 

   

                            

 ∫  (       ) 
  ̅       ̅    

 

   

                                                                                                   

 
Remark 3. From (39), we have 

 

       ∫  ̅           
 

   

 ∫  (       ) 
  ̅       ̅    

 

   

                 ̅  

                        ̅       ̅                                        
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The dynamics of volatility process under risk-neutral dynamic system is described by 

 

    (       )  [   [∫  (       ) 
  ̅             ∫  ̅           

 

   

 

   

]

 

     (       )]                                                                                                                                 

 
We set 

     [  (       )].                                 (42) 

 

Taking the conditional expectation of both sides under the measure , we obtain the following deterministic  

delay differential equation  
 

{
 
 

 
   

  
      ∫  ̅         

 

   

  ∫         ̅        
 

   

       

         ∫         ̅        
 

   

        

 

 

where 

  ∫  ̅         
 

   

 (
 ̅

 ̅   ̅
)
 

[
 

  ̅
       ̅   

 

 ̅   ̅
(      ̅   ̅  )  

 

  ̅
       ̅  ]  

Hence,  

 

  

  
        ∫         ̅        

 

   

                                                                   

where           
 

Remark 4. The equilibrium solution process    of (43) satisfies the following integral equation 
 

  * * 2 ( )( ) ( ) 0
t

t s

t
cu t u s e ds


  


   ,                                                     (44) 

 

      
      

  
     In particular,       is as follows; 

 

*

2

( )

(1 )
2

u t

c e 








 
 

   
  
  

. 

Using the transformation 

 
*( ) ( ) ( )v t u t u t                                                                            (45) 

(44) is reduced to 

 
*

* * 2 ( )( ) ( )
( ( ) ( )) ( ( ) ( ))

t
t s

t

dv t u t
c v t u t v s u s e ds

dt




  




      

2 ( ) * * 2 ( )( )
( ) ( ) ( ) ( )

t t
t s t s

t t

dv t
cv t v s e ds cu t u s e ds

dt

 

 
     

 

     
     
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−τ  e
(c+2¯γ)sds,  since λ < 0, 

  = 2 ( )( ) ( )
t

t s

t
cv t v s e ds


  


  . 

Hence, 

                               
0

2( )
( ) ( ) sdv t

cv t v t s e ds
dt







                                     (46) 

 

In order to find approximate solution representation, we need to investigate the behavior of (46). For this purpose, we 

present a result regarding its solution process. Our result is based on results of (Ladde, 1977; Ladde, 1979). 
 

Definition 1 
 

A non-constant solution v(t) of (46) is said to be 
 

• oscillatory if      has arbitrary large number of zeros on    [    , that is, there exists a sequence 

 {  } 
                                       

 

• non-oscillatory if      is not oscillatory, that is, there exist a positive number T such that      is either positive 

or negative for all       . 
 

Lemma 5. Under the following transformation 
  

                                                                                    
                                                                                         (47) 

 (46) is equivalent to 
0

' ( 2 )( ) ( ) .c sz t e z t s ds


 


                                                         (48) 

Moreover, 

•   (i) 
( 2 ) 1

0, 1
2

cfor and e
c e

 




     
, every solution of (46) is non-oscillatory; 

•  (ii) for
( 2 ) ( 2 ) 1

0, , , (0, )
2

c cand e e
c e

   
  



        
, every solution of (46) oscillates; 

 

• (iii) for β > 0, (46) has non-oscillatory solutions. 

 

Proof. To prove (i), suppose that 

                                                  
  

    ̅
[       ̅    ]  

 

 
                                                                    (49) 

We observe that every solution of (46) is non-oscillatory if and only if every solution (48) is non-oscillatory.  

Therefore,we only need to show that (48) has non-oscillatory solution. 

 

Suppose that a solution of (48) has the form 

( ) tz t e
   

                                                                                      (50) 

 

where λ is an arbitrary constant which satisfies the following equation 

 
0

( 2 ) .c se ds 


   


                                          (51) 

Define  

                                                 
0

( 2 )( ) .c sG e ds 


    


                                               (52) 

We show that G(λ) has at least one real root. From (49), (50) and the nature of      we note that  G(0) > 0  

and   for any s   [−τ, 0],   
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0
( 2 )( ) c sG e e ds 


    


    

=
0 0

( 2 ) ( 2 )expc s c se ds e e e ds 

 
  

 

     
       

0 . 

Therefore, (51) has at least one real root    that lies between 
0

( 2 )c se e 


 

 and  0. This shows that (46) 

has non-oscillatory solution. 

 

Next, we out-line the proof for Lemma 5 (ii). 

 

Proof:  Suppose 

( 2 ) ( 2 ) 1
, 0, for any (0, ).

2

c ce e
c e

   
  



        
                                  (53) 

 

We only need to show that (48) oscillates. To verify this, suppose on the contrary that      is a non-oscillatory solution  

of (48).Then for sufficiently large      and without loss in generality,          for       ,  
 

Where           . Since                   for       . For any       such that          from   

(48), we have 

 
0

' ( 2 )( ) ( ) .c sz t e z t s ds


 


                                                                         (54) 

' ( 2 )

1( ) ( ) ,c sz t e z t s ds t t











                                                             (55) 

 

Hence, for any ( , ),s t t s t t            , (55)  yields  

 

( ) ( ) ( ).z t z t z t s             (56) 

Define 

1

( )
( ) , .

( )

z t
w t t t

z t


                                   (57) 

 

Note that       . Dividing (55) by      and using (56), we have 

 
'

( 2 ) ( 2 )( )
( )

( ) 2

c cz t
e e w t

z t c

   



      

'
( 2 )( ) ( )

0.
( ) ( )

c sz t z t s
e ds

z t z t













    

 

Integrating from t  to    for        

( 2 ) ( 2 )log ( ) log ( ) ( ) 0
2

t
c c

t
z t z t e e w s ds

c

   








   


        , 

and hence 

( 2 ) ( 2 )

1log ( ) ( ) ,
2

t
c c

t
w t e e w s ds t t

c

   







   


                     (58) 

Set 

     liminf ( ) .
t

w t K


                   (59) 

 

Since         , K ≥ 1,  K is either finite or infinite. Next we show that none of these cases are true. 

Case 1.  First, we assume that K is finite. There exist sequence {  }, 1n nt t t  and           as    .  
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By integral meanvalue theorem, ( , )n n nc t t   such that 

 

( 2 ) ( 2 )log ( ) ( ).
2

c c

n nw t e e w c
c

   



      
                      (60) 

We note that 1lim ( )n
n

w c K


 , where        . Now, from (60) and taking limit, we obtain 

 

( 2 ) ( 2 )log
.

2

c cK
e e

K c

   



      
                (61) 

From (61), we have  

1

log 1
max ,

K

K

K e
                  (62) 

and hence 

( 2 ) ( 2 ) 1

2

c ce e
c e

   



      
                (63) 

 

(63) contradicts  with (53). Therefore K is not finite. 
 

Case 2. Assume that K is infinite, from (57) and (59), we have 

 

( )
lim

( )t

z t

z t





 
  

 
                                                        (64) 

 

Choose        , α > 0, such that            for t ≥   . Integrating both sides of (55) from    to t  

and            we have 

*

( 2 )

* 1( ) ( ) ( ) 0,
t

c s

t
z t z t e z u s du ds t t












     
                     (65) 

*( 2 )

* 1( ) ( ) ( ) 0,
t

c s

t
z t z t e z u s du ds t t




 
 




 

      
                     (66) 

respectively. We observe that for any     [     ]    [     ]               hence, 

  (    )                 and for any *[ , ]u t t  , * *u s t s t      , hence 

* *( ) ( ) ( )z t z t s z u s     .  Hence (65) and (66) become 

 

( 2 ) ( 2 )

* 1( ) ( ) ( ),
2

c cz t z t e e z t t t
c

   




         
                 (67) 

( 2 ) ( 2 )

* * 1

( )
( ) ( ) ( ), .

2

c cz t z t e e z t t t
c

     
 



   
       

                   (68) 

 

Dividing (67) and (68) by      and       respectively, and using (53) and (64), we have 

 

*

*

*

( ) ( )
lim lim .

( ) ( )t t

z t z t

z t z t



 


  

 

                                                            (69) 

Dividing (67) by       we have 

 

( 2 ) ( 2 )

1

* *

( ) ( )
1,

( ) ( ) 2

c cz t z t
e e t t

z t z t c

    



   
     

                                             (70) 

 

which contradicts (53) and (69).  
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The proof of Lemma 5(iii) is similar to that of 5(i).  
 

From Lemma 5, under conditions β < 0 an ( 2 ) 1
1

2

ce
c e

 



    
 ,we can describe the asymptotic  behavior 

 of the steady/equilibrium state solution of (43). Moreover, we seek a solution in the form of 
1 2( ) tu t e  

,where 1 ,
2 and   are arbitrary constants. In this case, the characteristic equation  with respect to (43) is 

 
( 2 )1

( ) 0.
2

e
h c

  

  
 

  
    

 
                    (71) 

From           we have 

*

1
2

,

(1 )
2

u

c e 










 
 

    
  
  

                              (72)  

0

2 0 1( ) .
t

u e
  

      

 

However, using numerical simulation for equation (43), we observe that u(t) is asymptotically stable. From  (46),  

the numerical scheme is defined as follows; 

 
2 2 2 4 6 2

1 2 3(1 ( ) ) ( ) ( ... )i i i i i lv c t t e v t v e v e v e l       

                                   (73) 

*

i iu v u 
 

 

where                            {  }   
  is the time grid with a mesh of constant size       is the discrete-

time delay analogueof τ.The solution is shown in Figure 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Solution of (43) with parameters in Table 2 
 

   

5. Parameter Estimation 
 

In this section, we find an expression for the forward price of energy commodity. Using the representation of forward   

price, we apply the Least-Square Optimization and Maximum Likelihood techniques to estimate the parameters defined   

in  (2)  and  (35). 
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5.1. Derivation of Forward Price 
 

Let        be the forward price at time   of an energy goods with maturity at time  . We define 
 

 ( , ) ( )F t T S T                         (74) 
 

where       is defined by (1); the expectation here is taken with respect to the risk neutral measure  defined in 

(31). 
 

Remark 5. 
 

At maturity, it is expected that the forward price is equal to the spot price at that time i.e.               
This is the basic assumption of the risk neutral valuation method. From equation (35), the forward price 

       can be expressed as 

 

 ( , ) ( )F t T S T =  2exp[ ( ) ( )]f T x T  

=
( )

2 1exp ( ) ( ) ( , ) ( ) ( , ) ( , ) ,T tf T e x t t T x t t T t T                             (75) 

where ( , )t T is defined by 

   

[
 
 
               ̅              

              ̅  [
   ̅

 ̅   ̅]
 

 (        ̅           ̅   ̅          ̅ )

 
]
 
 
 
 

 

( )1
( , , ) , for any

a T te
g t T a a

a

 
                         (76) 

 

and 1 is defined in (72). Hence 
 

( )

2 1log ( , ) ( ) ( ) ( , ) ( ) ( , ) ( , )T tF t T f T e x t t T x t t T t T         

                                 =  ( )

1( ) log ( ) ( ) ( , ) ( ) ( , ) ( , )T tf T e S t f t t T x t t T t T                                        (77) 

                                 =                   
 

where  ( )( , ) ( ) log ( ) ( ) ( , ) ( , )T tA t T f T e S t f t t T t T       and ( , ) ( , )B t T t T . Define 

 

                                                          

1

2

3 0 1 2 1 2

1 2 3

( , , )

( , , , , )

( , , , , )

( , , ),

c

A A A B B

  

   








                         

                                                     (78) 

 

where  consists of risk-neutral parameters in (2) and (35). We can represent log ( , )F t T  as 

log ( , ; ),F t T 1 1 1 2 2 2 3( ) ( ; ), ( ) ( ; ), ( ) ( ; )x t x t x t x t f t f t   . In the following subsection, we use   

the Least square optimization approach to estimate the parameters , ,   and .  

 

5.2. Least Squares Optimization Techniques 
 

For time , {1,2,..., } (1, )it i m I m  , let        denote the historical spot price of commodity. For fixed  

          ̃(      
 ) represent a data for future price at a time    with delivery time   

 

 
 for               

 

These data values are obtainable from the energy market. For each given quoted time   , we obtain 1 1( ; )x t  
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 that  minimizes the sum of squares 
 

2

1

sqdiff ( , ) log ( , ; ) log ( , ) ,
in

i i

i i j i j

j

t F t T F t T


                   (79) 

where log ( , ; )i

i jF t T is described in (77). Differentiating (79) with respect to 1 1( ; )x t and setting the 

 result to zero, we obtain the optimal value of 1 1( ; )x t as a function of the parameter set. Moreover, 

 we have  
 

 
1

1
2

1

( , ) log ( , ) ( , )

( ; ) , (1, ),

( , )

i

i

n
i i i

i j i j i j

j

i n
i

i j

j

B t T F t T A t T

x t i I m

B t T





 
 

 

 
 




              (80) 

Substituting this optimal value into the initial sum of squares (79), summing over the range of initial  

times {  } 
  and performing a nonlinear least-squares optimization as follows: 

2

1, ,
1 1

sqdiff ( ) min ( )( ) log ( , ) .
i

i i
i j i j

nm
i

i jt T t T
i j

arg A B x t F t T
 

   
                 (81) 

 

Using estimated parameters , simulated results  {      }   
 , {      }   

 , {     }   
 and {     }   

  are  

obtained. 

In the case of real-world -parameter set  {       } estimation, the estimates of  and  are obtained using a   

Linear regression technique associated with the model . (80) contains an estimated hidden process 

 
1( )ix t which  is  obtained  by the  least square minimization approach.  This estimated data is  used in   

a regression of a one-factor mean reverting model 1 1 1( ) ( ( )) ( )dx t x t dW t     to obtain estimates   

for
 
and . Weremark that this procedure is very stable. 

 

5.3. Maximum Likelihood Approach 
 

Now, following the approach in (Yuriy, Anatoliy & Jianhong, 2005 ) and using Maximum Likelihood technique,  

the time delay and the delay volatility parameters α, β and c are estimated. Our model contains two sources of 

 randomness. One in the dynamic of log-spot price and the second in the expected log of spot price. Therefore, the  

presented model   is an extension of  GARCH model. An outline of the procedure is given below: 

 

From equation (41), we have  
 

2 2
( ) 22

2 2 1 2

( , ( ))
( , ( )) ( ) ( , ) ( ) ( , ( )).

t t
t s

t t

d t x t
s x s e dW s u t dW u c t x t

dt



 


      

 

    
   

               (82) 

We define the discrete-time delay   to the continuous-time delay    as   [|
 

 
 |] where   is the size of the 

mesh of the discrete-time grid, and [| |]                      . Hence, we define 

,

i i i

i i

  

 




                   (83) 

where    and   are standard normal variates. The discrete-time delay model corresponding to  (82) for 

volatilityis described by 

 
2

2 2

1

1

(0, ) ,
l

i

n n i n i n

i

t e i r      

  



 
     

 
                 (84) 

 

where                   . From (40), we further note that 
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( )

2 2 1 2 2 1( , ( )) ( ) ( , ) ( ) ( ) ( ) ( ) (0, ) (0, )
t

t s

t
s x s e dW s s t dW s x t x t e x t 


         


       , 

 

that is, 
 

2 2 1

1

(0, ) ( ) ( 1) ( 1) (0, ) (0, ).
l

i l

n i n i

i

t e i x n x n e x n l l      

 



                         (85) 

 
Define 

2

2 2 1( ) ( ) ( 1) ( 1) (0, ) (0, ) ,lP n x n x n e x n l l                           (86) 

 

This together with (84) yields 

                                                         2 2

1.n n nP r                                      (87) 

 

The solution of difference equation (87) is given by 

 

  
  {

                                 

  
                                                          

                                                                 

       r  1+c, 

 
1

0

,
n l

i

n

i

F r
 



 
                    (89) 

1

0

,
n l

i

n n i

i

G r P
 





 
                  (90) 

 
2.n l

n lH r                     (91) 

We observe that the series    in (89) converges,  if |r| < 1, that is, |1 + c| < 1. Hence, 

 

                                                                                         (92) 

 

From the definition of    in (83), the probability density function           is 

 
2

2

1
( ) exp .

22n

nn

y
f y



 
  

 
                 (93) 

 

Thus, the likelihood function                         for arbitrary large positive integer   is 

 
2

2
1

1
( , , ) exp .

22

N

n nn

y
L c 



 
  

 
                   (94) 

 

By applying the Maximum Likelihood method, we obtain the estimates             and      for             

 for some arbitrary  . 
 

 

6. Some Results: Natural Gas 
 

In this section, we apply our model to the Henry Hub daily natural gas data set for the period 02/01/2001- 

09/30/2004.  The data is collected from the United State Energy Information Administration website  
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(www.eia.gov). Using the Henry Hub daily natural gas data set, we present the estimation results of our  

model. The parameter estimates of our model for the value of       are given. For this purpose, using a  

combination of direct search method  and Nelder-Mead simplex algorithm, we search iteratively to find  

the parameters that maximizes the likelihood function. All codes are written in Matlab. 

 
 

 

γ            µ             κ              δ    τ     α    β    c 
 

 

1.8943 1.0154 1.5627 0.36 0.008 0.433 -0.07 -1.5 
 

 
Table 2: Estimated Parameters of Henry Hub daily natural gas spot prices for the period 02/01/2001-09/30/2004. 

 

Table 2 shows the risk-neutral parameter estimates of Henry Hub daily natural gas data set for the period  

 

02/01/2001-09/30/2004. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3: Real, Simulated and Forecasted Prices. 

 
Figure 3 a shows the graphs of the real spot natural gas price data set together with the simulated spot price  

          . Figure 3 b shows and the  graphs of the real spot natural gas price data set together with the simulated 

spot price             and the simulated expected spot  price            . We notice that in Figure 3 a, the 

simulated spot price captures the dynamics of the data. This shows that the simulation agrees with our mathematical  

model. Another observation is that the simulated mean level seems to be moving around the value 4.80 which is close  

to      ̅               . This confirms the fact that   is the equilibrium mean level. 

 

 

 

 

 

 

 

 

 

 

 

http://www.eia.gov/
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Figure 4: Simulated            . 
 

 

Figure 4 shows the plot of volatility             with time. It is clear from the graph that the solution is non- 

 

oscillatory. This is because Lemma 5 (i) is satisfied using the parameter estimates in Table 2. 
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