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Positive Solutions of Boundary Value Dynamic Equations

Olusegun M. Otunuga’, Basant Karna' & Bonita Lawrence'

Abstract

In this paper, we deal with the existence of a positive solution for 2"and 3“order
boundary value problem by first defining their respective Green’s function.

TheGreen’s function isused to derive the Green's function for the 2nth and 3nth
order boundary value problem, respectively, wheren is a positive integer. The Green’s

function is also used to derive conditions for positive solution of the 2nth and 3nth
ordereigen value differentialequation, respectively.

Keywaords: Positive solution, Green’s function, Boundary Value Problem, Dynamical
Equation

1 . Introduction

This paper focuses on determining eigen values A, for which there exist
positive solutions, with respect to a cone, of the nonlinear eigen value dynamice
quation

y '+ Af(t,y) =0, tE€ [ty t,],

Subject to the two-point boundary conditions

a;1y(ty) + ay'(4) =0,
0(21y(t2) + azzy’(tz) =0.

1Department of Mathematics, Marshall University, One John Marshall Drive, Huntington, WV, 25755,
USA
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Also,we consider the 3rd-order eigen value problem

vy =2f(ty), teltyts

subject to the three-point boundary conditions

y(t) =B
y(t;) =B,
y(t3) = B3

Boundary value problems for higher order differential equations play a role in
both theory and applications. The existence of positive solutions for two-point
eigenvalue problems has been studied by many researchers by using the Guo-
Krasnosel'skii fixed point theorem. We refer readers to Davis, J.M. Henderson, J,
Prasad, K.R. &Yin, W. (2000), Eloe, P.W. &Henderson, J (1998), Erbe L.H.&Wang
H.(1994), Karna, Basant& Lawrence, Bonita (2007) for some recent results.
However, few papers can befound in the literature for third order three-point
boundary value problems (BVPs) (Prasad, K.R. and Rao, Kameswara (1991)). Some
papers like Anderson, D.R. & Davis, J.M. (2002) deal with existence of positive
solutions when the nonlinear term f is nonnegative. In this paper, we deal with the

existence of a positive solution for the 2™ and3™ order BVPs by first defining their
respective Green's function. These Green's function are used to derive the Green's

function for the 2n" and3n™ order BVP, respectively. The Green's function is also

used to derive the condition for which a positive solution of the 2n"™ order
eigenvalue differential equation can be derived.

The rest of this paper is organized as follows:

In Section 2, we compute Green's function for a two-point boundary value
problem on [ and also find conditions under which a positive solution will exist for
the two-point problem. In Section 3, we derive Green's functions for even order
BVPs and also compute the bounds for the Green's function. These bounds are used
to proof the existence of positive solution(s) for 2n™ order BVPs. In Section 4, we
find the conditions in which positive solution(s) will exist for the three-point
boundary value problem.
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2. Second Order Boundary Value Problem on [J

In this section, we consider the second order boundary value eigenvalue
problemon [J .

2.1 Solution of the Second Order Differential Equation

Consider the second order eigenvalue BVP
y"(t)+ A1t y(t) =0, teft,t,] (1)

ally(tl) +0512y' (tl) = O 2
a21y(t2) + azz Y'(tz) =0.

where f :[t,t,]x[0 * —[1 "is continuous, and a4, @5, @51, a5, are real constant.
We will assume the following condition:

Ay: foft,t,]x0" =0 "is continuous.

We define the nonnegative numbers f,, f° f_and f by

]
.= lim min ~{&Y)
y—0" tefty, 1] y
£9 = lim max-{Y)
y—0" tefty 1] y
\ f(ty) (3)
£ = lim min Y
y—o tety b ] y
f* =lim max Hty)
L yootelt ] Y

and assume that they all exist in the extended reals.
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Now we are going to find the solution of the second order problem. We shall show
that the solution y(t) is of the form

t2
y(®) =] 'G(t.s)g(s)ds
whereG (t, s)will be defined later.

Writing y"(t) = —g(t, y(t)) where g(t,y(t)) = Af(t, y(t)) and solving the differential
equation (1) using Laplace transform, we have

L(y"(t)) =-L(g(1)).
This implies

s?L(y(t)) —sy(0) - y'(0) =—L(g(t)).
Hence,

L) =2 y(0) + 5 ¥'(0) - L(G).

Taking the inverse Laplace of both sides, we have

y(t) = y(O)+ty'0)~ ], (t-9)g(s)ds,

YO = y(©-[ g(s)ds

Using the boundary conditions and solving for y(0) and y'(0), we have

[y =LA
D

JI o

ky 0)= b

where
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I(ﬂi :ﬂ(ti) = ot + a,, i=12
4| A= J.: (B, —ay8)9(s)ds (5)
k D=a,8, —a,p,.

So,
YO == [ (B, - as) et~ AO(S)ds - [t g (s)ds
Therefore,
y(©) = [ G(t.9)g(s)ds
where
(1
| —(Bi—osS)(aut= ;) it <s<t<t,;
G(t,s) 4 D (6)
t% —ays)(ayt-B) if t<t<s<t,.

Throughout this section, we will require the following conditions:

Ay 0, >0,a, >0;

BE) _ B

Az:m <t <t,<m,, where m, = =—,i=12
o &

Note: ﬁs t implies that pB, —a,t, <0. Thus, «;, <0. Also, &2 t, implies
oy Uy
B, —a,t 20.Thus a,, 20.
Now, we establish some preliminary results that will be used later.
2.2 Properties of the function G(t, s)

We give some Lemma on theabove function G (¢, s).

Lemma 1.G(t,s) >0 for (t,s) e[t t,]x[t,t,].
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Proof.
B,

For t, <s<t<t,, using conditions A, and A,, we haveﬁssstS— so that
oy Oy

1
D=a,pB,—a,pB, >0and G(t,s) = B(ath - B,)(B, —ay;S) >0.

Also, for t <t<s<t,, we have Pricres< P g thatc (t,s) > 0.Therefore,
O U

G(t,s)>0 for (t,s)e[t,t,]x[t,t,].

Lemma 2.The function G(t,s) satisfies the homogeneous differential equation —y “=0and the
boundary conditions (2) for fixed s.
Proof.
Since G(t,s)is a polynomial of degree one, then it satisfies

82

yG(t,s) =0 V (t,3) e[t t,]x[t,t,].

0 1

Fort <t<s< tz,aG(t,s) = Bozﬂ(ﬁ2 —a,,S) sothat

Gt )+ %G(tl,s) _ 0. Also for t,<s<t< tz,ge(t,s) _ %aﬂ(ﬁl —a,5) 50

that o, G (t,,5) + @, %G(tz 5)=0.

Lemma 3.For any fixed s €[t,,t,], the function G(t, s) is continuous for everyt € [t,, t,].
Proof.

Clearly, G(t,s)is continuous everywhere on [t,,t,]x[t,,t,]since it is continuous at the
point t = s.Hence, the proof is complete.
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Lemma 4. %G(t, s) =G (t, s) has a jump discontinuity with a jump of factor -1 at the

pointt =s.
Proof.,

Here, we show that the limit of %G(t,s) as t approaches s from above differ from its

limit as t approaches s from below by -1.
G'(s",s)-G'(s7,s)=limG'(t,s)-limG"'(t,s)
t—s* t—>s”
1
D (0 B — 04,8 — 4, B, + 035:5)

= % (@B — o, B,) =-1.

Lemma 5.Define

y = min{ min {G(tl’s) , G(tz,s)}}’ (7)
selt.tb] | G(S,8) G(S,S)

then0<y <1.

Proof.

The proof follows from simple algebra and simplification.

Theorem 1.Assume that conditions A — A, hold. Then, yG(s,s) < G(t,s) <G(s,s), where

0<y:min{ min {G(g’s),e(tz’s)}}d.@)
selut] | G(s,S) G(s,9)

Proof.
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Case (i): For t, <s<t<t, G'(t,s)= %([ﬁ’1 —a,;S) <0, which implies that G(t, s)is

a decreasing function of t so that G(t,s) < G(s, s).
G(t,s) S G(t,,s)

Also for t<t,, 5.5 G(.9)

>y which implies yG(s,s) < G(t,s).

Case (ii). For t, <t<s<t,, G'(t,s) = %an(ﬁz —a,,8) >0.This implies that G(t,s)
is an increasing function of t. Hence, G(t,s) < G(s, s).

G(t,s) S G(t,s)
"G(s,s) G(s,s)

Therefore, yG(s,s) <G(t,s) <G(s,s) for t <t,s<t,.

Also, for t>t,

>y and so we have yG(s,s) < G(t,s).

From Lemma2, 3 and 4, it follows that the function G(t,s) is the Green's function
for the equation

_y"(t) =0, te[t,t]
with boundary conditions

ally(tl) +0512y' (tl) = O 9
a21y(t2) + azz Y'(tz) =0.

2.3 Existence of Positive Solutions

In this Section, we find the range of A for which there exist a positive
solution for (1) satisfying (2).

Definition 1.Let X be a Banach space. A non empty closed convex set x is called a
cone of X, if it satisfies the following conditions:

au+a,vex V uvexand a,,a, 20.
(i) uexand-u e x implies u=0.

Let y(t) be the solution of the BVP (1) satisfying (2) given by
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y(t) = 2 j:c;(t, s) f (s, y(s))ds. (10)

Define
X ={u|ueC[t,t,]},

whereC[t,,t,] is the set of all continuous function on [t;,t,] with norm

Jull= max 1w |

Then, (X,]|.])) is a Banach space. Define a set x by
k={ue X:u)=0 on [t,t,] (11)
and

min u(t) > [ull}

tefty ]
wherey is defined in (7).
It follows that the set x defined in (11) isa conein X .

Define the operator T :x — X by

(Ty)(t) = /IJ:Z G(t,s)f(s,y(s))ds, forall te[t,t,]. 12

If yexis a fixed point of T, then y satisfies (10) hence Yy is a positive
solution of the BVP (1)-(2).

We seek a fixed point of the operator T in the cone «.
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The operatorT defined in (12) preserves the conex, that is, T :x —>«.
Furthermore, the operator T defined in (12) is completely continuous.
To establish the eigenvalue intervals where a fixed point exists in (1), we will employ
the following Fixed Point Theorem due to Guo and Krasnosel'skii.

Theorem 2.(Guo-Krasnosel'skii Fixed Point Theorem)Let X be a Banach space,
k < X be a cone, and suppose that €,,Q, are open subsets of X with 0eQ, < Q,and
(Tlc Q, . Suppose further that T :Km(Q_z\Ql) — K is completely continuous operator such
that either

() ITulillull,u € x ~oQ,and|| Tu [ ul,u € x M 3Q,, or
(ii) | Tu [l ufl,u € x A aQ, and || Tu [ u |, u e & N6,

holds. Then T has a fixed point in x M (Q_Z\Ql) :
We are going to present our first existence result.

Theorem 3.Assume that conditions (A, ) - (A,) are satisfied. Then, for each A satisfying

1 i< ! (13)

[;/2 J':ZG(s,s)ds} 3 [ [ tzG(s,s)ds} fo
there exist at least one positive solution of the BVP (1)- (2) in x, where f_ and f° are as define

in Section 2.1.
Proof.

Let A be given asin (13). Now, let 6 >0 be chosen such that

! <AL !

|:7/2 J':G(s,s)ds}( f -5) [ J':G(s,s)ds}(f‘) +5)

Let T be the cone preserving, completely continuous operator defined in (12). By
definition of f°, there exists H, >0 such that

maxms(f°+5),for0<y£Hl.
elth]
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It follows that f (t,y) < (f°+8)y, for 0<y<H,. Choose y, e x with ||y, |=H,.
Then, we have from the boundedness of G(t,s) and the nature of A, that

(TY)(0 =2 G(t.9)f (5. y,(s))ds
<A[6(s.9) F (5, (s))ds
sxﬁe@sxﬂ+5wgg$
<AfG(s.9)(f°+8) 1y, lds

SRR
Consequently, || Ty, ||I<]| y, ||. So, if we define

Q ={ueX:JulH}
then,

ITyli<llyll, for yexnoQ,. (14)

By definition of f_, there exists H, >0 such that
min ~ &Y 5 (£ _5) for y = .
tefty 1] y

It follows that

f(t,y)>(f, -8)y,fory>H,.

Let
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H,= max{2H1,l H,},
/4

and let
Q,={ue X ullkH,}.

Now, choose y, € k N0Q, with ||y, ||=H,, so thattn[qtitn] y,(t) =7y, [ H,. Then,
t
(TY,)(1) = 2] G(t,5) f (s, y,(5))ds
t
2 2] ' 76(5.9) (5. y,(s))ds
t, w
> Ay L G(s,s)(f* = 5)y,(s)ds
2 t 0
27°2], G )17 =)y, |ds

2y, |-
Thus,

ITY Iyl fory e x m o€, (15)

Applying Theorem 2(i), from (14) and (15), we have that T has a fixed point
y(t) e xm(Q_z\Ql) . This fixed point is the positive solution of the BVP (1)-(2) for
the given A .

Another existence result applying Theorem 2(ii) is as follow:

Theorem 4:Assume that conditions (A,) - (A;) are satisfied. Then, for each 24
satisfying

! <A< ! (16)

[72 J.:G(s,s)ds} f, [ [ IZG(s,s)ds} £

there exist at least one positive solution of the BVP (1) - (2) in « .
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The proof follows by imitating the statement of the proof in Theorem 3.
2.4 Example

Let's consider the example

(1+200y)

yr+ Y ~0, te[0,1]
1+y

0)-y'(0)=0
with boundary conditions y(0)-y10)
2y +3y'() =0

The Green's function is given by

o512t if o<s<t:

G(t,s) =
ZG-25)+n)  if 0stss

We found y =%, f_=200 and f°=1.Employing (13), there is a positive solution

forall A in the range (iQJ
125'5

3. Green's Function and Bounds for the 2n" Order Boundary Value
Differential Equation

Our interest in this section is finding positive solutions to all differential
equation of the form

(-D2y"™ =21 (t, y(1)) (17)
for even n, with boundary conditions
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any(Zk) (t) + o, y(2k+1) (t) =0

N n (18)
oy () + Y (E) =0, k=012..7 -1,

Before we can do this, we need to be able to generate the Green's function of the
homogeneous boundary value problem which we do in the following subsection.

3.1 Green's Function for the 2n™ Order DE

In this section, we will derive Green's function for 2n™ order homogeneous
differential equation (17) satisfying (18).

Theorem 5.Suppose that G, (t,s) is the Green's function satisfying

-y'()=0

with boundary conditions
o, Y(t) +a,y () =0

ayy(t,) +a,,y'(t,)=0
Then,

G,(t,s)= fz G,(t,w)G, ,(w,s)dw, ne{2k+2:kell} (19)

is the Green's function for
(—1)E y'"(t)=0, ne{2k+2:kel}, (20)

with boundary conditions (18).

Proof.

We shall show the proof by induction. First, we prove the case for n=4.
Suppose G, (t,s) is the Green's function satisfying—y "(t) =0, then

Y'M=9 = yO=[ G,t)g)ds
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so that
y"(@t) =g=(y)"=9.
Hence,
y'(0) =[G, (t.s)g(s)ds = —H (1)
Thus
YO = [ G, wH (w)dw

- [*6,tw) { [“6,w)g (s)ds}dw

- [ { [6,0WG,Ww.s)g (s)ds}dw

- [ { [6,0WG, W, s)dw}g (s)ds

= [ G.t9)g()ds
where

G,(t,s) = jf G, (t, W)G, (W, s)dw.

From definition of Gz(t,s),G4(t,s):I:ZGZ(t,W)GZ(W,s)dW, y" satisfies the

boundary conditions (2).
Likewise, G, (t,s) satisfies boundary conditions (2) so that y(t) satisfies the BC

a,yt)+a,y'(t)=0
a,y(t,)+a,y'(t,)=0
ally "(tj_) + aj_z y "'(tl) =0
a21 y"(tz) + azz y m(tz) = 0

So, G,(t,s) is the Green's function for the equation

y"(0)=0,
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satisfying the BCs
oy, y(t) +a,y'(t) =0
o, Y (1) +ay,Y'(t,) =0
o,y () +a,y () =0
o, Y'(t,) + o,y (t,) = 0.

Assume the case for n=2k + 2 is true. Without loss of generality, assume k is odd.
For n=2k +4, (-1)*2y@* =g implies (-1)**(y")?*? = —g. This implies

V() =], Goa (1,5)9(8)ds = —H, ().

Thus,
jf G, (t, W) H, (w)dw

y(t)

J’: GZ (t’ W) |:_[: c-:'2k+2 (W! S) g (s)d3:| dw

.Ez U: G, (L, W)Gyy.o (W, S)dW}g (s)ds

3
J, Gaa(t9)g(s)ds

where G,, ,,(t,s) = I:z G, (t,w)G,, ., (w,s)dw. This ends the proof.

3.2 Bounds for the Green's Function
Here, we find bound for the Green's function for the 2n" order problem.

Theorem 6.Assuming conditions (A, )-(A,). Define

n

C.(5,5) = G, (s, ) ( ["6,(x x)dx)z_l 1)
Then
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7?C (5,8) <G, (t,s)<C (s,5) forn e{2k;kel}

Proof.

We shall show the proof by induction. For the case n=4, from previous theorem,
¥G,(5,8) <G, (t,5) <G, (s,5) V (t,5) €[t t,1x[t,t,].

So,
G,(t,s) = j:caz(t,x)ez(x,s)dx
< J.tzsz(x,x)Gz(s,s)dx:C4(s,s).
Also
G,(t,s) = j:caz(t,x)ez(x,s)dx

> J':ysz(x, x)G, (s,s)dx

> y*C,(s,9).
Hence,

7%C,(s,8) <G, (t,s) <C,(s,s).

Suppose the case n=Kk is true, that is

k

7?C.(s,8) <G, (t,5) <C,(5,5).(22)

For the case n=k + 2,

Gr(ts) = [ G, (t G, (x,5)dx

IA

6,06, (5,9)x = C,,(5,5).

Likewise,
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t
Giat:s) =[G, (tX)G, (x,5)dx
t
> L G, (X, X)y*°C, (s, s)dx
ke2 ke2
> y? I: G,(x,X)C,(s,s)dx=y 2 C,,(s,5)

The following theorem gives us the eigenvalue interval for which there exists positive
solution(s) for even order problems.

Theorem 7.For ne{2k;k €[]}, assuming that conditions ( A )-( A;) is satisfied, then for each
A satisfying

! <A< ! ,(23)

FNCICO LA R ACE T L

there exist at least one positive solution of the BVP

(-D2y"(t) = A (t, y(1)). (24)
with boundary conditions

0‘11y(2k) (t1) ta, y(2k+1) (t1) =0
+ n
o, Y (t,) + a,, Yy (1) 0, k=012 -1

Proof.

n

The proof follows by using Theorem 2and changing » to be »2 in (13) and (16).

3.3 Example

Using (19), we can easily generate the Green's function for the case where
n=4,6,8,10, and so on. Below is one of such computed Green's function.

For the case where n=4



Otunuga, Karna & Lawrence 73

G,(ts)=
(B~ 21S)(s =)=, + @pt) (3B, (-2, + @y (5 +1) ) + 21, (3B, (5 +1) = 2, (5 + st + 1))
- 6D’
+ (B, —a,8) (B, — oy, ) (B, _0‘21t)3 +(=p, + 0521'[2)3)
3a,,D’
+ (B, —ayS)(B, —at)(=5, ‘;‘0‘115)3 +(B, - a11t1)3) ift, <s<t<t;
3ay,D
(B, —ayS)(s—t)(B, — o ) (-3B,(-2, + &ty (S +1)) + (=3B, (S +1) + 2ax,, (S* + St +t7)))
6D’
+ (B, —a,,8) (B, — s ) (B, —05215)3 +(=p, + 0521'[2)3)
3a,,D’
+ (B, —ayS)(B, —aut) (=5 ‘2"0511'[)3 +(B, - a11t1)3) if t,<t<s<t,.
3a,D

is the Green's function satisfying
y(4) — 0
with boundary conditions

( a,yt)+a,y'(t)=0
a,y(t,)+a,y'(t,)=0
{
ally "(t1) + a]_z y "'(tl) =0
\ &1 y"(tz) +a,,y m(tz) =0.

25)

For a specific case, consider the equation

y(“)(t):/lw, te[0.1],
+
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(y(0)-y'(0)=0
2y(D)+3y'D) =0
with boundary conditions4 ):( : y( :
| y'(0)-y"(0) =0
L2y"@) +3y"(1) =0
the Green's function is

G,(ts)=

(1 3 1 3
m(8—(1+s) )(5—25)(5—2’[)+ﬁ(1+s)(1+t)(125+(—5+2t) )

_ﬁm $)(5—2t)(s—t)(—15(s +1) +4(s” + st +1°) +3(~10+2(s +1))) if t, <s<t<t,;

1 3 1 3
37 (6= 25)(8 = (1+1)))(5-20) + o (14+)(125+ (-5 + 25)°)(L+1)

k+ﬁ(5—25)(1+t)(5—'[)(—15(s+t) +4(s% +st+1%) —3(10—2(s+t))) if t <t<s<t,

We found that y =%, f_=200, and f°=1.Employing (13), we get the eigenvalue

<A< 36 for which there exists a positive solution.
30625 1225

interval

4 . Third-Order Boundary Value Problem on 0 with Green's Function and
Bound

For this section, we are going to consider the third order eigenvalue problem
on [1. We are going to consider nonhomogeneous boundary conditions. In this

section, we assume f (t, y(t)) to be as defined in Section 2.

4.1 Solving the Third Order Equation

Consider the boundary value problem

y () =Af(ty(), telt,t] (26)
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with boundary conditions

|{ y(t) =p,
JI y'(t,) = p, (27)
ky (t) Ps

Defining g(t) = Af(t, y(t)), taking the Laplace transform of (26) and following the

procedure used in finding the solution of (1)-(2), we have the solution of (26)-(27) as
follows;

YO = Pt (-6F -1
I 6 - G-
I -9 t-a(s)ds+ [ -9 a(s)cs.

Define
20 = 9+ (-1)p 5 (E-6) - (6 -6) )0 (29)
we have
YO = 20— [ (1) - 6 -t) (s
I -9 E-tg@ds [ - 979,

where z(t) is the solution of the homogeneous boundary value differential equation

y"(t) =0,

with boundary conditions (27). Also,
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)
%(s—tl)z if t<s<t<t, <t

1 .

E[(s—tl)z—(s—t)z] if t,<t<s<t,<t;
%[(tz—tl)z—(tz—t)z] if t<t<t, <s<t;

G(t,s) =+ (29)

%[(t2 —t)? = (t-t) +(t-s)’ | if t<t,<s<t<ty

%[(t2 —t)’ = (t-t)* | if t <t <t<s<ty

k%(s—tl)2 if t,<s<t, <t<t,.

is the Green's function for the equation
y"(t)=0,(30)
with boundary conditions

[ yt)=0
JI y'(t,) =0 (31)
Ly'(t) =0,

For the rest of this Section, we define G(t,s) = G,(t,s) . From (28), z(t) has zeroes
t'andt"”, where

(tlz(pstz_b2)+‘/x’
Ps

—b)-— 32
<t"=(’03t2 b,) \/Z,and (32
Ps

\ A= [p3(t1 _tz) +p2]2 —2P1P3-
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We assume the following conditions on t,t,,t; and p,, p,, p, throughout this
Section:

L+t

B, :t,> , o <t”

B,:p >0, p;<0, (t,-1)p; <p, <(t,—1;)p;.

Note: B, is derived from the fact that G(t,,s) must be nonnegative on the
interval t, <t, <t<s<t, We choose t,<t" so that(t,t,)c(t't").B,is derived

such that t, <t, —&<t3, where tz—& is the maximum point of z(t). Also, we

Ps Pz
make p, <0 because we want z(t) to be concave down and p, >0 since we want a
positive solution for y(t).

4.2 Bounds for the Green's Function

In this section, we find the bounds for the Green's function (29).

Theorem 8.Given that condition (B,) holds, G(t,s) >0 for (t,s) € (t,,t;]x (t,t;].

Proof.

Fort <s<t<t,<t;, G(t,s)>0 since s#t,.

For t <t<s<t,<t, , since t<t<s, we have s-t >s-t>0 and so

G(t,s)=%[(s—tl)2—(s—t)2]>o. Also, if t=s, thenG(t,s):%(s—tl)2>0.

Hence, G(t,s) > 0.
For t <t<t,<s<t,, since t<t<t,, we have t,-t>t-t and so

G(t,s)=%[(t2—t1)2—(t2—t)2]>0. Also, if t:tz,G(t,s)=%(t2—t1)2>0.
Therefore G(t,s) >0.
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For t, <t, <s<t<t,, since t2>tl;t3, we have t, —t, >t, —t, > t—t,.

So, G(t,s)=%[(t2—t1)2—(t—t2)2+(t—s)2]>0.

Fort <t, <t<s<t,, G(t,s)>0 since t2>t1;t3 :

Lastly, for t, <s<t, <t<t,, G(t,s)>0 since s #t,.

In the next theorem, we find the bounds for the Green's function (29). This
bound is later used to find the range of A values for which (26) -(27) has a positive
solution.

Theorem 9.For a fixed s,

G(t,s) < %(s —t,)*forall (t;s) e (t,, t,]x (t,,t,].
G(t,s) > %((t2 —t,)% - (t, —t,)*) for all (t,5) e[t,,t,]x[t,,t.].
Proof.

Fort <t<s<t, <t;, G'(t,s) =s—t>0which implies that G(t,s) is an increasing
function of t. So, G(t,s) < G(s,s)for t<s.

For t <t<t,<s<t,, G'(t,s)=t,—t>0. Hence, G(t,s) is a non-decreasing
function of t and

G(t,s) <G(t,,s) :%(t2 -t,)° s%(s—tl)zfor t<t,<s.

Likewise, for t <t, <s<t<t,, G'(t,s)=t,—s<0, so G(t,s) is a non-increasing
function of tandG(t,s) <G(s,s) = %[(t2 -t)° —(s—t2)2] < %(t2 —t)*< %(s—tl)2 .

For t <t, <t<s<t, t<t, and —(t-t,)> >—(t,—t,)*. Hence
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((tz _tl)z _(ta _tz)z) '

N| B+~

6(t9) = (( -t)* - (-1)") >

Lastly,fort, <t, <s<t<t,,

N

G(t,s) = %((tz—ti)z—(t—t2)2+(t—s)2)z ((t,-t)* - (t-1,)*)

L
2

\%

((tz _t1)2 _(ts _tz)z)

4.3 Existence of Positive Solution.

In this subsection, we find the range of A for which (26)-(27) has positive
solution.Let y(t) be the solution of the BVP (26)-(27), given by

y(t) =z(t)+ AI:’G(t, s)f(s,y(s))ds  (33)
Defining
v(t) = y(t) - z(b),
(33) can be re-written as
v(t) = 4 f: G(t,3) f (5,(5))ds, (34)
which is the solution of the homogeneous boundary value differential equation

vi(t) = AT (D), telt,t], (35)

with boundary conditions



80 American Review of Mathematics and Statistics, Vol. 2(2), December 2014

Also G(t,s) is the Green's function for the differential equation

vt =0, telt,t]
with boundary conditions (36).

Define a set X by
X ={ulueC[t,t,]}

with norm

||ull= max [u(t) |,
teft ts]

Then (X,||.]) is a Banach space.

Let

m= min{min

ty<s<t

{(tz “1)°=(6—6)" + (,-9)° } (Rl Yl el } )
(t,—t) +(t,—s) (t,-t)

We first show that 0<m<1.

Since for t, <t, <s<t<t,, we haveG'(t,s)=t,—s<0. HenceG(t,s) is a decreasing
function of tandG(t;,s) < G(t,,s).

Also, for t <t,<t<s<t,, we haveG'(t,s)=t,—-t<0, so G(t,s) is a decreasing
function of tandG(t;,s) < G(t,,s).

Define a set x by

k ={ue X :u(t)>00nlt,t,] and trHip]u(t)ZmHu 13-

It follows thatx is a cone.Using condition (B,),

z(t)>0forte (t',t"),
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wheret' and t" are as define in (32).

From the fact that z(t)=0and z(t)=p, >0, we conclude that t'<t, since z(t) is
concave down. Also, since t, <t"then(t,t;) = (t',t").So, we conclude that

z(t)>0fort e[t t,].

Define the operator T :x — X by
MO =A["G(t9)f(s,v(s)ds, ¥ telt,t,] (38)

It follows thatT preserves « .If vex is a fixed point of T, then v satisfies ((35) and
hence v is a positive solution of the BVP (35)-(36). We seek a fixed point of the
operator ,T , in the cone « .

Now, we find the range of A that gives a positive solution for (34)

Theorem 10.Assume that conditions (B,),(B, ) is satisfied. Then, for each A satisfying

1 <A< 1

[mItZS;((tZ _tl)z - (& _tz)z)ds} f, [J:S;(S _H)st} §0

, (39)

there exist at least one positive solution of the BVP (35)-(36)) in x« where m is
defined in (37).

Proof.

Let A be given as in (39). Now, let 6 >0 be chosen such that

! <AL !

[mj‘:;((tz ~t)? - (t,-1,)%) ds}( f -o) [ItIBG(S,S)dS}(f Y
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Let T be the cone preserving, completely continuous operator defined in (38). By
definition of f°, there exist H, >0 such that

mast(fHé), for O<v<H,.
teltuts]

It follows that, f(t,v)<(f°+&)v, for 0<v<H,. So choosing v, €x with

lv; [= H,. Then, we have from the boundedness of G(t,s) that

TV = 2 jfc;(t, s) f (5,v,(s))ds

IA

A 5= 6)" (s (s)ds

IA

A jf%(s _4)2(F0+8)v,(s)ds

IA

A=) (1 + ) v s

v, II-

IA

Consequently, || Tv]|[<||v||. So, if we define
Q ={ueX:JulH}
Then

[|Tv|I<||v]|, for vexnoQ,.(40)

By definition of f_, there exists an H, >0 such that

min 16Y) 5 (f,—5),forv>H,.
tefty ts] \Y

It follows that f (t,v)>(f,—&)v,for v>H,.
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Let H, = max{2 Hl,lH_z},
m

and Q,={ue X ullkH,}.

Now choose v, € k M 0Q, with ||v, [=H,, so that n[qin]v2 t)zmjlv, |z H_2
teft,t,

Consider,
TW)() = A j:c;(t,s) f(s,v,(s)) ds
> AL (-6 - (L)) P ds
> 200 - - (6L - ) (s) ds
> maf (G- - G- -9 v, ds
> v,
Thus,
ITVIRI VI, for vexnaQ, (41)

Applying Theorem 2 to (40) and (41) yields a fixed point for Tv(t) e xm(Q_z\Ql).
This fixed point is the positive solution of the BVP (35)-(36) for the given A .

Next, we prove other range for A for which a positive solution exists.

Theorem 11.Assume that conditions (B, )-(B, ) is satisfied. Then, for each 4 satisfying

! <A< ! (42)

ts 1 ts 1 .
RIS R AT
there exist at least one positive solution of the BVP (35)-(36) in « .




84 American Review of Mathematics and Statistics, Vol. 2(2), December 2014

Proof.
The proof is similar to the proof given in Theorem 10.

4.4 Green's Function and Bound for the 3n™ Order BVP

Our interest in this Section is to find positive solutions to all differential equations of
the form

y® + 21 (L y(1) = 0(43)
subject to some boundary conditions

yo ) =p
y(3k+1) t) =p, (44)

YD) = p k= 0,1,2,...,%—1.

We generate the Green's function of the homogeneous boundary value problem (43)-
(44)

Theorem 12.Suppose that G,(t,s) is the Green's function of (30)-(31). Then ,
G, (t,s) = ff G, (t,W)G, ,(W,s)dw, ne{3k+3:k e01}(45)
is the Green's function for
y'"(t)=0,ne{3k +3:k €1}, (46)
with boundary conditions

y) =0
y*IE) =0 @)

yeD () =0 k= 0,1,2,...,%—1.
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Proof.

The proof is similar to the proof given in Theorem 5.

4.5 Bounds for the Green's Function

In this section, we find the bounds for Green's function, G, (t,s), ne{3k;k eI }.

Theorem 13.Assuming conditions B, and B, ,then for ne{3k;k I },

n

@3(ts—tl)g‘l((tz—t1)2—<t3—t2)2)3SGn(t,s) forall (t.5) elt; L1x[ L

G,(t,s) < 3(%)3 (t,—t)"3(s—-t) forall (t,s)e[t,t]x[t,t.]
Proof,

We shall show the proof by induction. From Theorem 9,

G,(t,s) S%(s—tl)2 forall (t,s)e[t,t.]x[t,,t,],and

G3('[, s) Z%((tz _tl)z _(ta _tz)z) forall (t,s)e ['[2,'[3]x[t2,t3].

Assuming the case for n=Kk is true, that is,

(%;ij ((t2 —t,)? —(t3—t2)2)§ <G (t,s) forall (t,s)e[t,, t,]x[t,, t,].

G (t,s) < 3(%j3 (8 _t1)k_3(s _t1)2 forall (t,s) e[t t;]x[t,t;],

For n=k +3,
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4]
GisltS) = [ Gy(t.W)G, (w,s)dw

IA

3 2 1 g K3 g 12
L SW-t) (g] (t; —t) " (s —t,)"dw

k+3

- 3(%] (L -1) (s -1)"
Also,
Gis(t) = [ Gyt WG, (w,s)dw
t, 1 2 2 t3— 2_1 2 2 g
2 LE((tz _tl) _(ts_tz) )(Ttl] ((tz_t1) _(ts_tz) ) dw
2 (%js ((tz _t1)2 _(ts _t2)2 )%

By defining the two functions

n-3 n

Fn (S’ 5) = (%js (%]3 (ts _tl)n_s(s _ti)z,

n-3

O I e e )

and using (39) and (42), we can state the following theorems.

Theorem 14.Assume that conditions (B, ),(B, ) are satisfied. Then, for each A satisfying

! <A< ! ,

ty ty 0
[m I En(s,s)ds} £ [ ) Fn(s,s)ds} f
there exist at least one positive solution of the BVP (46)-(47) in .
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Proof.

The proof is similar to that of Theorem 10.

Theorem 15.Assume that conditions (B,),(B., ) are satisfied. Then, for each A satisfying

1 <A< 1

[m j: E (s, s)ds} f, [ j: F (s, s)ds:| £

there exist at least one positive solution of the BVP (46)-(47) in x .
Proof.
The proof is similar to that of Theorem 11.
4.6 Example
Consider the third order boundary value problem
y"(t)+ Ay(200-199.5¢ 7Y) =0, t €[0,1],

with boundary conditions

yo =1
y'(26) =0
y'(4)  =-1.

The Green's function is given by
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(1 2 -
E(S_l) if 1<s<t<2.6<4;

%(—1+25—t)(—1+t) if 1<t<s<2.6<4

%(4.2—t)(t—1) if 1<t<2.6<s<4

G(t,s) =1 1
E(_4'2+52+5'2t_25t) if 1<26<s<t<4;

%(4.2—t)(—1.+t) if 1<26<t<s<é

k%(s—l)2 if 1<s<26<t<4

For this particular example,

2(t) :1+%(2.56—(t—2.6)2), m=0.132743, f, =200, f° =%.

Using (39), positive solution exists for all A in the interval (0.0897,0.2222).
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