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Abstract

Mason and Remmel introduced a basis for quasisymmetric func-
tions known as the row-strict quasisymmetric Schur functions. This
basis is generated combinatorially by fillings of composition diagrams
that are analogous to the row-strict tableaux that generate Schur func-
tions. We introduce a modification known as Young row-strict qua-
sisymmetric Schur functions, which are generated by row-strict Young
composition fillings. After discussing basic combinatorial properties
of these functions, we define a skew Young row-strict quasisymmetric
Schur function using the Hopf algebra of quasisymmetric functions and
then prove this is equivalent to a combinatorial description. We also
provide a decomposition of the skew Young row-strict quasisymmetric
Schur functions into a sum of Gessel’s fundamental quasisymmetric
functions and prove a multiplication rule for the product of a Young
row-strict quasisymmetric Schur function and a Schur function.
Keywords: quasisymmetric functions, Schur functions, composition
tableaux, Littlewood-Richardson rule

1 Introduction

Schur functions are symmetric polynomials introduced by Schur [17] as char-
acters of irreducible representations of the general linear group of invertible
matrices. The Schur functions can be generated combinatorially using semi-
standard Young tableaux and form a basis for the ring, Sym, of symmet-
ric functions. The product of two Schur functions has positive coefficients
when expressed in terms of the Schur function basis, where the coefficients
are given by a combinatorial rule called the Littlewood-Richardson Rule [5].
These Littlewood-Richardson coefficients appear in algebraic geometry in
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the cohomology of the Grassmannian. They also arise as the coefficients
when skew Schur functions are expressed in terms of ordinary Schur func-
tions.

Skew Schur functions generalize Schur functions and are themselves of in-
terest in discrete geometry, representation theory, and mathematical physics
as well as combinatorics. They can be generated by fillings of skew diagrams
or by a generalized Jacobi-Trudi determinant. The inner products of cer-
tain skew Schur functions are enumerated by collections of permutations
with certain descent sets. In representation theory, character formulas for
certain highest weight modules of the general linear Lie algebra are given in
terms of skew Schur functions [22].

The ring Sym generalizes to a ring of nonsymmetric functions QSym,
which is a Hopf algebra dual to the noncommutative symmetric functions
NSym. The ring of quasisymmetric functions was introduced by Gessel [6]
as a source for generating functions for P -partitions and has since been
shown to be the terminal object in the category of combinatorial Hopf alge-
bras [2]. This ring is also the dual of the Solomon descent algebra [14] and
plays an important role in permutation enumeration [7] and reduced decom-
positions in finite Coxeter groups [18]. Quasisymmetric functions also arise
as characters of certain degenerate quantum groups [11] and form a natural
setting for many enumeration problems [19].

A new basis for quasisymmetric functions called the “quasisymmetric
Schur functions” arose through the combinatorial theory of Macdonald poly-
nomials by summing all Demazure atoms (non-symmetric Macdonald poly-
nomials specialized at q = t = 0) whose indexing weak composition reduces
to the same composition when its zeros are removed [9]. Elements of this
basis are generating functions for certain types of fillings of composition
diagrams with positive integers such that the row entries of these fillings
are weakly decreasing. Reversing the entries in these fillings creates fillings
of composition diagrams with positive integers that map more naturally
to semi-standard Young tableaux, allowing for a more direct connection to
classical results for Schur functions. These fillings are used to generate the
Young quasisymmetric Schur functions introduced in [13].

Row-strict quasisymmetric Schur functions were introduced by Mason
and Remmel [16] in order to extend the duality between column- and row-
strict tableaux to composition tableaux. When given a column-strict tableau,
a row-strict tableau can be obtained by taking the conjugate (reflecting over
the main diagonal). Since quasisymmetric Schur functions are indexed by
compositions, conjugation is not as straightforward. Reflecting over the
main diagonal may not result in a composition diagram. Mason and Rem-
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mel introduced a conjugation-like operation on composition diagrams that
takes a column-strict composition tableau with underlying partition diagram
λ to a row-strict composition tableau with underlying partition diagram λ′,
the conjugate of λ.

In this paper, we introduce Young row-strict quasisymmetric Schur func-
tions, which are conjugate to the Young quasisymmetric Schur functions un-
der the omega operator in the same way that the row-strict quasisymmetric
Schur functions are conjugate to the quasisymmetric Schur functions. This
new basis can be expanded positively in terms of the fundamental quasisym-
metric functions, admits a Schensted type of insertion, and has a multipli-
cation rule which refines the Littlewood-Richardson rule. These properties
are similar to properties of the row-strict quasisymmetric Schur functions
explored by Mason and Remmel [16], but we introduce a skew version of
the Young row-strict quasisymmetric Schur functions, which is not known
for row-strict quasisymmetric Schur functions. The objects used to generate
the Young row-strict quasisymmetric Schur functions are in bijection with
transposes of semi-standard Young tableaux, and therefore these new func-
tions fit into the bigger picture of bases for quasisymmetric functions in a
natural way. In fact, the objects introduced in this paper are the missing
piece when rounding out the quasisymmetric story that is analogous to the
Schur functions in the ring of symmetric functions. Throughout the pa-
per we show the connections between the Young row-strict quasisymmetric
Schur functions and the row-strict quasisymmetric Schur functions in [16].

In Section 2 we review the background on Schur functions and qua-
sisymmetric Schur functions and introduce Young row-strict composition
diagrams. In Section 3 we define the Young row-strict quasisymmetric Schur
functions and prove several fundamental results about the functions. In Sec-
tion 4 we define skew Young row-strict quasisymmetric Schur functions via
Hopf algebras and then provide a combinatorial definition of the functions.
Finally, in Section 5, we prove an analogue to the Littlewood-Richardson
rule and an analogue to conjugation for Young composition tableaux.

2 Background

2.1 Partitions and Schur functions

A partition µ of a positive integer n, written µ ` n, is a finite, weakly decreas-
ing sequence of positive integers, µ = (µ1, µ2, . . . , µk), such that

∑
µi = n.

Each µi is a part of µ and n is the weight of the partition. The length of
the partition is k, the number of parts in the partition. Given a partition
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µ = (µ1, µ2, . . . , µk), the diagram of µ is the collection of left-justified boxes
(called cells) such that there are µi boxes in the ith row from the bottom.
This is known as the French convention for the diagram of a partition. (The
English convention places µi left-justified boxes in the ith row from the top.)
Here, the cell label (i, j) refers to the cell in the ith row from the bottom
and the jth column from the left. Given partitions λ and µ of n, we say that
λ ≥ µ in dominance order if λ1 + λ2 + · · · + λi ≥ µ1 + µ2 + · · · + µi for all
i ≥ 1 with λ > µ if λ ≥ µ and λ 6= µ.

A semi-standard Young tableau (SSYT) of shape µ is a placement of
positive integers into the diagram of µ such that the entries are strictly
increasing up columns from bottom to top and weakly increasing across
rows from left to right. Let SSYT(µ, k) denote the set of SSYT of shape µ
filled with labels from the set [k] = {1, 2, . . . , k}. The weight of a SSYT T
is xT =

∏
i x

vi
i where vi is the number of times i appears in T . We can now

define a Schur function as a generating function of semi-standard Young
tableaux of a fixed shape.

Definition 2.1. Let µ be a partition of n. Then,

sµ(x1, x2, . . . , xk) =
∑

T∈SSYT(µ,k)

xT .

It is known that {sµ : µ ` n} is a basis for the space Symn of symmetric
functions of degree n. We can also define a row-strict semi-standard Young
tableau of shape µ as a placement of positive integers into the diagram of µ
such that the entries are weakly increasing up columns and strictly increasing
across rows from left to right. Note that if T is a row-strict semi-standard
Young tableau, the conjugate of T , denoted T ′, obtained by reflecting T
over the line y = x, is a SSYT, as shown in Fig. 2.1. Reading order for a
row-strict semi-standard tableau is up each column, starting from right to
left.

A standard Young tableau (SYT) of shape µ a partition of n is a place-
ment of 1, 2, . . . , n, each exactly once, into the diagram of µ such that each
column increases from bottom to top and each row increases from left to
right. We can find the standardization std(T ) of a row-strict semi-standard
tableau T by replacing the k1 ones with 1, 2, . . . , k1, in reading order, then
replacing the k2 twos with k1 + 1, . . . , k1 + k2, and so on. The results of
standardization are seen in Fig. 2.2.
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T = 4

2 3 5

1 2 5

1 2 4 5 6

T ′ = 6

5

4 5 5

2 2 3

1 1 2 4

Figure 2.1: A row-strict semi-standard Young tableau T of shape (5, 3, 3, 1)
and its conjugate T ′.

T = 2

2 4 5

1 2 4 5

1 2 3 5

std(T ) = 6

5 9 12

2 4 8 11

1 3 7 10

Figure 2.2: Standardization of a row-strict Young tableau T .

2.2 Compositions and quasisymmetric Schur functions

A weak composition of n is a finite sequence of nonnegative integers that
sum to n. The individual integers appearing in such a sequence are called
its parts, and n is referred to as the weight of the weak composition. A
strong composition (often just called a composition) α of n, written α � n, is
a finite sequence of positive integers that sum to n. If α = (α1, α2, . . . , αk),
then αi is a part of α and |α| =

∑k
i=1 αi is the weight of α. The length

of a composition (or weak composition), denoted `(α), is the number of
parts in the composition. If the parts of a composition α can be rearranged
into a partition λ, we say that the underlying partition of α is λ and write
λ(α) = λ. A composition β is said to be a refinement of a composition α if
α can be obtained from β by summing collections of consecutive parts of β.

Given a composition α = (α1, . . . , αk), its diagram is given by placing
boxes (or cells) into left-justified rows so that the ith row from the bottom
contains αi cells. Note that this is analogous to the French notation for the
Young diagram of a partition.

There is a bijection between subsets of [n − 1] and compositions of n.
Suppose S = {s1, s2, . . . , sk} ⊆ [n−1]. Then the corresponding composition
is comp(S) = (s1, s2−s1, . . . , sk−sk−1, n−sk). Similarly, given a composition
α = (α1, α2, . . . , αk), the corresponding subset S = {s1, s2, . . . , sk−1} of
[n − 1] is obtained by setting si =

∑i
j=1 αj . We also need the notion of
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complementary compositions. The complement β̃ to a composition β =
comp(S) arising from a subset S ⊆ [n− 1] is the composition obtained from
the subset Sc = [n − 1] − S. For example, the composition β = (1, 4, 2)
arising from the subset S = {1, 5} ⊆ [6] has complement β̃ = (2, 1, 1, 2, 1)
arising from the subset Sc = {2, 3, 4, 6}.

A quasisymmetric function is a bounded degree formal power series
f(x) ∈ Q[[x1, x2, . . .]] such that for all compositions α = (α1, α2, . . . , αk), the
coefficient of

∏
xαi
i is equal to the coefficient of

∏
xαi
ij

for all i1 < i2 < . . . <
ik. Let QSym denote the ring of quasisymmetric functions and QSymn

denote the space of homogeneous quasisymmetric functions of degree n so
that QSym = ⊕n≥0QSymn.

A natural basis for QSymn is the monomial quasisymmetric basis, given
by the set of all Mα such that α � n where

Mα =
∑

i1<i2<···<ik

xα1
i1
xα2
i2
· · ·xαk

ik
.

Gessel’s fundamental basis for quasisymmetric functions [6] can be expressed
by

Fα =
∑
β�α

Mβ,

where β � α means that β is a refinement of α.

2.3 Partial orderings of compositions

The Young composition poset Lc [13] is the poset consisting of all (strong)
compositions with α = (α1, α2, . . . , αk) covered by

1. (α1, α2, . . . , αk, 1), that is, the composition formed by appending a
part of size 1 to α, and

2. β = (α1, . . . , αj + 1, . . . , αk) with αi 6= αj for all i > j. That is, β is
the composition formed from α by adding one to the rightmost part
of any given size.

The composition α is said to be contained in the composition β (written
α ⊂ β) if and only if `(α) ≤ `(β) and αi ≤ βi for all 1 ≤ i ≤ `(α). Note
that if α <Lc β, then α ⊂ β, though the converse is not true. Given α ⊂ β,
we define a skew composition diagram of shape β//α to be the diagram of
β with the cells of α removed from the bottom left corner, as seen in Fig.
2.3.
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∗ ∗ ∗
∗ ∗

Figure 2.3: A skew composition diagram of shape (3, 4, 1, 4)//(2, 3).

2.4 Composition tableaux

Row-strict quasisymmetric Schur functions were introduced by Mason and
Remmel [16] as weighted sums of what we will call semi-standard reverse
row-strict composition tableaux (SSRRT). Given a composition α = (α1, α2, . . . , αk)
with diagram written in the English convention (that is, α1 is the length of
the top row, α2 the length of the next row down, etc.), a SSRRT T is a
filling of the cells of α with positive integers such that

1. row entries are strictly decreasing from left to right,

2. the entries in the leftmost column are weakly increasing from top to
bottom, and

3. (triple condition) for 1 ≤ i < j ≤ `(α) and 1 ≤ k < m, where
m is the size of the largest part of α, if T (j, k + 1) < T (i, k), then
T (j, k + 1) ≤ T (i, k + 1), assuming that the entry in any cell not
contained in α is 0, where T (a, b) is the entry in row a, column b.

For our purposes, we instead introduce Young row-strict composition tableaux,
which are fillings of α//β where the diagram of α//β is written in the French
convention. See Appendix A for a table of the various types of fillings of
composition diagrams appearing throughout this paper.

Definition 2.2. A filling T : α//β → Z+ is a semi-standard Young row-
strict composition tableau (SSYRT) of shape α//β if it satisfies the following
conditions:

1. row entries are strictly increasing from left to right,

2. the entries in the leftmost column are weakly decreasing from top to
bottom, and

3. (triple condition) for 1 ≤ i < j ≤ `(α) and 1 ≤ k < m, where
m is the size of the largest part of α, if T (j, k) < T (i, k + 1), then
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a b

c

Figure 2.4: A triple of cells from Def. 2.2 where T (j, k) = a, T (j, k+ 1) = b,
and T (i, k+ 1) = c. This triple satisfies the triple condition if a < c implies
b ≤ c.

T = 1 2 3 4

1

∗ ∗ ∗ 1

∗ ∗ 4

Figure 2.5: An SSYRT of shape (3, 4, 1, 4)//(2, 3) and weight xT =
x3

1x2x3x
2
4.

T (j, k+ 1) ≤ T (i, k+ 1), assuming the entry in any cell not contained
in α is∞ and the entry in any cell contained in β is 0. The arrangement
of these cells can be seen in Fig. 2.4.

Note that the triple condition guarantees that if β ⊂ α but β ≮Lc α,
then there are no SSYRT of shape α//β. The weight of a SSYRT T of shape
α//β is the monomial xT =

∏
i x

vi
i where vi is the number of times the label

i appears in T as seen in Fig. 2.5.
There is a diagram-reversing, weight reversing bijection, f , between

SSRRT(α,m) and SSYRT(rev(α),m) where rev(α) = (αk, αk−1, . . . , α1).
Note that since the diagrams for SSRRTs follow the English convention and
the diagrams for SSYRTs follow the French convention, the shapes resulting
from this bijection will appear to be the same, but correspond to two distinct
compositions. To obtain the entries in the new filling, replace each entry i
with m − i + 1 as shown in Fig. 2.6. It is routine to show that the triple
conditions are met by this bijection.

A standard Young row-strict composition tableau (SYRT) of shape α//β
is a SSYRT with each of the entries 1, 2, . . . , |α//β| appearing exactly once.
There is a bijection between SYRT and saturated chains in Lc. Given a
saturated chain α0 <Lc α

1 <Lc · · · <Lc αk in Lc, construct an SYRT by
placing the label i in the cell of αk//α0 such that the cell is in αi//αi−1. For
example, the chain (1) <Lc (1, 1) <Lc (1, 2) <Lc (1, 2, 1) <Lc (1, 2, 2) <Lc
(1, 2, 3) <Lc (2, 2, 3) gives rise to the SYRT in Fig. 2.7.
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2

3 2 1

3 2

4 3 2

4 3

←→ 3

2 3 4

2 3

1 2 3

1 2

α = (1, 3, 2, 3, 2) rev(α) = (2, 3, 2, 3, 1)
x1x

4
2x

4
3x

2
4 x2

1x
4
2x

4
3x4

Figure 2.6: The diagram-reversing, weight-reversing bijection f .

3 4 5

1 2

∗ 6

Figure 2.7: An SYRT of shape (2, 2, 3)//(1).

3 Young row-strict quasisymmetric Schur functions

The Young quasisymmetric Schur functions introduced by Luoto, Mykytiuk,
and van Willigenburg [13] are analogous to the quasisymmetric Schur func-
tions [9] since they retain many of the same properties and are described
combinatorially through fillings of composition diagrams under slightly mod-
ified rules. (Quasisymmetric Schur functions are generated by the weights of
reverse composition tableaux while Young quasisymmetric Schur functions
are generated by the weights of Young composition tableaux.) This same
analogy relates the polynomials introduced below to row-strict quasisym-
metric Schur functions introduced in [16].

Definition 3.1. Let α be a composition. Then the Young row-strict qua-
sisymmetric Schur function Rα is given by

Rα =
∑
T

xT

where the sum is over all Young row-strict composition tableaux (SSYRTs)
T of shape α. See Figure 3.1 for an an example.

In order to describe several important properties enjoyed by the row-
strict Young quasisymmetric Schur functions, we introduce a weight-preserving
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2 3

2

1 2

1

2 4

2

1 2

1

3 4

2

1 2

1

3 4

3

1 2

1

3 4

3

1 3

1

3 4

3

2 3

1

3 4

3

2 3

2

R1212(x1, x2, x3, x4) =

x2
1x

3
2x3 + x2

1x
3
2x4 + x2

1x
2
2x3x4 + x2

1x2x
2
3x4 + x2

1x
3
3x4 + x1x2x

3
3x4 + x2

2x
3
3x4

Figure 3.1: The SSYRT that generate R(1,2,1,2)(x1, x2, x3, x4).

bijection between semi-standard Young tableaux and SSYRT. The follow-
ing map sends a row-strict semi-standard Young tableau T to an SSYRT
ρ(T ) = F , described algorithmically, with an example shown in Fig. 3.2.

1. Place the entries from the leftmost column of T into the first column
of F in weakly decreasing order from top to bottom.

2. Once the first k − 1 columns of T have been placed into F , place the
entries from the kth column of T into F , from smallest to largest. Place
an entry e in the highest row i such that (i, k) does not already contain
an entry from T and the entry (i, k − 1) is strictly smaller than e.

3. Repeat until all entries in the kth column of T have been placed into
F .

Note that during the second step of the procedure ρ, there is always an
available cell where the entry e can be placed. This is due to the fact that
in the row-strict semi-standard Young tableau the number of entries strictly
smaller than e in the column immediately to the left of that containing e is
greater than or equal to the number of entries in the column containing e
which are less than or equal to e. Thus, ρ is a well-defined procedure.

Lemma 3.2. The map ρ is a weight-preserving bijection between the set of
row-strict semi-standard Young tableaux of shape λ and the set of SSYRT’s
of shape α where λ(α) = λ.

Proof. Let T be a row-strict semi-standard Young tableau of shape λ. Since
ρ preserves the column entries of T , ρ is a weight-preserving map. Since
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T = 6

2 4 5 7

1 3 5 6

1 2 3 4 6

ρ(T ) = 6

2 3 5 6

1 2 3 4 6

1 4 5 7

Figure 3.2: The bijection ρ applied to a row-strict semi-standard Young
tableau T .

the number of entries in each column is preserved, the row lengths are pre-
served but possibly in a different order. Therefore the shape α of ρ(T ) is a
rearrangement of the partition λ which describes the shape of T . We next
prove that ρ(T ) is indeed an SSYRT.

To see that ρ(T ) is an SSYRT, we must check the three conditions
given in Definition 2.2. Conditions (1) and (2) are satisfied by construc-
tion. To check condition (3), consider i < j and the cell (i, k + 1) such that
ρ(T )(j, k) < ρ(T )(i, k+1). We need to prove that ρ(T )(j, k+1) ≤ ρ(T )(i, k+
1). To get a contradiction, assume that ρ(T )(j, k + 1) > ρ(T )(i, k + 1).
Then the entry ρ(T )(i, k + 1) was inserted before the entry ρ(T )(j, k + 1).
Since ρ(T )(j, k) < ρ(T )(i, k + 1) and ρ(T )(j, k + 1) was not yet inserted,
ρ(T )(i, k + 1) would have been inserted immediately to the right of the cell
(j, k). This contradicts the fact that ρ(T )(i, k + 1) is in the ith row. There-
fore ρ(T )(j, k + 1) ≤ ρ(T )(i, k + 1) and condition (3) is satisfied, so ρ(T ) is
an SSYRT.

Finally, we prove that ρ is a bijection by exhibiting its inverse. Let F
be an SSYRT. Then ρ−1(F ) is given by placing the column entries from
the kth column of F into the kth column of ρ−1(F ) so that they are weakly
increasing from bottom to top. By construction, ρ−1(F ) is a row-strict semi-
standard Young tableau. It is also clear that ρ−1(ρ(T )) = T . We must prove
that if ρ−1(F ) = ρ−1(G) for two SSYRTs F and G, then F = G. Assume,
to the contrary, that ρ−1(F ) = ρ−1(G) and F 6= G. Find the leftmost
column, k, for which the arrangement of the column entries differs. Note
that k > 1 by construction. Find the highest cell (i, k) in column k such
that F (i, k) 6= G(i, k). Then the entry F (i, k) is found in a row (call it r)
further down in the column in G. So F (i, k) = G(r, k). If F (i, k) < G(i, k)
then cells (i, k), (r, k), and (i, k− 1) in G violate condition (3) and therefore
G is not an SSYRT. If F (i, k) > G(i, k), then the entry G(i, k) is found in a
row (call is s) further down in the column of F and the cells (i, k), (s, k) and
(i, k−1) in F violate condition (3). Therefore F is not an SSYRT. Therefore
there is only one SSYRT mapping by ρ−1 to a given row-strict semi-standard
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Young tableau T , which is precisely the SSYRT given by ρ(T ). Thus ρ is a
bijection.

The Young row-strict quasisymmetric Schur functions decompose the
Schur functions in the following natural way.

Theorem 3.3. If λ is an arbitrary partition, then

sλ =
∑

α:λ(α)=λ′

Rα.

Proof. This theorem is a direct consequence of Lemma 3.2 since the Schur
function sλ is generated by the weights of all semi-standard Young tableaux
whose transpose is a row-strict semi-standard Young tableau of shape λ′ and
the right hand side sums the weights of all Young row-strict composition
tableaux whose shape rearranges λ′.

The standardization st(F ) of a Young row-strict composition tableau
follows a procedure similar to that used to standardize a row-strict semi-
standard Young tableau. Once we provide an appropriate reading order on
the entries in a Young row-strict composition tableau, we will describe the
standardization procedure algorithmically.

Definition 3.4. Read the entries of an SSYRT F by column from right to
left, so that the entries in each column are read from top to bottom, except
the leftmost column, which is read from bottom to top. This is called the
standard reading order and the resulting word is called the standard reading
word of F and is denoted read(F ).

Procedure 3.5. To standardize a Young row-strict composition tableau F ,
use the following procedure.

1. Let β = (β1, β2, . . . , βm) be the composition describing the content of
F .

2. Replace the jth occurrence (in standard reading order) of the entry 1
with the entry j.

3. For i > 1, replace the jth occurrence (in standard reading order) of the

entry i with the entry (

i−1∑
k=1

βk) + j.

12



F = 6

2 3 5 6

1 2 3 4 6

1 4 5 7

st(F ) = 13

4 6 9 12

2 3 5 7 11

1 8 10 14

read(F ) = 66475353241126

Figure 3.3: The reading word and standardization of an SSYRT F of shape
(4, 5, 4, 1)

The resulting filling, denoted st(F ), is the standardization of F . See
Figure 3.3 for an example of the standard reading word of an SSYRT F and
the standardization of F .

Theorem 3.6. The map ρ commutes with standardization in the sense that
if T is an arbitrary row-strict semi-standard Young tableau, then (st(ρ(T ))) =
ρ(std(T )) where std is the ordinary standardization of a row-strict semi-
standard Young tableau.

Proof. Note that the map ρ does not change the set of entries in a given
column. Therefore it is enough to show that the set of entries in an arbitrary
column of std(T ) is equal to the set of entries in the corresponding column
of st(ρ(T )).

Let T be a row-strict semi-standard Young tableau. Consider two equal
entries in cells c1 and c2 with c1 appearing earlier in the reading order than
c2. Since the rows of T strictly increase from left to right along rows and
weakly increase up columns, the cell c2 must appear weakly to the left and
strictly above c1. Thus, in the standardization of T , the entry in c1 is
replaced first. If c1 and c2 are in distinct columns of T , then the entries
appearing in c1 and c2 are in distinct columns of ρ(T ) and the entry in c1

will appear in the reading order of ρ(T ) prior to the entry in c2. If c1 and c2

are in the same column of T , then the entry in c1 is placed into ρ(T ) prior
to the entry in c2, and thus appears earlier in the reading order of ρ(T ) as
well. Thus the entries are replaced in st(ρ(T )) in the same order as they
were in std(T ) and the column entries are therefore the same. Therefore
standardization commutes with ρ.

To show that the Young row-strict quasisymmetric Schur functions are
indeed quasisymmetric, we provide a method for writing a Young row-strict
quasisymmetric Schur function as a positive sum of Gessel’s fundamental
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T1 = 2 3 5

1 4
T2 = 2 3 4

1 5
T3 = 3 4 5

1 2

D̂(T1) = {2, 4} D̂(T2) = {2, 3} D̂(T3) = {1, 3, 4}

R23 = F221 + F212 + F1211

Figure 3.4: The decomposition of R23 into fundamental quasisymmetric
functions.

quasisymmetric functions. We need the following analogue of the descent
set in order to describe this decomposition.

Definition 3.7. The reverse descent set, D̂(T ), of a standard SSYRT T , is
the subset of [n − 1] consisting of all entries i of T such that i + 1 appears
strictly to the right of i in T .

Proposition 3.8. Let α, β be compositions. Then

Rα =
∑
β

dαβFβ

where dαβ is equal to the number of standard Young row-strict composition

tableaux T of shape α such that comp(D̂(T )) = β.

See Figure 3.4 for an example of this decomposition.
We prove Proposition 3.8 by using the decomposition of the row-strict

quasisymmetric Schur functions into fundamental quasisymmetric functions [16]
and applying the weight-reversing, diagram-reversing map f from standard
SSRRT to standard SSYRT.

Proposition 3.9 (Mason-Remmel [16]). Let α and β be compositions. Then

RSα =
∑
β

dαβFβ (3.1)

where dαβ is equal to the number of standard row-strict composition tableaux
T of shape α and comp(D′(T )) = β. Here D′(T ) is the set of all entries i
of T such that i+ 1 appears strictly to the left of i in T .

Proof. (of Proposition 3.8)
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Recall that RSα is generated by the set of SSRRT of shape α. Applying
the map f to each of the SSRRT generating RSα yields an SSYRT of shape
rev(α). Thus, each monomial appearing on the left hand side of (3.1) is sent
to its reverse, and the same occurs on the right hand side. Reversing the
monomials sends Fα to Frev(α), so we need to show that if comp(D′(T )) = β,

then comp(D̂(f(T ))) = rev(β).
Consider an element i ∈ D′(T ). Then i+ 1 appears strictly to the left of

i in T . Reversing the entries in the SSYRT T implies that n− (i+ 1) + 1 =
n − i appears strictly to the left of n − i + 1 in f(T ). This implies that
n− i+1 appears strictly to the right of n− i in f(T ), meaning n− i is in the
reverse descent set D̂(f(T )). To determine the composition comp(D̂(f(T ))
obtained from the reverse descent set D̂(f(T )), note that the kth part, βk,
of comp(D′(T )) from the left, is equal to i − j, where i is the kth smallest
element of D′(T ) and j is the (k − 1)th smallest element of D′(T ) unless
k = 1 in which case j = 0. If k 6= 1, then n− i is the kth largest element in
D̂(f(T )) and n − j is the (k − 1)th largest element in D̂(f(T )). Therefore
the kth part (from the right) of D̂(f(T )) is equal to (n− j)− (n− i) = i− j.
If k = 1, then j = 0 and n− i is the last part of comp(D̂(f(T ))). Therefore
the composition obtained from D̂(f(T )) is the reverse of the composition
obtained from D′(T ) as desired.

Corollary 3.10. Every row-strict Young quasisymmetric Schur function is
quasisymmetric, since it can be written as a positive sum of quasisymmetric
functions.

In fact, the row-strict Young quasisymmetric Schur functions form a
basis for all quasisymmetric functions.

Theorem 3.11. The set {Rα(x1, . . . , xk)|α |= n and k ≥ n} forms a Z-basis
for
QSymn(x1, x2, . . . , xk).

Proof. Let xk denote (x1, . . . , xk). It is enough to prove that the transi-
tion matrix from Young row-strict quasisymmetric Schur functions to fun-
damental quasisymmetric functions is upper uni-triangular with respect to a
certain order on compositions. Order the compositions indexing the Young
row-strict quasisymmetric Schur functions by any linear extension of the
dominance order on the underlying partitions. (That is, a linear extension of
the partial order where α < β if and only if λ(α) < λ(β) under dominance.)
Similarly, order the compositions indexing the fundamental quasisymmetric
functions by the same order but on their complementary compositions.
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Fix a positive integer n and a composition α = (α1, α2, . . . , α`(α)) of
n. Consider a summand Fβ(xk) appearing in Rα(xk) and consider the
composition β̃ complementary to β. Since k ≥ n, we know that such an
Fβ(xk) exists. We claim that λ(β̃) ≤ λ(α) and, moreover, if λ(β̃) = λ(α),
then β̃ = α.

Since Fβ(xk) appears in Rα(xk), there must exist a standard Young
row-strict composition tableau F of shape α with reverse descent set
D = {b1, b2, . . . , bk} such that comp(D) = β. Each entry i in D must appear
in F strictly to the left of i + 1. We note however there are examples of
standard Young row strict composition tableaux where i+ 1 can appear in
the same row, a row above i, or a row below i. Nevertheless, the consecutive
entries in D appear in F as “horizontal strips” in that no two cells can lie in
the same column. Each such horizontal strip, together with the entry one
greater than the largest entry in the strip, corresponds to a part of β̃ since
β̃ arises from the complement of D. This implies that the sum of the largest
j parts of β̃ must be less than or equal to the sum of the largest j parts of
α. That is, j horizontal strips cannot cover more cells than the number of
cells in the largest j rows of F . Therefore λ(β̃) ≤ λ(α).

Assume that λ(β̃) = λ(α). Since the length of β̃ is equal to the length
of α, each cell in the leftmost column of F must be the start of a horizontal
strip. Moreover, each horizontal strip must have cells in a block of consecu-
tive columns. That is, the horizontal strip corresponding to the largest part
of β̃, λ(β̃)1, has the same size as the largest row in α and hence must contain
one cell in each column even though those cells may not lie in the same row.
But then the horizontal strip corresponding the second largest part of β̃ has
the same size as the second largest part of α so it must have one cell in
each column up to the rightmost column in the second largest row of α, etc.
Next we claim that row numbers of the cells in any horizontal strip must
weakly increase, reading from left to right. That is, suppose that x− 1 and
x are consecutive entries of a horizontal strip such that x appears in a lower
row than x − 1 in F . Then the triple rule (condition (3) in Definition 2.2)
implies that the cell immediately to the right of the cell containing x − 1
in the column containing x must contain an entry less than or equal to x.
Since F is standard, no entry can appear twice, and hence this entry must
be less than x − 1. But this contradicts the fact that the row entries are
increasing from left to right.

Now consider the set of elements in the descent set 1, 2, . . . , β̃1 − 1 of
F corresponding to the first part of β̃. We know that 1, 2 . . . , β̃1 forms a
horizontal strip h in F and 1 must be in the leftmost column. It must be
the case that β̃1 is in the first row since otherwise the first column would
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not be strictly increasing reading from bottom to top. Since the column
numbers in h must strictly increase reading from left to right, it follows that
1, . . . , β̃1 occupy consecutive cells in the first row of F . Since no element
from a higher strip can appear in this row, this means that the first row of F
has size β̃1. That is, α1 = β̃1. Iterating this argument implies that β̃i = αi
for all i, and hence β̃ = α as claimed. Therefore the transition matrix is
upper uni-triangular and the proof is complete.

4 Skew row-strict quasisymmetric Schur functions

4.1 The Hopf algebra of quasisymmetric functions

We briefly discuss results from Hopf algebras that will be pertinent to the
definition of Rα//β and refer the reader to any of the standard references [1,
10, 20] for more information and detailed definitions.

An associative algebra A over a field k is a k-vector space with an asso-
ciative bilinear map m : A⊗A −→ A and unit u : k −→ A which sends 1 ∈ k
to the two-sided multiplicative identity element 1A ∈ A. A co-associative
algebra C is a k-vector space C with a k-linear map ∆ : C −→ C⊗C (called
co-multiplication) and co-unit ε : C −→ k such that

1. (1C ⊗∆) ◦∆ = (∆⊗ 1C) ◦∆

2. (1C ⊗ ε) ◦∆ = 1C = (ε⊗ 1C) ◦∆.

In the following, we use Sweedler notation for the coproduct and abbreviate

∆(c) =
∑
i

c
(i)
(1) ⊗ c

(i)
(2) by ∆(c) =

∑
(c)

c(1) ⊗ c(2).

Given a coalgebra C and an algebra A, the k-linear maps Hom(C,A)
can be endowed with an associative algebra structure called the convolution
algebra which sends f, g ∈ Hom(C,A) to f ? g defined by (f ? g)(c) =∑
f(c1)g(c2). A Hopf Algebra is a bialgebra A which contains an two-sided

inverse S (called an antipode) under ? for the identity map 1A. (Note that
every connected, graded bialgebra is a Hopf algebra [3].)

Recall that the dual space V ? of a finite-dimensional k-vector space V is
obtained by reversing k-linear maps so that V ? := Hom(V, k). If each Vn in
a graded vector space V = ⊕n≥0Vn is finite-dimensional, then V is said to be
of finite type. Since the dual of a finite-type algebra is a coalgbera and vice-
versa, the dual H? = ⊕n≥0H

?
n of a finite-type Hopf algebra H = ⊕n≥0Hn
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is a Hopf algebra called the Hopf dual of H. Therefore there exists a non-
degenerate bilinear form 〈·, ·〉 : H⊗H? −→ k such that for any basis {Bi}i∈I
(for some indexing set i) of Hn and its dual basis {Di}i∈I , we have 〈Bi, Dj〉 =
δij . This duality allows us to define structure constants and skew elements
[12]

1.

Bi ·Bj =
∑
h

ahi,jBh ⇐⇒ ∆Dh =
∑
i,j

ahi,jDi ⊗Dj :=
∑
j

Di/j ⊗Dj

2.

Di ·Dj =
∑
h

bhi,jDh ⇐⇒ ∆Bh =
∑
i,j

bhi,jBi ⊗Bj :=
∑
j

Bi/j ⊗Bj .

In QSym, the coproduct is given by

∆Fα =
∑

βγ=α, or
β�γ=α

Fβ ⊗ Fγ (4.1)

where βγ denotes concatenation and β � γ denotes almost concatenation.
That is, if β = (β1, . . . , βk) and γ = (γ1, . . . , γm), then βγ = (β1, . . . , βk, γ1, . . . , γm)
while β � γ = (β1, . . . , βk−1, βk + γ1, γ2, . . . , γm).

We use this to define the skew Young row-strict quasisymmetric Schur
functions.

Definition 4.1. Given a composition α,

∆Rα =
∑
β

Rβ ⊗Rα//β.

4.2 Combinatorial formulas for skew Young row-strict qua-
sisymmetric Schur functions

Recall that Schur functions can be computed explicitly using the following
combinatorial rule [5]:

sλ/µ =
∑

T∈SSY T (λ/µ)

xcont(T ) =
∑

T∈SY T (λ/µ)

FDes(T ),

where FS is the Gessel fundamental quasisymmetric function indexed by the
set S. We provide an analogous combinatorial formula for the skew Young
row-strict quasisymmetric Schur functions.

18



T = 7 8 10

6

2 3 4 9

1 5

f6(T ) = ∗ ∗ ∗
6

2 3 4 ∗
1 5

Ω4(T ) = 1 2 4

∗
∗ ∗ ∗ 3

∗ ∗

D̂(T ) = {2, 3, 7} D̂(f6(T )) = {2, 3} D̂(Ω4(T )) = {1}
comp(D̂(T )) = (2, 1, 4, 3) comp(D̂(f6(T ))) = (2, 1, 3) comp(D̂(Ω4(T ))) = (1, 3)

Figure 4.1: Decomposing T using fi(T ) and Ωn−i(T ).

Theorem 4.2. Let α//β be a skew composition. Then Rα//β is the sum

over all SSYRT T of shape α//β of the weights xT ; i.e.

Rα//β =
∑

T∈SSYRT(α//β)

xT =
∑

T∈SYRT(α//β)

FD′(T ).

Before proving Theorem 4.2, we introduce several concepts and lemmas
which will play an important role in the proof.

Definition 4.3. If T is a filling of shape α//β, then gi is the map that adds
i to each entry in T .

Let T be a SYRT of shape α � n. Then define fi(T ) to be the filling
obtained from T by considering the cells with labels less than or equal to
i. Similarly, let Ωi(T ) be the skew filling obtained from T by considering
the cells with labels greater than n − i and standardizing. Note that T =
fi(T ) ∪ (gi(Ωn−i(T ))), as seen in Fig. 4.1.

Lemma 4.4. Let β ⊂ γ be a composition contained in γ with |β| = i. If
T (γ//β) is a skew SSYRT of shape γ//β and T (β) is an SSYRT of shape
β, then T (β) ∪ gi(T (γ//β)) is an SSYRT.

Proof. We need to check that T ′ := T (β) ∪ gi(T (γ//β)) satisfies the three
conditions needed to be an SSYRT. The first is satisfied by construction since
given a row r in T ′, the entries from row r of T (β) are strictly increasing from
left to right, the entries from row r of gi(T (γ//β)) are strictly increasing
from left to right, and the last entry in row r of T (β) is less than the first
entry in row r of gi(T (γ//β)).

The second condition is satisfied by construction since the entries in the
leftmost column of gi(T (γ//β)) weakly decrease from top to bottom, the
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entries in the leftmost column of T (β) weakly decrease from top to bottom,
and the lowest entry in the leftmost column of gi(T (γ//β)) is greater than
the highest entry in the leftmost column of T (β).

Finally, to check the third condition, consider a triple of cells a :=
T ′(j, k), b := T ′(j, k + 1), c := T ′(i, k + 1). If a < c, then there are sev-
eral cases we must consider.

Case 1: a, c ∈ T (β): If b ∈ T (β) then we are done since the entries a, b, c
must satisfy the triple rule in T (β). But if b /∈ T (β), then b would be
considered to be equal to ∞, causing a, b, c to violate the triple condition in
β, a contradiction. Therefore b ∈ T (β) and a, b, c satisfy the triple condition.

Case 2: a ∈ T (β), c ∈ gi(T (γ//β)): If b ∈ T (β) then we are done since
all entries from T (β) are less than all entries from gi(T (γ//β)), so b ≤ c.
If b /∈ T (β), then b ≤ c since a is considered to be zero in gi(T (γ//β)), so
b ≤ c in T ′.

Case 3: a, c ∈ gi(T (γ//β)): Then b ∈ gi(T (γ//β)), so the triple a, b, c
satisfies the triple condition in gi(T (γ//β)) so the proof is complete.

Lemma 4.5. Let T be a SYRT of shape α. Then for any i (0 ≤ i ≤ |α|), if
i ∈ D̂(T ), then

comp(D̂(T )) = comp(D̂(fi(T ))) · comp(D̂(Ωn−i(T ))),

and if i /∈ D̂(T ),

comp(D̂(T )) = comp(D̂(fi(T )))� comp(D̂(Ωn−i(T ))).

Proof. Suppose D̂(T ) = {a1, a2, . . . , ak} and let 0 ≤ i ≤ |α|. Then, if
i ∈ D̂(T ), i = am for some m. Then D̂(fi(T )) = {aj : aj < i} and

comp(D̂(fi(T ))) = (a1, a2 − a1, . . . , i− am−1).

Similarly, D̂(Ωn−i(T )) = {aj − i : aj > i} and

comp(D̂(Ωn−i(T ))) = (am+1 − i, am+2 − i− (am+1 − i), . . . , n− i− (ak − i))
= (am+1 − am, am+2 − am+1, . . . , n− ak).

Thus,

comp(D̂(fi(T )))·comp(D̂(Ωn−i(T ))) = (a1, a2−a1, . . . , n−ak) = comp(D̂(T )).

Now suppose i /∈ D̂(T ). If am > i for allm, then D̂(fi(T )) = ∅, D̂(Ωn−i(T ) =
{a1− i, . . . , ak− i}, comp(D̂(fi(T ))) = (i), and comp(D̂(Ωn−i(T ))) = (a1−
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i, a2−a1, . . . , n−ak), so comp(D̂(T )) = comp(D̂(fi(T )))�comp(D̂(Ωn−i(T ))).
Similarly, if am−1 < i < am for some m, then comp(D̂(fi(T ))) = (a1, a2 −
a1, . . . , i−am−1) while comp(D̂(Ωn−i(T ))) = (am−i, am+1−am, . . . , n−ak).
Thus, comp(D̂(T )) = comp(D̂(fi(T )))� comp(D̂(Ωn−i(T ))).

We are now ready to prove Theorem 4.2.

Proof. Let α be a composition of size n. We first expand ∆Rα in terms of
the fundamental quasisymmetric functions, using (4.1) and Lemma 4.5.

∆Rα =
∑

T∈SY RT (α)

∆Fcomp(D̂(T ))

=
∑

T∈SY RT (α)

 ∑
β·γ=comp(D̂(T )) or

β�γ=comp(D̂(T ))

Fβ ⊗ Fγ



=
∑

T∈SY RT (α)

(
n∑
i=0

Fcomp(D̂(fi(T ))) ⊗ Fcomp(D̂(Ωn−i(T )))

)
. (4.2)

Equating the right hand side of Definition 4.1 with the right hand side
of (4.2) gives the following equality.

∑
δ

Rδ ⊗Rα//δ =
∑

T∈SY RT (α)

(
n∑
i=0

Fcomp(D̂(fi(T ))) ⊗ Fcomp(D̂(Ωn−i(T )))

)
,

where the δ on the left hand side ranges over all compositions contained
in α. Expanding Rδ in terms of the fundamental quasisymmetric functions
allows us to write

∑
δ

 ∑
U∈SY RT (δ)

Fcomp(D̂(U))

⊗Rα//δ =

∑
T∈SY RT (α)

(
n∑
i=0

Fcomp(D̂(fi(T ))) ⊗ Fcomp(D̂(Ωn−i(T )))

)
.
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By Lemma 4.4, for each U ∈ SY RT (δ), there exists a T ∈ SY RT (α)
and i with 0 ≤ i ≤ n such that U = fi(T ). Note that Ωn−i(T ) will have
shape α//δ. Thus, we obtain

Rα//δ =
∑

T∈SY RT (α//δ)

Fcomp(D̂(T )).

5 Properties of skew row-strict quasisymmetric Schur
functions

Every skew Schur function can be decomposed into a positive sum of skew
row-strict quasisymmetric Schur functions. This decomposition is analo-
gous to the decomposition of the Schur functions into quasisymmetric Schur
functions.

Theorem 5.1. Each skew Schur function is a positive sum of skew row-
strict quasisymmetric Schur functions given by

sλ′/µ′ =
∑

λ(α//β)=λ/µ

Rα//β.

Proof. We exhibit a weight-preserving bijection, h, between the set of all
column-strict tableaux of shape λ′/µ′ and the set of all row-strict composi-
tion tableaux whose shape rearranges to λ/µ. See Fig. 5.1 for an example
of the bijection.

Given a column-strict tableau S of shape λ′/µ′, consider the entries
contained in µ′ to be zeros, represented by stars in the diagram. Take the
conjugate of S to produce a row-strict tableau r(S) of shape λ/µ. Next map
the entries in the leftmost column of r(S) to the leftmost column of h(S) = T
by placing them in weakly decreasing order. Map each set of column entries
from r(S) into the corresponding column of h(S) by the following process:

1. Begin with the smallest entry, a1 in the set.

2. Map a1 to the highest available cell that is immediately to the right
of an entry strictly smaller than a1. If a1 = 0, map it to the highest
available cell immediately to the right of a zero.

3. Repeat with the next smallest entry, noting that a cell is available if
no entry has already been placed in this cell.
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∗ ∗ 1 1

∗ ∗ 2

∗ 3 4

1 4

−→ ∗ ∗ ∗ 1

∗ ∗ 3 4

1 2 4

1

−→ 1 2 3 4

1

∗ ∗ ∗ 1

∗ ∗ 4

Figure 5.1: The bijection h from SSYT to SSRYT.

4. Continue until all entries from this column have been placed, and then
repeat with each of the remaining columns.

We must show that this process produces a row-strict composition tableau.
The first two conditions are satisfied by construction, so we must check the
third condition. Consider two cells T (j, k) and T (i, k + 1) such that j > i,
(i, k+ 1) ∈ α//β, and T (j, k) < T (i, k+ 1). Let T (j, k) = b, T (i, k+ 1) = a,
and T (j, k + 1) = c. Then the cells are situated as shown, where a > b:

b c

a

.

We must prove that T (j, k+ 1) ≤ T (i, k+ 1), or in other words, that c ≤ a.
Assume, to get a contradiction, that c > a. Then a would be inserted into
its column before c. But then the cell immediately to the right of b would
have been available, and therefore a would have been placed in that cell
rather than farther down in the column. Therefore this configuration would
not have occurred.

The inverse map, h−1 is given by arranging the entries from each column
of a row-strict composition tableau U so that they are weakly increasing from
top to bottom. We must prove that the row entries are strictly increasing.
Argue by contradiction. Assume there exists a row whose entries are not
strictly increasing, and choose the leftmost column, C, such that an entry in
C is smaller than the entry immediately to its left and the highest occurrence
(call it row R) within this column. Call this entry x. Then column C − 1
contains only R − 1 entries which are less than x while column C contains
R entries less than or equal to x. This contradicts the fact that the rows of
U are strictly increasing.
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5.1 A multiplication rule

In this section we give a Littlewood-Richardson style rule for multiplying
Rα · sλ. We show that this rule is equivalent to the rule given by Ferreira
in [4] for RSα · sλ. We begin by reviewing the RSK algorithms for both
SSRRT and SSYRT, and then present Ferreira’s Littlewood-Richardson rule
for RSα · sλ, followed by the Littlewood-Richardson rule for Rα · sλ.

Algorithm 5.2. [16] Given T ∈ SSRRT(α), we insert x into T , denoted

T
R←− x, in the following way:

1. For each cell T (i, αi), add a cell T (i, αi + 1) = 0.

2. Read down each column of T , starting from the rightmost column and
moving left. This is the reading order for T .

3. Find the first entry T (i, k+1) in reading order such that T (i, k+1) ≤ x
and T (i, k) > x and k 6= 1.

(a) If T (i, k+1) = 0, set T (i, k+1) = x and the algorithm terminates.

(b) If T (i, k + 1) = y, set T (i, k + 1) = x and continue scanning cells
using x = y starting at cell (i− 1, k + 1). Again, we say that “x
bumps y.”

(c) If there is no such entry, then insert x into the first column,
creating a new row of length 1, in between the unique pair T (i, 1)
and T (i+ 1, 1) such that T (i, 1) > x ≥ T (i+ 1, 1) and terminate
the insertion. If x ≥ T (i, 1) for all i, insert x at the bottom of
the first column, creating a new row of length 1, and terminate
the insertion.

4. Continue until the insertion terminates.

Algorithm 5.3. Given F ∈ SSYRT(α), we insert x into F , denoted F ← x,
in the following way:

1. For each cell F (i, αi), add a cell F (i, αi + 1) =∞.

2. Read down each column of F , starting from the rightmost column and
moving left. This is the reading order for F .

3. Find the first entry F (i, k+1) in reading order such that F (i, k+1) ≥ x
and F (i, k) < x and k 6= 1.
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F = 3 4 5

2

1 2 3 5

1 2 4

F ← 3 = 4

3 4 5

2

1 2 3 5

1 2 3

Figure 5.2: The result of Algorithm 5.3, with insertion path in bold.

(a) If F (i, k + 1) =∞, set F (i, k + 1) := x and the algorithm termi-
nates.

(b) If F (i, k+ 1) = y, set F (i, k+ 1) := x and continue scanning cells
using x := y starting at cell (i− 1, k+ 1). We say that “x bumps
y.”

(c) If there is no such entry, then insert x into the first column,
creating a new row of length 1, in between the unique pair F (i, 1)
and F (i+ 1, 1) such that F (i, 1) < x ≤ F (i+ 1, 1) and terminate
the insertion. If x ≤ F (i, 1) for all i, insert x at the bottom of
the first column, creating a new row of length 1, and terminate
the insertion.

4. Continue until the insertion terminates.

In Fig. 5.2 the insertion path is highlighted in bold when 3 is inserted
into F , denoted F ← 3.

A word w = w1w2 . . . wn with max{wi} = m is a lattice word if for every
prefix of w, there are at least as many i’s as (i + 1)’s for each 1 ≤ i < m.
Note that such a word must start with a 1. A reverse lattice word is a word
v = v1v2 . . . vn with max{vi} = m with the property that for every prefix of
v, for all i ≤ m, there are at least as many i’s as (i− 1)’s. A reverse lattice
word is called regular if it contains at least one 1. Given a (skew) SSYRT
T , the column word of T , denoted col(T ), is the word obtained by reading
each column from bottom to top, starting with the leftmost column and
moving right. The column reading word of a (skew) SSRRT is obtained by
this same procedure. Note that this is different from the standard reading
order defined previously.

Given a weak composition γ, let γ+ denote the composition obtained
from γ by removing all parts of size 0. Then, if α ⊆ β, denote by β/α any
skew shape β//γ where γ is a weak composition such that γ+ = α.
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a b

c

c

a b

Type A Type B

Figure 5.3: Type A triples require that βi ≥ βj where row i is above row j,
and Type B triples require βi < βj where row i is above row j.

Consider an arbitrary filling F of shape β/γ. Rather than a single triple
rule, we will require two types of triples, A and B, as seen in Fig. 5.3. A
type A triple is a set of entries F (i, k − 1) = a, F (i, k) = b, and F (j, k) = c
where row i occurs above row j and βi ≥ βj . A type B triple is a set of
entries F (i, k − 1) = c, F (j, k − 1) = a, and F (j, k) = b where row i occurs
above row j and βi < βj . Note that in English convention, i < j, while in
French convention i > j, but the triples will have the same shape in either
case.

In [4] a reverse Littlewood-Richardson skew row-strict composition tableau
is defined to be a filling L of a diagram of a skew shape β/γ where β and α
are strong compositions and γ is a weak composition with γ+ = α, and the
diagram also has a column 0 filled with ∞’s, with the following properties:

1. Each row strictly decreases when read left to right.

2. The column reading word is a regular reverse lattice word.

3. Set L(i, j) = ∞ for all (i, j) ∈ γ. Each triple (type A or B) must
satisfy c ≤ b < a or b < a ≤ c, including triples containing cells in
column 0. See Fig. 5.3 to see the types of triples.

Theorem 5.4 ([4]). Let sλ be the Schur function indexed by the partition
λ, and let α be a composition. Then

RSα · sλ =
∑
β

Cβα,λRSβ

where Cβα,λ is the number of reverse Littlewood-Richardson skew SSYRT of
shape β/α and content rev(λ).

Definition 5.5. Let α and β be compositions with α ⊆ β. Let γ be a weak
composition satisfying γ+ = α. A Littlewood-Richardson skew row-strict
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composition tableau S of shape β/α is a filling of a diagram of skew shape
β//γ, with column 0 filled with 0’s, such that

1. Each row strictly increases when read left to right.

2. The column reading word of S is a lattice word.

3. Let S(i, j) = 0 for all (i, j) ∈ γ. Each triple (type A or B) must satisfy
a < b ≤ c or c ≤ a < b, including triples containing cells in column 0.

We use the weight-reversing, shape-reversing bijection f : SSRRT→
SSYRT defined in §2.4 to prove the following analogue of the Littlewood-
Richardson rule.

Theorem 5.6. Let λ be a partition and α a composition. Then

Rα · sλ =
∑
β

Dβ
α,λRβ

where Dβ
α,λ is the number of Littlewood-Richardson skew SSYRT of shape

β//α and content λ.

We need the following lemmas in order to prove Theorem 5.6.

Lemma 5.7. Given T , an SSRRT of shape α � n, x a positive integer and

x∗ = n− x+ 1, f(T )← x∗ = f(T
R←− x).

Proof. Let T be a SSRRT of shape α. Then f(T ) is a SSYRT of shape
rev(α). We show that if, during the insertion process T ← x, the entry
in cell a of T is bumped by an entry y, then the entry in cell a of f(T )
is bumped by y∗ = n − y + 1. First consider the initial entry, x, inserted
into T and say this entry bumps the entry in cell a of T . Let â denote the
cell immediately to the left of a. Then if T (a) is bumped, T (a) ≤ x and
T (â) > x. In the reading order, all cells b that occur prior to a must have
T (b) < x with T (b̂) ≤ x. In f(T ), for cell b earlier in the reading order than
a, note that f(T )(b) > x∗ and f(T )(b̂) ≥ x∗, thus there is no location prior
to cell a for x∗ to be inserted. However, f(T )(a) ≥ x∗ and f(T )(â) < x∗, so
x∗ will bump the label in cell a.

Now assume that the statement is true for all entries in the bumping
process up to an entry y. If y bumps the entry in cell b, then the cell b̂
immediately to the left of b must contain an entry strictly greater than b.
So in f(T ), the entry in cell b̂ must be strictly less than the entry in cell b.
So y∗ will bump the entry in cell b of f(T ) if y∗ does not bump an entry
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before this cell. But if y∗ bumps an entry in f(T ) before a in reading order,
then y would bump the entry in that cell in T . This cannot happen since y
bumps the entry in cell b. Therefore the bumps are the same and hence the
resulting diagram f(T )← x∗ is the diagram obtained by f(T ← x).

Lemma 5.8. If T is a reverse Littlewood-Richardson skew row-strict com-
position tableau of shape β/α and content rev(λ), then f(T ) is a Littlewood-
Richardson skew row-strict composition tableau of shape rev(β)/rev(α) and
content λ.

Proof. Let T be a reverse Littlewood-Richardson skew row-strict compo-
sition tableau of shape β/α and content rev(λ). Then f(T ) has shape
rev(β)/rev(α). In T , the number of entries i is given by λn−i+1 since the
content of T is rev(λ). Thus, in f(T ), the number of entries i is given by λi,
so the content of f(T ) is λ. Conditions (1) and (3) for reverse Littlewood-
Richardson skew row-strict composition tableaux are true since we know
that f(T ) is an SSYRT. Therefore we must prove Condition (2); that is that
the column reading word of f(T ) is a lattice word.

Let col(T ) = w1w2 . . . wk. Then col(f(T )) = v1v2 . . . vk where vi =
n− wi + 1. Let v1 . . . , vj be a prefix of col(f(T )) and let xi be the number
of i’s in the prefix. Then n − i + 1 appears xi times in the corresponding
prefix w1 . . . wj in col(T ), and then, since col(T ) is a reverse regular lattice
word, n− i appears at most xi times in the prefix w1 . . . wj . Thus, there are
at most xi appearances of i+ 1 in v1 . . . vj . Therefore col(f(T )) is a lattice
word.

Finally, we consider the type A and B triples. Consider a type A or B
triple in T with entries a, b, c as arranged in Fig. 5.3. If c ≤ b < a, then the
corresponding triple in f(T ) has n− c+ 1 ≥ n− b+ 1 > n− a+ 1, and thus
satisfies the triple condition in Definition 5.5. Similarly, if b < a ≤ c in T ,
then n − b + 1 > n − a + 1 ≥ n − c + 1 in f(T ) and the triple condition is
satisfied.

We are now ready to prove Theorem 5.6.

Proof. Let λ be a partition and α a composition. Then Dβ
α,λ = C

rev(β)
rev(α),λ for

each β with α ⊆ β by Lemma 5.8. Thus,
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Rα · sλ = RSrev(α) · sλ
=
∑
rev(β)

C
rev(β)
rev(α),λRSrev(α)

=
∑
β

Dβ
α,λRβ.

By applying the reversing bijection f and the bijection in [4], we can
describe a bijection from pairs (U, S) where U is an SSYRT of shape α and
S is a row-strict semi-standard Young tableau of shape λt to a pair (V, T )
where V is a SSYRT of shape β and T is a Littlewood-Richardson skew
SSYRT of shape β/α and content λ. See figure Fig. 5.4 for an example of
the following procedure.

First, define Sλ to be the row-strict semi-standard Young tableau of
shape λt with all entries 1 in column 1, all entries 2 in column 2, etc. Map
the pair (S, Sλ) to a double word by placing the entries read by column, from
top to bottom, left to right, so that the entries from Sλ form the top word
and the entries of S form the bottom word. Then to construct V and T ,
start with U and a tableau of shape α filled with *’s. Insert the labels from
the bottom row of the double word into U in order from left to right. After
each insertion, add a cell to the star tableau in the location where a cell was
added to U . Fill this new cell with the entry in the top row corresponding
to the entry inserted into U . The result of the insertion into U is V and the
result of the insertion into the star tableau is T as shown in Fig. 5.4. The
equivalence of this bijection to the bijection in [4] follows immediately from
Lemmas 5.7 and 5.8.

5.2 A conjugation-like map for composition tableaux

As noted in Section 1, traditional notions of conjugation simply do not work
for composition tableaux. The result of reflecting a composition diagram
over the main diagonal might not be a composition diagram, so a new op-
eration is needed. In this section we describe an analog to the function φ
introduced in [16]. The function φ takes semi-standard reverse composition
tableaux (SSRCT) to SSRRT. Given a SSRCT T of shape α with λ(α) = λ,
φ(T ) is a SSRRT of shape γ with λ(γ) = λ′. That is, the composition γ has
the underlying partition λ′, the conjugate of λ. To construct φ(T ) column
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U = 2 3 4

2

1 2

1

, S = 2 3

2 3 4

1 2 3 5

, Sλ = 1 2

1 2 3

1 2 3 4

(S, Sλ) −→
(

1 1 1 2 2 2 3 3 4
2 2 1 3 3 2 4 3 5

)
V = 2 3 4

2

2

1 2 3 4 5

1 2 3

1 2 3

, T = ∗ ∗ ∗
∗
1

∗ ∗ 2 3 4

∗ 1 2

1 2 3

Figure 5.4: Using insertion to obtain L-R skew SSYRT.

by column, first take the largest entry in each column of T and arrange this
set of entries in weakly increasing order from top to bottom to obtain the
first column of φ(T ). Then take the next largest entry in each column of
T and insert the entries into the second column of φ(T ) by starting with
the largest entry and placing it in the highest position such that the entry
immediately to its left is strictly greater. Continue likewise. This procedure
is well-defined since the entries in a given column of T are distinct and the
rows of T are weakly increasing.

This map can be quickly modified to a function taking semi-standard
Young composition tableaux (SSYCT) as defined in [13] to SSYRT. We define
φ̃ : SSYCT→ SSYRT as follows: given a SSYCT U of shape α with λ(α) =
λ, φ̃(U) is a SSYRT of shape γ with λ(γ) = λ′. We construct φ̃(U) column
by column, by taking the smallest entry in each column of U and placing
these entries in weakly increasing order (from bottom to top) in the first
column of φ̃(U). To construct the second column, take the second smallest
entry of each column of U and insert these entries into the second column of
φ̃(U) starting with the smallest entry and placing it in the highest position
such that the entry immediately to its left is strictly smaller. Continue
likewise. Again, this map is well-defined because of the row and column
restrictions on U . An example of φ and φ̃ can be seen in Fig. 5.5.

Lemma 5.9. Let T be an SSRCT of shape α. Then (f ◦φ)(T ) = (φ̃◦f)(T ).
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T = 4 2 1

∗ ∗ 4 4

∗ ∗ 3

∗ 1

φ−→ φ(T ) = 4 3 2 1

4

∗ ∗ ∗ 4

∗ ∗ 1

f ↓ f ↓

f(T ) = U = 1 3 4

∗ ∗ 1 1

∗ ∗ 2

∗ 4

φ̃−→ φ̃(U) = 1 2 3 4

1

∗ ∗ ∗ 1

∗ ∗ 4

Figure 5.5: The result of φ and φ̃.

Proof. Note that the largest entry in a column of T will become the smallest
entry in that column of f(T ). Therefore the entries in the leftmost column
of (φ̃ ◦ f)(T ) are obtained by reversing the entries in the leftmost column of
φ(T ) in order since φ arranges these entries in weakly decreasing order and
φ̃ arranges these entries in weakly increasing order. Similarly, the entries
in the second column of φ(T ) are the reversals of the entries in the second
column of (φ̃ ◦ f)(T ) and since the maps φ and φ̃ involve the same process
with the roles of increasing and decreasing reversed, the second column of
(φ̃◦f)(T ) is obtained by reversing the entries in the second column of φ(T ).
Similarly, each column of (φ̃ ◦ f)(T ) is obtained by reversing the entries in
the corresponding column of φ(T ), which is precisely the procedure used in
the function f , so (f ◦ φ)(T ) = (φ̃ ◦ f)(T ).

This function φ̃ establishes that∑
α

λ(α)=λ

Sα =
∑
β

λ(β)=λ′

Rβ,

where Sα is the Young quasisymmetric Schur function defined in Appendix A.

6 Connections and Future Directions

The omega operator ω sends the Schur function sλ to the Schur function sλ′ ,
where λ′ is the transpose of the partition λ. This operator can be extended
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to quasisymmetric functions via the antipode map [14]. The Hopf algebra
QSym has antipode S defined by

S(Fα) = (−1)|α|Fw(α),

where w(α) is the composition corresponding to α̃, the set complement of
the set corresponding to α [14]. The omega operator on quasisymmetric
functions is defined by ω(Fα) = (−1)|α|S(Fα), meaning ω(Fα) = Fw(α).

This operator, applied to the Young row-strict quasisymmetric Schur
functions, mimics the conjugation appearing in the symmetric function case.
That is, since ω(sλ) = sλ′ , and sλ = s̃λ where s̃λ is the function gener-
ated by row-strict Young diagrams of shape λ, it is natural to expect that
the quasisymmetric refinement of the omega operator would send a Young
quasisymmetric Schur function to a Young row-strict quasisymmetric Schur
function, which is indeed the case.

Theorem 6.1. The Young quasisymmetric Schur functions are conjugate to
the Young row-strict quasisymmetric Schur functions in the following sense:

ω(Sα) = Rα.

Proof. Expand Sα in terms of the fundamental quasisymmetric functions
and apply the omega operator to obtain:

ω(Sα(x1, . . . , xn)) =
∑
β

dαβω(Fβ(x1, . . . , xn))

=
∑
β

dαβFrev(β̃)(x1, . . . , xn)

= Rα

Here, the first equation is derived from the expansion of the Young qua-
sisymmetric Schur functions in terms of the fundamental quasisymmetric
Schur functions [13]. The second equation is obtained by applying the qua-
sisymmetric extension of the omega operator to the fundamental quasisym-
metric functions appearing in the expansion of the Young quasisymmetric
Schur functions. The third equality is a direct consequence of the expan-
sion of the Young row-strict quasisymmetric Schur functions in terms of the
fundamental quasisymmetric functions.

As discussed in Section 3, the Young row-strict quasisymmetric Schur
functions can be obtained from the row-strict quasisymmetric Schur func-
tions in the same way that the Young quasisymmetric Schur functions are
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obtained from the quasisymmetric Schur functions. We use the Young ver-
sions rather than the version originally introduced in [16] since the gener-
ating diagrams for the Young version map more naturally to semi-standard
Young tableaux, whereas the original generating diagrams map to reverse
semi-standard Young tableaux. The quasisymmetric Schur functions can be
derived by summing Demazure atoms [9] over all weak compositions which
collapse to the same composition. The Demazure atoms are specializations
of nonsymmetric Macdonald polynomials to q = t = 0 [8, 15]. Although the
Young row-strict quasisymmetric functions are in fact a completely differ-
ent basis for quasisymmetric functions than the row-strict quasisymmetric
functions, they behave similarly and exhibit all of the same combinatorial
properties. It is natural to expect that the Young quasisymmetric Schur
functions can also be obtained as sums of specializations of a certain Mac-
donald polynomial variant, although the precise details of this derivation
have yet to be worked out.

It would be helpful to understand the Young row-strict quasisymmetric
Schur functions as characters of some representation. In [21] Tewari and
van Willigenburg develop a representation theoretical interpretation of the
quasisymmetric Schur functions QSα where

QSα =
∑

T∈SSRCT (α)

xT

is a sum over semistandard reverse column-strict composition tableaux (SS-
RCT). They show that there is a 0-Hecke module Sα whose quasisymmetric
characteristic is QSα. One future project is to identify the appropriate
0-Hecke module with quasisymmetric characteristic Rα.
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A The four basic types of composition tableaux

Object
Name

Function
Gener-
ated

Basic Properties

Semi-standard
reverse row-
strict compo-
sition tableau
(SSRRT)

RSα
Row-strict
quasisym-
metric
Schur
function

1. Diagram in English conven-
tion.

2. Row entries strictly decrease
left to right.

3. The leftmost column weakly
increases from top to bottom.

4. For cells arranged as in
Fig. A.1, if c < a, then c ≤ b.

Semi-standard
Young row-
strict compo-
sition tableau
(SSYRT)

Rα
Row-strict
Young
quasisym-
metric
Schur
function

1. Diagram in French convention.

2. Row entries strictly increase
left to right.

3. The leftmost column weakly
decreases from top to bottom.

4. For cells arranged as in
Fig. A.1, if a < c, then b ≤ c.

Semi-standard
reverse compo-
sition tableau
(SSRCT)

QSα
Quasisym-
metric
Schur
function

1. Diagram in English conven-
tion.

2. Row entries weakly decrease
left to right.

3. The leftmost column strictly
increases from top to bottom.

4. For cells arranged as in
Fig. A.1, if c ≤ a, then c < b.

Semi-standard
Young compo-
sition tableau
(SSYCT)

Sα
Young
quasisym-
metric
Schur
function

1. Diagram in French convention.

2. Row entries weakly increase
left to right.

3. The leftmost column strictly
decreases from top to bottom.

4. For cells arranged as in
Fig. A.1, if a ≤ c, then b < c.
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a b

c

Figure A.1: Triple configuration for composition tableaux.
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integrable modules of ĝlN . Ann. Comb. 4(3-4), 383–400 (2000). DOI
10.1007/PL00001287. URL http://dx.doi.org/10.1007/PL00001287.
Conference on Combinatorics and Physics (Los Alamos, NM, 1998)

37


	Marshall University
	Marshall Digital Scholar
	11-2015

	Skew row-strict quasisymmetric Schur functions
	Sarah K. Mason
	Elizabeth Niese
	Recommended Citation


	tmp.1552676510.pdf.oixjX

