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REVERSE MATHEMATICS AND PROPERTIES OF FINITE

CHARACTER

DAMIR D. DZHAFAROV AND CARL MUMMERT

Abstract. We study the reverse mathematics of the principle stating
that, for every property of finite character, every set has a maximal sub-
set satisfying the property. In the context of set theory, this variant of
Tukey’s lemma is equivalent to the axiom of choice. We study its be-
havior in the context of second-order arithmetic, where it applies to sets
of natural numbers only, and give a full characterization of its strength
in terms of the quantifier structure of the formula defining the property.
We then study the interaction between properties of finite character and
finitary closure operators, and the interaction between these properties
and a class of nondeterministic closure operators.
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1. Introduction

A formula ϕ with one free set variable is of finite character, and has the
finite character property, if ϕ(∅) holds and, for every set A, ϕ(A) holds if
and only if ϕ(F ) holds for every finite F ⊆ A. In this paper, we restrict
our attention to formulas of second-order arithmetic, and consider several
variants and restrictions of the principle FCP (Definition 2.1) which asserts
that for every formula of finite character, every subset of N has a maximal
subset satisfying that formula. Because the empty set satisfies any formula
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2 DAMIR D. DZHAFAROV AND CARL MUMMERT

of finite character, the soundness of this principle in second-order arithmetic
can be verified in ZFC by straightforward application of Zorn’s lemma. De-
tailed definitions of second-order arithmetic and the subsystems studed in
this paper are given by Simpson [4].

The principle CE (Definition 3.3) asserts that given sets A ⊆ B ⊆ N, a
formula ϕ of finite character and a finitary closure operator D, such that A
is a D-closed set satisfying the formula, there is a set X which is maximal
with respect to the conditions that A ⊆ X ⊆ B, ϕ(X) holds, and X is D-
closed. In the third section, we give a full characterization of the strength of
fragments of CE in terms of the complexity of the formulas of finite character
to which they apply.

We can further generalize CE by replacing the finitary closure operator
with a more general kind of operator which we name a nondeterministic clo-

sure operator. The corresponding principle, NCE (Definition 4.2), is studied
in the final section, where a full characterization of its strength is obtained.

We were led to study the reverse mathematics of FCP by our separate
work [1] on the principle FIP which states that every countable family of
subsets of N has a maximal subfamily with the finite intersection property.
All the principles studied there are consequences of appropriate restrictions
of FCP. Similarly, Propositions 3.7 and 4.4 below demonstrate how CE

and NCE can be used to prove facts about countable algebraic objects in
second-order arithmetic. In light of these applications, we find it worthwile
to have a complete understanding of the reverse mathematics strengths of
these principles.

Considering this paper together with our work on FIP gives a new example
of two principles, FCP and FIP, which are each equivalent to the axiom of
choice when formalized in set theory, but which have drastically different
strengths when formalized in second-order arithmetic. The axiom scheme
for FCP is equivalent to full comprehension in second-order arithmetic, while
FIP is weaker than ACA0 and incomparable with WKL0.

2. Properties of finite character

We begin with the study of various forms of the following principle.

Definition 2.1. The following scheme is defined in RCA0.

(FCP) For each L2 formula ϕ of finite character, which may have arbitrary
set parameters, every set A has a ⊆-maximal subset B such that ϕ(B) holds.

FCP is analogous to the set-theoretic principle M 7 in the catalog of Rubin
and Rubin [3], which is equivalent to the axiom of choice [3, p. 34 and
Theorem 4.3].

In order to better gauge the reverse mathematical strength of FCP, we
consider restrictions of the formulas to which it applies. As with other such
ramifications, we will primarily be interested in restrictions to classes in the
arithmetical and analytical hierarchies. In particular, for each i ∈ {0, 1} and
n ≥ 0, we make the following definitions:
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• Σi
n-FCP is the restriction of FCP to Σi

n formulas;
• Πi

n-FCP is the restriction of FCP to Πi
n formulas;

• ∆i
n-FCP is the scheme which says that for every Σi

n formula ϕ(X)
and every Πi

n formula ψ(X), if ϕ(X) is of finite character and

(∀X)[ϕ(X) ⇐⇒ ψ(X)],

then every set A has a ⊆-maximal set B such that ϕ(B) holds.

We also define QF-FCP to be the restriction of FCP to the class of quantifer-
free formulas without parameters.

The following proposition demonstrates two monotonicity properties of
formulas of finite character.

Proposition 2.2. Let ϕ(X) be a formula of finite character. The following

are provable in RCA0:

(1) if A ⊆ B and ϕ(B) holds then ϕ(A) holds;

(2) if A0 ⊆ A1 ⊆ A2 ⊆ · · · is a sequence of sets such that ϕ(Ai) holds

for each i ∈ N, and
⋃

i∈NAi exists, then ϕ(
⋃

i∈NAi) holds.

Proof. The proof of (1) is immediate from the definitions. For (2), the key
point is to show that if F is a finite subset of

⋃
i∈NAi then there is some

j ∈ N with F ⊆ Aj . This follows from induction on the Σ0
1 formula ψ(n, F ) ≡

(∃m)(∀i < n)(i ∈ F =⇒ i ∈ Am), in which F is a set parameter. �

Our first theorem in this section characterizes most of the above restric-
tions of FCP (see Corollary 2.5). We draw particular attention to part (2)
of the theorem, where Σ0

1 does not appear in the list of classes of formulas.
The reason behind this will be made apparent by Theorem 2.6.

Theorem 2.3. For i ∈ {0, 1} and n ≥ 1, let Γ be any of Πi
n, Σ

i
n, or ∆i

n.

(1) Γ-FCP is provable in Γ-CA0;

(2) If Γ is Π0
n, Π

1
n, Σ

1
n, or ∆1

n, then Γ-FCP implies Γ-CA0 over RCA0.

The proof of this theorem will make use of the following technical lemma,
which is needed only because there are no term-forming operations for sets
in the language L2 of second-order arithmetic. For example, there is no term
in L2 that takes a set X and a number n and returns X ∪Dn where, as in
the rest of this paper, Dn denotes the finite set with canonical index n, or
∅ if n is not a canonical index. The moral of the lemma is that such terms
can be interpreted into L2 in a natural way.

The coding of finite sets by their canonical indices can be formalized in
RCA0 in such a way that the predicate i ∈ Dn is defined by a formula
ρ(i, n) with only bounded quantifiers, and such that the set of canonical
indices is also definable by a bounded-quantifier formula [4, Theorem II.2.5].
Moreover, RCA0 proves that every finite set has a canonical index. We use
the notation Y = Dn to abbreviate the formula (∀i)[i ∈ Y ⇐⇒ ρ(i, n)],
along with similar notation for subsets of finite sets.
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Lemma 2.4. Let ϕ(X) be a formula with one free set variable. There is a

formula ϕ̂(x) with one free number variable such that RCA0 proves

(2.4.1) (∀A)(∀n)[A = Dn =⇒ (ϕ(A) ⇐⇒ ϕ̂(n))].

Moreover, we may take ϕ̂ to have the same complexities in the arithmetical

and analytic hierarchies as ϕ.

Proof. Let ρ(i, n) be the formula defining the relation i ∈ Dn, as discussed
above. We may assume ϕ is written in prenex normal form. Form ϕ̂(n) by
replacing each occurrence t ∈ X of ϕ, t a term, with the formula ρ(t, n).

Let ψ(X, Ȳ , m̄) be the quantifier-free matrix of ϕ, where Ȳ and m̄ are

sequences of variables that are quantified in ϕ. Similarly, let ψ̂(n, Ȳ , m̄) be
the matrix of ϕ̂. Fix any model M of RCA0 and fix n,A ∈ M such that
M |= A = Dn. A straightforward metainduction on the structure of ψ
proves that

M |= (∀Ȳ )(∀m̄)[ψ(A, Ȳ , m̄) ⇐⇒ ψ̂(n, Ȳ , m̄)].

The key point is that the atomic formulas in ψ(A, Ȳ , m̄) are the same as

those in ψ̂(n, Ȳ , m̄), with the exception of formulas of the form t ∈ A, which
have been replaced with the equivalent formulas of the form ρ(t, n).

A second metainduction on the quantifier structure of ϕ shows that we

may adjoin quantifiers to ψ and ψ̂ until we have obtained ϕ and ϕ̂, while
maintaining logical equivalence. Thus every model of RCA0 satisfies (2.4.1).

Because ρ has only bounded quantifiers, the substitution required to pass
from ϕ to ϕ̂ does not change the complexity of the formula. �

We shall sometimes identify a finite set with its canonical index. Thus,
if F is finite and n is its canonical index, we may write ϕ̂(F ) for ϕ̂(n).

Proof of Theorem 2.3. For (1), let ϕ(X) and A = {ai : i ∈ N} be an instance
of Γ-FCP. Define g : 2<N × N → {0, 1} by

g(τ, i) =

{
1 if ϕ̂({aj : τ(j) ↓= 1} ∪ {ai}) holds,

0 otherwise.

where ϕ̂ is as in the lemma. The function g exists by Γ comprehension.
By primitive recursion, there exists a function h : N → {0, 1} such that for
all i ∈ N, h(i) = 1 if and only if g(h ↾ i, i) = 1. For each i ∈ N, let
Bi = {aj : j < i ∧ h(j) = 1}. An induction on ϕ shows that ϕ(Bi) holds for
every i ∈ N.

Let B = {ai : h(i) = 1} =
⋃

i∈NBi. Because Proposition 2.2 is provable
in RCA0 and hence in Γ-CA0, it follows that ϕ(B) holds. By the same token,
if ϕ(B ∪ {ak}) holds for some k then so must ϕ(Bk ∪ {ak}), and therefore
ak ∈ Bk+1, which means that ak ∈ B. Therefore B is ⊆-maximal, and we
have shown that Γ-CA0 proves Γ-FCP.

For (2), we assume Γ is one of Π0
n, Π

1
n, or Σ

1
n; the proof for ∆

1
n is similar.

We work in RCA0 + Γ-FCP. Let ϕ(n) be a formula in Γ and let ψ(X)
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be the formula (∀n)[n ∈ X =⇒ ϕ(n)]. It is easily seen that ψ is of finite
character, and it belongs to Γ because Γ is closed under universal number
quantification. By Γ-FCP, N contains a ⊆-maximal subset B such that ψ(B)
holds. For any y, if y ∈ B then ϕ(y) holds. On the other hand, if ϕ(y) holds
then so does ψ(B ∪ {y}), so y must belong to B by maximality. Therefore
B = {y ∈ N : ϕ(y)}, and we have shown that Γ-FCP implies Γ-CA0. �

The corollary below summarizes the theorem as it applies to the various
classes of formulas we are interested in. Of special note is part (5), which
says that FCP itself (that is, FCP for arbitrary L2-formulas) is as strong as
any theorem of second-order arithmetic can be.

Corollary 2.5. The following are provable in RCA0:

(1) ∆0
1-FCP, Σ

0
0-FCP, and QF-FCP;

(2) for each n ≥ 1, ACA0 is equivalent to Π0
n-FCP;

(3) for each n ≥ 1, ∆1
n-CA0 is equivalent to ∆1

n-FCP;

(4) for each n ≥ 1, Π1
n-CA0 is equivalent to Π1

n-FCP and to Σ1
n-FCP;

(5) Z2 is equivalent to FCP.

The case of FCP for Σ0
1 formulas is anomalous. The proof of part (2)

of Theorem 2.3 does not go through for Σ0
1 because this class is not closed

under universal quantification. As the next theorem shows, this limitation
is quite significant. Intuitively, the proof uses the fact that a Σ0

1 formula ϕ
is continuous in the sense that if ϕ(X) holds then there is an N such that
ϕ(Y ) holds for any Y with X ∩ {0, . . . , N} = Y ∩ {0, . . . , N}.

Theorem 2.6. Σ0
1-FCP is provable in RCA0.

Proof. Let ϕ(X) be a Σ0
1 formula of finite character. We claim that there

exists some cϕ ∈ N such that for every set A, if A ∩ {0, . . . , cϕ} = ∅ then
ϕ(A) holds. To show this, put ϕ(X) in normal form, so that

ϕ(X) ≡ (∃m)ρ(X[m])

where ρ is Σ0
0. As ϕ(∅) holds, there is some c = cϕ such that ρ(∅[c]) holds.

Now let A be any set such that A ∩ {0, . . . , c} = ∅. Then ρ(A[c]) holds, so
ϕ(A) holds. This proves the claim.

Now fix any set A. By the claim, we know that ϕ(A−{0, . . . , cϕ}) holds.
We may use bounded Σ0

1 comprehension [4, Theorem II.3.9] to form the set
I of m such that Dm ⊆ {0, . . . , cϕ} and ϕ(Dm∪(A−{0, . . . , cϕ})) holds. We
may then choose m ∈ I such that Dm has maximal cardinality among the
sets with indices in I. It follows immediately that Dm ∪ (A−{0, . . . , cϕ}) is
a maximal subset of A satisfying ϕ. �

The above proof contains an implicit non-uniformity in choosing a fi-
nite set of maximal cardinality. The next proposition shows that this non-
uniformity is essential, by showing that a sequential form of Σ0

1-FCP is a
strictly stronger principle.
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Proposition 2.7. The following are equivalent over RCA0:

(1) ACA0;

(2) for every family A = 〈Ai : i ∈ N〉 of sets, and every Σ0
1 formula

ϕ(X,x) with one free set variable and one free number variable such

that for all i ∈ N, the formula ϕ(X, i) is of finite character, there

exists a family B = 〈Bi : i ∈ N〉 of sets such that for all i, Bi is a

⊆-maximal subset of Ai satisfying ϕ(X, i).

Proof. The forward implication follows by a straightforward modification
of the proof of Theorem 2.3. For the reversal, let a one-to-one function
f : N → N be given. For each i ∈ N, let Ai = {i}, and let ϕ(X,x) be the
formula

(∃y)[x ∈ X =⇒ f(y) = x].

Then, for each i, ϕ(X, i) has the finite character property, and for every
set S that contains i, ϕ(S, i) holds if and only if i ∈ range(f). Thus, if
B = 〈Bi : i ∈ N〉 is the subfamily obtained by applying part (2) to the
family A = 〈Ai : i ∈ N〉 and the formula ϕ(X,x), then

i ∈ range(f) ⇐⇒ Bi = {i} ⇐⇒ i ∈ Bi.

It follows that the range of f exists. �

Remark 2.8. Proposition 2.7 would not hold with the class of bounded-
quantifier formulas of finite character in place of the class of Σ0

1 such formu-
las, because in that case part (2) is provable in RCA0. Thus, in spite of the
similarity between the two classes suggested by the proof of Theorem 2.6,
they do not coincide.

3. Finitary closure operators

We can strengthen FCP by imposing additional requirements on the max-
imal set being constructed. In particular, we now consider requiring the
maximal set to satisfy a finitary closure property as well as a property of
finite character.

Definition 3.1. A finitary closure operator is a set of pairs 〈F, n〉 in which F
is (the canonical index for) a finite (possibly empty) subset of N and n ∈ N.
A set A ⊆ N is closed under a finitary closure operator D, or D-closed, if
for every 〈F, n〉 ∈ D, if F ⊆ A then n ∈ A.

This definition of a closure operator is not the standard set-theoretic defini-
tion presented by Rubin and Rubin [3, Definition 6.3]. However, it is easy
to see that for each operator of the one kind there is an operator of the
other such that the same sets are closed under both. Our definition has the
advantage of being readily formalizable in RCA0.

The following principle expresses the monotonicity of finitary closure op-
erators. The proof follows directly from definitions.
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Proposition 3.2. It can be proved in RCA0 that if D is a finitary closure

operator and A0 ⊆ A1 ⊆ A2 · · · is a sequence of sets such that
⋃

i∈NAi exists

and each Ai is D-closed, then
⋃

i∈NAi is D-closed.

The principle in the next definition is analogous to principle AL′ 3 of Rubin
and Rubin [3], which is equivalent to the axiom of choice in the context of
set theory [3, p. 96, and Theorems 6.4 and 6.5].

Definition 3.3. The following scheme is defined in RCA0.

(CE) If D is a finitary closure operator, ϕ is an L2 formula of finite character,
and A is any set, then every D-closed subset of A satisfying ϕ is contained
in a maximal such subset.

In the terminology of Rubin and Rubin [3], this is a “primed” statement,
meaning that it asserts the existence not merely of a maximal subset of
a given set, but the existence of a maximal extension of any given subset.
Primed versions of FCP and its restrictions can be formed, and are equivalent
to the unprimed versions over RCA0. By contrast, CE has only a primed
form. This is because if A is a set, ϕ is a formula of finite character, and D
is a finitary closure operator, A need not have any D-closed subset of which
ϕ holds. For example, suppose ϕ holds only of ∅, and D contains a pair of
the form 〈∅, a〉 for some a ∈ A.

This leads to the observation that the requirements in the CE scheme
that the maximal set must both be D-closed and satisfy a property of finite
character are, intuitively, in opposition to each other. Satisfying a finitary
closure property is a positive requirement, in the sense that forming the
closure of a set usually requires adding elements to the set. Satisfying a
property of finite character can be seen as a negative requirement in light
of part (1) of Proposition 2.2.

We consider restrictions of CE as we did restrictions of FCP above. By
analogy, if Γ is a class of formulas, we use the notation Γ-CE to denote the
restriction of CE to the formulas in Γ. We begin with the following analogue
of part (1) of Theorem 2.3 from the previous section.

Theorem 3.4. For i ∈ {0, 1} and n ≥ 1, let Γ be Πi
n, Σ

i
n, or ∆1

n. Then

Γ-CE is provable in Γ-CA0.

Proof. Let ϕ be a formula of finite character in Γ, which may have param-
eters, and let D be a finitary closure operator. Let A be any set and let C
be a D-closed subset of A such that ϕ(C) holds.

For any X ⊆ A, let clD(X) denote the D-closure of X. That is, clD(X) =⋃
i∈NXi, where X0 = X and for each i ∈ N, Xi+1 is the set of all n ∈ N

such that either n ∈ Xi or there is a finite set F ⊆ Xi such that 〈F, n〉 ∈ D.
Because we take D to be a set, clD(X) can be defined using a Σ0

1 formula
with parameter D. Define a formula ψ(k,X) by

ψ(k,X) ⇐⇒ (∀n)[(Dn ⊆ clD(X ∪Dk) =⇒ ϕ̂(n)]

∧ clD(X ∪Dk) ⊆ A,
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where ϕ̂ is as in Lemma 2.4. Note that ψ is arithmetical if Γ is Π0
n or Σ0

n,
and is in Γ otherwise.

Define a function f : N → {0, 1} inductively such that f(i) = 1 if and only
if ψ({j < i : f(j) = 1}∪{i}, C) holds. The characterization of the complex-
ity of ψ ensures that this f can be constructed using Γ comprehension, by
first forming the oracle {k : ψ(k,C)}.

Now, for each i ∈ N, let

Bi = clD(C ∪ {j < i : f(j) = 1}),

and let B =
⋃

i∈NBi. The construction of f ensures that ϕ(Bi) implies
ϕ(Bi+1) for all i ∈ N, and we have assumed that ϕ holds of B0 = clD(C) =
C. Therefore, an instance of induction shows that ϕ holds of Bi for all i ∈ N,
and thus also of B by Proposition 2.2. This also shows that B ⊆ A. Simi-
larly, because each Bi is D-closed, the formalized version of Proposition 3.2
implies B is D-closed.

Finally, we check that B is maximal. Suppose that H is a D-closed set
such that B ⊆ H ⊆ A and ϕ(H) holds. Fixing i ∈ H, because Bi ⊆ B ⊆ H
and H is D-closed, we have clD(Bi ∪ {i}) ⊆ H. Thus, ϕ(F ) holds for
every finite subset F of clD(Bi ∪ {i}), so by construction f(i) = 1 and
Bi+1 = clD(Bi ∪ {i}). Because Bi+1 ⊆ B, we conclude that i ∈ B. Thus
B = H, as desired. �

It follows that for most standard syntactical classes Γ, Γ-CE is equivalent
to Γ-FCP. Indeed, for any class Γ we have that Γ-CE implies Γ-FCP, because
any instance of the latter can be regarded as an instance of the former by
adding an empty finitary closure operator. Conversely, if Γ is Π0

n, Π
1
n, Σ

1
n,

or ∆1
n, then Γ-FCP is equivalent to Γ-CA0 by Theorem 2.3 (2), and hence

equivalent to Γ-CE. Thus, in particular, parts (2)–(5) of Corollary 2.5 hold
for CE in place of FCP, and the full scheme CE itself is equivalent to Z2.

The proof of the preceding theorem does not work for Γ = ∆0
1, because

then Γ-CA0 is just RCA0, and we need at least ACA0 to prove the existence
of the function f defined there (the formula ψ(σ,X) being arithmetical at
best). The next theorem shows that this cannot be avoided, even for a class
of considerably weaker formulas.

Theorem 3.5. QF-CE implies ACA0 over RCA0.

Proof. Assume a one-to-one function f : N → N is given. Let ϕ(X) be the
quantifier-free formula 0 /∈ X, which trivially has finite character, and let
〈pi : i ∈ N〉 be an enumeration of all primes. Let D be the finitary closure
operator consisting, for all i, n ∈ N, of all pairs of the form

• 〈{pn+1
i }, pn+2

i 〉;

• 〈{pn+2
i }, pn+1

i 〉;
• 〈{pn+1

i }, 0〉, if f(n) = i.

The set D exists by ∆0
1 comprehension relative to f and our enumeration of

primes.
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Note that ∅ is a D-closed subset of N and ϕ(∅) holds. Thus, we may
apply CE for quantifier-free formulas to obtain a maximal D-closed subset
B of N such that ϕ(B) holds. By definition of D, for every i ∈ N, B either
contains every positive power of pi or no positive power. Now if f(n) = i
for some n, then no positive power of pi can be in B, because otherwise
pn+1
i would necessarily be in B and hence so would 0. On the other hand, if

f(n) 6= i for all n then B ∪ {pn+1
i : n ∈ N} is D-closed and satisfies ϕ, so by

maximality pn+1
i must belong to B for every n. It follows that i ∈ range(f)

if and only if pi 6∈ B, so the range of f exists. �

The next corollary can be contrasted with 2.5 part (1) and Theorem 2.6
to illustrate a difference between CE from FCP in terms of some of their
weakest restrictions.

Corollary 3.6. The following are equivalent over RCA0:

(1) ACA0;

(2) Σ0
1-CE;

(3) Σ0
0-CE;

(4) QF-CE.

We conclude this section with one additional illustration of how formulas
of finite character can be used in conjunction with finitary closure operators.
Recall the following concepts from order theory:

• a countable join-semilattice is a countable poset 〈L,≤L〉 with a max-
imal element 1L and a join operation ∨L : L× L → L such that for
all a, b ∈ L, a ∨L b is the least upper bound of a and b;

• an ideal on a countable join-semilattice L is a subset I of L that is
downward closed under ≤L and closed under ∨L.

The principle in the following proposition is the countable analogue of a
variant of AL′ 1 in Rubin and Rubin [3]; compare with Proposition 4.4 below.
For more on the computability theory of ideals on lattices, see Turlington [5].

Proposition 3.7. Over RCA0, QF-CE implies that every proper ideal on a

countable join-semilattice extends to a maximal proper ideal.

Proof. Let L be a countable join-semilattice. Let ϕ be the formula 1 6∈ X,
and let D be the finitary closure operator consisting of all pairs of the form

• 〈{a, b}, c〉 where a, b ∈ L and c = a ∨ b;
• 〈{a}, b〉, where b ≤L a.

Because we define a join-semilattice to come with both the order relation
and the join operation, the set D is ∆0

0 with parameters, so RCA0 proves D
exists. It is immediate that a set X is closed under D if and only if X is an
ideal in L. �

We have not been able to prove a reversal corresponding to the previous
proposition.
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Question 3.8. What is the strength of the principle asserting that every
proper ideal on a countable join-semilattice extends to a maximal proper
ideal?

This question is further motivated by work of Turlington [5, Theorem 2.4.11]
on the similar problem of constructing prime ideals on computable lattices.
However, because a maximal ideal on a countable lattice need not be a prime
ideal, Turlington’s results do not directly resolve our question.

4. Nondeterministic finitary closure operators

It appears that the underlying reason that the restriction of CE to arith-
metical formulas is provable in ACA0 (and more generally, why Γ-CE is
provable in Γ-CA0 if Γ is as in Theorem 3.4) is that our definition of finitary
closure operator is very constraining. Intuitively, ifD is such an operator and
ϕ is an arithmetical formula, and we seek to extend some D-closed subset B
satisfying ϕ to a maximal such subset, we can focus largely on ensuring that
ϕ holds. Achieving closure under D is relatively straightforward, because at
each stage we only need to search through all finite subsets F of our current
extension, and then adjoin all n such that 〈F, n〉 ∈ D. This closure process
becomes far less trivial if we are given a choice of which elements to adjoin.
We now consider the case when each finite subset F can be associated with
a possibly infinite set of numbers from which we must choose at least one
to adjoin. Intuitively, this change adds an aspect of dependent choice when
we wish to form the closure of a set. We will show that this weaker notion
of closure operator leads to a strictly stronger analogue of CE.

Definition 4.1. A nondeterministic finitary closure operator is a sequence
of sets of the form 〈F, S〉 where F is (the canonical index for) a finite (pos-
sibly empty) subset of N and S is a nonempty subset of N. A set A ⊆ N is
closed under a nondeterministic finitary closure operator N , or N -closed, if
for each 〈F, S〉 in N , if F ⊆ A then A ∩ S 6= ∅.

Note that if D is a deterministic finitary closure operator, that is, a
finitary closure operator in the stronger sense of the previous section, then
for any set A there is a unique ⊆-minimal D-closed set extending A. This
is not true for nondeterministic finitary closure operators. For example, let
N be the operator such that 〈∅,N〉 ∈ N and, for each i ∈ N and each j > i,
〈{i}, {j}〉 ∈ N . Then any N -closed set extending ∅ will be of the form
{i ∈ N : i ≥ k} for some k, and any set of this form is N -closed. Thus there
is no ⊆-minimal N -closed set.

In this section we study the following nondeterministic version of CE.

Definition 4.2. The following scheme is defined in RCA0.

(NCE) If N is a nondeterministic closure operator, ϕ is an L2 formula of
finite character, and A is any set, then every N -closed subset of A satisfying
ϕ is contained in a maximal such subset.
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Because the union of a chain of N -closed sets is again N -closed, NCE can
be proved in set theory using Zorn’s lemma. Restrictions of NCE to various
syntactical classes of formulas are defined as for CE and FCP.

Remark 4.3. We might expect to be able to prove NCE from CE by suitably
transforming a given nondeterministic finitary closure operator N into a
deterministic one. For instance, we could go through the members of N
one by one, and for each such member 〈F, S〉 add 〈F, n〉 to D for some
n ∈ S (e.g., the least n). All D-closed sets would then indeed be N -closed.
The converse, however, would not necessarily be true, because a set could
have F as a subset for some 〈F, S〉 ∈ N , yet it could contain a different
n ∈ S than the one chosen in defining D. In particular, a maximal D-closed
subset of a given set might not be maximal among N -closed subsets. The
results of this section demonstrate that it is impossible, in general, to reduce
nondeterministic closure operators to deterministic ones in weak systems.

Recall that an ideal on a countable poset 〈P,≤P 〉 is a subset I of P
downward closed under ≤P and such that for all p, q ∈ I there is an r ∈ I
with p ≤P r and q ≤P r. The next proposition is similar to Proposition 3.7
above, which dealt with ideals on countable join-semilattices. In the proof
of that proposition, we defined a deterministic finitary closure operator D
in such a way that D-closed sets were closed under the join operation. For
this we relied on the fact that for every two elements in the semilattice there
is a unique element that is their join. The reason we need nondeterministic
finitary closure operators below is that, for ideals on countable posets, there
are no longer unique elements witnessing the relevant closure property.

Proposition 4.4. Over RCA0, QF-NCE implies that every ideal on a count-

able poset can be extended to a maximal ideal.

Proof. Let 〈P,≤P 〉 be a countable poset; without loss of generality we may

assume P is infinite. Form an extended poset P̂ by adjoining a new element
t to P and declaring q <

P̂
t for all q ∈ P . It follows immediately that the

ideals on P correspond exactly to the ideals of P̂ that do not contain t, and

each ideal on P̂ which is maximal among ideals not containing t corresponds
to a maximal ideal on P .

Fix an enumeration {pi : i ∈ N} of P̂ . We form a nondeterministic closure
operator N = 〈Ni : i ∈ N〉 such that, for each i ∈ N,

• if i = 2〈j, k〉 and pj ≤P̂
pk then Ni = 〈{pk}, {pj}〉;

• if i = 2〈j, k, l〉 + 1 and pj ≤P̂
pl and pk ≤

P̂
pl then

Ni = 〈{pj , pk}, {pn : (pj ≤P̂
pn) ∧ (pk ≤

P̂
pn)}〉;

• otherwise, Ni = 〈{pi}, {pi}〉.

This construction gives a quantifier-free definition of each Ni uniformly in i,

so RCA0 is able to construct N . Moreover, a subset of P̂ is N -closed if and
only if it is an ideal.
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Let ϕ(X) be the formula t 6∈ X, which is of finite character. Fix an ideal

I ⊆ P . Viewing I as a subset of P̂ , we see that I is N -closed and ϕ(I) holds.

Thus, by QF-NCE, there is a maximalN -closed extension J ⊆ P̂ satisfying ϕ.
This immediately yields a maximal ideal on P extending I. �

Mummert [2, Theorem 2.4] showed that the proposition that every ideal
on a countable poset extends to a maximal ideal is equivalent to Π1

1-CA0 over
RCA0, which leads to the following corollary. This contrasts sharply with
Theorem 3.4, which showed that CE for arithmetical formulas is provable in
ACA0.

Corollary 4.5. QF-NCE implies Π1
1-CA0 over RCA0.

We will state the precise strength of QF-NCE in Corollary 4.7 below. We
must first prove the following upper bound. The proof uses a technique
involving countable coded β-models, parallel to Lemma 2.4 of Mummert [2].
In ACA0, a countable coded β-model is defined as a sequence M = 〈Mi : i ∈
N〉 of subsets of N such that for every Σ1

1 formula ϕ with parameters from M ,
ϕ holds if and only if M |= ϕ. Π1

1-CA0 proves that every set is included in
some countable coded β-model. Complete information on countable coded
β-models is given by Simpson [4, Section VII.2].

Theorem 4.6. Σ1
1-NCE is provable in Π1

1-CA0.

Proof. Let ϕ be a Σ1
1 formula of finite character (possibly with parameters)

and let N be a nondeterministic closure operator. Let A be any set and let
C be an N -closed subset of A such that ϕ(C) holds.

Let M = 〈Mi : i ∈ N〉 be a countable coded β-model containing A, C,
N , and any parameters of ϕ. Using Π1

1 comprehension, we may form the set
{i : M |= ϕ(Mi)}.

Working outside M , we build an increasing sequence 〈Bi : i ∈ N〉 of N -
closed extensions of C. Let B0 = C. Given i, ask whether there is a j such
that

• Mj is an N -closed subset of A;
• Bi ⊆Mj;
• i ∈Mj ;
• and ϕ(Mj) holds.

If there is, choose the least such j and let Bi+1 = Mj . Otherwise, let
Bi+1 = Bi. Finally, let B =

⋃
i∈NBi.

Because the inductive construction only asks arithmetical questions about
M , it can be carried out in Π1

1-CA0, and so Π1
1-CA0 proves that B exists.

Clearly C ⊆ B ⊆ A. An arithmetical induction shows that for all i ∈
N, ϕ(Bi) holds and Bi is N -closed. Therefore, the formalized version of
Proposition 2.2 shows that ϕ(B) holds, and the analogue of Proposition 3.2
for nondeterministic finitary closure operators shows that B is N -closed.
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Now suppose that H is an N -closed set such that B ⊆ H ⊆ A and ϕ(H)
holds. Fix i ∈ H. Because ϕ is Σ1

1, the property

(4.6.1) (∃X)[X is N -closed ∧Bi ⊆ X ⊆ A ∧ i ∈ X ∧ ϕ(X)]

is expressible by a Σ1
1 sentence with parameters from M , and H witnesses

that it is true. Thus, because M is a β-model, this sentence must be satisfied
by M , which means that some Mj must also witness it. The inductive
construction must therefore have selected such an Mj to be Bi+1, which
means i ∈ Bi+1 and hence i ∈ B. It follows that B is maximal. �

We can now characterize the strength of Σ1
1-NCE and its restrictions.

Corollary 4.7. For each n ≥ 1, the following are equivalent over RCA0:

(1) Π1
1-CA0;

(2) Σ1
1-NCE;

(3) Σ0
n-NCE;

(4) QF-NCE.

Proof. Theorem 4.6 shows that (1) implies (2), and it is obvious that (2)
implies (3) and (3) implies (4). Corollary 4.5 shows that (4) implies (1). �

Our final results characterize the strength of NCE for formulas higher in
the analytical hierarchy.

Theorem 4.8. For each n ≥ 1,

(1) Σ1
n-NCE and Π1

n-NCE are provable in Π1
n-CA0;

(2) ∆1
n-NCE is provable in ∆1

n-CA0.

Proof. We prove part (1), the proof of part (2) being similar. Let ϕ(X)
be a Σ1

n formula of finite character, respectively a Π1
n such formula. Let N

be a nondeterministic closure operator, let A be any set, and let C be an
N -closed subset of A such that ϕ(C) holds.

By Lemma 4.5, let ϕ̂ be a Σ1
n formula, respectively a Π1

n formula, such
that

(∀X)(∀n)[X = Dn =⇒ (ϕ(X) ⇐⇒ ϕ̂(n))].

We may use Π1
n comprehension to form the set W = {n : ϕ̂(n)}. Define

ψ(X) to be the arithmetical formula (∀n)[Dn ⊆ X =⇒ n ∈W ].
We claim that for every set X, ψ(X) holds if and only if ϕ(X) holds. The

definitions of W and ψ ensure that ψ(X) holds if and only if ϕ(Dn) holds
for every finite Dn ⊆ X, which is true if and only if ϕ(X) holds because ϕ
has finite character. This establishes the claim.

By the claim, ψ is a property of finite character and ψ(C) holds. Using
Σ1
1-NCE, which is provable in Π1

1-CA0 by Theorem 4.6 and thus is provable
in Π1

n-CA0, there is a maximal N -closed subset B of A extending C with
property ψ. Again by the claim, B is a maximal N -closed subset of A
extending B with property ϕ. �



14 DAMIR D. DZHAFAROV AND CARL MUMMERT

Corollary 4.9. The following are provable in RCA0:

(1) for each n ≥ 1, ∆1
n-CA0 is equivalent to ∆1

n-NCE;

(2) for each n ≥ 1, Π1
n-CA0 is equivalent to Π1

n-NCE and to Σ1
n-NCE;

(3) Z2 is equivelent to NCE.

Proof. The implications from ∆1
n-CA0, Π1

n-CA0, and Z2 follow by Theo-
rem 4.8. On the other hand, each restriction of NCE trivially implies the
corresponding restriction of FCP, so the reversals follow by Corollary 2.5. �

Remark 4.10. The characterizations in this section shed light on the role of
the closure operator in the principles CE and NCE. For n ≥ 1, we have shown
that Σ1

n-FCP, Σ
1
n-CE, and Σ1

n-NCE are all equivalent over RCA0. However,
QF-FCP is provable in RCA0, QF-CE is equvalent to ACA0 over RCA0, and
QF-NCE is equivalent to Π1

1-CA0 over RCA0. Thus the closure operators
in the stronger principles serve as a sort of replacement for arithmetical
quantification in the case of CE, and for Σ1

1 quantification in the case of NCE.
This allows these principles to have greater strength than might be suggested
by the property of finite character alone. At higher levels of the analytical
hierarchy, the principles become equivalent because the complexity of the
property of finite character overtakes the complexity of the closure notions.
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