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REVERSE MATHEMATICS AND UNIFORMITY IN

PROOFS WITHOUT EXCLUDED MIDDLE

JEFFRY L. HIRST AND CARL MUMMERT

Abstract. We show that when certain statements are provable in sub-
systems of constructive analysis using intuitionistic predicate calculus,
related sequential statements are provable in weak classical subsystems.
In particular, if a Π1

2 sentence of a certain form is provable using E-HAω

along with the axiom of choice and an independence of premise principle,
the sequential form of the statement is provable in the classical system
RCA. We obtain this and similar results using applications of modified
realizability and the Dialectica interpretation. These results allow us
to use techniques of classical reverse mathematics to demonstrate the
unprovability of several mathematical principles in subsystems of con-
structive analysis.

1. Introduction

We study the relationship between systems of intuitionistic arithmetic in
all finite types (without the law of the excluded middle) and weak subsys-
tems of classical second order arithmetic. Our theorems give precise ex-
pressions of the informal idea that if a sentence ∀X ∃Y Φ(X,Y ) is provable
without the law of the excluded middle, then the proof should be sufficiently
direct that the stronger sequential form

∀〈Xn | n ∈ N〉 ∃〈Yn | n ∈ N〉 ∀nΦ(Xn, Yn)

is provable in a weak subsystem of classical arithmetic. We call our theo-
rems “uniformization results” because the provability of the sequential form
demonstrates a kind of uniformity in the proof of the original sentence.

The subsystems of classical arithmetic of interest are RCA0, which is well-
known in Reverse Mathematics [12], and its extension RCA with additional
induction axioms. These systems are closely related to computable analysis.
In particular, both subsystems are satisfied in the model REC that has the
set ω of standard natural numbers as its first order part and the collection
of all computable subsets of ω as its second order part. When the conclu-
sions of our uniformization results are viewed as statements about REC,
they provide a link between constructive analysis and computable analysis.
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Moreover, because RCA0 is the base system most often employed in Reverse
Mathematics, our results also provide a link between the fields of Reverse
Mathematics and constructive analysis. Full definitions of the subsystems
of intuitionistic and classical arithmetic that we study are presented in sec-
tion 2.

In section 3, we prove uniformization results using modified realizability,
a well-known tool in proof theory. In particular, we show there is a system
I0 of intuitionistic arithmetic in all finite types such that whenever an ∀∃
statement of a certain syntactic form is provable in I0, its sequential form
is provable in RCA0 (Theorem 3.10). Moreover, the system I0 contains the
full scheme for the axiom of choice in all finite types, which is classically
much stronger than RCA0. We have attempted to make section 3 accessible
to a general reader who is familiar with mathematical logic but possibly
unfamiliar with modified realizability.

In section 4, we give several examples of theorems in classical mathematics
that are provable in RCA0 but not provable in I0. These examples demon-
strate empirically that the syntactic restrictions within our uniformization
theorems are not excessively tight. Moreover, our uniformization theorems
allow us to obtain these unprovability results simply by showing that the
sequential versions of the statements are unprovable in RCA0, which can be
done using classical techniques common in Reverse Mathematics. In this
way, we obtain results on unprovability in intuitionistic arithmetic solely
through a combination of our uniformization theorems and the study of
classical arithmetic. A reader who is willing to accept the results of sec-
tion 3 should be able to skim that section and then proceed directly to
section 4.

In section 5, we prove uniformization results for RCA0 and RCA using the
Dialectica interpretation of Gödel. These results allow us to add a Markov
principle to the system of intuitionistic arithmetic in exchange for shrinking
the class of formulas to which the theorems apply.

We would like to thank Jeremy Avigad and Paulo Oliva for helpful com-
ments on these results. We began this work during a summer school on
proof theory taught by Jeremy Avigad and Henry Towsner at Notre Dame
in 2005. Ulrich Kohlenbach generously provided some pivotal insight during
the workshop on Computability, Reverse Mathematics, and Combinatorics
at the Banff International Research Station in 2008, and much additional
assistance in later conversations.

2. Axiom systems

Our results make use of subsystems of intuitionistic and classical arith-
metic in all finite types. The definitions of these systems rely on the standard
type notation in which the type of a natural number is 0 and the type of a
function from objects of type ρ to objects of type τ is ρ → τ . For example,
the type of a function from numbers to numbers is 0 → 0. As is typical
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in the literature, we will use the types 1 and 0 → 0 interchangeably, essen-
tially identifying sets with their characteristic functions. We will often write
superscripts on quantified variables to indicate their type.

Full definitions of the following systems are given by Kohlenbach [8, sec-
tion 3.4].

Definition 2.1. The system Ê-HA
ω
↾ is a theory of intuitionistic arithmetic

in all finite types first defined by Feferman [2].

The language L(Ê-HA
ω
↾ ) includes the constant 0; the successor, addition,

and multiplication operations; terms for primitive recursion on variables
of type 0; and the projection and substitution combinators (often denoted
Πρ,τ and Σδ,ρ,τ [8]) which allow terms to be defined using λ abstraction. For

example, given x ∈ N and an argument list t, Ê-HA
ω
↾ includes a term for

λt.x, the constant function with value x.
The language includes equality as a primitive relation only for type 0

objects (natural numbers). Equality for higher types is defined pointwise in
terms of equality of lower types, using the following extensionality scheme

E : ∀xρ∀yρ∀zρ→τ (x =ρ y → z(x) =τ z(y)).

The axioms of Ê-HA
ω
↾ consist of this extensionality scheme, the basic

arithmetical axioms, the defining axioms for the term-forming operators,
and an axiom scheme for induction on quantifier-free formulas (which may
have parameters of arbitrary types).

Definition 2.2 (Troelstra [13, 1.6.12]). The subsystem E-HAω is an exten-

sion of Ê-HA
ω
↾ with additional terms and stronger induction axioms. Its

language contains additional term-forming recursors Rσ for all types σ. Its
new axioms include the definitions of these recursors and the full induction
scheme

IA : A(0) → (∀n(A(n) → A(n+ 1)) → ∀nA(n)),

in which A may have parameters of arbitrary types.

The following class of formulas will have an important role in our results.
These are, informally, the formulas that have no existential commitments in
intuitionistic systems.

Definition 2.3. A formula of L(Ê-HA
ω
↾ ) is ∃-free if it is built from prime

(that is, atomic) formulas using only universal quantification and the con-
nectives ∧ and →. Here the symbol ⊥ is treated as a prime formula, and
a negated formula ¬A is treated as an abbreviation for A → ⊥; thus ∃-free
formulas may include both ⊥ and ¬.

We will consider extensions of Ê-HA
ω
↾ and E-HAω that include additonal

axiom schemes. The following schemes have been discussed by Kohlen-
bach [8] and by Troelstra [13].
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Definition 2.4. The following axiom schemes are defined in L(E-HAω).

When we adjoin a scheme to Ê-HA
ω
↾ , we implicitly restrict it to L(Ê-HA

ω
↾ ).

The formulas in these schemes may have parameters of arbitrary types.

• Axiom of Choice. For any x and y of finite type,

AC : ∀x∃yA(x, y) → ∃Y ∀xA(x, Y (x)).

• Independence of premise for ∃-free formulas. For x of any finite
type, if A is ∃-free and does not contain x, then

IPω
ef : (A → ∃xB(x)) → ∃x(A → B(x)).

• Independence of premise for universal formulas. If A0 is quantifier
free, ∀x represents a block of universal quantifiers, and y is of any
type and is not free in ∀xA0(x), then

IPω
∀ : (∀xA0(x) → ∃yB(y)) → ∃y(∀xA0(x) → B(y)).

• Markov principle for quantifier-free formulas. If A0 is quantifier-
free and ∃x represents a block of existential quantifiers in any finite
type, then

Mω : ¬¬∃xA0(x) → ∃xA0(x).

2.1. Classical subsystems. The full scheme AC for the axiom of choice in
all finite types, which is commonly included in subsystems of intuitionistic
arithmetic, becomes extremely strong in the presence of the law of the ex-
cluded middle. For this reason, we will be interested in the restricted choice
scheme

QF-ACρ,τ : ∀xρ ∃yτA0(x, y) → ∃Y ρ→τ ∀xρA0(x, Y (x)),

where A0 is a quantifier-free formula that may have parameters.
We obtain subsystems of classical arithmetic by adjoining forms of this

scheme, along with the law of the excluded middle, to systems of intuition-
istic arithmetic. Because these systems include the law of the excluded
middle, they also include all of classical predicate calculus.

Definition 2.5. The system RCAω
0 consists of Ê-HA

ω
↾ plus QF-AC1,0 and the

law of the excluded middle.
The system RCAω consists of E-HAω (which includes full induction) plus

QF-AC1,0 and the law of the excluded middle.

We are also interested in the following second order restrictions of these

subsystems. Let Ê-HA
2

↾ represent the restriction of Ê-HA
ω
↾ to formulas in

which all variables are type 0 or 1, and let E-HA2 be the similar restriction
of E-HAω in which variables are limited to types 0 and 1 and the recursor
constants are limited to those of type 0.

Definition 2.6. The system RCA0 consists of Ê-HA
2

↾ plus QF-AC0,0 and the
law of the excluded middle.
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The system RCA consists of E-HA2 (which includes the full induction
scheme for formulas in its language) plus QF-AC0,0 and the law of the ex-
cluded middle.

The system RCA0 (and hence also RCAω
0 ) is able to prove the induction

scheme for Σ0
1 formulas using QF-AC0,0 and primitive recursion on variables

of type 0, as noted by Kohlenbach [7].
The following conservation results show that the second order subsystems

RCA and RCA0 have the same deductive strength for sentences in their
restricted languages as the corresponding higher-type systems RCAω and
RCAω

0 , respectively.

Theorem 2.7. [7, Proposition 3.1] For every sentence Φ in L(RCA0), if

RCAω
0 ⊢ Φ then RCA0 ⊢ Φ.

The proof of this theorem is based on a formalization of the extensional
model of the hereditarily continuous functionals (ECF), as presented in sec-
tion 2.6.5 of Troelstra [13]. The central notion is that continuous objects of
higher type can be encoded by lower type objects. For example, if α is a
functional of type 1 → 0 and α is continuous in the sense that the value of
α(X) depends only on a finite initial segment of the characteristic function
of X, then there is an associated function [5] of type 0 → 0 that encodes all
the information needed to calculate values of α. Generalizing this notion,
with each higher-type formula Φ we can associate a second order formula
ΦECF that encodes the same information. The proof sketch for the following
result indicates how this is applied to obtain conservation results.

Theorem 2.8. For each sentence Φ in L(RCA), if RCAω ⊢ Φ then RCA ⊢ Φ.

Proof. The proof proceeds in two steps. First, emulating section 2.6.5 and
Theorem 2.6.10 of Troelstra [13], show that if RCAω ⊢ Φ then RCA ⊢ ΦECF.
Second, following Theorem 2.6.12 of Troelstra [13], prove that if Φ is in the
language of RCA then RCA ⊢ Φ ↔ ΦECF. �

The classical axiomatization of RCA0, presented by Simpson [12], uses
the set-based language L2 with the membership relation symbol ∈, rather

than the language based on function application used in Ê-HA
ω
↾ . The sys-

tems defined above as RCA0 is sometimes denoted RCA2
0 to indicate it is a

restriction of RCAω
0 . As discussed by Kohlenbach [7], set-based RCA0 and

function-based RCA2
0 are each included in a canonical definitional extension

of the other, and the same holds for set-based RCA and function-based RCA2.
Throughout this paper, we use the functional variants of RCA0 and RCA for
convenience, knowing that our results apply equally to the traditionally ax-
iomatized systems.

3. Modified realizability

Our most broadly applicable uniformization theorems are proved by an
application of modified realizability, a technique introduced by Kreisel [9].



REVERSE MATHEMATICS AND UNIFORMITY IN PROOFS 6

Excellent expositions on modified realizability are given by Kohlenbach [8]
and Troelstra [13, 14]. Indeed, our proofs make use of only minute modifi-
cations of results stated in these sources.

Modified realizability is a scheme for matching each formula A with a for-
mula tmrA with the intended meaning “the sequence of terms t realizes A.”

Definition 3.1. Let A be a formula in L(E-HAω), and let x denote a possibly
empty tuple of terms whose variables do not appear free in A. The formula
xmrA is defined inductively as follows:

(1) xmrA is A, if x is empty and A is a prime formula.
(2) x, ymr(A ∧B) is xmrA ∧ ymrB.
(3) z0, x, ymr(A ∨B) is (z = 0 → xmrA) ∧ (z 6= 0 → ymrB).
(4) xmr(A → B) is ∀y(ymrA → xymrB).
(5) xmr(∀yρA(y)) is ∀yρ(xymrA(y)).
(6) zρ, xmr(∃yρA(y)) is xmrA(z).

Note that if A is a prime formula then A and tmrA are identical; this is
even true for ∃-free formulas if we ignore dummy quantifiers.

We prove each of our uniformization results in two steps. The first step
shows that whenever an ∀∃ statement is provable in a particular subsystem
of intuitionistic arithmetic, we can find a sequence of terms that realize
the statement. The second step shows that a classical subsystem is able
to leverage the terms in the realizer to prove the sequential version of the
original statement.

We begin with systems containing the full induction scheme. For the first
step, we require the following theorem.

Theorem 3.2 ([8, Theorem 5.8]). Let A be a formula in L(E-HAω). If

E-HAω + AC+ IPω
ef ⊢ A

then there is a tuple t of terms of L(E-HAω) such that E-HAω ⊢ tmrA.

For any formula A, E-HAω + AC+ IPω
ef is able to prove A ↔ ∃x(xmrA).

However, the deduction of A from (tmrA) directly in E-HAω is only possible
for some formulas.

Definition 3.3. Γ1 is the collection of formulas in L(E-HAω) defined induc-
tively as follows.

(1) All prime formulas are elements of Γ1.
(2) If A and B are in Γ1, then so are A ∧B, A ∨B, ∀xA, and ∃xA.
(3) If A is ∃-free and B is in Γ1, then (∃xA → B) is in Γ1, where ∃x
may represent a block of existential quantifiers.

The class Γ1 is sometimes defined in terms of “negative” formulas [13, Def-
inition 3.6.3], those which can be constructed from negated prime formulas
by means of ∀, ∧, →, and ⊥. In all the systems studied in this paper, every
∃-free formula is equivalent to the negative formula obtained by replacing
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each prime formula with its double negation. Thus the distinction between
negative and ∃-free will not be significant.

The next lemma is proved by Kohlenbach [8, Lemma 5.20] and by Troel-
stra [13, Lemma 3.6.5]

Lemma 3.4. For every formula A in L(E-HAω), if A is in Γ1, then E-HAω ⊢
(tmrA) → A.

Applying Theorem 3.2 and Lemma 3.4, we now prove the following term
extraction lemma, which is similar to the main theorem on term extrac-
tion via modified realizability (Theorem 5.13) of Kohlenbach [8]. Note that
∀x∃y A is in Γ1 if and only if A is in Γ1.

Lemma 3.5. Let ∀xρ ∃yτA(x, y) be a sentence of L(E-HAω) in Γ1, where ρ
and τ are arbitrary types. If

E-HAω + AC+ IPω
ef ⊢ ∀xρ ∃yτA(x, y),

then RCAω ⊢ ∀xρA(x, t(x)), where t is a suitable term of L(E-HAω).

Proof. Assume that E-HAω + AC + IPω
ef ⊢ ∀xρ∃yτA(x, y) where A(x, y) is

in Γ1. By Theorem 3.2, there is a tuple t of terms of L(E-HAω) such
that E-HAω proves tmr ∀xρ∃yτA(x, y). By clause (5) of Definition 3.1,
E-HAω ⊢ ∀xρ(t(x)mr ∃yτA(x, y)). By clause (6) of Definition 3.1, t has
the form t0, t1 and E-HAω ⊢ ∀xρ[t1(x)mrA(x, t0(x))]. Because A(x, y) is
in Γ1, Lemma 3.4 shows that E-HAω ⊢ ∀xρA(x, t0(x)). Because RCAω is an
extension of E-HAω, we see that RCAω ⊢ ∀xρA(x, t0(x)). �

We are now prepared to prove our first uniformization theorem.

Theorem 3.6. Let ∀x∃yA(x, y) be a sentence of L(E-HAω) in Γ1. If

E-HAω + AC+ IPω
ef ⊢ ∀x∃y A(x, y),

then

RCAω ⊢ ∀〈xn | n ∈ N〉 ∃〈yn | n ∈ N〉 ∀nA(xn, yn).

Furthermore, if x and y are both type 1 (set) variables, and the formula

∀x∃yA(x, y) is in L(RCA), then RCAω may be replaced by RCA in the im-

plication.

Proof. Assume that E-HAω + AC + IPω
ef ⊢ ∀xρ∃yτA(x, y). We may apply

Lemma 3.5 to extract the term t such that RCAω ⊢ ∀xρA(x, t(x)). Working
in RCAω, fix any sequence 〈xn | n ∈ N〉. This sequence is a function of type
0 → ρ, so by λ abstraction we can construct a function of type 0 → τ defined
by λn.t(xn). Taking 〈yn | n ∈ N〉 to be this sequence, we obtain ∀nA(xn, yn).
The final sentence of the theorem follows immediately from the fact that
RCAω is a conservative extension of RCA for formulas in L(RCA). �

We now turn to a variation of Theorem 3.6 that replaces E-HAω and

RCAω with Ê-HA
ω
↾ and RCAω

0 , respectively. Lemmas 3.7 and 3.8 are proved
by imitating the proofs of Theorem 3.2 and Lemma 3.4, respectively, as
described in the first paragraph of section 5.2 of Kohlenbach [8].
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Lemma 3.7. Let A be a formula in L(Ê-HA
ω
↾ ). If Ê-HA

ω
↾ + AC+ IPω

ef ⊢ A,

then there is a tuple t of terms of L(Ê-HA
ω
↾ ) such that Ê-HA

ω
↾ ⊢ tmrA.

Lemma 3.8. Let A be a formula of L(Ê-HA
ω
↾ ). If A is in Γ1, then Ê-HA

ω
↾ ⊢

(tmrA) → A.

Lemma 3.9. Let ∀xρ ∃yτA(x, y) be a sentence of L(Ê-HA
ω
↾ ) in Γ1, where ρ

and τ are arbitrary types. If

Ê-HA
ω
↾ + AC+ IPω

ef ⊢ ∀xρ∃yτA(x, y),

then RCAω
0 ⊢ ∀xρA(x, t(x)), where t is a suitable term of L(Ê-HA

ω
↾ ).

Proof. Imitate the proof of Lemma 3.5, substituting Lemma 3.7 for Theo-
rem 3.2 and Lemma 3.8 for Lemma 3.4. �

We now obtain our second uniformization theorem. This is the theorem
discussed in the introduction, where I0 refers to the theory Ê-HA

ω
↾ +AC+IPω

ef .

Theorem 3.10. Let ∀x∃yA(x, y) be a sentence of L(Ê-HA
ω
↾ ) in Γ1. If

Ê-HA
ω
↾ + AC+ IPω

ef ⊢ ∀x∃y A(x, y),

then

RCAω
0 ⊢ ∀〈xn | n ∈ N〉 ∃〈yn | n ∈ N〉 ∀nA(xn, yn).

Furthermore, if x and y are both type 1 (set) variables, and the formula

∀x∃yA(x, y) is in L(RCA0), then RCAω
0 may be replaced by RCA0 in the

implication.

The proof is parallel to that of Theorem 3.6, which did not make use of in-
duction or recursors on higher types. Theorem 2.7 serves as the conservation
result to prove the final claim.

4. Unprovability results

We now demonstrate several theorems of core mathematics which are
provable in RCA0 but have sequential versions that are not provable in RCA.
In light of Theorem 3.6, such theorems are not provable in E-HAω+AC+IPω

ef .
Where possible, we carry out proofs using restricted induction, as this gives
additional information on the proof-theoretic strength of the principles being
studied. The terminology in the following theorem is well known; we give
formal definitions as needed later in the section.

Theorem 4.1. Each of the following statements is provable in RCA0 but

not provable in E-HAω + AC+ IPω
ef.

(1) Every 2× 2 matrix has a Jordan decomposition.

(2) Every quickly converging Cauchy sequence of rational numbers can

be converted to a Dedekind cut representing the same real number.

(3) Every enumerated filter on a countable poset can be extended to an

unbounded enumerated filter.
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There are many other statements that are provable in RCA0 but not
E-HAω + AC + IPω

ef ; we have chosen these three to illustrate the what we
believe to be the ubiquity of this phenomenon in various branches of core
mathematics.

We will show that each of the statements (4.1.1)–(4.1.3) is unprovable in
E-HAω +AC+ IPω

ef by noting that each statement is in Γ1 and showing that
the sequential form of each statement implies a strong comprehension axiom
over RCA0. Because these strong comprehension axioms are not provable
even with the added induction strength of RCA, we may apply Theorem 3.6
to obtain the desired results. The stronger comprehension axioms include
weak König’s lemma and the arithmetical comprehension scheme, which are
discussed thoroughly by Simpson [12].

We begin with statement (4.1.1). We consider only finite square matri-
ces whose entries are complex numbers represented by quickly converging
Cauchy sequences. In RCA0, we say that a matrix M has a Jordan decompo-

sition if there are matrices (U, J) such that M = UJU−1 and J is a matrix
consisting of Jordan blocks. We call J the Jordan canonical form of M . The
fundamental definitions and theorems regarding the Jordan canonical form
are presented by Halmos [3, Section 58]. Careful formalization of (4.1.1)
shows that this principle can be expressed by a Π1

2 formula in Γ1; the key
point is that the assumptions on M , U , J , and U−1 can be expressed using
only equality of real numbers, which requires only universal quantification.

Lemma 4.2. RCA0 proves that every 2 × 2 matrix has a Jordan decompo-

sition.

Proof. Let M be a 2 × 2 matrix. RCA0 proves that the eigenvalues of M
exist and that for each eigenvalue there is an eigenvector. (Compare Exer-
cise II.4.11 of Simpson [12], which notes that the basics of linear algebra,
including fundamental properties of Gaussian elimination, are provable in
RCA0.) If the eigenvalues of M are distinct, then the Jordan decomposition
is trivial to compute from the eigenvalues and eigenvectors. If there is a
unique eigenvalue and there are two linearly independent eigenvectors then
the Jordan decomposition is similarly trivial to compute.

Suppose that M has a unique eigenvalue λ but not two linearly indepen-
dent eigenvectors. Let u be any eigenvector and let {u, v} be a basis. It
follows that (M − λI)v = au + bv is nonzero. Now (M − λI)(au + bv) =
b(M − λI)v, because u is an eigenvector of M with eigenvalue λ. This
shows (M − λI) has eigenvalue b, which can only happen if b = 0, that is,
if (M − λI)v is a scalar multiple of u. Thus {u, v} is a chain of generalized
eigenvectors of M ; the Jordan decomposition can be computed directly from
this chain. �

It is not difficult to see that the previous proof makes use of the law of
the excluded middle.
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Remark 4.3. Proofs similar to that of Lemma 4.2 can be used to show that
for each standard natural number n the principle that every n × n matrix
has a Jordan decomposition is provable in RCA0. We do not know whether
the principle that every finite matrix has a Jordan decomposition is provable
in RCA0.

The next lemma is foreshadowed by previous research. It is well known
that the function that sends a matrix to its Jordan decomposition is dis-
continuous. Kohlenbach [7] has shown that, over the extension RCAω

0 of
RCA0 to all finite types, the existence of a higher-type object encoding a
non-sequentially-continuous real-valued function implies the principle ∃2.
In turn, RCAω +∃2 proves every instance of the arithmetical comprehension
scheme.

Lemma 4.4. The following principle implies arithmetical comprehension

over RCA0 (and hence over RCA). For every sequence 〈Mi | i ∈ N〉 of 2× 2
real matrices, such that each matrix Mi has only real eigenvalues, there are

sequences 〈Ui | i ∈ N〉 and 〈Ji | i ∈ N〉 such that (Ui, Ji) is a Jordan

decomposition of Mi for all i ∈ N.

Proof. We first demonstrate a concrete example of the discontinuity of the
Jordan form. For any real z, let M(z) denote the matrix

M(z) =

(

1 0
z 1

)

.

The matrix M(0) is the identity matrix, and so is its Jordan canonical form.
If z 6= 0 then M(z) has the following Jordan decomposition:

M(z) =

(

1 0
z 1

)

=

(

0 1
z 0

)(

1 1
0 1

)(

0 1
z 0

)−1

.

The crucial fact is that the entry in the upper-right-hand corner of the
Jordan canonical form of M(z) is 0 if z = 0 and 1 if z 6= 0.

Let h be an arbitrary function from N to N. We will assume the principle
of the theorem and show that the range of h exists; this is sufficient to
establish the desired result. It is well known that RCA0 can construct a
function n 7→ zn that assigns each n a quickly converging Cauchy sequence
zn such that, for all n, zn = 0 if and only n is not in the range of h. Form
a sequence of matrices 〈M(zn) | n ∈ N〉; according to the principle, there
is an associated sequence of Jordan canonical forms. The upper-right-hand
entry of each of these canonical forms is either 0 or 1, and it is possible to
effectively decide between these two cases. Thus, in RCA0, we may form the
range of h using the sequence of Jordan canonical forms as a parameter. �

We now turn to statement (4.1.2). Recall that the standard formaliza-
tion of the real numbers in RCA0, as described by Simpson [12], makes use
of quickly converging Cauchy sequences of rationals. Alternative formaliza-
tions of the real numbers may be considered, however. We define a Dedekind
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cut to be a subset Y of the rational numbers such that both Y and Q \ Y
are nonempty, and if p ∈ Y and q < p then q ∈ Y . We say that a Dedekind
cut Y is equivalent to a quickly converging Cauchy sequence 〈ai | i ∈ N〉 if
any only if the equivalence

q ∈ Y ⇔ q ≤ lim
i→∞

ai

holds for every rational number q. Formalization of (4.1.2) shows that it is
in Γ1.

Hirst [4] has proved the following results that relate Cauchy sequences
with Dedekind cuts. Together with Theorem 3.6, these results show that
statement (4.1.2) is provable in RCA0 but not E-HAω + AC+ IPω

ef .

Lemma 4.5 (Hirst [4, Corollary 4]). The following is provable in RCA0. For

each quickly converging Cauchy sequence x there is an equivalent Dedekind

cut.

Lemma 4.6 (Hirst [4, Corollary 9]). The following principle is equivalent to

weak König’s lemma over RCA0 (and hence over RCA). For each sequence

〈Xi | i ∈ N〉 of quickly converging Cauchy sequences there is a sequence

〈Yi | i ∈ N〉 of Dedekind cuts such that Xi is equivalent to Yi for each i ∈ N.

Statement (4.1.3), which is our final application of Theorem 3.6, is re-
lated to countable posets. In RCA0, we define a countable poset to be a set
P ⊆ N with a coded binary relation � that is reflexive, antisymmetric, and
transitive. A function f : N → P is called an enumerated filter if for every
i, j ∈ N there is a k ∈ N such that f(k) � f(i) and f(k) � f(j), and for
every q ∈ P if there is an i ∈ N such that f(i) � q then there is a k ∈ N
such that f(k) = q. An enumerated filter is called unbounded if there is
no q ∈ P such that q ≺ f(i) for all i ∈ N. An enumerated filter f extends

a filter g if the range of g (viewed as a function) is a subset of the range
of f . If we modify the usual definition of an enumerated filter to include an
auxiliary function h : N2 → N such that for all i and j, f(h(i, j)) � f(i) and
f(h(i, j)) � f(j), then (4.1.3) is in Γ1.

Mummert has proved the following two lemmas about extending filters
to unbounded filters (see Lempp and Mummert [10] and the remarks after
Lemma 4.1.1 of Mummert [11]). These lemmas show that (4.1.3) is provable
in RCA0 but not E-HAω + AC+ IPω

ef .

Lemma 4.7 (Lempp and Mummert [10, Theorem 3.5]). RCA0 proves that

any enumerated filter on a countable poset can be extended to an unbounded

enumerated filter.

Lemma 4.8 (Lempp and Mummert [10, Theorem 3.6]). The following state-
ment is equivalent to arithmetical comprehension over RCA0 (and hence over

RCA). Given a sequence 〈Pi | i ∈ N〉 of countable posets and a sequence

〈fi | i ∈ N〉 such that fi is an enumerated filter on Pi for each i ∈ N, there
is a sequence 〈gi | i ∈ N〉 such that, for each i ∈ N, gi is an unbounded

enumerated filter on Pi extending fi.



REVERSE MATHEMATICS AND UNIFORMITY IN PROOFS 12

We close this section by noting that the proof-theoretic results of sec-
tion 3 are proved by finitistic methods. Consequently, constructivists might
accept arguments like those presented here to establish the non-provability
of certain theorems from systems of intuitionistic arithmetic.

5. The Dialectica interpretation

In the proofs of section 3, applications of Gödel’s Dialectica interpretation
can replace the applications of modified realizability. One advantage of
this substitution is that the constructive axiom system can be expanded
to include the scheme Mω, which formalizes a restriction of the Markov
principle.

This gain has associated costs. First, the class of formulas for which
the uniformization results hold is restricted from Γ1 to the smaller class
Γ2 defined below. Second, the independence of premise principle IPω

ef is
replaced with the weaker principle IPω

∀
. Finally, the extensionality scheme E

is replaced with a weaker rule of inference

QF-ER : From A0 → s =ρ t deduce A0 → r[s/xρ] =τ r[t/xρ],

where A0 is quantifier free and r[s/xρ] denotes the result of replacing the
variable x of type ρ by the term s of type ρ in the term r of type τ . We

denote the systems based on this rule of inference as ŴE-HA
ω
↾ and WE-HAω.

Extended discussions of Gödel’s Dialectica interpretation are given by
Avigad and Feferman [1], Kohlenbach [8], and Troelstra [13]. The interpre-
tation assigns to each formula A a formula AD of the form ∃x∀y AD, where
AD is quantifier free and each quantifier may represent a block of quantifiers
of the same kind. The blocks of quantifiers in AD may include variables of
any finite type.

Definition 5.1. We follow Avigad and Feferman [1] in defining the Di-

alectica interpretation inductively via the following six clauses, in which
AD = ∃x∀y AD and BD = ∃u∀v BD.

(1) If A a prime formula then x and y are both empty and AD =
AD = A.
(2) (A ∧B)D = ∃x∃u∀y∀v (AD ∧BD).
(3) (A ∨B)D = ∃z∃x∃u∀y∀v ((z = 0 ∧AD) ∨ (z = 1 ∧BD)).
(4) (∀z A(z))D = ∃X∀z∀y AD(X(z), y, z).
(5) (∃z A(z))D = ∃z∃x∀yAD(x, y, z).
(6) (A → B)D = ∃U∃Y ∀x∀v (AD(x, Y (x, v)) → BD(U(x), v)).

A negated formula ¬A is treated as an abbreviation of A → ⊥.

We begin our derivation of the uniformization results with a soundness
theorem of Gödel that is analogous to Theorem 3.2. A detailed proof is
given by Kohlenbach [8, Theorem 8.6].

Theorem 5.2. Let A be a formula in L(WE-HAω). If

WE-HAω + AC+ IPω
∀ +Mω ⊢ ∀x∃yA(x, y),
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then WE-HAω ⊢ ∀xAD(x, t(x)), where t is a suitable term of WE-HAω.

To prove our uniformization result, we will need to convert AD back
to A. Unfortunately, RCAω can only prove AD → A for certain formulas.
The class Γ2, as found in (for example) Definition 8.10 of Kohlenbach [8], is
a subset of these formulas.

Definition 5.3. Γ2 is the collection of formulas in L(WE-HAω) defined
inductively as follows.

(1) All prime formulas are elements of Γ2.
(2) If A and B are in Γ2, then so are A ∧B, A ∨B, ∀xA, and ∃xA.
(3) If A is purely universal and B ∈ Γ2, then (∃xA → B) ∈ Γ2, where
∃x may represent a block of existential quantifiers.

Kohlenbach [8, Lemma 8.11] states the following result forWE-HAω. Since
RCAω is an extension ofWE-HAω, this suffices for the proof of the uniformiza-
tion result, where it acts as an analog of Lemma 3.4.

Lemma 5.4. Let A be a formula of L(WE-HAω) in Γ2. Then WE-HAω ⊢

AD → A. This result also holds for ŴE-HA
ω
↾ for formulas in L(ŴE-HA

ω
↾ ).

Proof. The proof is carried out by an external induction on formula com-
plexity with cases based on the clauses in the definition of Γ2. For details,
see the proof of part (iii) of Lemma 3.6.5 in Troelstra [13]. The proof of
each clause depends only on the definition of the Dialectica interpretation
and intuitionistic predicate calculus. Consequently, the same argument can

be carried out in ŴE-HA
ω
↾ . �

We can adapt our proof of Lemma 3.5 to obtain the following term ex-
traction result.

Lemma 5.5. Let ∀xρ∃yτA(x, y) be a sentence of L(WE-HAω) in Γ2 with

arbitrary types ρ and τ . If WE-HAω+AC+ IPω
∀
+Mω ⊢ ∀xρ∃yτA(x, y), then

RCAω ⊢ ∀xρA(x, t(x)), where t is a suitable term of WE-HAω.

Substituting Lemma 5.5 for the use of Lemma 3.5 in the proof of The-
orem 3.6, we obtain a proof of the Dialectica version of our uniformization
result.

Theorem 5.6. Let ∀x∃yA(x, y) be a sentence of L(WE-HAω) in Γ2. If

WE-HAω + AC+ IPω
∀ +Mω ⊢ ∀x∃y A(x, y),

then

RCAω ⊢ ∀〈xn | n ∈ N〉 ∃〈yn | n ∈ N〉∀nA(xn, yn).

Furthermore, if x and y are both type 1 (set) variables, and ∀x∃yA(x, y) is
in L(RCA), then RCAω may be replaced by RCA in the implication.

As was the case in section 3, these results can be recast in settings with
restricted induction. As noted by Kohlenbach [8, section 8.3], Theorem 5.2
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also holds with WE-HAω replaced by ŴE-HA
ω
↾ . Applying the restricted-

induction version of Lemma 5.4 leads to the restricted form of Lemma 5.5.
Combining this with the conservation result for RCAω

0 over RCA0 (Theo-
rem 2.7) leads to a proof of the following version of Theorem 5.6.

Theorem 5.7. Let ∀x∃yA(x, y) be a sentence of L(ŴE-HA
ω
↾ ) in Γ2. If

ŴE-HA
ω
↾ + AC+ IPω

∀ +Mω ⊢ ∀x∃y A(x, y),

then

RCAω
0 ⊢ ∀〈xn | n ∈ N〉 ∃〈yn | n ∈ N〉∀nA(xn, yn).

Furthermore, if x and y are both type 1 (set) variables, and ∀x∃yA(x, y) is
in L(RCA0), then RCAω

0 may be replaced by RCA0 in the implication.

Uniformization results obtained by the Dialectica interpretation are less
broadly applicable than those obtained by modified realizability, due to the
fact that Γ2 is a proper subset of Γ1. In practice, however, the restriction to
Γ2 may not be such a serious impediment. Examination of the statements
in Theorem 4.1 shows that the hypotheses in their implications are purely
universal, and consequently each of the statements is in Γ2. Thus an appli-
cation of Theorem 5.6 shows that Theorem 4.1 holds with E-HAω+AC+ IPω

ef

replaced by WE-HAω + AC+ IPω
∀
+Mω.

While Γ2 may not be the largest class of formulas for which an analog
of Theorem 5.7 can be obtained, any class substituted for Γ2 must omit
a substantial collection of formulas. For example, imitating the proof of

Kohlenbach [6], working in ŴE-HA
ω
↾ +AC one can deduce the Π0

n collection
schemes, also known as BΠ0

n. These schemes contain formulas that are not
provable in RCA0, and any class of formulas for which Theorem 5.7 holds
must omit such formulas. The same observation holds for Theorem 3.10.
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