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Abstract
Background: Diabetes mellitus is an important risk factor for increased vein graft failure after bypass surgery.
However, the cellular and molecular mechanism(s) underlying vessel attrition in this population remain largely
unexplored. Recent reports have suggested that the pathological remodeling of vein grafts may be mediated by
mechanically-induced activation of the mitogen activated protein kinase (MAPK) signaling pathways and the
MAPK-related induction of caspase-3 activity. On the basis of these findings, we hypothesized that diabetes may
be associated with alterations in how veins "sense" and "respond" to altered mechanical loading.

Methods: Inferior venae cavae (IVC) from the non-diabetic lean (LNZ) and the diabetic obese (OSXZ) Zucker
rats were isolated and incubated ex vivo under basal or pressurized conditions (120 mmHg). Protein expression,
basal activation and the ability of increased pressure to activate MAPK pathways and apoptosis-related signaling
was evaluated by immunoblot analysis.

Results: Immunoblot analyses revealed differential expression and activation of extracellular signal-regulated
kinase (ERK1/2), p38 and c-Jun NH2-terminal kinase (JNK) MAPKs in the IVCs of diabetic rats as compared to
non-diabetic rats. In particular, the expression and basal phosphorylation of p38β- (52.3 ± 11.8%; 45.8 ± 18.2%),
JNK 1- (21.5 ± 9.3%; 19.4 ± 11.6%) and JNK3-MAPK (16.8 ± 3.3%; 29.5 ± 17.6%) were significantly higher (P <
0.05) in the diabetic vena cava. An acute increase in IVC intraluminal pressure failed to increase the
phosphorylation of ERK1-, JNK-2, or any of the p38-MAPKs in the diabetic obese Zucker rats. Also, IVC loading
in the LNZ led to a 276.0 ± 36.0% and 85.8 ± 25.1% (P < 0.05) increase in the cleavage of caspase-3 and caspase-
9, respectively, with no effect on these molecules in the OSXZ. No differences were found in the regulation of
Bax and Bcl-2 between groups. However, basal expression levels of Akt, phospho-Akt, PTEN, phospho-PTEN and
phospho-Bad were higher in the diabetic venae cavae (P < 0.05).

Conclusion: These data suggest that diabetes is associated with significant alteration in the ability of the vena
cava to activate MAPK- and apoptosis-related signaling. Whether these changes are associated with the increased
vein graft attrition seen in the diabetic population will require further investigation.
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Background
Diabetic patients form a major subgroup of patients
undergoing cardiovascular interventional procedures.
Compared to non-diabetics, diabetics show a higher inci-
dence of vein graft neointimal hyperplasia along with sig-
nificantly higher graft failure rates [1]. The reasons
underlying this phenomenon are not entirely clear; how-
ever recent data suggest that diabetes influences endothe-
lial and smooth muscle cell (SMC) signaling and protein
expression [2]. The possible influence of such cellular
changes on vein graft failure is not well understood.

In addition to factors related to diabetes, mechanical stim-
uli may also play a role in causing graft failure. Upon
grafting, the vein segment is subjected to arterial blood
pressure and the cells residing in the vascular wall are sub-
jected to an increased stretch stimulus. Recent studies
have shown that the average circumferential tensile stress
in the graft wall can be increased by 140 times or higher
compared with that in a native vein [3-5]. Chronic eleva-
tions in the mechanical forces experienced by vessel walls
are thought to trigger adaptive processes leading to hyper-
plasia, hypertrophy, and inflammation [6]. In experimen-
tal vein grafts, mechanical stretch due to arterial pressures
is associated with rapid disruption and degradation of α-
actin filaments in SMCs along with SMC death within the
first day after vein grafting surgery [3,4]. Although not
fully understood, it is thought that this response is medi-
ated, at least in part, by the activation of the p38 mitogen
activated protein kinase (p38-MAPK) and the down-
stream apoptotic regulator caspase-3 [7].

The purpose of this study was to investigate whether infe-
rior venae cavae obtained from normal and diabetic rats
exhibit similar load-induced MAPK and apoptosis-related
signaling. We hypothesized that biochemical mechan-
otransduction is altered in diabetic veins, which if true,
may help elucidate the mechanism(s) by which diabetes
adversely influences vein graft failure. To test this hypoth-
esis, we examined the basal levels and arterial pressure-
induced phosphorylation (activation) of the extracellular
regulated protein kinase (ERK1/2)-, p38- and stress acti-
vated protein kinase (SAPK/JNK) MAPKs along with the
regulation of the apoptotic mediators caspase-9, caspase-
3, Bad, Bax and Bcl-2 in protein extracted from normal
and diabetic venae cavae. The results suggest the diabetes
is associated with alterations in the ability of the vena cava
to activate MAPK- and apoptosis-related proteins. Taken
together, these data may help explain why diabetes is
associated with an increased risk of vein graft failure.

Materials and methods
Animals
All procedures were performed in accordance with the
Guide for the Care and Use of Laboratory Animals as

approved by the Council of the American Physiological
Society and the Animal Use Review Board of Marshall
University. All procedures were conducted in strict accord-
ance with the Public Health Service policy on animal wel-
fare. Young (10 week, n = 12) male normal lean Zucker
(non-diabetic) and young (10 week, n = 12) male obese
syndrome-X Zucker (diabetic) rats were obtained from the
Charles River Laboratories and barrier housed one per
cage in an AAALAC approved vivarium. Housing condi-
tions consisted of a 12 H: 12 H dark-light cycle and tem-
perature was maintained at 22 ± 2°C. Animals were
provided food and water ad libitum. Rats were allowed to
recover from shipment for at least two weeks before exper-
imentation during which time the animals were carefully
observed and weighed weekly.

Materials
Antibodies against p-p44/p42 MAPK (Thr202/Tyr204)
(mitogen activated protein kinase ERK 1/2) [cat #9106],
p-p38 MAPK (Thr180/Tyr182) [cat #9216], p-SAPK/JNK
(Thr183/Tyr185) [cat #9251], p44/p42 MAPK (mitogen
activated protein kinase ERK 1/2) [cat #9102], p38 MAPK
α [cat #9218], SAPK/JNK [cat #9252], Akt [cat #9272], p-
Akt (Ser 308) [cat #9275 S], PTEN (phosphatase and
tensin homolog) [cat #9552], p-PTEN (Ser 308/Thr382-
383) [cat #9554S], caspase-3 [cat #9662], caspase-9 [cat
#9506], p-BAD (Ser 136) [cat #9295], mouse IgG, and
rabbit IgG antibodies were purchased from Cell Signaling
Technology (Beverly, MA). Antibody against p38β (N-14)
[sc-15918], Bax [sc-493], and Bcl-2 [sc-7382] antibodies
and anti-goat secondary antibodies were from Santa Cruz
Biotechnology (Santa Cruz, CA) were purchased from
Santa Cruz. Antibody against p38γ [AF1347] was pur-
chased from R&D Systems (Minneapolis, MN). Precast
10% and 15% SDS-PAGE gels were procured from Cam-
brex Biosciences (Baltimore, MD). Enhanced chemilumi-
nescence (ECL) western blotting detection reagent was
from Amersham Biosciences (Piscataway, NJ). Restore
western blot stripping buffer was obtained from Pierce
(Rockford, IL) and 3T3 cell lysates were from Santa Cruz
Biotechnology (Santa Cruz, CA). All other chemicals were
purchased from Sigma (St. Louis, MO).

Inferior vena cava preparation
Rats were anesthetized with a ketamine-xylazine (4:1)
cocktail (50 mg/kg ip) and supplemented as necessary for
reflexive response. In a sterile, aseptic environment, the
ventral surface of the thorax was shaved and the superfi-
cial musculature was exposed by means of a transverse
incision through the skin distal to the thoracic cavity. After
midline laparotomy and perforation of the heart, the infe-
rior vena cava was isolated and the in situ length measured
as the distance from the right atrium to the diaphragm.
Inferior venae cavae were removed, including a section of
the right atrium and the diaphragm, in which the latter
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were used for mounting the vessels. After removing the
extra connective tissue venae cavae were cannulated onto
polystyrene tubing (outside diameter 3.0 mm; inner
diameter 2.6 mm) with the aid of a dissection microscope.
Mounted vessels were secured using 4.0 silk sutures along
the tissue segments from the atrium and the diaphragm.
After mounting, the vessel length was adjusted with the
aid of a micromanipulator to coincide with the in situ rest-
ing length. All dissection and mounting procedures were
performed rapidly and with care to prevent stretching or
tearing of the inferior venae cavae. Vessel manipulation
was completed in oxygenated Krebs-Ringer bicarbonate
(KRB) buffer maintained at 37°C. After mounting, venae
cavae were allowed to equilibrate in the vessel chamber
for at least one hour before pressure loading. To examine
the effect of increased loading on inferior vena cava signal
transduction, mounted vessels were subjected to 120 mm
Hg of pressure for 30 minutes. This pressure was selected
based on normal physiological arterial pressure. During
the incubation, vessels were perfused with oxygenated
(95% O2, 5% CO2) KRB maintained at 37°C. Perfusion
was accomplished using a peristaltic pump with the flow
rate set at 11.1 ml/min resulting in a shear stress of ~0.5
dynes/cm2. The intraluminal pressure was controlled by
adjusting the air pressure introduced into a fluid reservoir.
The system was calibrated before all experiments. System
pressure was monitored using pressure transducers
(Gould model P231D) situated before entry and after exit
from the mounted vessel. During the loading procedure,
the pressure in the vessels was gradually raised in a step-
wise fashion (10 mmHg every 1 min) to a mean arterial
pressure of 120 mmHg.

Immunoblot analysis
At the end of each experiment, the vessels were immedi-
ately snap-frozen in liquid nitrogen. To prepare protein
isolates, venae cavae were pulverized under liquid nitro-
gen using a mortar and pestle and washed three times
with ice cold phosphate buffered saline (PBS). Protein
was extracted using T-PER (2 mL/1 g tissue weight)
(Pierce, Rockford, IL) supplemented with 100 mM NaF, 1
mM Na3VO4, 2 mM PMSF 1 μg/ml aprotinin, 1 μg/ml leu-
peptin, and 1 μg/ml pepsatin as detailed by the manufac-
turer. After centrifugation (1000 g × 10 min), the
supernatant was collected and the concentrations of
homogenates were determined in triplicate via the Brad-
ford method (Pierce) using bovine serum albumin as a
standard. Samples were diluted to a concentration of 1.5
mg/mL in SDS-loading buffer and boiled for 5 minutes.
Thirty μg of total protein for each sample were separated
on a 10% or 15% SDS-PAGE gel, transferred onto Hybond
nitrocellulose membranes (Amersham Biosciences, Pis-
cataway, NJ) using standard conditions, and stained with
Ponceau S to verify transfer and equal loading of lanes.
Membranes were blocked in buffer (5% nonfat dry milk

in TBST) for 1 hour at room temperature, washed (TBST,
3 × 5 min), and incubated in primary antibody overnight
at 4°C. After washing to remove excess antibody (TBST, 3
× 5 min), membranes were incubated in horseradish per-
oxidase (HRP)-linked secondary antibodies for 1 hour at
room temperature and rewashed (TBST, 3 × 5 min). Pro-
teins were visualized by enhanced chemiluminescence
(ECL) Western blotting detection reagent (Amersham Bio-
sciences, Piscataway, NJ) and quantified by densitometry
using a flatbed scanner (Epson Perfection 3200 PHOTO)
and Imaging software (AlphaEaseFC). Exposure time was
adjusted to keep the integrated optical densities within a
linear and non-saturated range. Molecular weight markers
(Cell Signaling) were used as mass standards and NIH 3T3
cell lysates were included as positive controls. Membranes
were stripped with Restore western blot stripping buffer as
detailed by the manufacturer. After verifying the absence
of residual antibody binding by interrogating the mem-
brane with the ECL reagent, membranes were washed and
used for reprobing. To minimize potential experimental
error associated with membrane stripping, the order of
antibody incubations was randomized between experi-
ments.

Data analysis
Results are presented as mean ± SEM. Data were analyzed
using the SigmaStat 3.0. A one-way analysis of variance
(ANOVA) was performed for overall comparisons with
the Student-Newman-Keuls post hoc test used to deter-
mine differences between groups. The level of significance
accepted a priori was ≤ 0.05.

Results
Verification of loading stimulus
No apparent differences in gross morphology were noted
at the light microscope level between venae cavae
obtained from lean and obese Zucker rats (data not
shown). Isolated vessels responded to stretch in a passive
manner (data not shown). Vena cava loading pressure was
constantly recorded throughout the loading procedure. If
fluctuations in stretch induced loading occurred, the ves-
sel was immediately discarded.

Effect of diabetes on basal MAPK expression and 
phosphorylation
Previous reports have suggested that the MAPK proteins
and in particular, p38 MAPK is associated with regulating
load-induced caspase-3 activation in the venae cavae [7].
To investigate the influence of diabetes on the expression
and regulation of MAPK proteins in the inferior vena cava,
we used immunoblotting to determine the total amount
of Erk1/2 (p44/p42), Jnk and p38-MAPK present in venae
cavae obtained from normal and diabetic animals. We
observed a 70.6 ± 16.4% higher basal expression of the
Erk1 (p44)-MAPK in the inferior vena cava of diabetic ani-
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mals compared that from the non-diabetic vena cava (P <
0.05), while no significant difference was detected in the
basal expression of ERK 2 (p42) MAPK (Fig. 1A). In the
diabetic IVC, the amount of p38β MAPK was 52.3 ±
11.8% higher (P < 0.05), the amount of p38γ MAPK was
6.1 ± 2.6% lower (P < 0.05); while p38α levels were not
different (Fig. 1B). In a similar fashion, JNK 1- and JNK3-
MAPK expression in the diabetic vena cava was 21.5 ±
9.3% and 16.8 ± 3.3% higher (P < 0.05) compared to the
non-diabetic controls, while JNK2-MAPK levels were not
altered (Fig. 1C).

We next examined the influence of diabetes on the phos-
phorylation status of the MAPK family proteins in the
inferior vena cava. The expression of phospho-ERK 1
(p44) (Thr202/Try 204) (Fig. 2A), phospho-p38γ
(Thr180/Tyr182) (Fig. 3A), and phospho-JNK-2 (Thr183/

Tyr185) (Fig. 4A) showed no change with diabetes. How-
ever, basal phospho-ERK 2 (p42) (Thr202/Tyr204) MAPK
expression was lower in the diabetic inferior vena cava by
12.0 ± 11.46% (P < 0.05) (Fig. 2B). Expression of phos-
pho-p38α (Thr180/Tyr182), phospho-p38β (Thr180/
Tyr182), phospho-JNK1 (Thr183/Tyr185) and phospho-
JNK3 (Thr183/Tyr185) was 52.3 ± 11.8%, 45.8 ± 18.2%,
19.4 ± 11.6% and 29.5 ± 17.6% higher in the diabetic IVC,
respectively as compared to control (P < 0.05) (Fig. 3B,

Diabetes alters loading-induced p44/42 phosphorylation in the IVCFigure 2
Diabetes alters loading-induced p44/42 phosphoryla-
tion in the IVC. The basal (control) and pressure-induced 
phosphorylation of the ERK1/2-MAPK in venae cavae from 
non-diabetic lean Zucker (LNZ) and diabetic obese syn-
drome X Zucker (OSXZ) rats. Phosphorylation status was 
calculated as phosphospecific optical density divided by the 
unpressurized non-diabetic control value. * Significantly dif-
ferent from unloaded venae cavae within the same group (P 
< 0.05). † Significantly different from corresponding LNZ 
venae cavae (P < 0.05). n = 6/group.

MAPK expression in normal and diabetic rat inferior vena cavaFigure 1
MAPK expression in normal and diabetic rat inferior 
vena cava. Immunoblot analyses indicating protein content 
of A) p44/42-MAPK, B) p38-MAPK, and C) JNK-MAPK in 
venae cavae from non-diabetic lean Zucker (LNZ) and dia-
betic obese syndrome X Zucker (OSXZ) rats. * Significantly 
different from the non-diabetic venae cavae, (P < 0.05). n = 6/
group.
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3C, 4C and 4B).

Effect of diabetes on pressure induced MAPK 
phosphorylation
We examined the effect of pressurization of inferior vena
cava on ERK 1/2-, p38- and JNK-MAPK phosphorylation
using immunoblot analyses. In inferior venae cavae sub-
jected to 30 minutes of arterial pressure loading (120 mm

Hg), phosphorylation of the ERK1 (p44) (Thr202/
Tyr204)-MAPK increased 44.2 ± 25.2% in the non-dia-
betic rat venae cavae, while that in the diabetic rat venae
cavae remained unchanged, (P < 0.05) (Fig. 2A). Expres-
sion of phospho-ERK 2 (p42) (Thr202/Tyr204)-MAPK
increased 13.2 ± 5.3% and 39.0 ± 10.5% in the non-dia-
betic and diabetic rat inferior vena cava, respectively, (P <
0.05) (Fig. 2B). Pressure loading elicited an 80.8 ± 12.7%
increase in the phosphorylation of p38α (Thr180/
Tyr182)-MAPK in non-diabetic rat inferior vena cava.
Conversely, p38α (Thr180/Tyr182)-MAPK phosphoryla-
tion in response to pressurization decreased by 21.3 ±
10.0% in the diabetic rat vena cava (P < 0.05) (Fig. 3B).

Diabetes alters loading-induced Jnk phosphorylation in the IVCFigure 4
Diabetes alters loading-induced Jnk phosphorylation 
in the IVC. The basal (control) and pressure-induced phos-
phorylation of the JNK-MAPK in venae cavae from non-dia-
betic lean Zucker (LNZ) and diabetic obese syndrome X 
Zucker (OSXZ) rats. Phosphorylation status of A.) JNK2-
MAPK, B.) JNK3-MAPK, and C.) JNK1-MAPK was calculated 
as phosphospecific optical density divided by the unpressu-
rized non-diabetic control value. * Significantly different from 
unloaded venae cavae within the same group (P < 0.05). † 
Significantly different from corresponding non-diabetic venae 
cavae (P < 0.05). n = 6/group.

Diabetes related alterations in loading-induced p38-MAPK phosphorylation in the IVC are isoform-specificFigure 3
Diabetes related alterations in loading-induced p38-
MAPK phosphorylation in the IVC are isoform-spe-
cific. The basal (control) and pressure-induced phosphoryla-
tion of the p38-MAPK in venae cavae from non-diabetic lean 
Zucker (LNZ) and diabetic obese syndrome X Zucker 
(OSXZ) rats. Phosphorylation status of A.) p38γ-MAPK, B.) 
p38α-MAPK, and C.) p38β-MAPK was calculated as phos-
phospecific optical density divided by the unpressurized non-
diabetic control value. * Significantly different from unloaded 
venae cavae within the same group (P < 0.05). † Significantly 
different from corresponding non-diabetic venae cavae (P < 
0.05). n = 6/group.
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Similarly, pressure induced phosphorylation of the p38β
(Thr180/Tyr182)-MAPK demonstrated no significant
change in the non-diabetic rat inferior vena cava, but was
52.0 ± 14.9% lower in the diabetic rat vena cava (P < 0.05)
(Fig. 3C). Pressure induced phosphorylation of the p38γ
(Thr180/Tyr182)-MAPK increased 114.1 ± 20.8% in the
non-diabetic rat vena cava, while in the diabetic rat infe-
rior vena cava it remained unchanged (P < 0.05) (Fig. 3A).
Jnk1 (Thr183/Tyr185) phosphorylation increased in the
non-diabetic and diabetic rat inferior vena cava by 89.9 ±
15.1% and 36.0 ± 5.6%, respectively, in response to pres-
sure loading (P < 0.05) (Fig. 4C). Likewise, pressure
induced phosphorylation of the Jnk2 (Thr183/Tyr185)-
MAPK increased 192.6 ± 16.8% in the non-diabetic rat
inferior vena cava while in the diabetic rat inferior vena
cava JNK2 (Thr183/Tyr185) phosphorylation remained
unchanged (P < 0.05) (Fig. 4A). JNK3 (Thr183/Tyr 85)-
MAPK phosphorylation increased in the non-diabetic and
diabetic rat inferior vena cava by 150.9 ± 9.5% and 50.4 ±
14.4%, respectively in response to pressure loading (P <
0.05) (Fig. 4B).

Apoptotic signaling following venous loading is suppressed 
in diabetes
Previous reports have suggested that the load-induced
activation of caspase-3 is important in mediating apop-
totic events following increased loading of the vena cava
[7]. To examine possible differences in apoptosis-related
signaling between non-diabetic and diabetic venae cavae,
we measured differences in the regulation of caspase-3,
caspase-9, bax and bcl-2 between these tissues. Caspase-3
is an endopeptidase that has been implicated in apopto-
sis. Because caspases are normally activated by proteolytic
cleavage [8], we examined the effects of diabetes and
increased loading on the amount of full length versus
cleaved caspase-3 in vena cava samples obtained from
non-diabetic and diabetic animals. Immunoblotting
demonstrated no differences in the total amount of full-
length capase-3 or caspase-9 between venae cavae of dia-
betic animals compared to that observed in the non-dia-
betic venae cavae (Figure 5A and 5B). The application of
arterial pressure increased the amount of cleaved caspase-
3 in the non-diabetic rat venae cavae to 276.0 ± 36.0%,
whereas there was no change in the diabetic rats (P < 0.05)
(Figure 5A). To confirm these findings, we investigated
the regulation of caspase-9, the upstream activator of cas-
pase-3. Immunoblot analysis showed a 85.8 ± 25.1%
increase in cleaved caspase-9 upon pressurization of non-
diabetic rat venae cavae (Figure 5B; P < 0.05). No caspase-
9 cleavage was observed in the diabetic rat venae cavae
upon pressurization.

It is thought that the ratio of Bax to Bcl-2 plays an impor-
tant role in regulating the release of cytochrome-c from
the mitochondria into the cytosol with the release of cyto-

chrome-c and cell death favored as the balance shifts
toward Bax [9]. With diabetes, no difference in either the
amount of Bax or Bcl-2 was noted (Figure 6). Unlike cas-
pase-3 or -9, Bax levels were not altered with increased
vena cava loading in either the non-diabetic or diabetic
vena cava. Increased pressurization of the non-diabetic
and diabetic venae cavae decreased Bcl-2 levels by 50.2 ±
24.2% and 55.9 ± 22.8%, respectively (P < 0.05) (Figure
6B).

Akt regulation may be altered in the diabetic vena cava
In addition to the MAPKs the protein kinase B (Akt) path-
way is thought to be an important regulator of cell apop-
tosis and replication [10,11]. To examine the influence of
diabetes on the regulation of Akt, we compared the basal
expression and phosphorylation of Akt in the venae cavae
of non-diabetic and diabetic rats. Compared to non-dia-
betic animals, the IVC content of Akt was found to be 17.6
± 9.9% and degree of basal Akt phosphorylation (Ser 308)
was 38.3 ± 11.6% higher in the diabetic rats (P < 0.05)
(Figure 7A). Because Akt phosphorylation has been
shown to be regulated, in part, by PTEN, we examined

The diabetic IVC does not exhibit loading-induced caspase activationFigure 5
The diabetic IVC does not exhibit loading-induced 
caspase activation. The basal (control) and loading (pres-
sure)-induced cleavage of A.) caspase-3 and B.) caspase-9 in 
venae cavae from non-diabetic lean Zucker (LNZ) and dia-
betic obese syndrome X Zucker (OSXZ) rats (n = 6/group).
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whether diabetes influenced PTEN expression or its
degree of basal phosphorylation. Compared to non-dia-
betic rats, the amount of PTEN and phosphorylated PTEN
(Ser308/Thr382-383) in the diabetic venae cavae
increased 31.4 ± 21.3 % and 41.0 ± 24.2 %, respectively
(Figure 7A and 7C; P < 0.05). To confirm these apparent
differences in Akt regulation with diabetes, we examined
the regulation of Bad. Bad is a pro-apoptotic member of
the Bcl-2 family and can bind to Bcl-xL in the unphospho-
rylated state promoting apoptosis. When phosphorylated
at Ser136 by Akt, Bad is inactivated and can no longer pro-
mote apoptosis [12]. Immunoblotting analysis showed a
70.7 ± 15.1% higher basal expression of phospho-Bad
(Ser136) in the venae cavae of diabetic rats as compared
to non-diabetic rats (Figure 8). However, there was no dif-
ference in Bad phosphorylation between non-diabetic
and diabetic venae cavae. Application of arterial pressure

for 30 mins caused a 69.85 ± 26.4 % decrease in Bad phos-
phorylation in venae cavae of non-diabetic rats and a 75.2
± 17.7% decrease in the venae cavae of diabetic rats (P <
0.05; data not shown).

Discussion
Diabetes is known to be associated with cardiovascular
disease and vein grafts in the diabetic population are often
characterized by an increased vein graft neointimal hyper-
plasia along with significantly higher graft failure rates
compared to non-diabetic patients [1]. Here, we report
findings that suggest that the inferior venae cavae of nor-
mal and diabetic animals exhibit differences in the load-
induced regulation of MAPK and apoptosis-related signal-
ing. The data suggest that loading (stretch) of the non-dia-
betic vena cava is associated with the phosphorylation
(activation) of ERK1 (p44)-, ERK2 (p42)-, p38α-, p38γ-,

Diabetic IVC shows higher expression and phosphorylation of Akt and PTENFigure 7
Diabetic IVC shows higher expression and phosphor-
ylation of Akt and PTEN. Content of A) Akt and PTEN, 
B.) p-Akt, and C.) p-PTEN in vessels from non-diabetic lean 
Zucker (LNZ) and diabetic obese syndrome X Zucker 
(OSXZ) rats. Relative changes in protein levels were deter-
mined by immunoblotting analysis. * Significantly different 
from the non-diabetic venae cavae, (P < 0.05). n = 6/group.

Similar trends in Bax and Bcl-2 expression and loading-induced activity in normal and diabetic rat IVCFigure 6
Similar trends in Bax and Bcl-2 expression and load-
ing-induced activity in normal and diabetic rat IVC. 
Basal (control) and loading (pressure)-induced regulation of 
(A.) Bax and (B.) Bcl-2. in venae cavae from non-diabetic lean 
Zucker (LNZ) and diabetic obese syndrome X Zucker 
(OSXZ) rats. * Significantly different from unloaded venae 
cavae within the same group (p < 0.05). n = 6/group.
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JNK1-, JNK2-, and JNK3-MAPK along with cleavage of
capase-3 -9, and -12 (Figures 1, 2, 3, 4, 5). Conversely, in
the diabetic vena cava, we failed to find any indication of
caspase activation while the load-induced response of
ERK1, JNK2, p38α-, p38β, and p38γ- was different from
that seen in the non-diabetic vena cava (Figures 2, 3, 4, 5).
Taken together, these results suggest that venous mechan-
otransduction processes may be altered with diabetes.

Diabetes is associated alterations in vena cava MAPK 
regulation
In mammalian cells, the ERK1/2-, p38- and JNK-MAPK
pathways are thought to be the three major signaling cas-
cades comprising the MAPK signaling system [13]. The
results of the present study indicate that diabetes is associ-
ated with changes in the how the venae cavae regulates
MAPK pathways. When compared to the non-diabetic
vena cava, the diabetic vena cava exhibited a higher con-

tent of p44-, p38β-, JNK1-, and JNK-3-MAPK and a dimin-
ished amount of p38γ-MAPK. To our knowledge these
changes have not been demonstrated before. At the
present time, neither the mechanism(s) responsible for
these alterations nor the exact physiological significance
of these changes is known.

Previous studies investigating the effect of increased glu-
cose or the influence of diabetes on MAPK protein levels
has been equivocal. Indeed, some studies have demon-
strated no effect [14] while others have suggested that
these conditions increase the expression of these proteins
[15-17]. For example, Chen and colleagues recently dem-
onstrated that streptozotocin-induced diabetes is associ-
ated with increases in the amount and phosphorylation
(activation) of p38-MAPK [18]. Similarly, the exposure of
cultured endothelial progenitor cells to high glucose has
been shown to increase p38-MAPK phosphorylation in a
dose-dependent manner [19]. Whether the alterations in
p38-MAPK regulation observed in these studies was due
to the differential regulation of different p38-MAPK iso-
forms is unclear as it appears that the antibodies used in
these investigations did not appear to be able to differen-
tiate between the different p38-MAPK family members.
The data of the present are in agreement with these find-
ings and further, suggest that both the expression and
basal phosphorylation of p38β-MAPK is higher in the dia-
betic vena cava.

Previous reports have suggested that p38β-MAPK can
oppose apoptosis [20-22] suggesting that some form of
cellular pre-conditioning to resist apoptosis may occur in
diabetic tissues. Why diabetes may be associated with dif-
ferences in the regulation of some p38-MAPK isoforms
and not others awaits further clarification. Similarly, we
observed that the expression and basal phosphorylation
of Jnk1 and Jnk3, but not Jnk2, were higher in the diabetic
vena cava when compared to vessels obtained from non-
diabetic animals. Obesity has been linked with increased
endoplasmic reticulum stress, which leads to suppression
of insulin receptor signaling via hyperactivation of Jnk
and subsequent serine phosphorylation of IRS-1 [23].
Accordingly, it is possible that the higher basal levels of
JNK may represent some aspects of this response in the
obese diabetic Zucker rats. Further research is required to
more fully address this hypothesis.

Similar to the MAPK signaling cascade, the regulation of
Akt signaling also appears to be altered in the diabetic
vena cava. Akt is thought to mediate the effects of PI 3-
kinase on some cellular events, such as apoptosis and pro-
tein synthesis [24,25]. PTEN is a phosphatase that has
been proposed to inhibit the PI3K/Akt and ERK 1/2-
MAPK signaling cascades and function in the control of
cell cycle arrest [26,27]. The ability of PTEN to inhibit the

Phospho-Bad (Ser136) expression is increased in the Dia-betic IVCFigure 8
Phospho-Bad (Ser136) expression is increased in the 
Diabetic IVC. Vena cava content of p-Bad (Ser136) in non-
diabetic lean Zucker (LNZ) and diabetic obese syndrome X 
Zucker (OSXZ) rats. * Significantly different from the non-
diabetic venae cavae, (p < 0.05). n = 6/group.
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PI3K/Akt and ERK 1/2-MAPK signaling cascades is
thought to be negatively regulated by phosphorylation
[28]. Our results indicate that the vena cava content and
degree of basal Akt and PTEN phosphorylation was
increased in diabetic compared to non-diabetic rats (Fig-
ure 7). Previous reports have suggested that the amount of
Akt protein has been found to decrease in the diabetic
mice aorta [29], not change in diabetic rat heart [30,31] or
exhibit a tendency to increase in diabetic skeletal muscle
[32]. Our finding that the basal phosphorylation of PTEN
is increased (Figures 7) in the vena cava of diabetic rats is
consistent with our data demonstrating increased Akt
basal phosphorylation and previous findings demonstrat-
ing that alterations in PTEN are associated with the devel-
opment of insulin resistance [33,34]. Future experiments
examining the content of these molecules in other tissues
may help clarify whether the changes we observed are
causative, compensatory or merely associated with diabe-
tes.

Pressure-induced activation of MAPK and apoptosis 
associated proteins is altered in the vena cava of obese 
Zucker rats
Using a similar ex-vivo vena cava preparation, Goldman
and colleagues recently presented data suggesting that
mechanical stretch may play an important role in regulat-
ing venous graft failure [7]. Further, these authors sug-
gested that increased loading of isolated venae cavae from
non-diabetic rats was characterized by the p38-MAPK
dependent activation of caspase-3 which in turn, was
associated with α-actin degradation. The findings of the
present investigation support this contention. In addition,
the present data suggest that several differences exist in the
way that venae cavae from non-diabetic and diabetic ani-
mals "sense and respond" to mechanical loading. For
example, unlike what was seen in the normal vena cava,
increased loading in the diabetic vena cava was associated
with an inability of this tissue to increase the phosphor-
ylation of ERK1-, JNK-2, or any of the p38-MAPKs (Fig-
ures 2, 3, and 4). These differences in the ability to activate
the p38α- and JNK-2-MAPK proteins may be of particular
interest. Recent studies have suggested that these proteins
may play key roles in mediating the induction of cell
death and in the activation of caspases [35-39]. Our find-
ings that the activation of caspase-3 and -9 appear to differ
following a loading stimulus in the vena cava of diabetic
vena cava (Figures 5) support this possibility.

In addition to the MAPK proteins, Akt has also been
shown to directly affect pro-apoptotic molecules. Bad and
Caspase-9 are thought to be key regulators of cellular
apoptosis whose activity is regulated, in large part, by Akt
phosphorylation [25,40,41]. Akt phosphorylates pro-cas-
pase-9 at Ser196, which inhibits the proteolytic process-
ing of this molecule. We show increased basal Akt

expression and phosphorylation in the vena cava of dia-
betic rats as compared to non-diabetic rats and that this
alteration appears to be associated with an inability of the
diabetic vena cava to activate (cleave) caspase-9 and cas-
pase-3 following the application of arterial pressure (Fig-
ure 5). Whether these events are directly linked will
require further investigation.

Like the caspases, Bad is a pro-apoptotic member of the
Bcl-2 family which is thought to bind Bcl-xL in the
unphosphorylated state promoting apoptosis [42]. Akt
has been shown to inhibit this process thereby promoting
cell survival via its ability to phosphorylate Bad at Ser136
[12]. We see a markedly high basal phosphorylation of
Bad (Ser136) in the diabetic vena cava as compared to
that seen in non-diabetic vessels (Figure 8), which is sug-
gestive of a heightened anti-apoptotic activity in the dia-
betic tissue. Whether this alteration in Bad
phosphorylation is directly related to the differences in
caspase-3 and -9 cleavage we see between the diabetic and
non-diabetic vena cava awaits clarification.

Conclusion
In summary, diabetes has been associated with increased
prevalence of vein graft failure. Compared to what we
observe in the non-diabetic vena cava, the regulation of
the MAPK, Akt, and PTEN proteins appears differ in the
diabetic vena cava possibly resulting in a net protective
effect against pressure induced apoptosis-related signal-
ing. Whether alterations in MAPK- or Akt-related signaling
alone or other molecules contribute to the load-induced
differences in apoptotic-related signaling we observe in
the diabetic venae cavae remains to be determined. Given
the relatively small number of animals employed in the
present study (n = 12/group) caution regarding the extrap-
olation of the findings presented here to a human popu-
lation is warranted. Nonetheless, the data of this study
may be useful towards elucidating the cellular and molec-
ular mechanisms that may underlie the increased prob-
lems associated with vein grafts in the diabetic population
and underscores the basis for future studies investigating
the role that MAPK and Akt may play in vein failure.

Authors' contributions
K.M. R. and D. H.D. contributed equally to this study, per-
formed the vessel loading experiments, participated in the
experimental design, immunoblotting experiments, and
performed the data analysis and manuscript preparation;
S.K., A.K., and D. L. P. participated in the loading experi-
ments and performed the immunoblotting experiments;
P. W. participated in the data analysis and manuscript
preparation; E. R. B. participated in all experimental
aspects and manuscript preparation. All authors have read
and approved the final manuscript.



Cardiovascular Diabetology 2006, 5:18 http://www.cardiab.com/content/5/1/18

Page 10 of 11
(page number not for citation purposes)

Acknowledgements
This study was supported by National Institute on Aging Grant AG-20370 
and 027103 to Eric Blough and by NSF EPSCOR to Marshall University.

References
1. Nishio K, Fukui T, Tsunoda F, Kawamura K, Itoh S, Konno N, Ozawa

K, Katagiri T: Insulin resistance as a predictor for restenosis
after coronary stenting.  Int J Cardiol 2005, 103(2):128-134.

2. Mompeo B, Popov D, Sima A, Constantinescu E, Simionescu M: Dia-
betes-induced structural changes of venous and arterial
endothelium and smooth muscle cells.  J Submicrosc Cytol Pathol
1998, 30(4):475-484.

3. Liu SQ: Influence of tensile strain on smooth muscle cell ori-
entation in rat blood vessels.  J Biomech Eng 1998,
120(3):313-320.

4. Liu SQ, Fung YC: Changes in the organization of the smooth
muscle cells in rat vein grafts.  Ann Biomed Eng 1998, 26(1):86-95.

5. Moore MM, Goldman J, Patel AR, Chien S, Liu SQ: Role of tensile
stress and strain in the induction of cell death in experimen-
tal vein grafts.  J Biomech 2001, 34(3):289-297.

6. Lehoux S, Tedgui A: Signal transduction of mechanical stresses
in the vascular wall.  Hypertension 1998, 32(2):338-345.

7. Goldman J, Zhong L, Liu SQ: Degradation of alpha-actin fila-
ments in venous smooth muscle cells in response to mechan-
ical stretch.  Am J Physiol Heart Circ Physiol 2003, 284(5):H1839-47.

8. Cohen GM: Caspases: the executioners of apoptosis.  Biochem J
1997, 326 ( Pt 1):1-16.

9. Oltvai ZN, Milliman CL, Korsmeyer SJ: Bcl-2 heterodimerizes in
vivo with a conserved homolog, Bax, that accelerates pro-
grammed cell death.  Cell 1993, 74(4):609-619.

10. Martin KA, Rzucidlo EM, Merenick BL, Fingar DC, Brown DJ, Wagner
RJ, Powell RJ: The mTOR/p70 S6K1 pathway regulates vascu-
lar smooth muscle cell differentiation.  Am J Physiol Cell Physiol
2004, 286(3):C507-17.

11. Zhou RH, Lee TS, Tsou TC, Rannou F, Li YS, Chien S, Shyy JY: Stent
implantation activates Akt in the vessel wall: role of mechan-
ical stretch in vascular smooth muscle cells.  Arterioscler Thromb
Vasc Biol 2003, 23(11):2015-2020.

12. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME:
Akt phosphorylation of BAD couples survival signals to the
cell-intrinsic death machinery.  Cell 1997, 91(2):231-241.

13. Kyosseva SV: Mitogen-activated protein kinase signaling.  Int
Rev Neurobiol 2004, 59:201-220.

14. Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY: High glucose-
induced apoptosis in human endothelial cells is mediated by
sequential activations of c-Jun NH(2)-terminal kinase and
caspase-3.  Circulation 2000, 101(22):2618-2624.

15. Glogowski EA, Tsiani E, Zhou X, Fantus IG, Whiteside C: High glu-
cose alters the response of mesangial cell protein kinase C
isoforms to endothelin-1.  Kidney Int 1999, 55(2):486-499.

16. Kang SW, Adler SG, Lapage J, Natarajan R: p38 MAPK and MAPK
kinase 3/6 mRNA and activities are increased in early dia-
betic glomeruli.  Kidney Int 2001, 60(2):543-552.

17. McGinn S, Saad S, Poronnik P, Pollock CA: High glucose-mediated
effects on endothelial cell proliferation occur via p38 MAP
kinase.  Am J Physiol Endocrinol Metab 2003, 285(4):E708-17.

18. Chen H, Brahmbhatt S, Gupta A, Sharma AC: Duration of strepto-
zotocin-induced diabetes differentially affects p38-mitogen-
activated protein kinase (MAPK) phosphorylation in renal
and vascular dysfunction.  Cardiovasc Diabetol 2005, 4(1):3.

19. Kuki S, Imanishi T, Kobayashi K, Matsuo Y, Obana M, Akasaka T:
Hyperglycemia accelerated endothelial progenitor cell
senescence via the activation of p38 mitogen-activated pro-
tein kinase.  Circ J 2006, 70(8):1076-1081.

20. Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S, Han J: Characteri-
zation of the structure and function of a new mitogen-acti-
vated protein kinase (p38beta).  J Biol Chem 1996,
271(30):17920-17926.

21. Kaiser RA, Bueno OF, Lips DJ, Doevendans PA, Jones F, Kimball TF,
Molkentin JD: Targeted inhibition of p38 mitogen-activated
protein kinase antagonizes cardiac injury and cell death fol-
lowing ischemia-reperfusion in vivo.  J Biol Chem 2004,
279(15):15524-15530.

22. Nemoto S, Xiang J, Huang S, Lin A: Induction of apoptosis by
SB202190 through inhibition of p38beta mitogen-activated
protein kinase.  J Biol Chem 1998, 273(26):16415-16420.

23. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tunc-
man G, Gorgun C, Glimcher LH, Hotamisligil GS: Endoplasmic
reticulum stress links obesity, insulin action, and type 2 dia-
betes.  Science 2004, 306(5695):457-461.

24. Cook SA, Matsui T, Li L, Rosenzweig A: Transcriptional effects of
chronic Akt activation in the heart.  J Biol Chem 2002,
277(25):22528-22533.

25. Luo HR, Hattori H, Hossain MA, Hester L, Huang Y, Lee-Kwon W,
Donowitz M, Nagata E, Snyder SH: Akt as a mediator of cell
death.  Proc Natl Acad Sci U S A  2003, 100(20):11712-11717.

26. Chu EC, Tarnawski AS: PTEN regulatory functions in tumor
suppression and cell biology.  Med Sci Monit 2004,
10(10):RA235-41.

27. Gu J, Tamura M, Yamada KM: Tumor suppressor PTEN inhibits
integrin- and growth factor-mediated mitogen-activated
protein (MAP) kinase signaling pathways.  J Cell Biol 1998,
143(5):1375-1383.

28. Hlobilkova A, Knillova J, Bartek J, Lukas J, Kolar Z: The mechanism
of action of the tumour suppressor gene PTEN.  Biomed Pap
Med Fac Univ Palacky Olomouc Czech Repub 2003, 147(1):19-25.

29. Kobayashi T, Taguchi K, Yasuhiro T, Matsumoto T, Kamata K:
Impairment of PI3-K/Akt pathway underlies attenuated
endothelial function in aorta of type 2 diabetic mouse model.
Hypertension 2004, 44(6):956-962.

30. Desrois M, Sidell RJ, Gauguier D, Davey CL, Radda GK, Clarke K:
Gender differences in hypertrophy, insulin resistance and
ischemic injury in the aging type 2 diabetic rat heart.  J Mol
Cell Cardiol 2004, 37(2):547-555.

31. Lajoie C, Calderone A, Trudeau F, Lavoie N, Massicotte G, Gagnon S,
Beliveau L: Exercise training attenuated the PKB and GSK-3
dephosphorylation in the myocardium of ZDF rats.  J Appl
Physiol 2004, 96(5):1606-1612.

32. Campbell CS, Caperuto LC, Hirata AE, Araujo EP, Velloso LA, Saad
MJ, Carvalho CR: The phosphatidylinositol/AKT/atypical PKC
pathway is involved in the improved insulin sensitivity by
DHEA in muscle and liver of rats in vivo.  Life Sci 2004,
76(1):57-70.

33. Kurlawalla-Martinez C, Stiles B, Wang Y, Devaskar SU, Kahn BB, Wu
H: Insulin hypersensitivity and resistance to streptozotocin-
induced diabetes in mice lacking PTEN in adipose tissue.  Mol
Cell Biol 2005, 25(6):2498-2510.

34. Zhou QL, Park JG, Jiang ZY, Holik JJ, Mitra P, Semiz S, Guilherme A,
Powelka AM, Tang X, Virbasius J, Czech MP: Analysis of insulin sig-
nalling by RNAi-based gene silencing.  Biochem Soc Trans 2004,
32(Pt 5):817-821.

35. Dietrich N, Thastrup J, Holmberg C, Gyrd-Hansen M, Fehrenbacher
N, Lademann U, Lerdrup M, Herdegen T, Jaattela M, Kallunki T: JNK2
mediates TNF-induced cell death in mouse embryonic
fibroblasts via regulation of both caspase and cathepsin pro-
tease pathways.  Cell Death Differ 2004, 11(3):301-313.

36. Eminel S, Klettner A, Roemer L, Herdegen T, Waetzig V: JNK2
translocates to the mitochondria and mediates cytochrome
c release in PC12 cells in response to 6-hydroxydopamine.  J
Biol Chem 2004, 279(53):55385-55392.

37. Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM, Ambrosino C,
Benito M, Nebreda AR: P38 alpha mitogen-activated protein
kinase sensitizes cells to apoptosis induced by different stim-
uli.  Mol Biol Cell 2004, 15(2):922-933.

38. Wang Y, Huang S, Sah VP, Ross JJ, Brown JH, Han J, Chien KR: Car-
diac muscle cell hypertrophy and apoptosis induced by dis-
tinct members of the p38 mitogen-activated protein kinase
family.  J Biol Chem 1998, 273(4):2161-2168.

39. Wang Y, Singh R, Lefkowitch JH, Rigoli RM, Czaja MJ: TNF-induced
toxic liver injury results from JNK2-dependent activation of
caspase-8 and the mitochondrial death pathway.  J Biol Chem
2006, 281(22):15258-67.

40. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stan-
bridge E, Frisch S, Reed JC: Regulation of cell death protease
caspase-9 by phosphorylation.  Science 1998,
282(5392):1318-1321.

41. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx
PH: The role of phosphoinositide-3 kinase and PTEN in car-

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16080969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16080969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9851055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9851055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9851055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10412397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10412397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10355553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10355553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11182119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11182119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11182119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9719064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9719064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12531720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12531720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12531720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9337844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8358790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8358790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8358790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14592809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14592809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12969991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12969991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12969991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9346240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9346240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9346240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15006489
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10840014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10840014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10840014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9987073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9987073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9987073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11473637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783777
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15748291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15748291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15748291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16864945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16864945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16864945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8663524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8663524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8663524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14749328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14749328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14749328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9632706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15486293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11956204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11956204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14504398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14504398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9832564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9832564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9832564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15505117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15505117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15276024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15276024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15276024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14698990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14698990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15501480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15743841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15743841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15494023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14685158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14685158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14685158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15504737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15504737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15504737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14617800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14617800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14617800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9442057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9442057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9442057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16571730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16571730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16571730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9812896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9812896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15276015


Cardiovascular Diabetology 2006, 5:18 http://www.cardiab.com/content/5/1/18

Page 11 of 11
(page number not for citation purposes)

diovascular physiology and disease.  J Mol Cell Cardiol 2004,
37(2):449-471.

42. Chao DT, Korsmeyer SJ: BCL-2 family: regulators of cell death.
Annu Rev Immunol 1998, 16:395-419.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15276015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9597135

	Marshall University
	Marshall Digital Scholar
	9-1-2006

	Diabetes Alters Vascular Mechanotransduction: Pressure-induced Regulation of Mitogen Activated Protein Kinases in the Rat Inferior Vena Cava
	Kevin M. Rice
	Devashish H. Desai
	Sunil K. Kakarla
	Anjaiah Katta
	Deborah L. Preston
	See next page for additional authors
	Recommended Citation
	Authors


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Animals
	Materials
	Inferior vena cava preparation
	Immunoblot analysis
	Data analysis

	Results
	Verification of loading stimulus
	Effect of diabetes on basal MAPK expression and phosphorylation
	Effect of diabetes on pressure induced MAPK phosphorylation
	Apoptotic signaling following venous loading is suppressed in diabetes
	Akt regulation may be altered in the diabetic vena cava

	Discussion
	Diabetes is associated alterations in vena cava MAPK regulation
	Pressure-induced activation of MAPK and apoptosis associated proteins is altered in the vena cava of obese Zucker rats

	Conclusion
	Authors' contributions
	Acknowledgements
	References

