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We study the effects of external fluctuations in the transmission rate of certain diseases and how these affect 
the distribution of the number of infected individuals over time. To do this, we introduce random noise in the 
transmission rate in a deterministic SIS model and study how the number of infections changes over time. The 
objective of this work is to derive and analyze the closed form probability distribution of the number of infections 
at a given time in the resulting stochastic SIS epidemic model. Using the Fokker-Planck equation, we reduce 
the differential equation governing the number of infections to a generalized Laguerre differential equation. 
The properties of the distribution, together with the effect of noise intensity, are analyzed. The distribution is 
demonstrated using parameter values relevant to the transmission dynamics of influenza in the United States.

1. Introduction

Existing mathematical models [4, 6, 9, 10, 11, 13, 14, 15, 18, 21, 22, 
23, 24] have been developed in order to understand the transmission 
and elimination of diseases. Several researchers [9, 10, 18, 21, 22, 23, 
24] have shed light on the transmission dynamics of infectious diseases 
and its distribution. In this paper, we shed more light on how the num-

ber of infections of certain diseases (described using the well known SIS 
model) is distributed.

We first consider the deterministic SIS model for description of the 
population dynamics for certain diseases. The host population is parti-

tioned into two compartments, the susceptible and infectious popula-

tion, with sizes denoted by 𝑆 and 𝐼 , respectively. The total population 
𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡). The model governing 𝑆 and 𝐼 is described by the 
system of differential equation:{

𝑑𝑆 = (Λ − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝛾𝐼)𝑑𝑡, 𝑆(𝑡0) = 𝑆0,

𝑑𝐼 = (𝛽𝑆𝐼 − (𝜇 + 𝛾)𝐼)𝑑𝑡, 𝐼(𝑡0) = 𝐼0,
(1.1)

where 𝑆0 ≥ 0, 𝐼0 ≥ 0, Λ > 0 is the recruitment rate, 𝛽 is the transmission 
rate, 𝜇 is the natural death rate and 𝛾 is the temporary recovery rate. 
We note here that the model above is the well-known SIS model [6, 10]. 
The total population 𝑁 satisfies the differential equation

𝑑𝑁 = (Λ − 𝜇𝑁)𝑑𝑡, 𝑁(𝑡0) =𝑁0, (1.2)

* Corresponding author.

E-mail address: otunuga@marshall.edu.

with solution 𝑁(𝑡) = Λ
𝜇
−

(
Λ
𝜇
−𝑁0

)
𝑒−𝜇(𝑡−𝑡0). It follows that 𝑆0 + 𝐼0 =

𝑁0 and the total population 𝑁 = Λ
𝜇

if 𝑁0 =
Λ
𝜇

. Define 𝜅 = Λ
𝜇

. It is well 
known [6, 10] that the system of differential equation (1.1) has two 
equilibriums, namely, the disease-free, 𝑃0, and endemic, 𝑃1, equilibrium 
defined by

𝑃0 = (𝜅,0) ,
𝑃1 =

(
𝜅

𝑅0
,

(
1 − 1

𝑅0

)
𝜅

)
, provided 𝑅0 > 1, (1.3)

respectively, where

𝑅0 =
𝛽𝜅

𝜇 + 𝛾
. (1.4)

It can be shown (for better understanding of the SIS model, we refer 
the readers to the papers [4, 10, 21]) that the solution (𝐼(𝑡), 𝑆(𝑡)) of 
(1.1) is given by

𝐼(𝑡) =
⎧⎪⎨⎪⎩

(𝜇+𝛾)(𝑅0−1)𝐼0
(𝜇+𝛾)

(
𝑅0−1

)
𝑒−(𝜇+𝛾)

(
𝑅0−1

)(
𝑡−𝑡0

)
+𝛽𝐼0

(
1−𝑒−(𝜇+𝛾)

(
𝑅0−1

)(
𝑡−𝑡0

)) , if 𝑅0 ≠ 1,(
𝛽(𝑡− 𝑡0) +

1
𝐼0

)−1
, if 𝑅0 = 1, 𝐼0 ≠ 0,

(1.5)

https://doi.org/10.1016/j.heliyon.2019.e02499

Received 15 July 2019; Received in revised form 15 September 2019; Accepted 17 September 2019

2405-8440/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e02499
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/heliyon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2019.e02499&domain=pdf
mailto:otunuga@marshall.edu
https://doi.org/10.1016/j.heliyon.2019.e02499
http://creativecommons.org/licenses/by-nc-nd/4.0/


O.M. Otunuga Heliyon 5 (2019) e02499

𝑆(𝑡) =

⎧⎪⎪⎨⎪⎪⎩

𝜅(𝜇+𝛾)(𝑅0−1)
(
𝑒−(𝜇+𝛾)

(
𝑅0−1

)(
𝑡−𝑡0

)
−𝐼0∕𝜅

)
+𝜅𝛽𝐼0

(
1−𝑒−(𝜇+𝛾)

(
𝑅0−1

)(
𝑡−𝑡0

))
(𝜇+𝛾)

(
𝑅0−1

)
𝑒−(𝜇+𝛾)

(
𝑅0−1

)(
𝑡−𝑡0

)
+𝛽𝐼0

(
1−𝑒−(𝜇+𝛾)

(
𝑅0−1

)(
𝑡−𝑡0

)) ,

if 𝑅0 ≠ 1,

𝜅 −
(
𝛽(𝑡− 𝑡0) +

1
𝐼0

)−1
, if 𝑅0 = 1, 𝐼0 ≠ 0.

(1.6)

It follows directly that the equilibrium point 𝑃0 is globally stable if 
𝑅0 ≤ 1 (that is, irrespective of the initial point, 𝐼(𝑡) → 0 and 𝑆(𝑡) →
𝜅 as 𝑡 → ∞ if 𝑅0 ≤ 1), and equilibrium point 𝑃1 is globally stable if 
𝑅0 > 1 (that is, 𝐼(𝑡) →

(
1 − 1

𝑅0

)
𝜅 and 𝑆(𝑡) → 𝜅∕𝑅0 as 𝑡 →∞ if 𝑅0 > 1). 

The number 𝑅0 is referred to as the reproduction number, which is 
the average number of secondary infection produced by an infectious 
individual when introduced into susceptible population. We can make 
the sizes 𝑆 and 𝐼 into percentages by setting Λ = 𝜇.

2. Background

2.1. Stochastic SIS model

We assume that external fluctuations may be caused by variability 
in the number of contacts between infected and susceptible individuals 
and such random variations can be modeled by a white noise [10]. 
We also assume that fluctuations will manifest mainly as fluctuations 
in the infectivity parameter 𝛽, and that the transmission rates fluctuate 
rapidly compared to the evolution of the disease. External noise appears 
multiplicatively and it is able to modify the mean dynamical behavior 
of the population. By allowing the infectivities to fluctuate around a 
mean value, we introduce external fluctuations in the model as follows:

𝛽 ≡ 𝛽 + 𝜎(𝑡), (2.1)

where (𝑡) is the noise term with zero mean. We assume that the trans-

mission rate fluctuates rapidly so that we can model (𝑡) by a standard 
Gaussian white noise. The constant 𝜎 is the noise intensity of the white 
noise due to fluctuations in infectivities of the disease. It represents 
measure of the amplitude of fluctuations in the transmission rate. By 
substituting (2.1) into (1.1), we get a Langevin equation. The approach 
of this equation gives rise to what we called a stochastic differential 
equation. It is important to be able to interprete and evaluate the noise 
structure of this equation. The Itô approach on stochastic differential 
equation depends on Markovian and Martingale properties. These prop-

erties do not obey the traditional chain rule. Whereas, the Stratonovich 
approach obeys the traditional chain rule and allows white noise to be 
treated as a regular derivative of a Brownian or Wiener process [6, 16, 
20]. For this reason, by substituting (2.1) into (1.1), we extend the re-

sulting equation to a Stratonovich stochastic model of the form{
𝑑𝑆 = (Λ − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝛾𝐼)𝑑𝑡− 𝜎𝑆𝐼◦𝑑𝑊 (𝑡), 𝑆(𝑡0) = 𝑆0
𝑑𝐼 = (𝛽𝑆𝐼 − (𝜇 + 𝛾)𝐼)𝑑𝑡+ 𝜎𝑆𝐼◦𝑑𝑊 (𝑡), 𝐼(𝑡0) = 𝐼0

(2.2)

where 𝑆0 ≥ 0, 𝐼0 ≥ 0, 𝑊 (𝑡) is a standard Wiener process on a filtered 
probability space (Ω, 𝑡, (𝑡)𝑡≥0, ℙ), the filtration function (𝑡)𝑡≥0 is right-

continuous and each 𝑡 with 𝑡 ≥ 0 contains all ℙ-null sets in 𝑡; ◦
denotes the Stratonovich integral [2]. The initial process 𝑥(𝑡0) =

(
𝑆0, 𝐼0

)
is 𝑡0

measurable and independent of 𝑊 (𝑡) −𝑊 (𝑡0).
The stochastic differential equation has a unique positive solution 

𝐼(𝑡) ∈ (0, 𝜅) [4, 10, 13, 21] in the feasible region

 ∶=
{
(𝑆,𝐼) ∈ℝ+ | 0 ≤ 𝑆 + 𝐼 ≤ 𝜅

}
(2.3)

for all 𝑡 ≥ 0 with probability one. By setting 𝑆 = 𝜅 − 𝐼 , the stochastic 
differential equation governing 𝐼 in (2.2) reduces to

𝑑𝐼 = (𝛽(𝜅 − 𝐼)𝐼 − (𝜇 + 𝛾)𝐼)𝑑𝑡+ 𝜎(𝜅 − 𝐼)𝐼◦𝑑𝑊 (𝑡), 𝐼(𝑡0) = 𝐼0. (2.4)

We use the Stratonovich-Itô conversion theorem given in Bernardi et al.

[3] and Kloeden et al. [8] to convert the Stratonovich dynamic model 
(2.4) into its Itô’s equivalent

𝑑𝐼 =
(
𝝁(𝐼) + 1

2
𝝈
′
1,1(𝐼)𝝈1,1(𝐼)

)
𝑑𝑡+ 𝝈1,1(𝐼) 𝑑𝑊 (𝑡), 𝐼(𝑡0) = 𝐼0, (2.5)

where

𝝁(𝐼) = 𝛽(𝜅 − 𝐼)𝐼 − (𝜇 + 𝛾)𝐼,

𝝈1,1(𝐼) = 𝜎(𝜅 − 𝐼)𝐼,

are the drift and diffusion coefficients of (2.4), respectively.

2.2. Classification of the boundaries of diffusion process I in 
We classify the boundaries 𝐼 = 𝐼0 = 0 and 𝐼 = 𝜅 using the definitions 

provided in Horsthemke et al. [6] and Méndez et al. [10].

Definition 1. ([6, 10]) Let �̄� be a boundary point and 𝑏∗ be a point near 
�̄�. The classification of boundary �̄� is based on the integrability of the 
function 𝜙(𝑥) defined by

𝜙(𝑥) = exp
⎛⎜⎜⎜⎝−

𝑥

∫
𝑏∗

2
(
𝝁(𝑧) + 1

2𝝈
′
1,1(𝑧)𝝈1,1(𝑧)

)
𝝈
2
1,1(𝑧)

𝑑𝑧

⎞⎟⎟⎟⎠ . (2.6)

The boundary �̄� is natural if it is attained with probability zero even 
if time goes to infinity. Analytically, the boundary �̄� is natural if and 
only if the integral 𝐿1(�̄�) = ∫ 𝑏∗

�̄�
𝜙(𝑥) 𝑑𝑥 = 𝑐 ∫ 𝑏∗

�̄�
𝑥−(̄+2) (𝜅 − 𝑥)̄ 𝑒

̄
𝜅−𝑥 𝑑𝑥

diverges [6, 10], where we define

̄ = 2
𝜎2𝜅2

(
𝛽𝜅 − (𝜇 + 𝛾) − 𝜎2𝜅2∕2

)
,

̄ = ̄+ 2,
̄ = 2

𝜎2𝜅2
(𝜇 + 𝛾).

(2.7)

Since

𝐿1(𝑢) =

𝑢+𝜖

∫
𝑢

𝜙(𝑥) 𝑑𝑥 = (𝜅̄)̄+1

𝜅̄ 𝑒̄
̄ 𝑢+𝜖

𝜅−[𝑢+𝜖]

∫
̄ 𝑢

𝜅−𝑢

𝜔−̄𝑒𝜔 𝑑𝜔

= (𝜅̄)̄+1

(−𝜅)̄
𝑒−̄

[
Γ

(
1 − ̄,−̄ 𝑢+ 𝜖

𝜅 − [𝑢+ 𝜖]

)
− Γ

(
1 − ̄,−̄ 𝑢

𝜅 − 𝑢

)]
exists if 1 − ̄ > 0, where Γ(𝑠, 𝜈) = ∫ ∞

𝜈
𝑡𝑠−1𝑒−𝑡 𝑑𝑡 is the upper Incomplete 

Gamma function, it follows directly from Definition 1 that the bound-

ary 𝐼 = 0 is natural if 1 − ̄ < 0, that is, if 𝑅0 > 1. Likewise, the upper 
boundary 𝜅 is natural for all values of the parameters [10]. Hence, we 
conclude that the boundaries 𝐼0 = 0 and 𝐼 = 𝜅 are unattainable at all 
times if 𝑅0 > 1, regardless of the noise intensity.

Definition 2. ([6, 10]) A boundary �̄� is called attracting if when the 
process 𝐼(𝑡) starts at 𝑡 = 0 at 𝐼0 ∈ (�̄�, 𝑏∗), it either leaves this interval 
in a finite time 𝜏𝐼0 (in this case via the right point), or it never leaves 
this interval and then 𝐼(𝑡) → �̄� as 𝑡 →∞. Analytically, the boundary �̄�
is attracting if 𝐿1(�̄�) <∞ and 𝐿2(�̄�) = ∫ 𝑏∗

�̄�

2
𝝈
2
1,1(𝑦)

∫ 𝑦

�̄�
𝜙(𝑥)𝑑𝑥 𝜙−1(𝑦) 𝑑𝑦 =∞

[6, 10].

It follows that the boundary 𝐼 = 0 is attracting if 𝑅0 < 1 [10]. Since 
𝐼0 = 0 is an equilibrium point of (2.4), this means that the stationary 
probability will be concentrated entirely on 𝐼0 = 0, that is, 𝑃𝑠(𝐼) = 𝛿(𝐼)
if 𝑅0 < 1, where 𝑃𝑠 and 𝛿 denote the stationary probability distribution 
and dirac delta function, respectively.

2.3. Closed form solution of (2.5)

Using the change of state variable

𝑥 = ̄ 𝐼

𝜅 − 𝐼
(2.8)

in (2.5), we obtain the Itô stochastic differential equation

2
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𝑑𝑥 = 𝜎2𝜅2

2
𝑥

(̄+ 2 − 𝑥
)
𝑑𝑡+ 𝜎𝜅𝑥 𝑑𝑊 (𝑡). (2.9)

A second change of variable

𝑦 = 1∕𝑥 (2.10)

reduces (2.9) to

𝑑𝑦 = 𝜎2𝜅2

2
(
1 − ̄𝑦

)
𝑑𝑡− 𝜎𝜅𝑦 𝑑𝑊 (𝑡). (2.11)

Equation (2.11) is the well known geometric stochastic differential 
equation with solution

𝑦(𝑡) = 𝑦0Φ(𝑡, 𝑡0) +
𝜎2𝜅2

2
Φ(𝑡, 𝑡0)

𝑡

∫
𝑡0

Φ−1(𝑠, 𝑡0) 𝑑𝑠, (2.12)

where

Φ(𝑡, 𝑡0) = 𝑒
− 𝜎2𝜅2

2
(̄+1

)
(𝑡−𝑡0)−𝜎𝜅

(
𝑊 (𝑡)−𝑊 (𝑡0)

)
= 𝑒−(𝜇+𝛾)

(
𝑅0−1

)
(𝑡−𝑡0)−𝜎𝜅

(
𝑊 (𝑡)−𝑊 (𝑡0)

)
,

(2.13)

with mean value

𝔼
(
Φ(𝑡, 𝑡0)

)
= 𝑒

− 𝜎2𝜅2
2

(̄)
(𝑡−𝑡0).

We note from (2.7) that ̄ = ̄ (
�̄�0 − 1

)
, where

�̄�0 = 𝛽𝜅−𝜎2𝜅2∕2
𝜇+𝛾

= 𝑅0 −
1
̄ .

(2.14)

It follows from (2.8) and (2.10) that the solution 𝐼(𝑡) = 𝜅𝑥(𝑡)
𝑥(𝑡)+̄ = 𝜅

1+̄𝑦(𝑡)
is given by

𝐼(𝑡) = 𝜅

1 + ̄ (
𝑦0Φ(𝑡, 𝑡0) +

𝜎2𝜅2

2 Φ(𝑡, 𝑡0)∫ 𝑡

𝑡0
Φ−1(𝑠, 𝑡0) 𝑑𝑠

) . (2.15)

It was shown in Gray et al. [4] that disease dies out with proba-

bility one (that is, 𝐼(𝑡) → 0 exponentially, almost surely) if �̄�0 < 1 and 
𝜎2 ≤ 𝛽∕𝜅. Likewise, in their work, Tornatore et al. [15] showed that if 
min{𝜇 + 𝛾 − 𝜎2𝜅2∕2, 2𝜇} < 𝛽𝜅 < 𝜇 + 𝛾 + 𝜎2𝜅2∕2}, the disease-free equilib-

rium point 𝑃0 = (𝜅,0) of (2.2) is globally stable in the feasible region 
 and unstable if �̄�0 > 1. They state from biological point of view that 
the introduction of a noise in the deterministic SIS model (1.1) modifies 
the deterministic stability threshold of the disease-free equilibrium. As 
𝜎 → 0+, Φ(𝑡, 𝑡0) → 𝑒−(𝜇+𝛾)

(
𝑅0−1

)
(𝑡−𝑡0) and �̄�0 →𝑅0. In this case, the system 

(2.5) reduces to (1.1). More results on the effect of the noise intensity 
on disease dynamics are discussed in Remark 3.

3. Model

3.1. Probability distribution of infectious diseases: SIS model

Using the change of variable described in (2.8), we define 𝑃 (𝑥, 𝑡|𝑥0)
as the probability of 𝑥 at time 𝑡 given the initial point 𝑥0. In this Section, 
we derive the closed form distribution 𝑃 (𝑥, 𝑡|𝑥0) and later extends the 
result to derive the closed form probability 𝑃 (𝐼, 𝑡|𝐼0) that the number 
of infected individuals is 𝐼 at time 𝑡, given initial point 𝐼0.

Let ℎ(𝑥) and 𝑔(𝑥) be the drift and diffusion coefficients of (2.9) de-

fined by

ℎ(𝑥) = 𝜎2𝜅2

2 𝑥
(̄+ 2 − 𝑥

)
,

𝑔(𝑥) = 𝜎𝜅𝑥.
(3.1)

The probability density 𝑃 (𝑥, 𝑡|𝑥0) satisfies the Fokker-Planck equa-

tion

𝜕𝑃

𝜕𝑡
= − 𝜕

𝜕𝑥
{ℎ(𝑥)𝑃 } + 1

2
𝜕

𝜕𝑥

{
𝑔2(𝑥)𝑃

}
, 0 < 𝑡 <∞. (3.2)

We seek a solution of (3.2) of the form

𝑃 (𝑥, 𝑡|𝑥0) = 𝑇 (𝑡)Ψ(𝑥|𝑥0). (3.3)

To find a solution, we consider a case where a stationary probability 
density exists and is unique. This is satisfied when the boundaries are 
either natural or regular boundaries, with instantaneous reflection [6]. 
By substituting (3.3) into (3.2), we have

1
𝑇

𝑑𝑇

𝑑𝑡
= 1

Ψ

(
− 𝑑

𝑑𝑥
{ℎ(𝑥)Ψ(𝑥)} + 1

2
𝑑2

𝑑𝑥2

{
𝑔2(𝑥)Ψ(𝑥)

})
.

The above equation is possible if each side is a constant, say, −𝑟, so that 
𝑇 (𝑡) = 𝑒−𝑟𝑡 and

− 𝑑

𝑑𝑥
{ℎ(𝑥)Ψ(𝑥)} + 1

2
𝑑2

𝑑𝑥2

{
𝑔2(𝑥)Ψ(𝑥)

}
= −𝑟Ψ(𝑥), (3.4)

with boundary condition

−𝜎2𝜅2

2
𝑑

𝑑𝑥

(
𝑥2Ψ(𝑥)

)
+ ℎ(𝑥)Ψ(𝑥)|𝑥=0,∞ = 0, (3.5)

that is, we assume there is no probability flux at the boundary. The 
values of 𝑟, for which a function Ψ(𝑥) ≡Ψ𝑟(𝑥) exists and do not vanish 
identically in the interval (0, ∞) and which fulfils (3.4)-(3.5) are called 
the eigenvalues [6]. The corresponding solutions Ψ𝑟(𝑥) are called eigen-

functions.

Let 𝑃𝑠(𝑥) be the unique stationary probability density satisfying

−ℎ(𝑥)𝑃𝑠(𝑥) +
1
2

𝑑

𝑑𝑥

{
𝑔2(𝑥)𝑃𝑠(𝑥)

}
= 0. (3.6)

It can be shown that the solution 𝑃𝑠(𝑥) satisfying (3.6) is obtained as

𝑃𝑠(𝑥) =
1

Γ(̄+ 1)
𝑥̄𝑒−𝑥, 0 < 𝑥 <∞, (3.7)

provided ̄+1 > 0, or equivalently, 𝑅0 > 1. This is a Gamma distribution 
with a unit rate parameter. We convert the eigenvalue problem for the 
Fokker-Planck equation into a Sturm-Liouville problem by setting Ψ(𝑥)
to

Ψ(𝑥) = 𝑃𝑠(𝑥)𝑓 (𝑥), 0 < 𝑥 <∞, (3.8)

for some function 𝑓 (𝑥), and substituting into (3.4) to obtain

𝜎2𝜅2

2
𝑑

𝑑𝑥

(
𝑥2𝑃𝑠(𝑥)

𝑑

𝑑 𝑥
𝑓 (𝑥)

)
+ 𝑟𝑃𝑠(𝑥)𝑓 (𝑥) = 0, (3.9)

with boundary condition(
𝑥2𝑃𝑠(𝑥)

𝑑

𝑑 𝑥
𝑓 (𝑥)

) |𝑥=0,∞ = 0. (3.10)

Note that (3.9) is the Kolmogorov backward equation with eigenvalue 𝑟, 
which is the same as the eigenvalue of the Fokker-Planck equation (3.4). 
The eigenfunctions of the Fokker-Planck equation and Kolmogorov 
backward equation are related by the relation (3.8). According to Hors-

themke et al. [6], all eigenvalues are real and nonnegative. Further-

more, since both boundaries (0 and 𝜅) for 𝐼 are finite, we have a discrete 
range of eigenvalues, including 𝑟 = 0 since we assume that the station-

ary probability density is unique. Define

𝑞 = (𝛽𝜅 − (𝜇 + 𝛾))2 − 2𝜎2𝜅2𝑟,

𝜆 = 1
𝜎2𝜅2

(
𝛽𝜅 − (𝜇 + 𝛾) −

√
𝑞
)
,

𝛼 = 2
√
𝑞

𝜎2𝜅2
.

(3.11)

It follows immediately from (3.11) that

𝛼 = ̄− 2𝜆+ 1. (3.12)

We shall later show that 𝑞 > 0 under suitable condition. By substituting

𝑓 (𝑥) = 𝑥−𝜆 𝑦(𝑥), 0 < 𝑥 <∞, (3.13)

into (3.9) for some function 𝑦(𝑥), we obtain the differential equation

3
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𝑥𝑦′′ + (1 + 𝛼 − 𝑥)𝑦′ + 𝜆𝑦 = 0, (3.14)

where 𝛼 and 𝜆 are given in (3.11). Equation (3.14) is the well known 
Kummer’s equation (see Abramowitz and Stegun [1], Section 13.1.1; 
and Olver et al. [12], Section 13.2.1). The solution becomes the gener-

alized/associated Laguerre polynomial of degree 𝜆 if 𝜆 is a nonnegative 
integer. The general solution of (3.14) is given by

𝑦(𝑥) = 𝐶1𝑈 (−𝜆,1 + 𝛼,𝑥) +𝐶2𝑀 (−𝜆,1 + 𝛼,𝑥) , 0 < 𝑥 <∞, (3.15)

where 𝑈 (𝑎, 𝑏, 𝑧) is the confluent hypergeometric function [1, 12] and 
𝑀(𝑎, 𝑏, 𝑧) is the Kummer’s function (see [1] Section 13.1.2). Using rela-

tion

𝑀(−𝜆,1 + 𝛼, 𝑧) = 𝜆!
(1 + 𝛼)𝜆

𝐿(𝜆, 𝛼, 𝑧),

where (𝑎)𝑘 is the Pochhammer’s symbol (or shifted factorial) [12] and 
𝐿(𝑎, 𝑏, 𝑧) is the generalized Laguerre function [7], we can rewrite (3.15)

in the form

𝑦(𝑥) = 𝐶1𝑈 (−𝜆,1 + 𝛼,𝑥) +𝐶2𝐿 (𝜆, 𝛼, 𝑥) , 0 < 𝑥 <∞. (3.16)

Hence, the solutions 𝑓 (𝑥) and Ψ(𝑥) in (3.13) and (3.8) reduce to

𝑓 (𝑥) = 𝐶1𝑥
−𝜆𝑈 (−𝜆,1 + 𝛼,𝑥) +𝐶2𝑥

−𝜆𝐿 (𝜆, 𝛼, 𝑥) , 0 < 𝑥 <∞, (3.17)

and

Ψ(𝑥) = 1
Γ(̄+ 1)

𝑥̄−𝜆𝑒−𝑥
(
𝐶1𝑈 (−𝜆,1 + 𝛼,𝑥) +𝐶2𝐿 (𝜆, 𝛼, 𝑥)

)
, 0 < 𝑥 <∞.

(3.18)

If 𝜆 = 𝑛 is a nonnegative integer, it follows immediately from (3.11) that 
the eigenvalue 𝑟 ≡ 𝑟𝑛 is obtained as

𝑟𝑛 = 𝑛 (𝛽𝜅 − (𝜇 + 𝛾)) − 𝑛2 𝜎2𝜅2

2 = 𝜎2𝜅2

2 (𝑛2 + 𝛼𝑛𝑛),
= 𝜎2𝜅2

2

(̄+ 1 − 𝑛
)
𝑛, for 0 ≤ 𝑛 ≤𝑀,

(3.19)

where 𝑀 =
⌊
𝛽𝜅−(𝜇+𝛾)

𝜎2𝜅2

⌋
=

⌊ ̄+1
2

⌋
and ⌊.⌋ is the floor function. Thus,

𝑞 ≡ 𝑞𝑛 =
(
𝛽𝜅 − (𝜇 + 𝛾) − 𝑛𝜎2𝜅2)2 ,

𝛼 ≡ 𝛼𝑛 = 2
𝜎2𝜅2

√
𝑞𝑛 =

2
𝜎2𝜅2

(
𝛽𝜅 − (𝜇 + 𝛾) − 𝑛𝜎2𝜅2) > 0,

(3.20)

provided ̄+1 −2𝑛 > 0. Clearly, 𝑟𝑛 ≥ 0 since 𝛼𝑛 = ̄+1 −2𝑛. For the rest 
of this work, we assume that

̄− 2𝜆+ 1 > 0. (3.21)

Using relation (13.6.19) in [12], we can write 𝑈 (−𝜆,1 + 𝛼,𝑥) in 
terms of 𝐿(𝜆, 𝛼, 𝑥). The eigenfunction 𝑓 (𝑥) ≡ 𝑓𝑛(𝑥) of the eigenvalue 
problem (3.9) now reduces to

𝑓𝑛(𝑥) =𝑍𝑛𝑥
−𝑛𝐿

(
𝑛, 𝛼𝑛, 𝑥

)
, (3.22)

where 𝑍𝑛 is a normalization constant and 𝛼 ≡ 𝛼𝑛 is given in (3.12). Using 
(3.12) and the explicit representation identities for Laguerre polynomi-

als (see [12] Section 18.5.12, [5] Vol 1 Section 2.1.1(2) and [5] Vol 2 
Section 10.12.33)

⎧⎪⎨⎪⎩
𝐿(𝑛, 𝛼𝑛, 𝑥) =

𝑛∑
𝑖=0

(𝛼𝑛+𝑖+1)𝑛−𝑖
𝑖!(𝑛−𝑖)! (−𝑥)𝑖,

∫ ∞
0 𝑥𝜈−1𝑒−𝑥𝐿(𝑛, 𝛼𝑛, 𝑥) 𝑑𝑥 =

(
Γ(𝜈)Γ(𝛼𝑛+𝑛+1)

𝑛!Γ(𝛼𝑛+1)

)
2𝐹1(−𝑛, 𝜈;𝛼𝑛 + 1;1), if 𝜈 > 0,

where 2𝐹1(𝑎1, 𝑎2; 𝑏; 𝑧) is the generalized hypergeometric function (see 
[12] Section 16.1.1), it follows that

∞

∫
0

𝑥̄−2𝑛𝑒−𝑥𝐿(𝑛, 𝛼𝑛, 𝑥)2 𝑑𝑥

=
Γ(𝛼𝑛 + 𝑛+ 1)2

Γ(𝛼𝑛 + 1)𝑛!

𝑛∑
𝑖=0

(−1)𝑖
(

2𝐹1(−𝑛, 𝛼𝑛 + 𝑖;𝛼𝑛 + 1;1)
𝑖!(𝑛− 𝑖)!(𝛼𝑛 + 𝑖)

)
=𝐷−1

𝑛
,

provided condition (3.21) is satisfied. Since the eigenfunctions of the 
Fokker-Planck differential equation are orthogonal with respect to 
1∕𝑃𝑠(𝑥) [6, 19], we use the above result to normalize the eigenfunctions 
𝑓𝑛(𝑥) by calculating the value of 𝑍𝑛 using the orthogonal conditions

∫ ∞
0 𝑃𝑠(𝑥)𝑓𝑛(𝑥)𝑓𝑚(𝑥) 𝑑𝑥 = 0, for 𝑛 ≠𝑚,

∫ ∞
0 𝑃𝑠(𝑥)𝑓𝑛(𝑥)2 𝑑𝑥 = 1

Γ(̄+1)𝐷
−1
𝑛
.

(3.23)

Thus, 𝑍𝑛 =
√

Γ(̄+ 1)𝐷𝑛. We also note here that the eigenvalues de-

rived in (3.19) can be obtained from the integral [19] as

𝑟𝑛 =

∞

∫
0

1
2
𝑔2(𝑥)𝑃𝑠(𝑥)

[
𝑑𝑓𝑛(𝑥)
𝑑𝑥

]2
𝑑𝑥,

using (3.9) and (3.10), where 𝑔(𝑥) is the diffusion coefficient in (3.1). 
The solution 𝑃 (𝑥, 𝑡|𝑥0) of (3.2) is obtained as

𝑃 (𝑥, 𝑡|𝑥0) = 𝑃𝑠(𝑥)
𝑀∑
𝑛=0

𝑒−𝑟𝑛𝑡𝑓𝑛(𝑥0)𝑓𝑛(𝑥), 0 < 𝑥 <∞. (3.24)

Transforming back to the original variable 𝐼 using (2.8), we obtain the 
probability

𝑃 (𝐼, 𝑡|𝐼0)
= 𝑃 (𝑥(𝐼), 𝑡|𝑥(𝐼0)) |||| 𝑑𝑥𝑑𝐼 ||||
= 𝜅̄̄+1 𝐼̄

(𝜅 − 𝐼)̄
𝑒
− ̄𝐼

𝜅−𝐼

×
𝑀∑
𝑛=0

𝐷𝑛𝑒
−𝑟𝑛𝑡

( ̄𝐼0
𝜅 − 𝐼0

̄𝐼
𝜅 − 𝐼

)−𝑛

𝐿

(
𝑛, 𝛼𝑛,

̄𝐼0
𝜅 − 𝐼0

)
𝐿

(
𝑛, 𝛼𝑛,

̄𝐼
𝜅 − 𝐼

)
,

0 < 𝐼 < 𝜅, (3.25)

and

𝑃 (𝑆, 𝑡|𝑆0)

= 𝜅̄̄+1 (𝜅 − 𝑆)̄
𝑆̄ 𝑒

− ̄(𝜅−𝑆)
𝑆

×
𝑀∑
𝑛=0

𝐷𝑛𝑒
−𝑟𝑛𝑡

( ̄(𝜅 − 𝑆0)
𝑆0

̄(𝜅 −𝑆)
𝑆

)−𝑛

𝐿

(
𝑛, 𝛼𝑛,

̄(𝜅 − 𝑆0)
𝑆0

)
×𝐿

(
𝑛, 𝛼𝑛,

̄(𝜅 − 𝑆)
𝑆

)
, 0 < 𝑆 < 𝜅, (3.26)

since 𝑆 + 𝐼 = 𝜅.

3.2. Properties of the distribution 𝑃 (𝑥, 𝑡|𝑥0)
We discuss some properties, namely, the mean, median, mode, vari-

ance, skewness, moment generating function, and characteristic func-

tion for the density function 𝑃 (𝑥, 𝑡|𝑥0).
In general, the j-th moment, 𝜇(𝑗)

𝑥 (𝑡), of the density 𝑃 (𝑥, 𝑡|𝑥0) is given 
by

𝜇
(𝑗)
𝑥 (𝑡) = ∫ ∞

0 𝑥𝑗𝑃 (𝑥, 𝑡|𝑥0) 𝑑𝑥
=

𝑀∑
𝑛=0

Γ(𝛼𝑛+𝑛+𝑗)Γ(𝛼𝑛+𝑛+1)
Γ(̄+1)Γ(𝛼𝑛+1)𝑛!

𝑍𝑛𝑓𝑛(𝑥0)𝑒−𝑟𝑛𝑡2𝐹1(−𝑛, 𝛼𝑛 + 𝑛+ 𝑗;𝛼𝑛 + 1;1).

(3.27)

The mean 𝜇(1)
𝑥 (𝑡), variance 𝜎2

𝑥
(𝑡) = 𝜇

(2)
𝑥 (𝑡) −

(
𝜇
(1)
𝑥 (𝑡)

)2
, and skewness 

sk𝑥(𝑡) = 𝔼 
[(

𝑥− 𝜇
(1)
𝑥

)3
]
∕𝜎3

𝑥
(𝑡), of the distribution 𝑃 (𝑥, 𝑡|𝑥0) can easily be 

calculated from (3.27) as

4
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𝜇
(1)
𝑥 (𝑡) =

𝑀∑
𝑛=0

Γ(𝛼𝑛+𝑛+1)2

Γ(̄+1)Γ(𝛼𝑛+1)𝑛!
𝑍𝑛𝑓𝑛(𝑥0)𝑒−𝑟𝑛𝑡2𝐹1(−𝑛, 𝛼𝑛 + 𝑛+ 1;𝛼𝑛 + 1;1),

𝜎2
𝑥
(𝑡) =

𝑀∑
𝑛=0

Γ(𝛼𝑛+𝑛+2)Γ(𝛼𝑛+𝑛+1)
Γ(̄+1)Γ(𝛼𝑛+1)𝑛!

𝑍𝑛𝑓𝑛(𝑥0)𝑒−𝑟𝑛𝑡2𝐹1(−𝑛, 𝛼𝑛 + 𝑛+ 2;𝛼𝑛 + 1;1)

−
(
𝜇
(1)
𝑥 (𝑡)

)2
,

sk𝑥(𝑡) =
𝜇
(3)
𝑥 (𝑡)−3𝜇(2)𝑥 (𝑡)𝜇(1)𝑥 (𝑡)+2

(
𝜇
(1)
𝑥 (𝑡)

)3

(
𝜎2𝑥(𝑡)

)3∕2 .

(3.28)

The mode, mode𝑥(𝑡) = argmax
𝑧

𝑃 (𝑧, 𝑡|𝑥0), of the distribution 𝑃 (𝑥, 𝑡|𝑥0)
is given by

mode𝑥(𝑡) =

{
𝑧 > 0 ∶

𝑀∑
𝑛=0

𝑒−𝑟𝑛𝑡𝑓𝑛(𝑥0)𝑍𝑛𝑧
−𝑛((̄− 𝑛− 𝑧)𝐿(𝑛, 𝛼𝑛, 𝑧)

− 𝑧𝐿(𝑛− 1, 𝛼𝑛 + 1, 𝑧)
)
= 0

}
, (3.29)

where 𝐿(𝑛 − 1, 𝛼𝑛 + 1, 𝑧) = 𝐿(𝑛, 𝛼𝑛 + 1, 𝑧) − 𝐿(𝑛, 𝛼𝑛, 𝑧). The median, 
median𝑥(𝑡) at time 𝑡 is the number �̄� such that ∫ �̄�

0 𝑃 (𝑥, 𝑡|𝑥0) 𝑑𝑥 = 1∕2. It 
satisfies

median𝑥(𝑡) =

{
�̄� > 0 ∶

𝑀∑
𝑛=0

𝑛∑
𝑗=0

𝑒−𝑟𝑛𝑡𝑓𝑛(𝑥0)

×𝑍𝑛

Γ(𝛼𝑛 + 𝑛+ 1)
Γ(𝛼𝑛 + 1 + 𝑗)𝑗!(𝑛− 𝑗)!Γ(̄+ 1)

(−1)𝑗 𝛾
(̄− 𝑛+ 1 + 𝑗, �̄�

)
= 1

2

}
, (3.30)

where 𝛾(𝑠, 𝑥) = ∫ 𝑥

0 𝑡𝑠−1𝑒−𝑡 𝑑𝑡 is the lower incomplete Gamma function.

For fixed time 𝑡, the moment generating function MGF𝑡(𝜏) =
𝔼 

(
𝑒𝜏𝑥𝑃 (𝑥, 𝑡|𝑥0)) is given by

MGF𝑡(𝜏) =
𝑀∑
𝑛=0

Γ(𝛼𝑛 + 𝑛)Γ(𝛼𝑛 + 𝑛+ 1)
Γ(̄+ 1)Γ(𝛼𝑛 + 1)𝑛!(1 − 𝜏)𝛼𝑛+𝑛

×𝑍𝑛𝑓𝑛(𝑥0)𝑒−𝑟𝑛𝑡2𝐹1

(
−𝑛, 𝛼𝑛 + 𝑛;𝛼𝑛 + 1; 1

1 − 𝜏

)
, for 𝜏 < 1.

(3.31)

The characteristic function CF𝑡(𝜏) can be derived in a similar way.

3.2.1. Limiting distribution and statistics of the distribution 𝑃 (𝑥, 𝑡|𝑥0)
It is easy to show that as 𝑡 →∞,

𝑃 (𝑥, 𝑡|𝑥0) → 𝑃𝑠(𝑥),
𝜇
(1)
𝑥 (𝑡) → ̄+ 1,

𝜎2
𝑥
(𝑡) → ̄+ 1,

sk𝑥(𝑡) → 2(̄+ 1)−1∕2,
mode𝑥(𝑡) → ̄,

(3.32)

and median𝑥(𝑡) → �̂�, where �̂� is the solution of the equation

𝛾
(̄+ 1, �̂�

)
= Γ 

(̄+ 1
)
∕2, and 𝛾(𝑠, 𝑥) is the incomplete Gamma func-

tion. It follows from (3.32) that the graph of the distribution 𝑃 (𝑥, 𝑡|𝑥0)
skewed to the right on the long run with skewness 2(̄ + 1)−1∕2, the 
mean and variance of the distribution converges to the same value 
̄+ 1 on the long run. The number ̄ appears most (mode) on the long 
run.

3.3. Properties of the distribution 𝑃 (𝐼, 𝑡|𝐼0)
The 𝑗-th moment, 𝜇(𝑗)

𝐼
(𝑡), of the distribution 𝑃 (𝐼, 𝑡|𝐼0) is given by

𝜇
(𝑗)
𝐼
(𝑡) = ∫ ∞

0 𝐼𝑗𝑃 (𝐼, 𝑡|𝐼0) 𝑑𝐼
=

𝑀∑
𝑛=0

𝜅𝑗𝐷𝑛𝑒
−𝑟𝑛𝑡

(
𝐶𝐼0
𝜅−𝐼0

)−𝑛
𝐿(𝑛, 𝛼𝑛,

𝐶𝐼0
𝜅−𝐼0

)

× ∫ ∞
0

𝑢̄+𝑗−𝑛

(𝑢+̄)𝑗 𝑒−𝑢𝐿(𝑛, 𝛼𝑛, 𝑢) 𝑑𝑢.
(3.33)

The mean 𝜇(1)
𝐼
(𝑡), variance 𝜎2

𝐼
(𝑡) = 𝜇

(2)
𝐼
(𝑡) −

(
𝜇
(1)
𝐼
(𝑡)

)2
, and skewness 

sk𝐼 (𝑡) = 𝔼 
[(

𝐼 − 𝜇
(1)
𝐼

)3
]
∕𝜎3

𝐼
(𝑡), of the distribution 𝑃 (𝐼, 𝑡|𝐼0) can easily be 

calculated from (3.33) as

𝜇
(1)
𝐼
(𝑡) =

𝑀∑
𝑛=0

𝜅𝐷𝑛𝑒
−𝑟𝑛𝑡

(
𝐶𝐼0
𝜅−𝐼0

)−𝑛
𝐿

(
𝑛, 𝛼𝑛,

𝐶𝐼0
𝜅−𝐼0

)
× ∫ ∞

0
𝑢̄+1−𝑛

𝑢+̄ 𝑒−𝑢𝐿(𝑛, 𝛼𝑛, 𝑢) 𝑑𝑢,

𝜎2
𝐼
(𝑡) =

𝑀∑
𝑛=0

𝜅2𝐷𝑛𝑒
−𝑟𝑛𝑡

(
𝐶𝐼0
𝜅−𝐼0

)−𝑛
𝐿

(
𝑛, 𝛼𝑛,

𝐶𝐼0
𝜅−𝐼0

)
× ∫ ∞

0
𝑢̄+2−𝑛

(𝑢+̄)2 𝑒−𝑢𝐿(𝑛, 𝛼𝑛, 𝑢) 𝑑𝑢−
(
𝜇
(1)
𝐼
(𝑡)

)2
,

sk𝐼 (𝑡) =
𝜇
(3)
𝐼

(𝑡)−3𝜇(2)
𝐼

(𝑡)𝜇(1)
𝐼

(𝑡)+2
(
𝜇
(1)
𝐼

(𝑡)
)3

(
𝜎2
𝐼
(𝑡)

)3∕2 .

(3.34)

The mode, mode𝐼 (𝑡), is the argument, argmax
𝐼

𝑃 (𝐼, 𝑡|𝐼0), of the dis-

tribution 𝑃 (𝐼, 𝑡|𝐼0). The median, median𝐼 (𝑡), at time 𝑡 is the number �̂�
such that ∫ �̂�

0 𝑃 (𝐼, 𝑡|𝐼0) 𝑑𝐼 = 1∕2. The number �̂� satisfies the equation

𝑀∑
𝑛=0

𝐷𝑛𝑒
−𝑟𝑛𝑡

( ̄𝐼0
𝜅 − 𝐼0

)−𝑛

𝐿

(
𝑛, 𝛼𝑛,

̄𝐼0
𝜅 − 𝐼0

) ̄�̂�
𝜅−�̂�

∫
0

𝑢̄−𝑛𝑒−𝑢𝐿(𝑛, 𝛼𝑛, 𝑢) 𝑑𝑢 = 1∕2.

For fixed time 𝑡, the moment generating function MGF𝑡(𝜏) =
𝔼 

(
𝑒𝜏𝐼𝑃 (𝐼, 𝑡|𝐼0)) is given by

MGF𝑡(𝜏) =
𝑀∑
𝑛=0

𝐷𝑛𝑒
−𝑟𝑛𝑡

( ̄𝐼0
𝜅 − 𝐼0

)−𝑛

𝐿

(
𝑛, 𝛼𝑛,

̄𝐼0
𝜅 − 𝐼0

)

×

∞

∫
0

𝑢̄−𝑛𝑒
− 𝑢(𝑢−̄−𝜏𝜅)

𝑢+̄ 𝐿(𝑛, 𝛼𝑛, 𝑢) 𝑑𝑢. (3.35)

Remark 1. Using change of variable, the stationary distribution

𝑃𝑠(𝐼) = 𝑃𝑠(𝑥(𝐼))
||| 𝑑𝑥𝑑𝐼 ||| ,

= 𝜅̄̄+1

Γ(̄+1)
𝐼̄

(𝜅−𝐼)̄ 𝑒
− ̄𝐼

𝜅−𝐼 .
(3.36)

In this case, the expected number of infection

𝔼 [𝐼] =

𝜅

∫
0

𝐼𝑃𝑠(𝐼) 𝑑𝐼 = 𝜅̄̄+1

Γ(̄+ 1)

𝜅

∫
0

(
𝐼1+�̄�

(𝜅 − 𝐼)�̄�

)
𝑒
− ̄𝐼

𝜅−𝐼 𝑑𝐼

=
𝜅∕̄

Γ(̄+ 1)

∞

∫
0

𝑡1+�̄�
(
1 + 𝑡

̄
)−1

𝑒−𝑡 𝑑𝑡

= 𝑃0 𝜅1+̄∕2(𝜅̄)1+̄∕2−̄Γ(2 + ̄)𝑒−𝑧∕2𝑊𝑝,𝑚(𝑧),

where 𝑃0 =
𝜅
(̄)̄+1

𝑒̄
Γ
(
1+�̄�

) , 𝑧 = ̄, 𝑝 = −1 − ̄∕2, 𝑚 =
(
1 + ̄)

∕2 and 𝑊𝑝,𝑚(𝑧) =

𝑒−𝑧∕2𝑧𝑝

Γ(1∕2−𝑝+𝑚) ∫ ∞
0 𝑡−𝑝−1∕2+𝑚

(
1 + 𝑡

𝑧

)𝑝−1∕2+𝑚
𝑒−𝑡 𝑑𝑡 is the Whittaker function 

[17]. Since 𝜅 = 𝑆 + 𝐼 , it follows that 𝔼[𝑆] = 𝜅 − 𝔼[𝐼].

Remark 2. If �̄�0 = 1, where �̄�0 is defined in (2.14), then 𝑀 = 0, 
̄ = 0, ̄ = 2, 𝑃 (𝑥, 𝑡|𝑥0) ≡ 𝑃𝑠(𝑥) ≡ 𝑒−𝑥, 0 < 𝑥 < ∞, 𝑃 (𝐼, 𝑡|𝐼0) ≡ 𝑃𝑠(𝐼) ≡

𝜅̄
(𝜅−𝐼)2 𝑒

− ̄𝐼
𝜅−𝐼 , 0 < 𝐼 < 𝜅 and 𝑃𝑠(𝑆) ≡ 𝜅̄

𝑆2 𝑒
− ̄(𝜅−𝑆)

𝑆 , 0 < 𝑆 < 𝜅. The den-

sity function 𝑃 (𝑥, 𝑡|𝑥0) ≡ 𝑃𝑠(𝑥) ≡ 𝑒−𝑥, 0 < 𝑥 <∞, is the Gamma density 
function Gamma(𝜈, 𝜃) with 𝜈 = 𝜃 = 1. The number �̄�0 = 1 serves as a 
threshold at which the distribution 𝑃 (𝐼, 𝑡|𝐼0) becomes stationary. The 
following graphs show how the distribution 𝑃𝑠(𝐼) changes with respect 
to the parameters 𝜅 and ̄.

Fig. 1 (a) shows trajectories of 𝑃𝑠(𝐼) derived using different values 
̄ = 0.3, 1, and 2, but fixed parameter 𝜅 = 1, for the case �̄�0 = 1. Fig. 1

(b) shows trajectories of 𝑃𝑠(𝐼) derived using different values 𝜅 = 0.3, 0.5, 
and 1, but fixed parameter ̄ = 1, for the case �̄�0 = 1. Here, we see that 
̄ is the shape parameter and 𝜅 is the location parameter.

5



O.M. Otunuga Heliyon 5 (2019) e02499

Fig. 1. Graphs of the probability distribution 𝑃 (𝐼, 𝑡|𝐼0) = 𝑃𝑠(𝐼) for the case where �̄�0 = 1.

We can estimate statistically the parameters 𝜅 and ̄ using sample of 
𝑁 independent identically distributed random variables {𝐼1, 𝐼2, ⋯ 𝐼𝑁}
of the stochastic process. Using the maximum likelihood estimation 
techniques, we find the maximum likelihood estimates ̂̄ and �̂� of ̄
and 𝜅 satisfy⎧⎪⎪⎨⎪⎪⎩

̂̄ =

(
1
𝑁

𝑁∑
𝑗=1

𝐼𝑗

�̂�−𝐼𝑗

)−1

,

0 = 𝑁

�̂�
+ ̂̄ 𝑁∑

𝑗=1

𝐼𝑗(
�̂�−𝐼𝑗

)2 − 2
𝑁∑
𝑗=1

1
�̂�−𝐼𝑗

.

Define

𝑠± =
(2 − ̄− ̄)𝜅 ±

√
(2 − ̄− ̄)2𝜅2 + 8̄𝜅2

4
. (3.37)

In this case, the probability distribution 𝑃𝑠(𝐼) is increasing and decreas-

ing on the intervals (𝑠−, 𝑠+) and (0, 𝜅)∖(𝑠−, 𝑠+), respectively.

From (3.20), it follows that the probability distribution exists if �̄�0 −
1 = 𝛽𝜅−(𝜇+𝛾)−𝜎2𝜅2∕2

𝜇+𝛾 ≥ 0 and do not exist if �̄�0 − 1 < 1.

Remark 3. Effect of noise in the system. As the noise intensity in 
the transmission rate of disease increases (that is, as 𝜎 → ∞), we see 
that ̄ → −1 (and hence 𝑀 → 0), ̄ → 1, ̄ → 0 and the probabil-

ity distribution 𝑃 (𝐼, 𝑡|𝐼0) behaves like the probability density function 
𝑃𝜎∞

(𝐼) = 𝜖

𝐼(𝜅−𝐼) , where 𝜖 = lim
𝜎→∞

𝜅𝐶̄+1

Γ(̄+1) . This effect is shown numerically 
in Fig. 4. This distribution is the special case of the Beta distribution, 
Beta(𝑎, 𝑏), where 𝑎 = 𝑏 = 0. As 𝜎 → ∞, the graph of the distribution 
concaves up with global minimum 4𝜖∕𝜅2 at 𝐼 = 𝜅∕2 and increases 
(decreases) as 𝐼 > 𝜅∕2 (𝐼 < 𝜅∕2). This distribution has no mean and 
variance. In summary, we conclude that increasing the noise intensity 
affects the distribution of the average number of infections in the sys-

tem. The end-point behavior of the distribution suggests that as the 
noise intensity tends to ∞, the distribution 𝑃 (𝐼, 𝑡|𝐼0) →∞ as the number 
of infected individuals reduces to 0 or increases to total size of popula-

tion, 𝜅.

3.3.1. Limiting distribution and statistics of the distribution 𝑃 (𝐼, 𝑡|𝐼0)
It is easy to show that as 𝑡 →∞,

𝑃 (𝐼, 𝑡|𝐼0) → 𝑃𝑠(𝐼),
𝜇
(1)
𝐼
(𝑡) → 𝜅

Γ(̄+1) ∫ ∞
0

𝑢̄+1

𝑢+̄ 𝑒−𝑢 𝑑𝑢,

𝜎2
𝐼
(𝑡) → 𝜅2

Γ(̄+1) ∫ ∞
0

𝑢̄+2

(𝑢+̄)2 𝑒−𝑢 𝑑𝑢− 𝜅2

Γ(̄+1)2

(∫ ∞
0

𝑢̄+1

𝑢+̄ 𝑒−𝑢 𝑑𝑢

)2
.

(3.38)

The limiting skewness of the distribution can be calculated using 
the limit 𝜇(𝑗)

𝐼
(𝑡) → 𝜅𝑗

Γ(̄+1) ∫ ∞
0

𝑢̄+𝑗

(𝑢+̄)𝑗 𝑒−𝑢 𝑑𝑢 of the 𝑗-th moment. Also 
median(𝑡) → �̂�, where �̂� is the solution of the equation

1
Γ(̄+ 1)

̄�̂�
𝜅−�̂�

∫
0

𝑢̄−𝑛𝑒−𝑢𝐿(𝑛, 𝛼𝑛, 𝑢) 𝑑𝑢 = 1∕2.

The stationary distribution 𝑃𝑠(𝐼) is given in (3.36) and greatly studied 
in Mendez [10].

4. Results

We apply the distribution using the published influenza parameters 
in Mummert and Otunuga [11]. The parameters are associated with in-

fluenza data ‘Influenza Positive Tests Reported to CDC by Public Health 
Laboratories’ collected from the Center for Disease Control and Pre-

vention (CDC1) Flu View for the thirteen influenza seasons 2004-2005 
through 2016-2017.2 The death rate, 𝜇 is collected from CIA.3

4.1. Probability distribution of infection at time 𝑡 for the case where �̄�0 = 1

In addition to the result in Fig. 1, we use published influenza pa-

rameters in Table 1 to show how the graph of the probability dis-

tribution 𝑃 (𝐼, 𝑡|𝐼0 = 0.05) changes with respect to certain parameters. 
Fig. 2 (a), (b), (c) and (d) shows graphs of the probability distri-

bution 𝑃 (𝐼, 𝑡|𝐼0 = 0.05) derived using parameters (𝛽 = 1.1252, 𝜎 = 0.5; 
𝑀 = 0, 𝑅0 = 1.1250), (𝛽 = 1.5002, 𝜎 = 1; 𝑅0 = 1.5), (𝛽 = 2.1252, 𝜎 = 1.5; 
𝑅0 = 2.1248) and (𝛽 = 4.1252, 𝜎 = 2.5, 𝑅0 = 4.1244), respectively. In each 
case, �̄�0 = 1, 𝜅 = 1 and 𝑀 =

⌊
1
2 (̄+ 1)

⌋
= ⌊1∕2⌋ = 0. From (3.19), the 

value 𝑀 = 0 represents an eigenvalue of zero. In this case, the prob-

ability distribution 𝑃 (𝐼, 𝑡|𝐼0 = 0.05) reduces to the one discussed in 
Remark 2. We note here that the distribution is not dependent on the 
transmission rate, 𝛽, since ̄= 0. We also note from Remark 2 that these 
graphs correspond to the stationary probability distribution 𝑃𝑠(𝐼) (with 
̄ = 0). The graph increases on the interval (𝑠−, 𝑠+) and decreases on the 
interval (0, 𝜅)∖(𝑠−, 𝑠+), where 𝑠± is defined in (3.37).

4.2. Probability distribution of infection at time 𝑡 for the case where 𝑀 = 1

Fig. 3 (a), (b), (c) and (d) shows the graphs of the probability dis-

tribution 𝑃 (𝐼, 𝑡|𝐼0 = 0.05) of the number of infections at time 𝑡 for the 
case 𝑀 = 1 using parameters in Table 1 with (𝛽 = 1.1127; 𝜎 = 0.3; 𝑀 = 1, 
𝑅0 = 1.1125), (𝛽 = 1.5392, 𝜎 = 0.7, 𝑀 = 1, 𝑅0 = 1.5389), (𝛽 = 2.7747, 𝜎 =
1.3, 𝑀 = 1, 𝑅0 = 2.7741), and (𝛽 = 6.5547, 𝜎 = 2.3, 𝑀 = 1, 𝑅0 = 6.5534), 
respectively.

4.3. Probability distribution 𝑃 (𝐼, 𝑡|𝐼0) showing the effect of noise in the 
system

Fig. 4 (a), (b), (c) and (d) shows graphs of the probability dis-

tribution 𝑃 (𝐼, 𝑡|𝐼0 = 0.05) of the number of infections at time 𝑡 using 
parameters in Table 1 with (𝜎 = 1; 𝛽 = 2), (𝜎 = 2; 𝛽 = 2), (𝜎 = 4; 𝛽 = 2), 

1 http://www .cdc .gov /flu /professional /acip /clinical .htm.
2 http://gis .cdc .gov /grasp /fluview /fluportaldashborad .html.
3 CIA World Factbook, https://www .cia .gov /library /publications /the -world -

factbook/.
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Table 1

Parameter values selected from [11].

Parameter Description Value Source

𝛾 temporary recovery rate (week−1) 1 [11]

𝜇 death rate (week−1) 0.0002 CIA3

Λ recruitment rate (week−1) 𝜇 [11]

𝛽 transmission rate [1.1,455.6] (extracted from [11])

𝜎 noise intensity [0.04,0.4] × 𝛽 (extracted from [11])

Fig. 2. Graphs of the probability distribution of Infection at time 𝑡 for the case where �̄�0 = 1.

Fig. 3. Graphs of the probability distribution of Infection at time 𝑡 for the case 𝑀 = 1.
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Fig. 4. Graphs of the probability distribution of Infection at time 𝑡 showing the effect of noise in the system.

Fig. 5. Mean of the distribution 𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡.

and (𝜎 = 20; 𝛽 = 2), respectively. The Figure shows how the shape of 
the distribution changes as the noise intensity, 𝜎, increases. We recall 
from Remark 3 that as 𝜎 →∞, 𝑀 → 0 and 𝑃 (𝐼, 𝑡|𝐼0) → 𝜖

𝐼(𝜅−𝐼) . Here, 𝜎
behaves like the shape parameter.

4.4. Statistic results for the distribution 𝑃 (𝑥, 𝑡|𝑥0))
Fig. 5 (a) and (b) shows the graphs of the mean of the distribution 

𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡 using parameters in Table 1 with (𝛽 = 1.7; 𝜎 = 0.5) 
and (𝛽 = 1.7; 𝜎 = 0.8), respectively. The thick line is the trajectory of the 
mean function, 𝜇(1)

𝑥 (𝑡), given in (3.28) as a function of time, while the 
dashed line is the horizontal line representing the limit lim

𝑡→∞
𝜇
(1)
𝑥 (𝑡) of the 

mean function. This value is derived in (3.32) to be ̄+ 1.

Fig. 6 (a) and (b) shows the graphs of the variance of the distribution 
𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡 using parameters in Table 1 with (𝛽 = 1.7; 𝜎 = 0.5) 
and (𝛽 = 1.7; 𝜎 = 0.8), respectively. The thick line is the trajectory of the 
variance function, 𝜎2

𝑥
(𝑡), given in (3.28) as a function of time, while the 

dashed line is the horizontal line representing the limit lim
𝑡→∞

𝜎2
𝑥
(𝑡) of the 

variance function. This value is derived in (3.32) to be ̄+ 1.

Fig. 7 (a) and (b) shows the graphs of the skewness of the distri-

bution 𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡 using parameters in Table 1 with (𝛽 = 1.7; 
𝜎 = 0.5) and (𝛽 = 1.7; 𝜎 = 0.8), respectively. The thick line is the trajec-

tory of the skewness function, sk𝑥(𝑡), given in (3.28) as a function of 

time, while the dashed line is the horizontal line representing the limit 
lim
𝑡→∞

sk𝑥(𝑡) of the skewness function. This value is derived in (3.32) to be 

2 
(̄+ 1

)−1∕2
.

Fig. 8 (a) and (b) shows the graphs of the mode of the distribution 
𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡 using parameters in Table 1 with (𝛽 = 2; 𝜎 = 0.4), (𝛽 =
2.7; 𝜎 = 0.6), respectively. The thick line is the trajectory of the mode 
function, mode𝑥(𝑡), described in (3.29), while the dashed line is the 
horizontal line representing the limit lim

𝑡→∞
mode𝑥(𝑡) of the mode function 

given in (3.32) to be ̄.

Fig. 9 (a) and (b) shows the graphs of the median of the distribution 
𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡 using parameters in Table 1 with (𝛽 = 1.7; 𝜎 = 0.5), 
(𝛽 = 2; 𝜎 = 0.5), respectively. The thick line is the trajectory of the me-

dian function, median𝑥(𝑡), described in (3.30), while the dashed line is 
the horizontal line representing the limit lim

𝑡→∞
median𝑥(𝑡) of the median 

function.

4.5. Statistic results for the distribution 𝑃 (𝐼, 𝑡|𝐼0 = 0.05))

Fig. 10 (a) and (b) shows the graphs of the mean of the distribution 
𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡 using parameters in Table 1 with (𝛽 = 1.7; 𝜎 = 0.5) 
and (𝛽 = 1.7; 𝜎 = 0.8), respectively. The thick line is the trajectory of the 
mean function, 𝜇(1)

𝐼
(𝑡), described in (3.34), while the dashed line is the 

8
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Fig. 6. Variance of the distribution 𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡.

Fig. 7. Skewness of the distribution 𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡.

Fig. 8. Mode of the distribution 𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡.

Fig. 9. Median of the distribution 𝑃 (𝑥, 𝑡|𝑥0) at time 𝑡.

9
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Fig. 10. Mean of the distribution 𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡.

Fig. 11. Variance of the distribution 𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡.

Fig. 12. Skewness of the distribution 𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡.

horizontal line representing the limit lim
𝑡→∞

𝜇
(1)
𝐼
(𝑡) of the mean function 

described in (3.38).

Fig. 11 (a) and (b) shows the graphs of the variance of the distri-

bution 𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡 using parameters in Table 1 with (𝛽 = 1.7; 
𝜎 = 0.5) and (𝛽 = 1.7; 𝜎 = 0.8), respectively. The thick line is the 
trajectory of the variance function, 𝜎2

𝐼
(𝑡), given in (3.34) as a func-

tion of time, while the dashed line is the horizontal line representing 
the limit lim

𝑡→∞
𝜎2
𝐼
(𝑡) of the variance function. This value is derived in 

(3.38).

Fig. 12 (a) and (b) shows the graphs of the skewness of the distri-

bution 𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡 using parameters in Table 1 with (𝛽 = 1.7; 
𝜎 = 0.5) and (𝛽 = 1.7; 𝜎 = 0.8), respectively. The thick line is the trajec-

tory of the skewness function, sk𝐼 (𝑡), given in (3.34) as a function of 
time, while the dashed line is the horizontal line representing the limit 
lim
𝑡→∞

sk𝐼 (𝑡) of the skewness function described in Section 3.3.1.

Fig. 13 (a) and (b) shows the graphs of the mode of the distribution 
𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡 using parameters in Table 1 with (𝛽 = 2; 𝜎 = 0.5), 
(𝛽 = 2.7; 𝜎 = 0.7), respectively. The thick line is the trajectory of the 
mode function, mode𝐼 (𝑡), described in Subsection 3.3, while the dashed 

line is the horizontal line representing the limit lim
𝑡→∞

mode𝐼 (𝑡) of the 
mode function given in Section 3.3.1.

Fig. 14 (a) and (b) shows the graphs of the median of the distri-

bution 𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡 using parameters in Table 1 with (𝛽 = 1.7; 
𝜎 = 0.5), (𝛽 = 2; 𝜎 = 0.5), respectively. The thick line is the trajectory of 
the mode function, median𝐼 (𝑡), described in Subsection 3.3, while the 
dashed line is the horizontal line representing the limit lim

𝑡→∞
median𝐼 (𝑡)

of the mode function given in Section 3.3.1.

5. Conclusion

We studied how infection is being distributed in a population. By ex-

tending the well known deterministic SIS model into a stochastic model, 
we derive the closed form probability distribution of the number of 
infected individuals at a particular time 𝑡 using the Fokker-Planck equa-

tion. Under certain transformation, the differential equation governing 
the probability density function (PDF) reduces to a Kummer/Laguerre 
differential equation. As the noise intensity 𝜎 increases, the distribu-

tion 𝑃 (𝐼, 𝑡|𝐼0) behaves like the Beta distribution Beta(0, 0). Increasing

10
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Fig. 13. Mode of the distribution 𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡.

Fig. 14. Median of the distribution 𝑃 (𝐼, 𝑡|𝐼0) at time 𝑡.

the noise intensity 𝜎 affects the distribution of the number of infec-

tions. We note that the stationary probability distribution 𝑃𝑠(𝐼) exists 
only for the case where 𝑅0 > 1, where 𝑅0 is defined in (1.4) as the 
average number of secondary infection produced by an infected indi-

vidual when introduced into a completely susceptible population. Also, 
we showed that the number �̄�0 = 1 serves as a threshold at which the 
distribution 𝑃 (𝐼, 𝑡|𝐼0) becomes stationary distribution 𝑃𝑠(𝐼), and that 
the distribution increases (decreases) in this case on the interval (𝑠−, 𝑠+)
((0, 𝜅)∖(𝑠−, 𝑠+)). The limiting distribution and statistics of the distribu-

tion at time 𝑡 are calculated. The result is applied to U.S. Influenza data 
for the seasons 2004-2017.
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