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Age-Associated Changes in Hearts of Male
Fischer 344/Brown Norway F1 Rats 

Ernest M. Walker, Jr.,1,2 Michael S. Nillas,2 Elsa I. Mangiarua,3 Sylvestre Cansino,2,4 Ryan G. 
Morrison,3 Romaine R. Perdue,5 William E Triest,1,6 Gary L. Wright,3 Mark Studeny,2,4 Paulette 
Wehner,2,4 Kevin M. Rice,3,7, and Eric R. Blough3,7 
Departments of Pathology,1 Cardiovascular Services,2 and Physiology,3 Joan C. Edwards School of 
Medicine; St. Mary’s Medical Center;4 Cabell Huntington Medical Center;5 Huntington VA Medical 
Center;6 and Department of Biology,7 Marshall University, Huntington, West Virginia

Abstract.  Aging is associated with left ventricular hypertrophy, dilatation, and fibrosis of the heart. The 
Fischer 344/Brown Norway F1 (F344/BNF1) rat is recommended for age-related studies by the National 
Institutes on Aging because this hybrid rat lives longer and has a lower rate of pathological conditions than 
inbred rats. However, little is known about age-associated changes in cardiac and aortic function and 
structure in this model. This study evaluated age-related cardiac changes in male F344/BNF1 rats using 
ECHO, gross, and microscopic examinations. Rats aged 6-, 30-, and 36-mo were anesthetized and two-
dimensional ECHO measurements, two-dimensional guided M-mode, Doppler M-mode, and other 
recordings from parasternal long- and short-axis views were obtained using a Phillips 5500 ECHO system 
with a 12 megahertz transducer. Hearts and aortas from sacrificed rats were evaluated grossly and 
microscopically. The ECHO studies revealed persistent cardiac arrhythmias (chiefly PVCs) in 72% (13/18) 
of 36-mo rats, 10% (1/10) of 30-mo rats, and none in 6-mo rats (0/16).  Gross and microscopic studies 
showed left ventricular (LV) dilatation, borderline to mild hypertrophy, and areas of fibrosis that were 
common in 36-mo rats, less evident in 30-mo rats, and absent in 6-mo rats.  Aging was associated with 
mild to moderate decreases of LV diastolic and systolic function. Thus, male F344/BN F1 rats demonstrated 
progressive age-related (a) decline in cardiac function (diastolic and systolic indices), (b) LV structural 
changes (chamber dimensions, volumes, and wall thicknesses), and (c) persistent arrhythmias. These 
changes are consistent with those in humans. The noninvasive ECHO technique offers a means to monitor 
serial age-related cardiac failure and therapeutic responses in the same rats over designated time intervals.

Keywords:  echocardiography, aging, cardiac remodeling, cardiovascular disease

Introduction  

Progressive changes in the heart, including LV 
hypertrophy, chamber dilatation, and fibrosis are 
associated with aging. Current echocardiographic 
(ECHO) techniques make it possible to follow age-
associated changes in cardiac function and structure 
in a serial, noninvasive manner [1]. The Fischer 

344/Brown Norway F1 (F344/BNF1) rat is recom-
mended by the National Institutes on Aging as a 
model for the study of age-related pathophysiological 
changes, since this hybrid (Fischer 344 x Brown 
Norway) rat lives longer and has a lower rate of 
pathological conditions than inbred rats [1].  Studies 
have found modest declines in systolic and diastolic 
function in nonhybrid female F344 rats when 30-
mo-old rats were compared to 6-mo-old rats.  
Diastolic function may decline earlier and to a 
greater degree than systolic function [2]. Age-
associated declines in diastolic function were found 
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in male F344/BNF1 rats, which may be reversible 
by exercise training, suggesting that such declines 
may not be intrinsic to aging but that other factors 
such as deconditioning may be contributory [2].   
 Previous ECHO studies showed pronounced 
deleterious cardiac changes in female Fischer 344 
[1] or male F344/BNF1 rats [2], but the oldest rats 
studied were only 30-mo. In most other rat strains, 
male rats develop more severe age-associated cardiac 
decline at an earlier age than females [3,4]. To our 
knowledge, ECHO studies of male F344/BNF1 
rats are rare and ECHO studies of rats older than 
30-mo have never been reported. Probability of 
survival curves generated by the National Institutes 
on Aging show that 30-mo-old and 36-mo-old rats 
correspond roughly to humans in the sixth and 
eighth decades of life, respectively. Therefore, the 
purpose of our study was to gather evidence of age-
associated progressive changes in indices of cardiac 
function and structure in male F344/BNF1 hybrid 
rats at 6-, 30-, and 36-mo of age.

Materials and Methods

Animals. All treatments of animals were approved by the 
Marshall University Animal Care Committee.  Male Fischer 
344/Brown Norway F1 (F344/BNF1) rats were divided into 
groups of 8 according to age (6-mo, 30-mo, 36-mo).  The rats 
were housed on wood chip bedding at 23 ± 2°C in a room 
with 12-hr light/dark cycles.

ECHO principles. Echocardiography is a noninvasive 
procedure in which ultrasonic waves (frequency >20,000 
cycles/sec) are emitted from a piezoelectric crystal or 
transducer, beamed in particular directions, and reflected 
back (echo) by small structures in the mm and <mm range 
[5,6].  The waves are beamed toward and penetrate the heart 
and are reflected back to the transducer as a series of echoes, 
which are amplified and displayed on a cathode ray tube [6].  
Echocardiography is used to evaluate the position, size, and 
movements of cardiac valves, heart wall structures, and 
directional flow of blood in cardiac chambers [6 ].
 The wavelength of an ultrasonic pulse is calculated using 
the formula λ = V/F = velocity of pulse in tissue/frequency of 
the pulse.  Pulse velocity in tissue is approximately 1,500 m/
sec (1,500,000 mm/sec) [6-8] so λ = 1,500,000/12,000,000 = 
0.125 mm with a 12 MHz transducer.  ECHO resolution is 
the smallest distance between two points at which the points 
can be distinguished as separate [6].  Resolution = wavelength 
x pulse length, and our pulse length was 1 sec.  Therefore, we 
were able to measure cardiac wall thicknesses of approximately 
0.125 mm or greater.   
 ECHO sensitivity is the ability of the system to image 
small targets located at specific depths in an attenuative 

medium [6].  It is determined by the transducer transmitting 
efficiency x the transducer receiving efficiency of the reflected 
pulse (echo).  System efficiency is determined by transducer 
beam geometry, frequency spectrum, and energy conversion 
efficiency. The typical transducer used in ECHOs of adult 
patients is about 2.25-MHz and has an efficiency of about 
4.4% [6].  3.5-MHz transducers are typically used in younger 
children and 5-MHz transducers in infants and neonates.  In 
our rats, a 12-MHz transducer was used and the beam travels 
a much shorter distance in rat hearts than in the case of 
human hearts, so that the system efficiency and ECHO 
sensitivity should be considerably greater. 

Echocardiographic procedures. Rats aged 6-, 30-, and 36-mo 
were anesthetized with a ketamine (100 mg/ml)/xylazine (20 
mg/ml) mixture and ventral thoraxes were shaved and covered 
with ultrasonic transmission gel. Two-dimensional ECHO 
measurements, two-dimensional guided M-mode, Doppler 
M-mode, and other recordings from parasternal long- and 
short-axis views were obtained using a Phillips 5500 ECHO 
system with a 12 MHz transducer. Two-dimensional measure-
ments were used to image cardiac structures in the parasternal 
long- and short-axis views.  The echocardiographic views were 
then used to position the M-mode echocardiographic line.  In 
the long-axis procedures, the probe was oriented toward the 
base of the heart projecting toward the apex (x-axis) with 
depth along the y-axis, thus allowing pulse wave Doppler 
evaluation of valvular blood flow velocities.  In the short-axis 
procedures, the probe was oriented toward the left ventricle 
and across the heart for evaluation of wall structure, which 
was utilized in the calculation of ejection fraction and 
fractional shortening during systole.  M-mode displays were 
analyzed by a digital echocardiographic analysis system.
 Six measurements were selected for each assessment of 
cardiac structure and function.  The structural parameters 
included diastolic (IVSd) and systolic (IVSs)  left ventricular 
septal thickness, diastolic (LVIDd) and systolic (LVIDs) left 
ventricular internal dimension, diastolic (LVPWd) and 
systolic (LVPWs) left ventricular posterior wall thickness, and 
right ventricular diastolic internal dimension (RV).  
Functional measurements included ejection fraction (EF), 
left ventricular fractional shortening during systole (FS), 
maximal aortic (AVmax), pulmonary (PVmax), mitral 
(MVmax), and tricuspid (TVmax) valvular blood flow 
velocity.
 Additional echocardiographic measurements included 
mitral valve deceleration (decel), left ventricular mass during 
diastole (LVMd), LV mass during systole (LVMs), thickness 
ratio of the interventricular septum to LV posterior wall (IVS/
PW),  end-systolic volume (ESV),  LV interventricular % 
thickness  (%IVS thick),  LV posterior wall thickness (%PW 
thick),  peak velocity of the A wave (Amax), and peak velocity 
of the E wave (Emax).  ESV, %IVS thickening, and %PW 
thickening were used to evaluate systolic function. Mitral 
valve deceleration, Emax, A max, and E:A ratio were used to 
evaluate diastolic function. LVmass and IVS/PW can be used 
to evaluate both systolic and diastolic function. In addition to 
direct measurements of cardiac mass, echocardiographic 
measurements were utilized to calculate left ventricular mass 
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(LVM) as previously described [8] using the equation: LVM 
(g) = 1.04 (LVIDd + LVIVSd  + LVPWd)3 – (LVIDd)3.

Gross and histopathological studies. Body weights and heart 
weights were obtained and compared. Formalin-fixed hearts 
were serially sectioned and submitted for tissue processing 
and staining with hematoxylin and eosin (H & E), Masson’s 
trichrome, Mallory PTAH stain for demonstration of cardiac 
muscle striations (Poly Scientific R & D Corp., Bay Shore, 
NY), and a hematoxylin-basic fuchsin stain for detection of  
infarction (Poly Scientific R & D Corp.). With the 
hematoxylin-basic fuchsin stain, normal heart fibers take up 
the basic fuchsin stain and are stained red, while ischemic 
myocardium takes up hematoxylin and basic fuchsin and is 
stained brown. Left ventricular and septal wall thicknesses 
from serially sectioned (4 mm) formalin-fixed hearts (n = 6) 
were measured postmortem using calipers, and compared to 
cardiac ventricular and septal wall thicknesses obtained from 
ECHO studies.

Statistical methods. Results are given as mean ± SD.  Group 
comparisons between ECHO functional and structural 
parameters, morphologic indices, and the incidence of cardiac 
arrhythmias data with aging were evaluated by ANOVA with 
the appropriate post hoc test as needed; p <0.05 was chosen as 
the criterion for significance.

Results

Body weights and heart weights are compared in 
Table 1.  These weight comparisons were consistent 
with the ECHO, gross, and microscopic indications 
of cardiac hypertrophy seen in this study.  Rat 
weights increased with age between ages 6- and 30-
mo; heart weights increased at a greater rate so that 
heart weight/total body weight ratios increased 
with age. 

ECHO results. Echocardiographic evaluation of 
the 6-, 30-mo, and 36-mo-old male F344/BNF1 
rats showed minor changes in several structural 
features of the left ventricle (Table 2). The diastolic 
(LVIDd) and systolic (LVIDs) left ventricular (LV) 
internal dimensions were increased in 30-mo and 
36-mo rats when compared to 6-mo rats.  Diastolic 
(LVPWd) and systolic (LVPWs) LV posterior wall 
thicknesses were increased (p <0.05) in 30-mo, but 
not in 36-mo hearts. There were no significant 
differences in the structural parameters of 30-mo 
vs 36-mo-old rats, indicating that the development 
of these structural changes occurs by the time the 
rats are 30-mo-old (Table 2). 

 Mild, progressive decrements in resting LV 
systolic function were suggested by increases in LV 
end-systolic volume (ESV), which was most 
dramatic in the 36-mo-old rats (Table 4). There 
were no other statistically different systolic 
functional values (EF, FS, and valvular flow 
velocities) in 6-, 30-, and 36-mo-old rats (Table 3). 
Mild, progressive diastolic dysfunction was 
suggested by increases in E:A ratios, which were 
most severe in 36-mo-old rats (Table 4).
 Table 4 presents additional ECHO evaluation 
of cardiac parameters in male rats at the different 
ages.  Two distinct phases of the transmitral flow 
velocity profile can be readily identified (E wave 
and A wave), which represent the flow velocities of 
the early filling phase and the atrial contraction 
phase, respectively [9].  These waves usually appear 
as well-defined triangles and the slopes of the 
triangle sides define the acceleration (upslope) and 
deceleration (downslope) of  the wave.  The height 
of each triangle represents the peak velocity (Emax 
and Amax) [9]. The increased E:A ratio seen 
especially in the 36-mo-old rats suggests impaired 
(slow) left ventricular (LV) relaxation, possibly with 
moderately decreased left ventricular compliance 
[10].  E-wave and A-wave peak velocities were not 
statistically different from those of 6-mo-old rats.  
It is probable that any effects of impaired (slow) 
early LV relaxation, if it exists, were offset by 
increased left atrial pressures, so that early diastolic 
transmitral pressure gradients and mitral valve flow 
velocity patterns remained normal or returned to 
normal (pseudonormalization), although significant 
abnormalities of diastolic function may be present 
[11].  Therefore, it is possible in these rats that there 
is impaired LV relaxation, mild to moderate 
decrease in LV compliance, and mild to moderate 
decrease in LV filling pressures.  Increased diastolic 
and systolic LV masses are apparent in 30- and 36-
mo, compared to 6-mo rats, consistent with the 
other indications of ventricular hypertrophy.   

Cardiac arrhythmias. ECHO evaluations revealed  
frequent arrhythmias, chiefly PVCs, in 36-mo-old 
rats (13/18), which were less frequent in 30-mo-old 
rats (1/10) and absent in 6-mo-old-rats (0/16) (p< 
0.005 vs 36-mo-old-rats by Chi-square test).
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Gross and microscopic findings. Gross and 
microscopic evaluations confirmed cardiac hyper-
trophy and chamber dilation, especially ventricular, 
in 36-mo rat hearts. Masson’s trichrome staining 
demonstrated extensive subendocardial (Fig. 2C) 
and interstitial fibrosis (Fig. 2D) in many areas of 
the left ventricle in 36-mo rats (fibrotic infiltration), 
but these findings were absent in 6-mo rats (Fig. 
2A, 2B). Figs. 2C and 2D also show loss of vent-
ricular cardiomyocytes in 36-mo old rat hearts. 
Mallory’s special cardiac PTAH stain showed 
prominent, uniform myocardial cross striations in 
6-mo rat hearts (Fig. 2E), which were lacking or 
greatly decreased in 36-mo rat hearts (Fig. 2F). 

ECHO results vs gross measurements of cardiac 
ventricular and septal walls. Ultrasound imaging 
captures dynamic, real-time images that can be 
analyzed to obtain quantitative structural and 

Fig. 1. (Panel A): Left ventricular wall thickness is increased with aging. Ventricular and septum wall thicknesses were measured 
postmortem from serially sectioned (4 mm) formalin-fixed hearts (n = 6; *p <0.05).  Panels B and C show representative serial 
cross-sections (4 mm) of 6- and 36-mo-old hearts, respectively.  Bar = 5 mm. 

Table 1. Total body weight (BW) and heart weight 
(HW) in male F344/BN F1 rats at 6-, 30-, and 36-
mo of age.  Results are expresed as g or HW/BW 
ratio (means ± SD; 8 rats/group).

 Group Body Heart HW/BW
  wt (g) wt (g) ratio (%)

 6-mo 406.0 0.96 0.237
  ±16.5 ±0.08 ±0.015

 30-mo 565.0* 1.81* 0.320*
  ±40.4 ±0.18 ±0.025

 36-mo 500.0* 1.66* 0.327*
  ±17.5 ±0.15 ±0.021

* p < 0.05 vs corresponding value for 6-mo group.
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Fig. 2.  Panel A (Masson’s trichrome stain, 100x) and Panel B (Masson’s trichrome stain, 400x):  6-mo-old rat heart shows 
absence of subendocardial fibrosis (A) and absence of interstitial fibrosis in the mid-portion of the left ventricle (B).
  Panel C (Masson’s trichrome stain, 100x) and Panel D (Masson’s trichrome stain, 400x):  36-mo-old rat heart shows 
subendothelial (C) and interstitial fibrosis (D). 
  Panel  E (Mallory’s PTAH stain, 600x) and Panel F (Mallory’s PTAH stain, 600x):  6-mo-old rat heart shows presence 
of uniform myocardial cross striations (E), while the 36-mo-old rat heart shows patchy loss of cross striations (F).

Age-associated changes in rat hearts 431



Table 2.  Echocardiographic evaluation of cardiac structural parameters in male F344/BN F1 rats of different ages.  Results are 
reported as cm or g (mean ± SD; 8 rats/group).
 
 Group   N LVIVSd   LVIVSs LVIDd LVIDs LVPWd LVPWs RVIDd   LVM**
          (cm) (cm) (cm) (cm) (cm) (cm) (cm) (g)  

 6-mo 8  0.10 0.17 0.65 0.38 0.16 0.23 0.09 0.518  
   ±0.01 ±0.04 ±0.07 ±0.04 ±0.01 ±0.02 ±0.02 ±0.119

 30-mo 8 0.09 0.20 0.86* 0.50* 0.20* 0.29* 0.10 0.923*
  ±0.02 ±0.03 ±0.10 ±0.06 ±0.02 ±0.02 ±0.03 ±0.284
                 
 36-mo 8 0.09 0.19 0.86* 0.54* 0.18 0.28 0.09 0.859
  ±0.02 ±0.03 ±0.12 ±0.08 ±0.03 ±0.05 ±0.02 ±0.347

 *p <0.05  (30- or 36-mo versus 6-mo).
** Calculated from equation.

Table 3.  Echocardiographic evaluation of cardiac functional parameters in male F344/BN F1 rats of different ages.  Results are 
reported as % or cm/sec (mean ± SD; 8 rats/group).
 
 Group N EF FS AVmax PVmax MVmax TVmax    
   (%) (%) (cm/sec) cm/sec) (cm/sec) (cm/sec) 
  
 6-mo    8  77.9 41.6  54.0 77.0 41.2 46.0.    
   ± 5.7 ± 5.4 ± 8.9 ±17.5 ± 5.0 ±12.3 
   
30-mo    8 77.1 41.6 63.6 98.4 53.9 49.0      
   ±7.2 ±6.5 ±20.2 ±17.1 ±10.0 ±9.5    

36-mo    8 74.5 39.9 55.8 95.9 54.3 47.9      
   ±9.7 ±8.3 ±12.6 ±23.2 ±14.5 ±6.4     

Table 4.  Echocardiographic evaluation of cardiac parameters in male F344/BN F1 rats of different ages.  Results are reported as 
m, sec, g, or % (mean ± SD, 8 rats/group).  
 
Group Decel LVMd LVMs IVS/PW ESV IVS PW Emax Amax E:A
   (sec) (g) (g) (ratio)  thick(%) thick(%)

 6-mo  0.06 1.00 0.98 0.61 0.14 90 45 51 29 1.7
  ±0.01 0.09 ±0.10 ±0.10 ±0.04 ±34 ±20 ±7 ±7 ±0.2

 30-mo 0.06 1.35* 1.28* 0.54 0.31* 99 58 54 26 2.1
  ±0.01 ±0.23 ±0.13 ±0.11 ±0.10 ±28 ±10 ±91 ±5 ±0.3  

 36-mo 0.06 1.26* 1.24* 0.53 0.38* 128 52 59 26 2.6*
  ±0.01 ±0.15 ±0.14 0.10 ±0.15 ±40 ±10 ±13 ±5 ±0.4
   
*p < 0.05  (30- or 36-mo versus 6-mo).

Table 5. Ventricular and septal wall thicknesses in male F344/BNF11 rats at 6- or 36-mo (mm, mean ± SD, n = 6).

 Group RV wall thickness LV wall thickness Septal thickness

 6-mo 0.69 ±0.17 2.89 ±0.48 2.90 ±0.21

 36-mo 0.86 ±0.16 3.65 ± 0.27 2.66 ±0.41
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functional information. Ultrasound imaging has 
the advantage of being noninvasive. M-mode echo-
cardiograms have been used to assess LV structure 
and function in rats [12,13] and mice [14].  
Nonetheless, M-mode-derived volume and mass 
calculations may be susceptible to error because 
they are based on a single measurement from one 
point through the ventricle and do not include  
ventricular length measurement [15].  To examine 
this possibility, we examined age-associated changes 
in left ventricular thickness postmortem (Table 5; 
Fig. 1).  Compared to ECHO-determined values, 
direct measurement of left ventricular thickness 
was higher by 17.8% and 22.2% in 6- and 36-mo 
rats, respectively (p <0.05).  Nonetheless, both 
procedures yielded similar age-associated differences 
(+20%) in left ventricular wall thickness (Tables 4 , 
5; Fig. 1).  Conceivably, the observed differences in 
magnitude between the two methods may be due 
to tissue swelling after formalin fixation [16].

Discussion 

Cardiovascular disease (CVD) is responsible for 
>30% of deaths worldwide  and heart failure is the 
leading cause of death in persons >65 years old 
[10,17]. The occurrence, severity, and prognosis of 
CVD may reflect age-associated changes in 
cardiovascular structure and function [10].
 Fischer 344/Brown Norway  F1 (F344/BNF1) 
rats were chosen for this study since this hybrid rat 
lives longer and has a lower rate of pathological 
conditions than inbred rats. Previous ECHO 
studies demonstrated pronounced deleterious 
cardiac changes in F344/BN rats, but to our 
knowledge ECHO studies of male F344/BNF1 
rats older than 30-mo have not been reported. In 
most other rat strains, male rats develop more 
severe age-associated cardiac decline at an earlier 
age than female rats [3,4]. Therefore, male rats were 
chosen for this study and included those age 6-mo 
(adult), 30-mo (aged), and 36-mo (very aged).  
Probability of survival curves generated by the 
National Institutes on Aging indicate that the aged 
and very aged rats used corresponded roughly to 
humans in their sixth, and eighth decades of life, 
respectively.   

 In other rat strains and stocks (conventional 
and specific-pathogen free), progressive myocardial 
degeneration and fibrosis develop with aging 
[3,4,18-22].  The incidence of lesions is greater and 
their onset is earlier in males than females [3,4]. 
Typical microscopic findings consist of myocardial 
atrophy, degeneration, necrosis, condensation 
fibrosis of the stroma, and an inflammatory 
mononuclear infiltrate consisting of lymphocytes, 
macrophages, and Anitschkow cells [3,4,19,20,22].  
The papillary muscles and their attachment sites in 
the wall of the left ventricle are the most frequently 
involved areas, but the heart base, interventricular 
septum, papillary muscle attachments in the right 
ventricle, apex of the heart, and areas adjacent to 
the coronary arteries may be lesion sites [1,17,18].  
The incidence of lesions in both sexes may be as 
high as 60-80%, with the greatest increase after l8-
mo of age [3,20].  Most myocardial fibers do not 
demonstrate cross-striations in very aged rats [3].  
In addition, aged rats have increased heart size 
relative to weight as a result of left ventricular 
hypertrophy. Aged rats have few or no major signs 
of cardiac insufficiency or decreases in cardiac 
performance [3,20], but they may show minor 
electrocardiogram alterations [3,23].
 Additional age-associated cardiac lesions 
reported in rats include intracardiac thrombi in the 
left and right atria and left ventricle [3,4,20], 
valvular endocardiosis (thickening of the heart 
valves by myxomatous connective tissue) [3,20], 
endocardial/subendocardial proliferative lesions  
(most common in the left ventricle) [3,24], cardiac 
fibromas [3,25], and chronic auriculitis [3,20].

Previous ECHO studies. Boluyt et al [26] conducted 
the first noninvasive echocardiographic assessment 
of systolic and diastolic function in aging female 
Fischer F344 rats.  Female Fischer F344 rats have 
been used as models to examine age-associated 
changes in the extracellular matrix of the heart [27-
29] and in age-related cardiac responses to pressure-
overload hypertrophy  [26,30].  The rat age extremes 
were 4- to 30-mo, designed to include ages that 
exhibit significant differences in (a) collagen content 
and cross-linking [27-29] and (b) expression of 
myosin isoforms [31].  The conclusions from these 
studies [1,26] include: (a) progressive, mild age-
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associated decrements in multiple aspects of resting 
LV systolic function, as evidenced by declines in 
LV ejection fraction, FS, and velocity of circum-
ferential fiber shortening, which appeared to 
accelerate after 22-mo of age, and (b) mild diastolic 
dysfunction in selected parameters such as increased 
isovolumic relaxation time and decreased tissue 
Doppler peak E waves at the septal annulus and at 
the lateral annulus of the mitral valve, which 
became readily evident only after 22-mo of age.  
Evaluation of chamber and wall dimensions 
revealed a pattern of dilatation of the LV between 
13- and 22-mo and thickening of the walls between 
22- and 30-mo of age. These first studies [1,26] 
used Fischer 344 rats but did not use F344/BNF1 
rats or rats >30-mo of age.
 Systolic function is relatively well preserved, 
but diastolic function declines steadily with 
advancing years after age 30 in humans, even in 
the absence of CV disease, which may explain the 
increased incidence of diastolic heart failure with 
advancing age [2,32-34].  Brenner et al. [2] used 
6- and 24-mo-old male Fischer 344/Brown Norway 
F1 (F344/BNF1) rats to determine whether exercise 
training reverses age-associated declines in diastolic 
function. They chose male F344/BNF1 rats since 
the hybrid rats have longer life spans and lower 
rates of the pathological conditions associated with 
inbreeding. Three aspects of diastolic function were 
investigated: (a) LV filling in vivo, (b) LV passive 
compliance, and (c) the degree of ischemia-induced 
LV stiffening. LV filling was impaired early in 
diastole in aged hearts but systolic function was not 
compromised, which corresponds to results seen in 
humans with aging.  Exercise improved LV filling 
in the rats and has been reported to improve resting 
diastolic function in patients with cardiomyopathy 
and impaired relaxation [35].  Cardiac myofilament 
tension must be rapidly released or relaxed at the 
end of systole in order for adequate diastolic LV 
filling to occur.  Age-associated declines in the 
degree of LV relaxation and myocardial calcium 
uptake are reversed by exercise training [36], which 
agrees with whole heart manifestation of the 
improved calcium uptake and relaxation results 
reported in isolated cardiac muscle strips from 
trained, aged rats [36,37].  Passive LV stiffness 
(stiffness constant from the LV pressure-volume 

relationship) was not altered with age or training, a 
finding consistent with the literature. Vasculature 
clearly stiffens with age [38] while LV compliance 
apparently does not in the absence of accompanying 
hypertension or other CV disease [39,40]. The 
degree and rate of ischemia-induced LV stiffening 
is increased in old, untrained hearts. This stiffening 
induces increases in LV end-diastolic pressure 
(EDP) and even minor decreases in EDP of 5 mm 
Hg can significantly affect pulmonary function [2].  
The degree of impairment to ischemic tolerance 
was less in the 24-mo-old Fischer 344/BNF1 rats 
than in most other rat strains of similar ages since 
these rats are still presenescent, in contrast to the 
senescent rats used in many other studies [41-43].  
Brenner et al [2] noted in the F344/BNF1 rat that 
ischemia-induced EDP increases may be due to 
subendocardial rigor [44,45] and that training may 
slow the rate at which rigor develops. Brenner et al 
[2] concluded that the increased rate and degree of  
ischemia-induced diastolic impairment may reflect 
deconditioning rather than inevitable consequences 
of aging.  
 Our ECHO findings include a number of 
cardiac left ventricular (LV) structural changes: (a) 
minor, progressive diastolic and systolic LV chamber 
dilatation as judged by increased LV internal 
dimensions (LVIDd and LVIDs), (b) mild diastolic 
and systolic LV hypertrophy as judged by increased 
diastolic and systolic LV posterior wall (LVPWd 
and LVPWs) thicknesses and LV masses (LVMd 
and LVMs), (c) progressive, mild age-associated 
decrements in resting LV systolic function as 
suggested by increases in LV end-systolic volumes 
(ESV), and (d) mild diastolic dysfunction as 
evidenced by significant increases in E:A ratios, 
especially in 36-mo-old rats.  Other parameters of 
systolic function (EF, FS, AVmax, PVmax, MVmax, 
TVmax) in 30- and 36-mo-old rats were not 
statistically different from those in 6-mo-old male 
rats, suggesting cardiac compensation for the mild 
systolic declines. Most LV structural and functional 
parameters did not differ significantly in 30- and 
36-mo-old rats, which suggests that most of the 
age-related changes have occurred or are well 
underway by age 30-mo in these rats.  In addition, 
the LV hypertrophy so apparent in the 30-mo-old 
rats appears to be somewhat offset by apoptosis and 
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loss of ventricular cardiomyocytes (Figs. 2C, 2D) 
with additional aging, thus counteracting overall 
increases in LV thickness and LV mass, between 
ages 30-and 36-mo (Table 2). 
 Our findings in aging male F344/BNF1 rats 
agree with the reports [1,2,45] that  LV  diastolic 
and systolic dysfunction becomes evident or begins 
to accelerate after age  22-mo in a similar rat strain, 
the aging female, nonhybrid Fischer F344 rats.  
The lack of  sustained hypertension in aged F344/
BN rats [1,2] complicates explanations for the age-
associated LV chamber dilatation and hypertrophy 
resulting from cardiac remodeling.  
 The aortas were evaluated in a parallel study of 
the same rats as the present investigation and these 
results are reported in separate publications [10,46]. 
Aortic measurements included aortic contractility 
and relaxation determinations, as well as gross and 
microscopic examinations. These data showed that 
male Fischer 344/BNF1 rats have progressive, age-
related declines in aortic structure and function 
including depressed contractility, increased aortic 
stiffness, aortic medial thickening, and alterations 
in elastin/collagen composition [10,46]. Thus, 
similar to humans, the aging F344/BNF1 rats 
exhibit age-related alterations in cardiovascular 
(heart and aortic) structure and function. 
 The investigators [10,46] also studied aortic 
response to increased intraluminal pressure and 
found: (a) a disconnect between aging and load-
induced Akt- and MAPK-dependent signaling,  (b) 
changes in the expression/basal phosphorylation 
and/or load-induced regulation of signaling 
molecules that precede age-associated changes in 
the mechanical properties of the aorta, and (c) 
changes in phosphatase activity, which may help to 
explain age-associated changes in aortic signaling 
[10,46].  These findings suggest  the hypothesis 
that age-related alterations in aortic vessel 
remodeling may be due, at least in part, to activation 
of certain mitogen-activated protein kinase 
(MAPK) pathways [10,46], which could offer a 
partial explanation for the observed age-associated 
alterations in cardiac structure, function, and 
remodeling in the F344/BNF1 rat model.
 Our present findings agree with previous 
reports regarding progressive cardiac changes, 
including LV hypertrophy, chamber dilatation, and 

fibrosis that appear to be associated with aging.  
Our findings agree with other observations [1,2] of 
(a) progressive, mild age-associated decrements in 
multiple aspects of resting LV systolic function as 
evidenced by declines in LV ejection fraction, FS, 
and velocity of circumferential fiber shortening, 
which appeared to accelerate after 22-mo of age, 
and (b) mild diastolic dysfunction in selected 
parameters, such as increased isovolumic relaxation 
time and decreased tissue Doppler peak E waves at 
the septal annulus and at the lateral annulus of the 
mitral valve, which became evident only after 22-
mo of age.  Chamber and wall dimensions revealed 
a pattern of dilatation of the LV between 13-mo 
and 22-mo of age and thickening of the walls 
between 22-mo and 30-mo of age, but with partial 
offsetting of the ventricular thickening after age 
30-mo due to loss of ventricular cardiomyocytes.    
 Microscopic evaluations of 6-, 30-, and 36-
mo-old rat hearts demonstrate progressive increases 
in the degree and extent of interstitial fibrosis with 
aging. Appreciable  infiltrating fibrosis extending 
from the endocardium into the myocardium is seen 
in the 36-mo-old rat hearts. The age-associated 
functional and structural changes in these rat 
hearts, together with the loss of cardiac cells, 
arrhythmias, cardiac fibrosis, and other changes 
are similar to the microscopic and gross findings 
commonly observed in aging human hearts [47].
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