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New portable tool to screen vestibular and visual function—National 
Institutes of Health Toolbox initiative

Rose Marie Rine, PT, PhD;1* Dale Roberts, MS;2 Bree A. Corbin, MPT;1 Roberta McKean-Cowdin, PhD;3 
Rohit Varma, MD, MPH;4 Jennifer Beaumont, MS;5 Jerry Slotkin, PhD;5 Michael C. Schubert, PT, PhD6

1University of North Florida, Jacksonville, FL; 2Department of Neurology and Neurosurgery, Johns Hopkins Univer-
sity School of Medicine, Baltimore, MD; 3Department of Preventive Medicine, Keck School of Medicine of University 
of Southern California, Los Angeles, CA; 4Department of Ophthalmology, Keck School of Medicine of University of 
Southern California, Los Angeles, CA; 5Department of Medical Social Sciences, Feinberg School of Medicine, North-
western University, Chicago, IL; 6Department of Otolaryngology–Head and Neck Surgery, Johns Hopkins University 
School of Medicine, Baltimore, MD

Abstract—As part of the National Institutes of Health Toolbox 
initiative, we developed a low-cost, easy-to-administer, and 
time-efficient test of vestibular and visual function. A compu-
terized test of dynamic visual acuity (cDVA) was used to meas-
ure the difference in visual acuity between head still and 
moving in yaw. Participants included 318 individuals, aged 3 
to 85 years (301 without and 17 with vestibular pathology). 
Adults used Early Treatment of Diabetic Retinopathy Study 
(ETDRS) optotypes; children used ETDRS, Lea, and HOTV 
optotypes. Bithermal calorics, rotational chair, and light box 
testing were used to validate the cDVA. Analysis revealed that 
the cDVA test is reliable for static (intraclass correlation coeffi-
cient [ICC]  0.64) and dynamic (ICC  0.43–0.75) visual 
acuity. Children younger than 6 years old were more likely to 
complete cDVA with Lea optotypes, but reliability and correla-
tion with ETDRS was better using HOTV optotypes. The high 
correlation between static acuity and light box test scores (r = 
0.795), significant difference of cDVA scores between those 
with and without pathology (p  0.04), and the good to excel-
lent sensitivity (73%) and specificity (69%) establish that the 
cDVA is a valid and reliable measure of visual acuity when the 
head is still and moving, as well as a good proxy of vestibular 
function to yaw rotation.

Key words: dynamic visual acuity, gaze stability, NIH Tool-
box, optotype, static visual acuity, vestibular, vestibular reha-
bilitation, vestibular test, vision, vision test.

INTRODUCTION

The goal of the National Institutes of Health (NIH) 
Toolbox initiative is to develop a valid set of instruments 
that measure motor, sensory, cognitive, and emotive 
functions for large-scale epidemiological and clinical tri-
als and studies in subjects aged 3 to 85 years [1]. An 
important mandate of this goal was to develop instru-
ments that could be administered with minimal training 

Abbreviations: BVH = bilateral vestibular hypofunction, 
cDVA = computerized test of dynamic visual acuity, DVA = 
dynamic visual activity, E-ETDRS = electronic Early Treatment 
of Diabetic Retinopathy Study, ENG = electronystagmography, 
ETDRS = Early Treatment of Diabetic Retinopathy Study, EVA 
= electronic visual acuity, ICC = intraclass correlation coeffi-
cient, NIH = National Institutes of Health, SD = standard devia-
tion, SVA = static visual acuity, UVH = unilateral vestibular 
hypofunction, VH = vestibular hypofunction, VOR = vestibular 
ocular reflex.
*Address all correspondence to Rose Marie Rine, PT, PhD; 
Specialty Therapy Source, Research, 12948 Palmetto Glade 
Dr, Jacksonville, FL 32246; 904-762-8419; fax: 904-221-
5741. Email: specialtytherapy@bellsouth.net
http://dx.doi.org/10.1682/JRRD.2010.12.0239
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by nonclinical persons. For the sensory domain, a joint 
effort was invested by the vestibular and vision function 
teams to develop a single tool that would be useful for 
testing both senses. A select group of clinicians and basic 
scientists* served on separate vestibular and vision teams 
to identify appropriate tests for their respective sensory 
area, followed by joint meetings to identify areas of test-
ing overlap between the two teams. The documentation 
of an increasing need for tests that can identify vestibular 
and/or visual impairments throughout the lifespan sup-
ports the development of tools to meet that need.

The vestibular system is an integral component of 
human sensory perception, including the perception of 
angular and linear motion. It provides the brain with both 
sensory afference and motor efference. Putative vestibular
impairments affect 35 percent of U.S. adults over 40 years
old [2], with approximately 8 million U.S. adults report-
ing chronic balance problems [3]. Aside from imbalance, 
consequences of vestibular deficits also include gaze 
instability and increased risk for falls [4]. Similar prob-
lems exist in pediatric populations. Recently, O’Reilly et 
al. completed a review of pediatric patients seen over a
4-year period with a chief complaint of dizziness or 
imbalance [5]. Of those seen by specialists in otolaryngology,
35 percent had confirmed vestibular disorders. Cassel-
brant et al. reported that balance and vestibular problems 
persist in children with a history of chronic middle ear 
effusion after the resolution of the effusion [6]. Together, 
growing evidence suggests that a significant percentage 
of adults and children have vestibular deficits, and the 
incidence in children is underestimated [7–8]. Part of the 
challenge in identifying the population with vestibular 
hypofunction (VH) is the existence of a significant time 
delay from the onset of symptoms to appropriate referral. 
This is in part caused by the lack of screening tools that 
can be used by nonspecialists to identify those individu-
als who should be referred for specialized testing and 
treatment.

Vision is a complex sensation that provides a per-
sonal representation of an individual’s surrounding envi-
ronment. With the aging of the U.S. population, 
evaluation and treatment of age-related changes in 

vision-related diseases will be of growing importance in 
the next several decades. It is estimated that more than 
150 million people in the U.S. general population wear 
corrective lenses to compensate for visual impairment 
caused by refractive error [9], which may include myo-
pia, hyperopia, astigmatism, and presbyopia. Other rela-
tively common disease-related causes of visual 
impairment include age-related macular degeneration, 
cataracts, diabetic retinopathy, and glaucoma. Studies to 
prevent and evaluate treatment for these conditions will 
be of increasing value because the number of people with 
vision impairment from age-related eye disease is 
expected to double in the next three decades [9].

Both the vestibular and vision teams were given the 
task of developing a test that was (1) limited in number of 
tests and/or demands on the study participants, (2) inex-
pensive, (3) time efficient, (4) portable, (5) a valid indica-
tor of gaze stability and vision acuity, (6) able to be 
performed in subjects aged 3 to 85 years, and (7) capable 
of automated scoring and storing of data. The exclusion 
criteria for tests to be selected were (1) reliance on self-
report of symptoms, (2) high cost, (3) requirement of 
examiner expertise, or (4) lack of psychometric strength 
(i.e., sensitivity, specificity, validity). Based on a compre-
hensive review of available tests and existing literature, 
the vestibular team developed two separate tests: one that 
isolates the vestibular system’s contribution to gaze sta-
bility (vestibular ocular reflex [VOR]) and one that iso-
lates the vestibular system’s contribution to postural 
control. For the purpose of this article, we will only dis-
cuss VOR measurement.

The test chosen for VOR examination was a compu-
terized test of dynamic visual acuity (cDVA) [10–11]. For 
the vision team, computerized visual acuity testing was 
also deemed the best way to measure visual acuity. 
Therefore, the vestibular and vision teams agreed to 
merge their efforts into a single test of static visual acuity 
(SVA). While current versions of cDVA are available, 
they are expensive, require examiner expertise, and have 
no pediatric correlate. Consequently, efforts in software 
and hardware development were made to build a new test 
for use with children and adults that incorporated SVA 
and dynamic visual acuity (DVA) to evaluate peripheral 
VH for the vestibular team and visual resolution for the 
vision team.

*Vestibular Team: R. M. Rine, M. Schubert, S. Whitney, N. Shepard,
D. Wrisley, G . Jacobsen, J. Carey, J. Slotkin, H. Hoffman. Vision Team:
R. Varma, R. McKean-Cowdin, K. Cruickshanks, R. Hays, C. Johnson, 
M. Maguire, R. Massof, C. Owsley, M. Repka, S. Vitale, M. Wall.
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BACKGROUND

Dynamic Visual Acuity
The semicircular canals and otolith organs of the 

peripheral vestibular end organ are essential for main-
taining gaze and gait stability during head motion. This is 
achieved by efference from the VOR and the vestibu-
lospinal reflexes. Damage to semicircular canals and/or 
otolith organs causes impaired visual acuity during head 
rotation (DVA); impaired balance and postural control; 
and symptoms of vertigo, falling, nausea, and disorienta-
tion [10–18]. In addition to these symptoms, children 
with VH also experience a progressive motor delay with 
deleterious consequences on social development and 
educational performance [7,19]. However, lack of avail-
ability of low-cost, easy-to-administer tools to screen for 
VH has limited its identification. The NIH Toolbox 
cDVA was developed to address this shortcoming.

The DVA test measures the ability to see clearly dur-
ing head rotation. Scores reflect the difference in visual 
acuity between stable head and moving head [10–11]. At 
velocities <100 °/s, the ability to maintain gaze during 
head rotation is enabled by visual pursuit and the VOR 
[20]. For head velocities >100 °/s, the VOR is the pri-
mary contributor for detecting head rotation and main-
taining stable gaze [21]. Herdman et al. were the first to 
develop a cDVA by flashing the letter E optotype when-
ever head velocities were between 120 and 180 °/s [10]. 
They presented optotypes in progressively smaller sizes, 
five at each acuity level, until the subject incorrectly 
identified five optotypes at a single line of acuity. A rate 
sensor mounted on a headband worn by the subject mon-
itored active head velocity. The investigators reported 
good reliability, excellent sensitivity and specificity 
(94%), and significant effect of age in both nondisabled 
controls and patients with VH. In a separate study, Schu-
bert et al. examined the use of a vertical DVA test and 
also reported excellent reliability (intraclass correlation 
coefficient [ICC] = 0.94) for patients with VH, but poor 
sensitivity in identifying unilateral VH (UVH) loss (ICC =
0.23) [22]. This sensitivity improved to detect bilateral 
VH (BVH; ICC = 0.55), with the test having excellent 
specificity to rule out vestibular pathology of any type 
(ICC = 0.90). Each of these aforementioned tests was 
computerized but limited to testing adults (mean ± stan-
dard deviation [SD] = 50.6 ± 17.0 years) and did not have 
a validated SVA test.

Rine and Braswell developed a noncomputerized, 
clinical version of the horizontal DVA test for use with 
children [23]. Images included Lea symbols (circle, 
square, house, or apple; Figure 1(a)), posted on a 15-line 
vision optotype chart [24]. Children aged 3 to 15 years 
with (n = 11) and without (n = 76) BVH participated. 
Subjects initially completed the SVA test [25]. For the 
DVA test, the child’s head was passively moved in the 
horizontal plane, using a metronome to assure a velocity 
of 2 Hz. These investigators reported good to excellent 
reliability (ICC = 0.84) for horizontal DVA and excellent 
sensitivity and specificity (97%). However, this study 
was limited because a significant amount of examiner 
training was required and the sample was limited to those 
children with BVH. While UVH is more common than 
BVH in adults, we are unaware of the incidence of UVH 
in children or its effect on DVA in children.

Static Visual Acuity
SVA tests measure impairments in visual resolution 

that can be caused by blurring of the retinal image, neural 

Figure 1.
Vision optotypes used included (a) Lea, (b) Early Treatment of 

Diabetic Retinopathy Study, and (c) HOTV.
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processing disorders, or damage to neurons in the retina 
or other parts of the visual pathway. The gold standard 
for visual acuity testing in adults is the Early Treatment 
of Diabetic Retinopathy Study (ETDRS) optotype [26–
27]. The ETDRS optotype was developed to evaluate 
changes in vision following panretinal photocoagulation 
in patients with diabetic retinopathy [27]. The test is 
administered in a standardized way, using visual acuity 
optotypes illuminated on a light box, resulting in quanti-
tative visual acuity test results. It was designed to allow 
for comparison of data across research studies and is recom-
mended by the National Academy of Sciences and the 
American National Standards Institute. The ETDRS 
optotypes include the same number of letters per row 
with equal spacing of letters and rows (0.1 logMAR 
between each row), with the individual rows balanced for 
letter difficulty. The ETDRS optotyes use 10 letters: C, 
D, H, K, N, O, R, S, V, and Z (Figure 1(b)). Scoring is 
completed on a logarithmic scale.

SVA testing in children (5–12 years old) has tradi-
tionally used the letters H, O, T, and V (Figure 1(c)), 
which replaced the ETDRS optotype letters in an attempt 
to improve testability in younger age groups [28]. Proto-
cols using picture optotypes have also been used with 
high success rates (e.g., testability) but have been shown 
to overestimate visual acuity in some children with visual 
impairment [29]. Several investigators have reported that 
completion rates are better using symbols, as in the Lea 
optotypes [25,30], but a concern has been its sensitivity 
to test amblyopia. The use of HOTV optotypes was stan-
dardized in the Amblyopia Treatment Study, during 
which the protocol was found to have high testability and 
test-retest reliability in children aged 3 to 7 years [31]. 
The Amblyopia Treatment Study procedure was modi-
fied for an electronic visual acuity (EVA) tester to sim-
plify the testing procedure and decrease testing 
variability [32]. HOTV testability in developmentally 
normal children was found to be 100 percent in 5- to 12-
year-olds but was not tested in younger children. An 
EVA testing system has also been developed (electronic 
ETDRS [E-ETDRS] optotype) that uses a testing algo-
rithm that runs on the EVA tester [32–35]. In a study 
comparing E-ETDRS optotypes with the HOTV opto-
type, investigators found that children had better test 
results for HOTV optotypes compared with E-ETDRS 
optotypes (median difference = 0.06 logMAR or 3 letters 
on an optotype with 5 letters per line, p = 0.0001) when 

including children with normal eyes, eyes with refractive 
error, or amblyopic eyes [28].

The purpose of this project was to develop an inex-
pensive, portable, and psychometrically sound measure 
of visual acuity during still head and head in motion. 
Specifically, the objectives were to (1) determine the 
optimal optotype for use with young children, (2) estab-
lish the reliability of the DVA and SVA tests, and (3) 
determine the validity of the DVA and SVA tests.

METHODS

Subjects
We enrolled 318 subjects (17 with and 301 without 

vestibular pathology) in the study. To provide sufficient 
sample size to allow for repeat testing to determine opti-
mal optotype in children, a larger portion of the sample 
was aged 12 or younger (Table 1). VH was confirmed by 
bithermal caloric (adults: >20% asymmetry) or rotational 
chair (children: 2 SDs below the normative age-matched 
data collected in this laboratory) tests. All children com-
pleted rotary testing. The types of pathology in this group 
were BVH secondary to infection (n = 10) or mild head 
trauma (n = 1). Only adults with suspect pathology com-
pleted bithermal caloric testing to confirm UVH: five 
caused by viral assault and one deafferented because of 
removal of vestibular schwannoma. Screening confirmed 
exclusion criteria, which included preexisting central ner-
vous system disorder, cervical spine pathology, and any 
oculomotor impairment.

Instrumentation
Custom software was written in Python and C++. 

Hardware included a 2 GHz Intel Dual central processing 
unit laptop with 2 GB of RAM (IBM Thinkpad; Armonk, 
New York). The laptop was connected to a 1440 × 900 
resolution monitor that displayed the optotypes. The 
operator used the built-in laptop display. A single-axis 
rate sensor (O-Navi; Vista, California) used to detect hori-
zontal head rotation was attached to a soft bicycle light 
strap and secured to the head (Figure 2). The rate sensor 
triggered the software to flash an optotype only when 
head velocity met or exceeded 180 °/s. During SVA test-
ing, optotypes were presented one at a time and continu-
ously until the subject identified the optotype (no time 
limit). During cDVA, the optotype flashed on the screen 
for 83 ms only when the head moved 180 °/s. Optotype 
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size ranged from 20/10 to 20/800. The software calcu-
lated an acuity score (in logMAR) assuming 100 opto-
types were viewed using the formula: 1.7 – (0.02 × 
number correct) for SVA and DVA tests. We calculated 
the cDVA score from these measures by subtracting SVA 
from cDVA for each side.

Data Collection
Subjects sat 12.5 ft away from the viewing screen at 

their eye level. The SVA test begins with an initial 
“quick” screening at size 20/50 and presents a single ran-
dom letter per size (in steps of 0.1 logMAR), either going 
smaller until one is identified incorrectly or larger until 
one is identified correctly. The test then presents five letters
per line size, beginning with the smallest size answered 
correctly during screening. If any letter is missed at the 
largest size seen, the next largest level is added. If three 

Table 1.
Subject demographics, n (%).

Demographic All (n = 318) Nondisabled (n = 301) Vestibular Pathology (n = 17)

Female 164 (51.6) 154 (51.2) 10 (58.8)

Age (yr)

3 21 (6.6) 21 (7.0) 0 (0)

4 34 (10.7) 34 (11.3) 0 (0)

5 21 (6.6) 21 (7.0) 0 (0)

6 23 (7.2) 22 (7.3) 1 (5.9)

7 30 (9.4) 28 (9.3) 2 (11.8)

8 27 (8.5) 27 (9.0) 0 (0)

9 27 (8.5) 25 (8.3) 2 (11.8)

10 18 (5.7) 17 (5.6) 1 (5.9)

11 19 (6.0) 18 (6.0) 1 (5.9)

12 20 (6.3) 18 (6.0) 2 (11.8)

13–17 24 (7.5) 22 (7.3) 2 (11.8)

18 54 (17.0) 48 (16.0) 6 (35.3)

18–35 16 (5.0) 16 (5.3) 0 (0)

36–65 27 (8.5) 22 (7.3) 5 (29.4)

66–85 11 (3.5) 10 (3.3) 1 (5.9)

Race/Ethnicity

American Indian 2 (0.6) 2 (0.7) 0 (0)

Asian 8 (2.5) 8 (2.7) 0 (0)

Black or African American 12 (3.8) 12 (4.0) 0 (0)

White 257 (80.8) 248 (82.4) 9 (52.9)

More Than One Race 11 (3.5) 9 (3.0) 2 (11.8)

Unknown/Not Reported 28 (8.8) 22 (7.3) 6 (35.3)

Hispanic 23 (7.2) 21 (7.0) 2 (11.8)

Figure 2.
Dynamic visual acuity headgear. Rate sensor attached to

headband.
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or more letters are correct at the smallest size seen, the 
next smallest level is added. The subject always sees all 
five letters for each line size. Letters from the largest level 
in the test are always shown first, working down to the 
smallest level. Testing stops when three or more letters 
are missed at the smallest level or the subject reaches the 
20/10 level. The DVA test follows the same procedure, 
except it avoids the screening portion and starts three line 
sizes larger than the SVA screening. However, we per-
formed training trials to assure correct head movement. 
The operator enters the subject’s responses. The software 
records the history of all optotypes displayed and the par-
ticipants’ responses.

Testing was performed first with the head still (SVA) 
and again with the head moving (DVA) to the right (two 
trials) and then to the left (one trial). The first trial with 
rotation to the right was considered training for all sub-
jects. We discarded scores from this trial and used them 
to control for learning effect [10–11].

Subjects self-generated the horizontal head rotations 
and were instructed to “move your head side to side as if 
saying no.” Children completed training trials for DVA 
testing until they obtained 80 percent accuracy (4/5 cor-
rect optotypes). Young children responded verbally or by 
pointing to a card with the optotypes on it (at a size of 20/
100). Subjects (n = 299) completed each test sequence 
twice to examine reliability.

For all subjects over 12 years old, we used the 
ETDRS optotype. To determine the optimal optotype set 
for use with children, we used three optotype sets (Lea, 
HOTV, and ETDRS); for subjects aged 3 to 6 years, we 
used both Lea symbols and HOTV optotypes, and for sub-
jects aged 7 to 12 years, we completed tests using all three 
optotypes. Presentation sequence of optotypes for these 
groups was performed using a random block design.

To encourage participation by the youngest children, 
the examiners used reward stickers. Often, young chil-
dren tend to avoid objects placed on their head, so the 
examiners offered “hats” (e.g., crown, pirate hat, or 
themed baseball cap) that could be attached to the head 
gear (Figure 3). Children were able to take their hat with 
them when testing was complete.

ETDRS light box acuity testing was completed by all 
subjects 7 years old to examine validity of the comput-
erized SVA test. We asked subjects to read each letter of 
an ETDRS optotype placed 12.5 ft away, backlit with a 
light box. The test was complete when the subject missed 
three out of five optotypes at a line size (in logMAR) or 

read the entire optotype [27]. The SVA score was the line 
size (logMAR) just above this.

Statistical Analysis
We estimated test-retest reliability using ICCs within 

each of the age groups. To evaluate agreement between 
acuity scores based on different optotypes and tests, we 
computed ICCs between the pairs of measures (Lea, 
HOTV, ETDRS) within each age group and collapsed 
across age groups. We evaluated usability of each meas-
ure among children by examining the number able to suc-
cessfully complete each test. We examined the 
associations of each measure with the relevant gold stan-
dard. For children, we used data from the rotational chair 
as a criterion reference; for adults, we used electronystag-
mography (ENG) as the reference to validate those sub-
jects with vestibular pathology. In addition, we used a 
prior-established cDVA [36] to establish validity 
(sensitivity and specificity) in adults. For children, we 
used rotary test results to establish validity. To compare 
cDVA scores between those who did and did not pass the 
gold standard examination (evaluate construct validity), 
we used two-sample t-tests. We calculated effect sizes 
(mean difference divided by pooled SD) for all group 
comparisons to aid interpretation.

Figure 3.
Hat incentive for children. To encourage participation and wearing

rate sensor, paper hats were attached to headband. Rate sensor

was concealed to minimize any anxiety and curiosity.
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RESULTS

Demographics and Descriptives
Of the sample, 52 percent was female and 7 percent 

was Hispanic (Table 1). Of the 318 total participants, a 
small sample (n = 17) had a diagnosed vestibular pathology.
Most of the individuals with vestibular pathology (14/17; 
82%) were 9 years old.

Completion rates differed in the youngest groups 
(Table 2). For SVA testing, children 3 to 4 years old more 
successfully completed the test using the Lea optotypes 
instead of the HOTV optotypes.

Reliability
The reliability of SVA testing for each optotype 

depended on the optotype used but ranged from excellent 
to good (ICC = 0.89, 0.91, and 0.84 for Lea, HOTV, and 
ETDRS, respectively; Table 3). Reliability for cDVA 
was acceptable for the HOTV and ETDRS optotypes but 
not the Lea optotype (ICC = 0.55 for HOTV, 0.65 for 
ETDRS, 0.43 for Lea; Table 3). The difference in reli-

ability of the optotypes was more pronounced in DVA 
testing (Table 3).

The following correlation of SVA scores between 
optotypes existed: Lea and HOTV = moderate to excel-
lent (r = 0.58–0.98; overall r = 0.88); Lea and ETDRS = 
fair to excellent (r = 0.41–0.96; overall r = 0.90), and 
HOTV and ETDRS = good to excellent (r = 0.72–0.97; 
overall r = 0.93).

Validity
Sensitivity and specificity of cDVA was fair to excel-

lent (calculations based on ETDRS optotypes only [n = 
210]; Table 4). For children, scores achieved by those 
with and without VH were significantly different (p 
0.001; effect size = 0.7; Figure 4). In adults, those who 
failed the previously established cDVA differed signifi-
cantly from those who did not (p  0.001; effect size = 
1.9; Figure 4). The agreement between the computerized 
version of SVA and light box visual acuity scores was 
good (r = 0.795; p  0.001; Figure 5).

Table 2.
Success rates for completion of testing by age and optotype. All other age groups achieved 100 percent completion rates.

Age (yr)
Static Visual Acuity (%) Dynamic Visual Acuity (%)

Lea HOTV Lea HOTV
3 81 76 70 40
4 94 86 85 50

Table 3.
Reliability of visual acuity measures.

Measure
ICC (95% CI)

All
Age 3–4 

(n = 37 to 50)
Age 5–6 

(n = 43 to 44)
Age 7–12 

(n = 133 to 141)
Age 13–17 

(n = 24)
Age 18–76 

(n = 50 to 54)
Static Visual Acuity

Lea 0.89 (0.86, 0.92) 0.64 (0.35, 0.82) 0.75 (0.53, 0.87) 0.92 (0.89, 0.94) — —
HOTV 0.91 (0.88, 0.93) 0.73 (0.47, 0.87) 0.61 (0.32, 0.80) 0.93 (0.90, 0.95) — —
ETDRS 0.84 (0.79, 0.88) — — 0.85 (0.80, 0.89) 0.74 (0.50, 0.88) 0.81 (0.62, 0.91)

Dynamic Visual Acuity
Lea (left) 0.38 (0.25, 0.50) 0.39 (0, 0.70) 0.45 (0.10, 0.70) 0.27 (0.11, 0.42) — —
Lea (right) 0.29 (0.15, 0.42) 0.09 (0, 0.46) 0.50 (0.16, 0.73) 0.22 (0.05, 0.37) — —
Lea (average) 0.43 (0.31, 0.54) 0.32 (0, 0.63) 0.52 (0.19, 0.74) 0.34 (0.18, 0.48) — —
HOTV (left) 0.43 (0.30, 0.54) 0.57 (0.21, 0.79) 0.63 (0.35, 0.81) 0.28 (0.12, 0.43) — —
HOTV (right) 0.46 (0.34, 0.57) 0.46 (0.06, 0.73) 0.18 (0, 0.51) 0.46 (0.32, 0.58) — —
HOTV (average) 0.55 (0.44, 0.64) 0.63 (0.30, 0.83) 0.51 (0.18, 0.74) 0.48 (0.34, 0.60) — —
ETDRS (left) 0.53 (0.42, 0.63) — — 0.38 (0.23, 0.52) 0.56 (0.22, 0.78) 0.44 (0.07, 0.70)
ETDRS (right) 0.69 (0.61, 0.76) — — 0.42 (0.27, 0.55) 0.73 (0.48, 0.87) 0.76 (0.53, 0.89)
ETDRS (average) 0.65 (0.56, 0.73) — — 0.48 (0.34, 0.60) 0.75 (0.51, 0.88) 0.58 (0.25, 0.79)

Note: Age range is provided due to varied number of subjects that completed retest within each optotype.
CI = confidence interval, ETDRS = Early Treatment of Diabetic Retinopathy Study, ICC = intraclass correlation coefficient.



216

JRRD, Volume 49, Number 2, 2012

DISCUSSION

The cDVA created for the NIH Toolbox initiative is a 
valid measure of SVA, DVA, and VH. For children, 
cDVA reliability is moderate when using the ETDRS 
optotype and fair when using the Lea and HOTV opto-
types. This might be because of the minimal variation in 
scores, since most subjects with pathology were >9 years 
old and thus were tested using only the ETDRS optotype. 
cDVA is a functional measure of VOR and will not 
replace the current standard of clinical vestibular func-
tion testing (i.e., bithermal caloric or rotary tests with 

ENG). This is in part because of the test being performed 
using active head rotations, which are known to recruit 
strategies to assist gaze stability, different from the VOR 
[37]. However, our version of the cDVA would be a use-
ful means to screen visual acuity and VOR, particularly 
in large population-based studies.

Similar to prior reports [25,30], we had more success 
using the Lea optotypes for children <5 years old. This 
was particularly evident in DVA testing, which may be 
because of the increased difficulty of the dual task of 
moving the head and identifying a symbol. However, scores
from HOTV had a higher correlation with the ETDRS 

Table 4.
Sensitivity and specificity (using Early Treatment of Diabetic Retinopathy Study optotype) of computerized test of dynamic visual acuity 
(cDVA).

cDVA
Pathology (n)

No Yes Total
Pass 135 4 139
Fail 60 11 71
Total 195 15 210

Note: Sensitivity = 73%; specificity = 69%.

Figure 4.
Comparison of computerized testing of dynamic visual acuity (cDVA) score between those with and without pathology. cDVA score 

(dynamic visual acuity score – static visual acuity score, in logMAR) differed significantly between those with and without pathology 

in both younger and older age groups. 
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optotype. These results suggest that the ideal optotype for 
children <6 years old is the HOTV optotype for SVA. 
However, if cDVA is of primary interest to investigators, 
the Lea optotype is optimal for success rates with very 
young children. Some of the challenges we experienced 
that influenced testability in children were that they were 
not comfortable or secure identifying letters, they were 
concerned they had made an error (or at least felt they did 
and did not want to continue), or they became bored with 
the task. All children were comfortable identifying the 
symbols and thus did not feel challenged until the opto-
type became small. With a dual discomfort level (letters 
and size with HOTV and ETDRS optotypes), children 
often wanted to stop all testing, with participation in the 
dynamic component adding a third challenge. Therefore, 
depending on the purpose of the data, cDVA in children 
should use the optotype that affords the most success 
(e.g., Lea optotype). Note that for this study, children 
completed testing of two or three different optotypes. This 
would not be the case in the typical clinical setting. In our 
experience, success in testing young children is maxi-
mized by keeping an upbeat, positive approach and using 
plenty of encouragement, applauding all responses.

We were able to complete the cDVA within 5 min for 
most subjects. Occasionally, testing in younger children 
required more demonstration, breaks, and rests and could 
thus require 7 min. This may be greatly influenced by the 
skill of the investigator working with children even 
though the protocol is computerized.

Both vestibular and visual functions are expected to 
be critical components of the functional status of indi-
viduals of all ages. This is primarily because of the grow-
ing evidence of vestibular and visual impairments in 
adults and children [2–3,5,7,38]. As we age, vestibular 
afferent neurons die and function similarly becomes 
impaired [39]. Refractive error is also a common condi-
tion in the general population, and the level of visual 
impairment caused by age-related diseases is expected to 
increase in the general population over the next several 
decades as the age distribution shifts toward greater num-
bers of individuals in older age groups. A readily avail-
able, inexpensive tool that enables screening of visual 
acuity and vestibular function by individuals with mini-
mal training is important for healthcare and research.

LIMITATIONS

The limited number of subjects with vestibular 
pathology younger than 6 years old limits the generaliza-
tion of sensitivity and specificity reported to those older 
than 6 years old. This, and the lack of gold standard test-
ing of vestibular function in adults without vestibular 
pathology, may have affected results presented here. Fur-
thermore, most subjects had visual acuity at or above 20/
20. Further study is warranted that includes individuals 
with vestibular pathology across all ages, with gold stan-
dard testing of vestibular function of those with and with-
out vestibular pathology, and those with visual acuity 
impairments to comprehensively establish the validity of 
this test.

CONCLUSIONS

Screening for vestibular function and visual acuity 
requires specialized training and expensive equipment 
that is not typically portable. Based on results presented 
here, the cDVA developed for use in the NIH Toolbox 
yields reliable and valid measures of both SVA and DVA. 
The test is inexpensive, portable, and can be completed 
by individuals aged 3 to 85 years. No special expertise in 
visual or vestibular testing is needed, and the test can be 
completed within 5 min. This makes it an optimal tool to 
screen for vestibular functional status by clinicians in vari-
ous settings and investigators alike. Continuing research 

Figure 5.
Correlation of computerized static visual acuity (SVA) and light 

box testing scores. SVA scores (in logMAR) attained on com-

puterized test and light box test were highly correlated (r = 

0.795; p < 0.001).
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is underway to establish a normative database for indi-
viduals aged 3 to 85 years.
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