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Abstract

We define the cyclic matching sequencibility of a graph to be the largest
integer d such that there exists a cyclic ordering of its edges so that every
d consecutive edges in the cyclic ordering form a matching. We show that
the cyclic matching sequencibility of K2m and K2m+1 equals m − 1.

1 Introduction

Let G ⊆ Kn be a graph of order n (without loops or multiple edges) with p edges.
Alspach [1] defined the following notions. The matching number of a linear ordering
[1], [2], . . . , [p] of the edges of G (we use [i] to denote the ith edge in an ordering of
the edges of G) is the largest number d such that every d consecutive edges in the
ordering form a matching of G. The matching sequencibility of G, denoted ms(G), is
the maximum matching number of a linear ordering of the edges of G. Clearly, the
matching sequencibility of G is bounded above by the largest number of edges in a
matching of G and this in turn is bounded above by �n−1

2
� if n is odd. If n is even and

G itself is a perfect matching, then ms(G) = n
2
. If n is even and G is not a matching,

then ms(G) cannot equal n
2

because the edge [1] and the edge
[

n
2

+ 1
]

would have to
be identical. Thus, if n is even, provided G is not a matching, ms(G) ≤ �n−1

2
�.
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The matching sequencibility of K2 is clearly 1. Using the Walecki decomposition
of the complete graph Kn with odd n ≥ 3 into Hamilton cycles and the decomposition
of Kn with even n ≥ 4 into Hamilton paths, Alspach [1] showed how to order the
edges of Kn (n ≥ 3) to get a matching number equal to �n−1

2
�. Thus

ms(Kn) =

⌊
n − 1

2

⌋
. (1)

Let G ⊆ Km,n be a bipartite graph with p edges, and let A be an m × n biadja-
cency matrix of G. Then an ordering of the p edges of G corresponds to a bijective
replacement of the p 1s of A with the integers 1, 2, . . . , p resulting in a matrix Â.
The matching sequencibility of this ordering is the largest integer k such that every
set of k consecutive integers lie in different rows and columns.

For a complete bipartite graph Km,n with m ≤ n, it is not difficult to show that

ms(Km,n) =

{
n − 1 if m = n

m if m < n.

The matching sequencibility is certainly bounded above by these numbers. Using
the biadjacency matrix A, it is straightforward to order the edges (the 1s of A) to
show that these upper bounds can be attained. In this representation, a matching of
size k corresponds to a set of k 1s of A no two from the same row and column. We
illustrate this for K4,4 and K4,6 whose biadjacency matrices are the 4 × 4 and 4 × 6
matrices J4,4 and J4,6 of all 1s, respectively.

(K4,4) : Â =

⎡
⎢⎢⎣

1 5 9 13
14 2 6 10
11 15 3 7
8 12 16 4

⎤
⎥⎥⎦ and (K4,6) : Â =

⎡
⎢⎢⎣

1 13 9 21 5 17
18 2 14 10 22 6
7 19 3 15 11 23
24 8 20 4 16 12

⎤
⎥⎥⎦ .

Henceforth, to avoid trivialities, we assume that n ≥ 3. We define a variation of
the matching sequencibility of G by considering cyclic orderings of the edges of G.
The cyclic matching number of a cyclic ordering [1], [2], . . . , [p], [1] of the edges of G
is the largest number d such that every d consecutive edges in the cyclic ordering
form a matching of G. The cyclic matching sequencibility of G, denoted cms(G), is
the maximum cyclic matching number of a cyclic ordering of the edges of G. We
have

cms(G) ≤ ms(G) ≤
⌊

n − 1

2

⌋
. (2)

Clearly, cms(K3) = 1. The main result of this note is the following theorem.

Theorem 1.1 For n ≥ 4,

cms(Kn) =

{ �n−1
2
� if n is even

�n−3
2
� if n is odd.
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Combining Theorem 1.1 and equation (1), we have:

Corollary 1.2 For n ≥ 4,

cms(Kn) =

{
ms(Kn) if n is even

ms(Kn) − 1 if n is odd.

2 Proof of the Main Result

The proof is in three parts: constructions for the even case (I), constructions for the
odd case (II), and a nonexistence argument for the odd case (III).

Figure 1

(I) We first show that if m ≥ 2, then there is a cyclic labeling of the edges of
K2m whose cyclic matching number is m − 1. In view of (2), this will establish the
first equality in Theorem 1.1.

Let the vertices of K2m be labeled 0, 1, 2, . . . , 2m − 1, and consider the vertices
1, 2, . . . , 2m−1 as equally spaced points on the unit circle centered at a point labeled
0. Consider the perfect matching

M = {{0, 1}, {2, 2m − 1}, {3, 2m − 2}, . . . , {m, m + 1}},

of K2m. We label the edges of M as listed in the order [1], [2], . . . , [m]. Let φ be the
rotation about the origin by 360/(2m − 1) degrees. Then

M, φ(M), φ2(M), . . . , φ2m−2(M)
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is a 1-factorization of K2m, that is, (2m − 1) perfect matchings of K2m partitioning
the edges of K2m. We note that φ2m−1(M) = M . For k = 1, 2, . . . , 2m− 2, the edges

φk({0, 1}), φk({2, 2m − 1}), φk({3, 2m − 2}), . . . , φk({m, m + 1})

receive labels

[1 + mk], [2 + mk], [2 + mk] . . . , [m + mk],

respectively. In this way we obtain an ordering [1], [2], . . . , [2m2 − m] of the edges
of K2m which we regard as a cyclic ordering with [1] following [2m2 − m]. To verify
that this cyclic labeling has cyclic matching number m − 1, it suffices to show that
each set of m − 1 consecutive edges of φk(M), φk+1(M) is a matching for each k =
1, 2, . . . , 2m− 2. But this is straightforward to check using the definitions of M and
φ. We illustrate this construction for m = 3, that is, K6, in Figure 1.

(II) We next show that if m ≥ 2, then there is a cyclic labeling of the edges of
K2m+1 whose cyclic matching number is m − 1.

A near-perfect matching of K2m+1 is a matching of m edges. Such a matching
meets all but one vertex of K2m+1, and we call the missing vertex the isolated vertex
of the matching. Let the vertices of K2m+1 be labeled 0, 1, 2, . . . , 2m, and consider
the vertices 0, 1, 2, . . . , 2m as equally spaced points on the unit circle centered at the
origin. The near-perfect matching

M = {{1, 2m}, {2, 2m − 1}, . . . , {m, m + 1}}

has vertex 0 as its isolated vertex. We label the edges of M as listed in the order
[1], [2], . . . , [m] (according to the smallest vertex the edge contains). Let φ be the
rotation about the origin by 360/(2m + 1) degrees. Then

M, φ(M), φ2(M), . . . , φ2m(M)

are (2m+1) near-perfect matchings of K2m+1 and they partition the edges of K2m+1.
Each vertex of K2m+1 is an isolated vertex of one of these near-perfect matchings.
For k = 1, 2, . . . , 2m, the edges

φk({1, 2m}), φk({2, 2m − 1}), . . . , φk({m, m + 1})

receive labels
[1 + mk], [2 + mk], . . . , [m + mk],

respectively. In this way we obtain an ordering [1], [2], . . . , [2m2 + m] of the edges
of K2m+1 which we regard as a cyclic ordering with [1] following [2m2 + m]. (We
remark that the Walecki decomposition of K2m+1 into Hamilton cycles proceeds
with 2m vertices equally spaced on the unit circle and one at the origin and with
one Hamilton cycle C. Then with θ equal to the rotation about the origin through
360/(2m) degrees C, θ(C), . . . , θm−1(C) is a Hamilton decomposition of K2m+1.)
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To verify that this cyclic labeling has cyclic matching number (at least) m−1, we
first note that each φk(M) is a near-perfect matching and thus each of the two sets of
m−1 consecutive edges of φk(M) (that is, its first m−1 edges and its last m−1 edges)
is a matching. Also since φ(φk(M)) = φk+1(M) including φ(φ2m(M)) = φ2m+1(M) =
M , it is enough to show that any m − 1 consecutive edges from M ∪ φ(M) form a
matching. But again this is straightforward to check using the definitions of M and
φ. We illustrate this construction for m = 3, that is, K7, in Figure 2.

Figure 2

(III) Finally we show that if m ≥ 2, then there does not exist a cyclic ordering
of the edges of K2m+1 with cyclic matching number m. In view of (II) we conclude
that cms(K2m+1) = m − 1.

Assume to the contrary that there is a cyclic ordering [1], [2], . . . , [2m2 + m], [1]
of the edges of K2m+1 with cyclic matching number equal to m. Each set of m
consecutive edges in the cyclic ordering is a near-perfect matching of K2m+1 with a
unique isolated vertex. Let

M[i] = {[i], [i + 1], [i + 2], . . . , [i + m − 1]} (i = 1, 2, . . . , 2m2 + m)
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where the edges in the matching M[i] are taken in the cyclic ordering. Since

M[i+1] = {[i + 1], [i + 2], . . . , [i + m − 1], [i + m]},

the edge [i+m] joins the isolated vertex of M[i] to one of the vertices of edge [i]. For
each i = 1, 2, . . . , m, we get a partition

F[i] = {M[i], M[i+m], M[i+2m], . . . , M[i+(2m)m]}

of the edges of K2m+1 into 2m + 1 near-perfect matchings; here the subscripts are
taken modulo 2m2 + m. Since the degree of each vertex of K2m+1 equals 2m, each
vertex of K2m+1 is the isolated vertex of exactly one near-perfect matching of F[i].

For each i = 1, 2, . . . , m, let G[i] be the spanning subgraph of K2m+1 consisting
of the 2m + 1 edges

{[i], [i + m], [i + 2m], . . . , [i + 2m2]}. (3)

Note that [i+2m2 +m] = [i] in our cyclic ordering, since K2m+1 has exactly 2m2 +m
edges. Each graph G[i] has exactly 2m + 1 vertices and exactly 2m + 1 edges.

Claim 1: Each G[i] is a connected unicyclic graph consisting of a cycle with pendent
edges (possibly none) at its vertices.

In fact, since the number of edges of G[i] equals the number of its vertices, if G[i] is
connected and the edges span all its vertices, G[i] must be unicyclic. In constructing
G[i] in the order of the edges listed, each edge of G[i] has a vertex in common with
the edge of G[i] preceding it in the order (interpreted cyclically) given in (3); thus,
starting with one of the vertices of G[i], we include one new vertex at a time, giving
an ordering of the vertices for each G[i], and attach an edge from the new vertex to
an old vertex. It follows that G[i] is connected, and since each vertex of K2m+1 is an
isolated vertex of one of the near-perfect matchings of Fi, the edges of G[i] span its
vertices. Thus G[i] is a connected unicyclic graph, and so G[i] consists of a cycle with
a tree (possibly an empty tree) rooted at each of its vertices. Moreover, since each
edge of G[i] has a vertex in common with the previous edge, these trees cannot have
paths of length greater than 1. This establishes Claim 1.

Consider the connected unicyclic graph G[1]. Let k be the length of its cycle γ
where we label the vertices so that γ = (1, 2, . . . , k, 1). We can assume that {1, 2} is
edge [1] in the cyclic ordering of the edges of K2m+1 and that edge [1+m] is adjacent
to vertex 2 (rather than vertex 1). Let there be pi ≥ 0 pendent edges of G[1] at
vertex i. Since each edge of G[1] has a vertex in common with the previous edge, it
follows that the cyclic ordering of the edges of G[1] is of the form

{1, 2}, {2, v2,1}, . . . , {2, v2,p2}, {2, 3}, {3, v3,1}, . . . , {3, v3,p3}, . . .

. . . , {k, 1}, {1, v1,1}, . . . , {1, v1,p1}, {1, 2},
where vi,1, . . . , vi,pi

are the pendent vertices of G[i] joined to vertex i (i = 1, 2, . . . , k).
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Assuming, without loss of generality, that vertex 1 (as opposed to vertex 2) is the
isolated vertex of the near-perfect matching M[2], then it follows that the isolated
vertices of the near-perfect matchings in the partition F[2] are in the order

1, v2,1, . . . , v2,p2 , 2, v3,1, . . . , v3,p3 . . . , k, v1,1, . . . , v1,p1 , 1. (4)

Thus, in constructing G[2] in the manner described above, the vertices are added in
this order with an edge from a vertex to some preceding vertex.

Claim 2: The edges {vt,i, vt,i+1} (1 ≤ i < pt) and the edges {t − 1, vt,1} (1 ≤ t ≤ k)
are not edges of G[2].

Suppose {vt,i, vt,i+1} is an edge of G[2]. Then vt,i+2 must be joined to either vt,i

or vt,i+1 in G[2], and it follows that vt,pt is joined by an edge to one of vt,i, . . . , vt,pt−1 .
Now vertex t is joined by an edge in G[2] to one of vt,i, . . . , vt,pt−1 , vt,pt , a contradiction
since all such edges belong to G[1]. Similar reasoning shows that {t − 1, vt,1} cannot
be an edge of G[2]. This establishes Claim 2.

The vertices of G[2] are added in the order given in (4) with its edge [2+m] equal
to {1, w} for some vertex w. The edge [2 + 2m] is the edge {v2,1, w}, since by Claim
2, it cannot be the edge {1, v2,1}. Similarly, by Claim 2, the next edge is {v2,2, w}
since it cannot be the edge {v2,1, v2,2}. Continued application of Claim 2 shows that
all subsequent vertices must be joined by an edge to w in G[2]. This implies that G[2]

is a graph K1,2m and thus is not unicyclic, a contradiction.

This completes the proof of Theorem 1.1.

3 Remarks and Open Questions

Let m ≥ 2. By Theorem 1.1, cms(K2m+1) = m − 1. As already remarked, in
[1], the Walecki decomposition of K2m+1 into Hamilton cycles is used to show that
ms(K2m+1) = m. If one uses that construction twice, one obtains that

cms(2K2m+1) = m (m ≥ 2),

where 2K2m+1 is the multigraph obtained from K2m+1 by doubling each edge. This is
illustrated in Figure 3 for m = 3. In this figure, the ordering of the edges of K7 given
by the integers 1, 2, . . . , 21 is the ordering from the Walecki decomposition used by
Alspach [1] to show that the matching sequencibility of K7 equals 3; note that this
ordering does not give that the cyclic matching sequencibility of K7 equals 3.

If Cn is a cycle of n vertices with n odd, then it is easy to show that cms(Cn) =
ms(Cn) = n−1

2
, the maximum possible. This follows by assigning the integers

1, 2, . . . , n to the edges, starting with any edge and going around the cycle twice
taking alternate edges. This is illustrated in Figure 4 for n = 7.



252 BRUALDI, KIERNAN, MEYER AND SCHROEDER

Figure 3

Figure 4
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Now consider an even length cycle C2q. Then C2q ⊆ Kq,q and C2q has as a
biadjacency matrix A = I + Pq where Pq is the permutation matrix with 1s in
positions (1, 2), (2, 3), . . . , (q − 1, q), (q, 1).

First suppose that q is even, and let a cyclic ordering of the edges of C2q be given

by the matrix Â in Figure 5.

2
66666666666666666666666664

1 q
2q − 1 q − 2

2q − 3 q − 4
2q − 5 q − 6

.
. .

.
. .

q + 3 2
q + 1 2q

q − 1 2q − 2

.
.
.

.
.
.

9 q + 8
7 q + 6

5 q + 4

q + 2 3

3
77777777777777777777777775

.

Figure 5

Now the difference of two positive integers in the same row or column of Â is
±(q − 1) modulo 2q. This implies that every (cyclical) set of q − 1 consecutive
positive integers lie in different rows and columns. Since cms(C2q) and ms(C2q) are
at most q − 1, it follows that

cms(C2q) = ms(C2q) = q − 1 (q equal 0 modulo 4).

The matrix Â when q = 4 is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 8
15 6

13 4
11 2

9 16
7 14

5 12
10 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now suppose that q is odd, and let the cyclic ordering of the edges of C2q be

given by the matrix Â in Figure 6.
2
66666666666666666666666664

1 q + 2
3 q + 4

5 q + 6

7 q + 8

.
.
.

.
.
.

q − 1 2q
q 2q − 1

q − 2 2q − 3

.
.
.

.
.
.

8 q + 7
6 q + 5

4 q + 3
q + 1 2

3
77777777777777777777777775

.

Figure 6
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The difference of two positive integers in the same row and column of Â is ±(q−1)
or q modulo 2q implying that every (cyclical) set of q−1 consecutive positive integers
lies in different rows and columns. Thus

cms(C2q) = ms(C2q) = q − 1 (q equal 2 modulo 4).

The matrix Â when q = 6 is ⎡
⎢⎢⎢⎢⎢⎢⎣

1 8
3 10

5 12
6 11

4 9
7 2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In summary, we have

cms(Cn) = ms(Cn) =

⌊
n − 1

2

⌋
(n ≥ 3).

Now consider a path Pn of n vertices. First assume that n = 2q. Then a q × q
biadjacency matrix A of P2q is obtained from the biadjacency matrix of the cycle C2q

by replacing the 1 in its (q, 1)-position with a zero. It is easy to obtain an ordering
of the edges of P2q (the 1s in A) that shows that cms(P2q) = ms(P2q) = q − 1. For
example, if q = 5, the following ordering works and generalizes in the obvious way:

Â =

⎡
⎢⎢⎢⎢⎣

4 8
3 7

2 6
1 5

9

⎤
⎥⎥⎥⎥⎦ .

Now assume that n = 2q + 1 is odd. Then a q × (q + 1) biadjacency matrix A
of P2q+1 is obtained from the biadjacency matrix of the cycle C2q+1 by deleting its
last row. It is easy to show that ms(P2q+1) = q. For example, if q = 5, the following
ordering works and generalizes in the obvious way:

Â =

⎡
⎢⎢⎢⎢⎣

5 10
4 9

3 8
2 7

1 6

⎤
⎥⎥⎥⎥⎦ .

Note that this construction does not give cms(P2q+1) = q. In fact, cms(P2q+1) = q−1,
as we now argue by contradiction. Suppose there were a cyclic ordering of the 2q
edges of P2q+1 such that every cyclic set of q edges form a matching of P2q+1. Since
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we have a cyclic ordering, we may assume that the edge [1] is one of the pendent
edges of P2q+1. But then, no matter which matching is determined by the edges
[1], [2], . . . , [q], all of the other edges meet a vertex of one of the edges [2], . . . , [q], a
contradiction.

In summary, we have

cms(Pn) = ms(Pn) = n−2
2

if n is even,
ms(Pn) = n−1

2
if n is odd,

cms(Pn) = n−3
2

if n is odd.

The (cyclic) matching sequencibility has been computed for complete graphs,
complete bipartite graphs, cycles, and paths. It may be of interest to compute it for
other important classes of graphs, but such computations may be very difficult and
they will in general depend on the particular graph in the class and thus be of less
interest. For a tree, the (cyclic) matching sequencibility may differ considerably from
the matching number (the maximum number of edges in a matching). For example,
in Figure 7 there is a tree T of order 18 with a perfect matching (matching number
equal to 9) and an ordering of the edges showing that ms(T ) ≥ 2. It is not hard to
see that cms(T ) = 1 and ms(T ) = 2. If one takes any graph G of order n and adjoins
n + 1 (respectively, n + 2) pendent edges at one of its vertices to get a graph H of
order 2n+1 (respectively, 2n+2), then ms(G) = 1 (respectively, cms(H) = 1), since
in any ordering (respectively, cyclic ordering) of the edges of H, some two of these
pendent edges would have to be consecutive.

Figure 7

Another class of graphs of potential interest are the k-regular bipartite graphs
G ⊆ Kn,n. For example, consider the 3-regular bipartite graph G ⊆ Kn,n whose
biadjacency matrix is P−1 + I + P (equivalently, I + P + P 2) where P is as before
the full cycle permutation matrix of order n. Then cms(G) = ms(G) = n − 1. We



256 BRUALDI, KIERNAN, MEYER AND SCHROEDER

illustrate this in terms of the biadjacency matrix A and the labeling given by Â for
the n odd and n even cases with n = 7 and 8:

Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 16 7
15 2 9

10 3 18
17 4 11

12 5 20
19 6 13

8 14 21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 18 8
17 2 10

11 3 20
19 4 12

13 5 22
21 6 14

15 7 24
9 23 16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We conclude with three additional questions applying to all graphs that appear
to be very difficult.

Question 1: Given a graph G with matching number p, is there a positive integer
k such that ms(kG) = p (cms(kG) = p)?

Question 2: For a graph G, we have ms(G) ≥ cms(G). How large can ms(G) −
cms(G) be? Is cms(G) ≥ ms(G) − 1?

Question 3: Given a graph G, is cms(2G) = ms(G)?

References

[1] B. Alspach, The wonderful Walecki construction, Bull. Inst. Combin. Applic. 52
(2008), 7–20.

(Received 30 Sep 2011; revised 22 Mar 2012)


	Cyclic matching sequencibility of graphs
	N180.dvi

