Texas Symposium on Relativistic Astrophysics – Dallas, TX – Dec. 8-13, 2013 Gravitational and Electromagnetic Waves on the Null Cone

Maria C Babiuc (Marshall University, Huntington, WV)

babiuc@marshall.edu

Choosing the Path

- ♦ Gravitational and electromagnetic radiation travels along *principal null directions* in space-time, called *rays* or *characteristics*.
- ♦ Along characteristics, Maxwell's and Einstein's vacuum equations reduce to ordinary differential equations.
- ♦ The solutions are obtained by integrating along the characteristics from initial data.

♦ Bondi (1962) showed that gravitational waves end up at future null infinity, where they should be measured. He found an exact metric for the gravitational waves:

$$ds^{2} = -\left(e^{2\beta} \frac{V}{r} - r^{2} h_{AB} U^{A} U^{B}\right) du^{2} - 2e^{2\beta} du dr$$
$$-2r^{2} h_{AB} U^{B} du dx^{A} + r^{2} h_{AB} dx^{A} dx^{B}$$

- ♦ He analyzed the energy radiated by a source of gravitational waves, and calculated the loss of mass by emission of gravitational waves by introducing a term called *news*.
- ♦ In his words: The mass of a system is constant if and only if there is no news. If there is news, the mass decreases monotonically as long as the news continues.

Enlightening the Gravity

- ♦ Do black hole mergers produce light signals?
- ♦ Merging black holes are usually surrounded by gas, accretion disk, magnetic fields...
- ♦ Other sources of both kinds of radiation: Gamma-ray bursts, supernovae...
- identify them & give info on the source type.
- ♦ Gravitational counterparts to visible bursts can test source models.

♦ Calculate the main evolution equations from the Einstein-Maxwell and Maxwell field equations for the Bondi metric.

$$R_{\alpha\beta} + 2(F_{\alpha\gamma}F^{\gamma}_{\beta} - \frac{1}{4}g_{\alpha\beta}F_{\gamma\delta}F^{\gamma\delta}) = 0$$

$$F_{\alpha\beta,\gamma} + F_{\beta\gamma,\alpha} + F_{\gamma\alpha,\beta} = 0; \quad F_{;\beta}^{\alpha\beta} = 0, \quad R_{,\beta}^{\alpha\beta} = 0$$

♦ Start with a simple 2D characteristic metric and a simple null electromagnetic field

$$ds^{2} = -e^{2\beta} \frac{V}{r} du^{2} - 2e^{2\beta} du dr$$

$$+ r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$F = F_{u\theta} du \wedge d\theta + F_{u\phi} du \wedge d\phi$$

 $+F_{r\theta}dr \wedge d\theta +F_{r\omega}dr \wedge d\varphi$

Adding to the News

- ♦ The radiated energy will be given by four Bondi News: two for the gravitational part and two for the electromagnetic part
- ♦ The loss of mass by emission of gravitational and electromagnetic radiation:

\$\phi\$ Electromagnetic counterparts of gravitational waves can point to gravitational sources—help
$$M_{,u} = -\frac{1}{2} \int_{0}^{\pi} (N_{\oplus}^2 + N_{\otimes}^2 + X_{\leftrightarrow}^2 + X_{\downarrow}^2) \sin\theta d\theta$$
 identify them & give info on the source type

A New Null Code

- ♦ Our current PITT NULL CODE models pure gravitational radiation at null infinity.
- ♦ From this, I am developing a new version incorporating electromagnetic waves.
- ♦ To do this, translate the Einstein-Maxwell field equations on a Bondi Metric into a form suitable for numerical integration and write a new characteristic code, including the lessons learned from the past regarding:
 - ♦ Stability and well-posedness
 - ♦ Accuracy and convergence
 - ♦ Initial data on the worldtube

♦ Collaborators welcome!

I would be happy to have collaborators for this project, including a possible post-doc (depending on funding).

♦ Contact me:

babiuc@marshall.edu

Acknowledgements

NSF grant PHY-0969709 to Marshall University.